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Version Abrégée

Les signaux obtenus par électroencéphalogramme (EEG) fournissent des indices sur l’activité

synaptique combinée des groupes de neurones. En plus de leurs applications cliniques, les

signaux EEG peuvent être utilisés en tant que support pour le développement d’interfaces

de communication directe entre cerveau et ordinateur (interface cerveau-ordinateur ICO).

Lorsque des activités mentales sont exécutées, des caractéristiques spécifiques apparais-

sent dans l’EEG. Si des actions (produites par l’ICO) sont mises en correspondance avec

de types de caractéristiques associées à des activités mentales qui n’impliquent aucun effort

physique, alors la communication par la simple pensée devient possible. L’utilisateur opère

l’ICO en exécutant des activités mentales qui sont reconnues par l’ICO grâce à des modèles

de reconnaissance ayant été établis lors d’une phase d’entrâınement.

Dans le cadre de cette thèse, nous considérons le positionnement d’un objet dans un en-

vironnement bidimensionnel généré par ordinateur (EGO). L’objet peut être déplacé suivant

quatre directions correspondant à des activités mentales différentes. Le fonctionnement de

l’ICO est asynchrone, à savoir que le systéme est actif en permanence et génère de mouve-

ments de l’objet seulement lorsqu’il reconnâıt l’une des activités mentales correspondantes.

L’ICO analyse de segments d’EEG et génère de mouvements d’après un ensemble de règles

(règles d’action) qui sont adaptées au niveau d’expérience de l’utilisateur lors du contrôle

de l’application.

Les signaux EEG sont de faible amplitude et sont donc particulièrement sensibles à des

perturbations extérieures. De plus, les changements abrupts apparaissant lors des activ-

ités musculaires, en particulier oculaires (artefacts), peuvent entraver le fonctionnement de

l’ICO et même mener à des conclusions erronées sur la capacité de l’utilisateur à contrôler

l’ICO. Ainsi, il est particulièrement important de filtrer les perturbations extérieures et

détecter les artefacts. Les perturbations extérieures sont filtrées à l’aide de techniques de

traitement de signaux classiques et les artefacts sont détectés en utilisant un algorithme

de détection d’événements basé sur des méthodes dites du type noyau. Les paramètres

de détection sont calibrés au début de chaque expérience de façon interactive. Lorsqu’un

artefact est détecté dans un segment d’EEG, l’ICO en avertit l’utilisateur au moyen d’un

événement particulier qui se produit dans l’EGO.

L’analyse des propriétés des signaux EEG en temps, fréquence et phase fourni des

mesures statistiques (attributs) qui sont utiles pour la reconnaissance des activités men-
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tales à partir de segments d’EEG. Cependant l’analyse extensive dans les domaines temps,

fréquence et phase produirait un très grand nombre d’attributs. Moyennant des hypothèses

sur la nature des signaux EEG il est possible de réduire le nombre d’attributs nécessaires.

Les attributs sont groupés au sein d’un vecteur d’attributs à partir duquel les modèles de

reconnaissance sont établis en utilisant de concepts d’apprentissage artificiel. Du point de

vue de l’apprentissage artificiel, des vecteurs d’attributs à faible dimension sont préférables

car ils réduisent le risque de sur-apprentissage.

Les modèles de reconnaissance sont construits sur la base de la théorie de l’apprentissage

statistique et plus particulièrement des méthodes du type noyau. L’avantage d’une telle

approche réside dans le fait que les modèles de reconnaissance ainsi construits atteignent

de taux de reconnaissance supérieurs aux autres tout en étant très flexibles.

Un fonctionnement adéquat de l’ICO requiert l’adaptation continue des modèles de

reconnaissance à de possibles changements pouvant apparâıtre dans les signaux EEG, et

résultant des conditions externes différentes et de l’habituation de l’utilisateur à l’ICO. Cette

adaptation est implémentée au moyen de l’apprentissage dynamique des paramètres des

modèles de reconnaissance. Ainsi, ces paramètres peuvent être mis à jour continuellement

et de façon considérablement efficace en termes de temps de calcul.

A la fin d’une première série de séances d’apprentissage, les méthodes pour l’extraction

des vecteurs d’attributs sont choisies (d’après un critère d’optimalité lié à l’erreur de re-

connaissance), les modèles de reconnaissance pour chaque activité mentale son construits

et les règles d’action sont établies. Durant ces séances les activités mentales son présentées

suivant un plan qui est défini par rapport à un protocole d’apprentissage.

Dans les séances d’apprentissage suivantes, l’ICO donne un retour à l’utilisateur pour lui

indiquer le degré de reconnaissance de l’activité mentale qu’il lui a été demandé d’exécuter.

Ainsi, l’utilisateur peut moduler son activité cérébrale afin d’obtenir un retour positif. A

la fin de chaque séance les modèles de reconnaissance sont mis à jour. Ceci est accompli

aisément due à la nature dynamique des paramètres des modèles. Puisque les modèles de re-

connaissance changent dynamiquement, les règles d’action doivent changer en conséquence.

Ceci se fait automatiquement car les règles d’action dépendent des paramètres des modèles.

L’ICO développé dans le cadre de cette thèse, a été validé par des expériences sur

six sujets ayant participé à neuf séances d’apprentissage. Les trois premières séances ont

servi à choisir les méthodes d’extraction de vecteurs d’attributs, construire les modèles de

reconnaissance initiaux et établir les règles d’action. Dans les six dernières séances, en plus

de l’expérience avec retour, des expériences de positionnement de l’objet ont étés réalisées

afin d’évaluer l’expérience acquise lors de chaque séance. L’évaluation a été effectuée suivant

deux critères, à savoir le calcul théorique du taux de transfert d’information en considérant

l’erreur de reconnaissance moyen sur les activités mentales et la mesure expérimentale du

taux de transfert d’information associée au test de positionnement. Cette dernière présente

l’avantage de refléter plus étroitement les capacités réelles du sujet. Les deux mesures de

taux de transfert d’information ont augmenté au cours des six dernières séances et ont

atteint un taux moyen (sur les sujets) de 126 et 25 bits par minute respectivement.



Abstract

Scalp recorded electroencephalogram signals (EEG) reflect the combined synaptic and ax-

onal activity of groups of neurons. In addition to their clinical applications, EEG signals

can be used as support for direct brain-computer communication devices (Brain-Computer

Interfaces BCIs). Indeed, during the performance of mental activities, EEG patterns that

characterize them emerge. If actions executed by the BCI, are associated with classes of

patterns resulting from mental activities that do not involve any physical effort, commu-

nication by means of thoughts is achieved. The subject operates the BCI by performing

mental activities which are recognized by the BCI through comparison with recognition

models that are set up during a training phase.

In this thesis we consider a 2D object positioning application in a computer-rendered

environment (CRE) that is operated with four mental activities (controlling MAs). BCI

operation is asynchronous, namely the system is always active and reacts only when it

recognizes any of the controlling MAs. The BCI analyzes segments of EEG (EEG-trials)

and executes actions on the CRE in accordance with a set of rules (action rules) adapted

to the subject controlling skills.

EEG signals have small amplitudes and are therefore sensitive to external electromag-

netic perturbations. In addition, subject-generated artifacts (ocular and muscular) can

hinder BCI operation and even lead to misleading conclusions regarding the real control-

ling skills of a subject. Thus, it is especially important to remove external perturbations and

detect subject-generated artifacts. External perturbations are removed using established

signal processing techniques and artifacts are detected through a singular event detection

algorithm based on kernel methods. The detection parameters are calibrated at the begin-

ning of each experimental session through an interactive procedure. Whenever an artifact

is detected in an EEG-trial the BCI notifies the subject by executing a special action.

Features that are relevant for the recognition of the controlling MAs are extracted from

EEG-trials (free of artifacts) through the statistical analysis of their time, frequency, and

phase properties. Since a complete analysis covering all these aspects, would result in a

very large number of features, various hypotheses on the nature of EEG are considered in

order to reduce the number of needed features.

Features are grouped into feature vectors that are used to build the recognition models

using machine learning concepts. From a machine learning point of view, low dimensional

xi



xii Abstract

feature vectors are preferred as they reduce the risk of over-fitting.

Recognition models are built based on statistical learning theory and kernel methods.

The advantage of these methods resides in their high recognition accuracy and flexibility.

A particular requirement of BCI systems is to continuously adapt to possible EEG changes

resulting from external factors or subject adaptation to the BCI. This requirement is fulfilled

by means of an online learning framework that makes the parameters of the recognition

models easily updatable in a computationally efficient way.

After the completion of a series of training sessions, the feature extraction methods

are chosen (according to an optimality criterion based on the recognition error), the initial

recognition models are built for each controlling MA, and the action rules are set. In these

sessions, the subject is asked to perform the controlling MAs in accordance to a training

protocol which determines the training schedule.

In posterior training sessions, the BCI provides feedback indicating the subject how well

the asked MA was recognized by the BCI. Thus, the subject can modulate his brain activity

so as to obtain positive feedback. Furthermore, at the end of each session the BCI updates

its recognition models. Such updating is straightforward as the recognition models can be

dynamically updated, i.e. their parameters can be updated as new training data becomes

available while progressively forgetting the contribution of old data. Because of the adap-

tation of the recognition models, the action rules must be adapted as well. This is achieved

by considering, in the definition of the action rules, variables that change along with the

recognition model parameters. The training schedule is decided based on the recognition

error associated with each controlling MA, thus those MAs with large recognition errors

are trained more often.

The BCI developed in this thesis was validated by experiments on six subjects who

participated in nine training sessions. The first three training sessions served to select the

feature extraction methods, build the initial recognition models, and set the action rules. In

the last six sessions, in addition to the training with feedback, positioning tests were carried

out to measure the controlling skills acquired by them during each session. The evaluation

was done following two criteria, namely the computation of the theoretical information

transfer rate using estimates of the average recognition errors over the controlling MAs, and

an experimental measure of the information transfer rate corresponding to the positioning

tests. The latter has the advantage of corresponding to a real controlling situation and

consequently reflects more closely the actual controlling skills of a subject. Both information

transfer rates increased during the last six sessions and reached an average, over subjects

of 126 and 25 bits per minute respectively.



Notation and Terminology

Variables and Constants

ℵ Space of ADBs power spectral densities

ℵcal Calibration set to train the artifact detection algorithm

αl Expansion coefficient associated with training vector xl

ai i-th autoregressive coefficient

A(i) i-th Autoregressive matrix

As Analytic signal associated with the signal s

βn Notch band

bk Offset of the membership function fk

B Frequency band

Cc Center of the artifact detection sphere

kk Action strength associated with MAk

f Frequency in Herz

fn Notch frequency

fs Sampling frequency

φs Instantaneous phase associated with the signal s

fk membership function associated with MAk

FTE Fraction of training errors

FSV Fraction of support vectors

H Functional space

Hs Hilbert transform of a signal s

κ Penalization constant for the artifact detection procedure

k Index used for mental activities (k = 1, . . . ,NMA)

L Number of elements in the training set

µ Notch bandwidth

m Electrode index

n Time index

xiii



xiv Notation and Terminology

NB Number of frequency bands

Ncal Number of elements in the calibration set

Ne Number of electrodes

NMA Number of mental activities used to operate the BCI

Nspt Number of samples per EEG-trial

νk Training error bound associated with MAk

Ps Power of signal s

Pm(Bi) Power of sm in the frequency band Bi

Qm Autoregressive order associated with sm for the mappings: ψAR and ψNAR

Q Order of the ψMVAR mapping

ρk Threshold associated with the membership function fk

Rc Radius of the artifact detection sphere

σ Parameter of the Gaussian Kernel

ŝ Fourier transform of a signal s

s̄ Analytic signal associated with a signal s

sm univariate signal recorded at the mth electrode

S Artifact-free EEG-trial

S̃ Non-preprocessed EEG-trial

τ Time lag

Tact Action period

Um Spectral order associated with sm in the ψNAR mapping

υ Frequency lag

ϑ Discrete frequency index

x Feature vector

Xk Target set associated with MAk

Xk Feature vector space associated with MAk

y Label ∈ {−1,+1} of a pattern vector

Y(m1,m2,B) Synchronization between sm1 and sm2, in the frequency band B

ζk Normalized membership associated with MAk

Ω Set of EEG-trials

Ωk Set of EEG-trials produced during the performance of MAk

Functions

As (·, ·) Ambiguity function of s

Am1,m2 (·, ·) Inter ambiguity function of signals sm1 and sm2

〈·, ·〉
0

Inner product in vector space 0

‖·‖
0

Norm in vector space 0

ck (·, ·, ·) k-th loss function associated with MAk

Cm1,m2 (·) Coherence function of signals sm1 and sm2
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δ (·) Discrete Dirac’s delta function

E(·) Prediction error power associated with the order of an AR model

E [·] Mathematical expectation

φk (·) k-th application from the set of feature vectors X into the functional space H
~f (·) Vector of memberships
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Introduction 1
1.1 Context

The interaction between humans and computers has been an expanding field of research

and development in recent years. The last two decades have witnessed the emergence of

innovative human-computer interfaces that use voice, vision, haptics, and a combination of

these (multimodality) as communication support.

Over the past decade effective attempts to achieve communication based on the analysis

of electrical brain signals have begun. They were mainly fostered by the will to help people

suffering from severe neuromuscular disorders by providing them with new communication

channels. Recent advances in neuroscience, psychology, signal processing, machine learning,

and hardware equipment made it possible to develop direct brain-computer communication

systems (brain-computer interfaces BCI). A BCI is a communication system in which the

messages or commands that the subject sends to the external world do not pass through

the brain normal output pathways of peripheral nerves and muscles.

Like any communication system a BCI has inputs (electrophysiological signals resulting

from brain activity monitoring) outputs (actions executed on an active device), elements

that transform inputs into outputs, and a protocol that determines its operation.

Subjects control the active device by performing mental activities (MAs) which are

associated with actions depending on the BCI application. Typical applications include

cursor positioning, spelling programs, and command of external devices. The association

between MAs and actions requires the selection of a set of MAs to operate the BCI and the

identification of signatures in the brain activity that univocally characterize each MA.

Brain activity produces a wide variety of phenomena that can be measured with ad-

equate sensors and have potential use in a BCI. Among the current monitoring methods

scalp recorded electroencephalogram (EEG) constitutes an attractive choice for BCI sys-

1



2 Chapter 1. Introduction

tems because of its noninvasiveness, relative simplicity and low cost. We therefore focus our

attention on the design and development of a scalp recorded electroencephalogram based

BCI.

The types of MAs used in current BCIs were chosen in accordance with brain hemi-

spheric specialization studies which suggest that the two brain hemispheres are specialized

for different cognitive functions. The left hemisphere appears to be predominantly involved

during verbal and other analytical functions and the right hemisphere in spatial and holistic

processing. Thus typical MAs include: evoked response to external stimuli, imagined limb

movement, and spatial, geometrical, arithmetical, and verbal operations.

Following the type of MAs they use, BCIs are categorized into evoked response and

operant conditioning based ones. Evoked response based BCIs rely on subject attention-

focusing to particular stimuli that are associated with actions. Operant conditioning based

BCIs react to particular MAs (controlling MAs) executed by the subject. These MAs are

recognized by the BCI through recognition models that are built during a training phase

and continuously updated.

BCI operation can be of two types: synchronous, and asynchronous. In synchronous

BCIs, the system is active only during some periods defined by the operator and the subject.

Conversely, asynchronous BCIs are always active and react only when the subject performs

the controlling MAs.

1.2 Objectives and Approaches

This thesis focuses on the development of an asynchronous operant conditioning based BCI

which operates with four MAs in the framework of a 2D cursor positioning application.

The achievement of successful BCI operation depends on the mutual adaptation of both

the subject and the system. Three levels of adaptation are identified:

First, when a subject accesses the BCI for the first time the latter adapts to that

subject’s signal characteristics. This level of adaptation is achieved during an initial training

phase in which several signal processing methods to analyze EEG signals are considered

and the optimal ones are selected.

Second, continuous adjustments are necessary to maintain subject controlling skills and

reduce the impact of possible EEG variations. This level of adaptation is handled by means

of recognition models based on kernel methods, which in addition to be highly suitable for

the recognition task, have parameters that are automatically updated as more training data

become available.

Third, the adaptive capacity of the brain needs to be engaged in the sense that, through

feedback the brain activity will modify itself so as to produce those EEG patterns that best

control the BCI. This level of adaptation is implemented through the establishment of

operation rules that take into account subject controlling skills. Such rules are updated

along with the recognition models.

In addition to these requirements, the following criteria must be fulfilled to achieve

reliable communication: proper external noise removal, detection of subject generated ar-
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tifacts (e.g. ocular and muscular artifacts), and adequate design of the training protocols

and the evaluation scheme. Detection of artifacts is especially important as they can lead

to misleading conclusions about the subject’s ability to control the BCI. Indeed, the subject

might be (voluntarily or not) controlling the BCI by generating artifacts.

1.3 Main contributions

The main contributions of this thesis can be summarized as follows.

• Definition of a general conceptual framework for BCI operation.

• Development of an efficient artifact detection algorithm whose parameters can be

easily and rapidly adjusted during a short calibration phase that takes place at the

beginning of each experimental session.

• Establishment of a general EEG analysis framework that can be extended to the

analysis of any multivariate process. By assuming different hypotheses on the nature

of the EEG process different feature extraction methods result.

• Establishment of a theory of recognition models based on kernel methods whose pa-

rameters can be efficiently updated as new training data become available.

• Derivation of a method to automatically select the parameters of the recognition

models from statistical learning considerations.

• Choice of the optimal feature extraction method for each mental activity.

• Definition of action rules that determine BCI operation in function of the mental

activities and subject controlling skills.

• Evaluation of the subject controlling skills through a theoretical and experimental

measure of the information transfer rate.

1.4 Outline

The dissertation is organized in seven chapters. In chapter 2, the BCI architecture, oper-

ation mode and main concepts are defined. Furthermore, state-of-the-art implementations

are presented and compared. The general architecture presented in this chapter serves as

a thread for subsequent chapters in which we detail our solution.

Chapter 3 presents the basic elements of electroencephalography, the EEG acquisition

procedure, and the preprocessing algorithms aiming at removing external noise and detect-

ing artifacts in EEG signals. In chapter 4, a general framework for the analysis of EEG

is developed and through the establishment of hypotheses on the nature of EEG signals,

we derive several feature extraction methods. Chapter 5 describes the algorithms used to

establish recognition models for the mental activities used to control the BCI as well as the



4 Chapter 1. Introduction

dynamic updating of these models parameters. Chapter 6 presents the application of our

BCI implementation in the framework of an asynchronous 2D positioning application.

Conclusions and an outline of some interesting future research directions are presented

in Chapter 7. Complementary details on the nature of the recognition models discussed in

Chapter 5 are given in Appendix A. Finally, complementary numerical results corresponding

to the experiments that we carried out are provided in Appendix B.



Conceptual framework and

state of the art 2
“An expert is a man who has made all the mistakes,

which can be made, in a very narrow field .” Niels Bohr

2.1 Introduction

A BCI is a communication system which allows a subject to act on his environment only

by means of his thoughts, without using the brain’s normal output pathways of peripheral

nerves and muscles. Like any communication system a BCI has inputs (electrophysiological

signals that result from brain activity monitoring) outputs (device actions), elements that

transform inputs into outputs, and a protocol that determines its operation [167, 175].

The subject controls the active device by performing mental activities (MAs) which are

associated with actions that are dependent on the BCI application (see Fig. 2.1). Typi-

cal BCI applications include control of the elements in a computer-rendered environment

(e.g. cursor positioning [63, 176], visit of a virtual apartment [11, 12]), spelling programs

(e.g. virtual keyboard [120]), and command of an external device (e.g. robot [107], prosthe-

sis [128]).

The association between MAs and actions requires the selection of a set (controlling

set) of MAs to which the BCI responds, and the identification of signatures in the brain

activity that characterize each MA in the controlling set. These signatures are identified

through the analysis of the electrophysiological signals recorded during the performance of

the MAs in the controlling set.

The basic BCI design is depicted in Fig. 2.1. The monitoring of the subject’s brain

activity results in electrophysiological signals that are analyzed by the signal processing

block. The latter computes measurements on these signals (features) that are grouped into

a feature vector which is sent to the translation-into-commands block. This block recognizes

5
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Figure 2.1. Basic BCI design. Like any communication system a BCI has inputs (electrophysiological

signals that result from brain activity monitoring) outputs (device actions), elements that transform

inputs into outputs, and a protocol that determines its operation

the signatures characterizing the MAs in the controlling set and triggers the corresponding

action on the active device. As this action can be noticed by the subject, it constitutes

a feedback that he can use to modulate his mental activities so as to obtain the desired

result.

In this chapter, we review the approaches in terms of brain activity monitoring and

types of MAs used in current BCIs. In particular, we focus our attention on scalp record-

ed electroencephalogram based BCIs, propose a detailed architecture for such BCIs, and

discuss different implementations in the framework of existing BCIs.

2.2 Brain activity monitoring

Brain activity produces a wide variety of phenomena that can be measured with ade-

quate sensors and have potential use in a BCI. Among the current methods to monitor

brain activity we mention: electrical potentials measurement (i.e. electroencephalogram

and invasive electrophysiological methods), functional magnetic resonance imaging (fM-

RI), magneto-encephalogram (MEG), and positron emission tomography (PET). A more

complete discussion on different methods to monitor brain activity can be found in [174].

At present, fMRI and MEG systems are large, very expensive, and require a magnetically

shielded environment. Furthermore, since fMRI and PET depend on blood flow, they have

long time constants and consequently they are less amenable to rapid communication [167].

Thus, electrical potential measurements constitute an adequate choice to monitor brain

activity for BCI applications. Indeed, they have good time resolution, there is clear evidence

that observable changes in the corresponding signals result from the performance of given

mental activities, and put aside the invasive modalities, are easily acquired [65].

Electrical potentials can be measured as action or field potentials. Action potentials

reflect the activity of individual neurons and are measured by electrodes placed in the brain

cortex while field potentials reflect the combined activity of groups of neurons [167]. The
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latter are recorded as electroencephalogram (EEG) measurements from the scalp (in which

case, they reflect the activity in large areas of brain cortex), from small electrodes within the

brain (in which case, they reflect the activity in small immediately adjacent areas of tissue),

or from epidural or subdural locations in between these two extremes. In general, the more

the electrodes are invasive, the better the topographical resolution and the signal-to-noise

ratio [167].

The spatial scale of an intracortical electrode (10 µm to 1 mm) depends on the size of the

electrode tip, whereas the scale of unprocessed scalp EEG (6 to 10 cm) is largely independent

of electrode size. Scalp EEG scale may be reduced (to 2 to 3 cm) by using a combination

of multiple electrode arrays (64 or 128 electrodes) and high-resolution EEG algorithms

(spatial filtering). Intracortical (or invasive) electrodes achieve higher spatial resolution at

the expense of spatial coverage and significant increase in cost and risk [117, 118].

Invasive methods need neurosurgical implantation and were first used to record action

potentials in the cerebral cortices of awake animals during movements [45, 76]. With

operant conditioning methods, several studies showed that monkeys could learn to control

the discharge of single neurons in their motor cortex [47, 149, 179, 180]. From such work,

came the expectation that humans could develop similar control and use it to communicate

or to operate neuroprostheses. Evaluation of this possibility was delayed by the lack of

intracortical electrodes suitable for human use and capable of stable long-term recording

from single neurons. Presently, few research groups are active in invasive BCIs in humans.

In [88, 90, 91], a special type of cone electrodes is used to record stable action potentials

from neurons in the motor cortex; such potentials are used to move a cursor to select icons

or letters on a computer screen. The signal to noise ratio can be increased substantially

by invasive technologies. However, research in this field is rather limited as people may be

reluctant to agree to brain implants for research purposes especially because, at present,

successful control or communication with an invasive BCI cannot be guaranteed.

Because it combines high temporal resolution, relative simple acquisition, and low cost,

scalp recorded EEG is predominantly used in current BCIs. In the following, we concen-

trate on describing the architecture and functioning of scalp recorded EEG based BCIs

(henceforth simply called BCI), and the mental activities used to operate such BCIs.

2.3 Type of mental activities in the controlling set

The MAs used in current BCIs were chosen in accordance with brain hemispheric special-

ization studies which suggest that the two hemispheres of the human brain are specialized

for different cognitive functions. In particular, the left hemisphere appears to be predom-

inantly involved in verbal and other analytical functions and the right one in spatial and

holistic processing [5, 55]. Thus, typical MAs include: evoked responses to external stimuli,

imagined limb movement, and spatial, geometrical, arithmetical and verbal operations.

BCIs can be categorized, by the type of MAs they use into evoked response and operant

conditioning based BCIs. Both types are presented hereafter.
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2.3.1 Evoked response based BCIs

Evoked responses are related to cognitive methods in psychology [163, 167] which consider

the mind as an information processing device whose output depends on the relationship

between stimuli and the activation of cognitive processes.

External visual or auditory events (e.g. blinking objects on a computer screen, flashing

elements on a grid or brief sounds) elicit transient signals in the EEG that are characterized

by voltage deviations known as event related potentials (ERPs). When the subject pays

attention to a particular stimulus, an ERP that is time locked with that stimulus appears

in his EEG. The changes in the EEG signals induced by the ERP can be detected by

using averaging or blind source separation methods [75, 99]. If actions are associated with

stimuli, the subject can gain control of the BCI by focusing his attention on the stimulus

corresponding to the desired action.

Examples of BCIs functioning under evoked conditions are those using the P300 and

the steady state visual evoked responses. We briefly present them hereafter.

P300 based BCIs

Infrequent or particularly significant auditory, visual, or somatosensory stimuli, when mixed

with frequent or routine stimuli, typically evoke in the EEG over the parietal cortex a

positive peak at about 300 milliseconds after the stimulus presentation [39, 40, 46, 155, 171].

The BCI presents different stimuli (previously associated with specific actions) to the

subject. The P300 is prominent only in the responses elicited by the desired choice, and

the BCI uses this effect to determine the subject’s intent. In online experiments and offline

simulations, a variety of different algorithms (e.g. averaging [75], independent component

analysis [99]) for recognizing the desired choice have been evaluated, and the relationship

between the number of trials per selection and BCI accuracy has been described [39, 40].

In people with visual impairments, auditory or tactile stimuli might be used [66, 143].

In [40], the user faces a 6 × 6 matrix of letters, numbers, and/or other symbols or

commands. Every 125 milliseconds, a single row or column flashes; and, in a complete series

of 12 flashes, each row or column flashes twice. The user makes a selection by counting how

many times the row or column containing the desired choice flashes. EEG over the parietal

cortex is digitized, the average response to each row and column is computed, and P300

amplitude for each possible choice is computed. In related works, single trial P300 evoked

potentials were used to control some elements in a virtual environment [11, 12].

A P300-based BCI has an apparent advantage in that it requires no initial user training:

P300 is a typical, or naive, response to a desired choice. At the same time, P300 and related

potentials change in response to conditioning protocols [66, 109, 143, 154]. A P300 used in

a BCI is also likely to change over time. Studies up to the present have been short-term.

In the long term, P300 might habituate [138] so that BCI performance can deteriorate.
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Steady state visual evoked response (SSVER) based BCIs

Flicker stimuli of variable frequency (2-90 Hz) elicit a SSVER in the EEG which is charac-

terized by an oscillation at the same frequency as the stimulus. Thus, an SSVER can be de-

tected by examining the spectral content of the signals recorded in the visual region, namely

electrodes O1 and O2 of the 10-20 international system (see Chapter 3, Section 3.2.3).

When actions are associated with targets flickering with different frequencies the subject

can control the BCI by gazing at the target corresponding to the desired action [25, 28, 56,

105]. BCIs based on this principle depend on the subject’s ability to control gaze direction.

The advantage of BCIs based on evoked functional conditions resides in the fact that

little or no training is necessary for a new subject to gain control of the BCI. However, the

communication can be slow because of the averaging that is required to reliably detect an

event related potential [175] and, in the case of an ERP-based BCI, the waiting time for the

relevant stimulus presentation [11, 40]. Furthermore, the amplitude of the evoked response

can diminish over time resulting from the user habituation to the stimulus [138].

2.3.2 Operant conditioning based BCIs

Operant conditioning is related to behavioral methods in psychology [153, 167]. Accord-

ing to them, the subject can acquire control skills through adequate feedback (operant

conditioning feedback).

Effective attempts to provide control through operant conditioning feedback begun in

the 50’s [44, 84, 141] when some clinicians used the so-called neurofeedback to treat peo-

ple suffering from attention deficit, hyperactivity, depression and even epilepsy. Based on

the principle that functions of the autonomous and central nervous systems can be re-

trained for better adaptive functioning, neurofeedback practitioners trained their patients

to self-regulate their brain activity through operant feedback. In some cases, they obtained

astonishing results [141].

While a subject can learn to modulate his brain activity in order to make the BCI

accomplish his intents, it is well known that the learning process (if successful) can take a

considerable amount of time (up to several weeks [84, 141]). To handle this, the BCI simul-

taneously adapts to the user through machine learning algorithms. Thus, BCI operation

relies upon the adaptation of two controllers, namely the subject and the computer [167].

In theory, the subject could choose any MA to control the BCI. Indeed, as the BCI

learns how to recognize such an MA, one can expect that by means of machine learning

algorithms and adequate feedback, the subject eventually will control the BCI using such

an MA. However, MAs for which evidence that they are recognizable from EEG exists, are

preferred in current BCIs; in particular, MAs studied in the framework of brain hemispheric

specialization.

The subject and BCI adapt to each other according to the following process. In initial

training sessions (training without feedback), the subject is asked to perform the MAs in

the controlling set, while his EEG is recorded. The data are analyzed and using machine

learning methods, a model to recognize each MA is set up. In subsequent training sessions
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(training with feedback), the subject is asked to perform a given MA (in the controlling

set) and a feedback is provided, indicating the degree to which the BCI could identify the

MA using the model computed in the previous training session. At the end of each training

session, the recognition models are updated. This process is usually repeated many times

in the course of BCI operation. Thus, the BCI is constantly being adapted to the subject

and he can evaluate and improve his performance.

Examples of BCIs functioning under operant conditioning use slow cortical potential

shifts, oscillatory sonsorimotor activity, and other hemispheric specialized MAs. We briefly

present such BCIs hereafter.

Slow Cortical Potential Shifts (SCPSs) based BCIs

SCPSs last from a few hundred milliseconds up to several seconds and indicate the overall

preparatory excitation level of a cortical network and they are universally present in the

human brain. Negative SCPSs are typically associated with movement and other functions

involving cortical activation, while positive SCPSs are usually associated with reduced

cortical activation [18, 142].

In [73], several methods, ranging from low pass filtering to wavelet decomposition, for

the extraction of SCPSs from EEG are described. For online applications low-pass filtering

appears more suitable.

Subjects can learn through operant feedback to produce a SCPS in an electrically pos-

itive or negative direction for binary control [18, 124]. This skill can be acquired if the

subjects are provided with a feedback on the course of their SCPS production and if they

are positively reinforced for correct responses [17, 18].

In [18, 124], the binary control provided by the regulation of SCPSs and semantic

considerations were used to implement a spelling program through which locked-in patients

could communicate at a rate of one word per minute.

Oscillatory sensorimotor activity based BCIs

Populations of neurons can form complex networks which are at the origin of oscillatory

activity. In general, the frequency of such oscillations decreases with an increase in the

number of synchronized neuronal assemblies [152]. Two types of oscillations are especially

important: the Rolandic mu rhythm in the range from 7 to 13 Hz and the central beta

rhythm above 13 Hz, both originating in the sensorimotor cortex [80]. Sensory stimulation,

motor behavior, and mental imagery can change the functional connectivity within the

cortex and result in an amplitude suppression (event-related desynchronization ERD) or

in an amplitude enhancement (event-related synchronization ERS) of mu and central beta

rhythms [125].

Preparation and planning of self-paced hand movement results in a short-lasting de-

synchronization (ERD) of Rolandic mu and central beta rhythms. In [32, 160], electro-

corticographic recordings exhibit ERD in the alpha band associated with hand and foot
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movement. The general finding is that similarly to the mu rhythm (around 10 Hz), beta

oscillations desynchronize during the preparation and execution of a motor act [126].

Motor imagery may be seen as mental rehearsal of a motor act without any overt motor

output. It is broadly accepted that mental imagination of movements involves brain re-

gions/functions similar to that involved in programming and preparing such movements [81].

For example, during the imagination of a right-hand or left-hand movement, an ERD over

the contralateral hand area was found [126]. This ERD is characteristic of the planning or

preparation of a real movement [13].

Thus, the main difference between performance and imagery is that in the latter case

execution would be blocked at some corticospinal level [35]. This observation opens the

possibility of using motor imagery to provide a control option in BCI applications.

Oscillatory sensorimotor activity produced by the imagination of left/right hand move-

ment and foot movement are used in a virtual keyboard application and to manipulate a

hand orthosis in [128]. In a related work, the vertical movement of a 2D cursor is controlled

by changes in the mu and beta rhythms in [176].

BCIs that use other hemispheric specialized mental activities (HSMAs)

In addition to imagined motor tasks, other mental activities for which evidence for hemi-

spheric specialization was found, are: geometrical MA [116] (e.g. imagination of a geometric

3D object and the rotation of such an object), verbal MA [54, 94] (e.g. mental composition

of a letter) and arithmetic MA [144](e.g. mental counting, multiplication, etc.)

Few research groups considered these mental activities for BCI applications. According

to the results reported in [6, 60, 63, 106, 107], the communication bit rates and classification

error percentages are comparable with those of other BCIs. Little attention was given to

these mental activities because they did not seem ”natural” to control moving objects

(e.g. prostheses, cursor on a computer screen, etc.). However, HSMAs open the possibility

to implement more control capabilities and in certain cases they are easier to perform than

imagined motor mental activities.

The categorization that we presented so far is merely conceptual. Indeed, different com-

binations of mental activities and functional conditions can be used in a BCI. For instance,

in [89], an approach to decide on the type of recording (invasive or non-invasive), mental

activities, and operating modes that are best suited for locked-in patients is presented. In

this thesis, we use a combination of oscillatory activities, and other hemispheric specialized

MAs in a 2D cursor positioning application (see Chapter 6).

2.4 BCI architecture and operation

The BCI architecture depicted in Fig. 2.2 is a detailed version of the general scheme in

Fig. 2.1. The brain activity monitoring block is replaced by a scalp EEG acquisition system,

the signal processing block is composed of the preprocessing and feature extraction modules,

and the translation block is composed of the pattern recognition and action generation
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Figure 2.2. Architecture of the BCI system. With respect to the the basic design in Fig. 2.1, the brain

activity monitoring block is substituted by a scalp EEG acquisition system, the signal processing

block is subdivided into the preprocessing and feature extraction modules, and the translation block

into the pattern recognition and action generation modules. The actions are displayed on a computer

screen and constitute a feedback to the subject who can modulate his mental activity to make the

BCI accomplish his intents.

modules. The actions being displayed on a computer screen constitute a feedback to the

subject who can modulate his mental activity in order to make the BCI accomplish his

intents.

EEG is recorded by using an array of electrodes which are affixed on the subject’s scalp;

the acquired signals are amplified, digitized and sent to the computer. EEG signals are

analyzed in segments (EEG-trials) of a given duration that depends on the operation mode

(i.e. whether the BCI operates in a synchronous or asynchronous manner) and type of men-

tal activities. For instance, in a SCPS (see Section 2.3.2) based BCI the EEG-trial duration

is in the order of eight seconds. Each EEG-trial is preprocessed so as to remove external

(e.g. power line noise) and subject generated perturbations (e.g. ocular and muscular

movement artifacts). EEG-trials (free of perturbations) are sent to the feature extraction

module which extracts statistical measurements that are relevant for the recognition of the

MAs in the controlling set, and groups them into a vector (feature vector) which is in turn

sent to the pattern recognition module. The latter computes scores that indicate the like-

lihoods that the feature vector was produced during the performance of each of the MAs

in the controlling set.

Since each MA defines, in the feature vector space, a subset of feature vectors produced



2.4. BCI architecture and operation 13

Figure 2.3. BCI operation. EEG signals are analyzed in segments (EEG-trials) of a given duration

(EEG-trial duration) that depends on the operation mode and type of mental activities. Each

EEG-trial is preprocessed in order to remove the external noise and detect artifacts. Then, relevant

features are computed and grouped into a feature vector which is used to determine the likelihoods

that the EEG-trial was generated during the performance of each MA in the controlling set. Finally,

an action is executed that depends on the BCI action rules. Usually [128, 176], the unique action rule

consists in executing the most likely MA. Other approaches consider the past actions as well [63].

during the performance of such MA, the scores determined by the pattern recognition

module characterize the membership, with respect to each MA subset, of the current feature

vector. Such scores are grouped into a vector of memberships that is sent to the action

generation module which decides on the action that the BCI executes. Such an action

depends on the BCI application and on the action rules. For instance in [128, 175], the

action taken corresponds to the MA associated with the highest membership score while

in [63], the action depends on the vector of memberships and on past actions. The time

length between two consecutive actions is the action period (see Fig. 2.3).

The action rules depend on the BCI operation mode. In synchronous or cue-based

BCIs [18, 128, 176], the system is active, i.e. generates actions, during some ”windows

of opportunity” defined by the operator and the subject. Conversely, in asynchronous

BCIs [19, 63, 107], the system is always active and a neutral action is executed when the

current feature vector is considered as not belonging to any of the MAs in the controlling
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set. Clearly, the latter approach is more suitable for real applications. Indeed, an action

should be executed only in response to any of the MAs in the controlling set. At present, by

adequately adjusting the recognition parameters, it is possible to make the BCI generate an

action only when a certain level of confidence on the recognition exists. On the opposite, it

remains difficult to ensure adequate functioning when the subject is simultaneously engaged

in other activities (e.g. speaking).

Current BCIs can be described by the general architecture in Fig. 2.2. In the follow-

ing, we discuss the implementations of each module, the BCI applications, and evaluation

criteria, in the framework of existing BCIs.

2.5 Preprocessing

The preprocessing module removes the external noise from EEG-trials and detects the pres-

ence of artifacts. In this thesis, the term noise refers to external perturbations, e.g. power

line noise, and artifact to subject generated perturbations, e.g. muscular and ocular artifacts

(see Chapter 3, Section 3.3). In general, the EEG-trials containing artifacts are discard-

ed [70, 87, 101, 176] because the relevant information contained in the trial is masked by the

artifact. Indeed, at frontal, temporal, and occipital locations particularly, ocular artifacts

can exceed EEG [31, 68, 71] in amplitude.

Furthermore, the presence of artifacts can lead to misleading conclusions about the

subject’s ability to control the BCI. Indeed, the subject might be (voluntarily or not)

controlling the BCI by generating artifacts [167].

In [107] it is suggested that artifacts do not need to be identified because the BCI

is trained to recognize the MAs in the controlling set and consequently it automatically

rejects artifacts. In this thesis, the artifacts are detected and special actions are generated to

indicate to the subject whether an ocular or muscular artifact was detected (see Chapter 3).

Thus, the subject can auto-regulate the artifacts he produces.

Electromagnetic and EEG equipment noise are narrow band pass signals. Thus, remov-

ing them through hardware or software filtering is straightforward. Typically [102, 106, 128],

EEG signals are filtered in the 0.5-40 Hz frequency band, i.e. the effective EEG frequency

support. As power line and other electromagnetic noise sources have frequency supports

beyond 40 Hz such filtering removes most of this noise.

It is worth mentioning that while in the BCI framework they are treated as artifacts,

muscular and eye movements are used as information support in other human-machine

interaction systems [8, 158].

In this thesis, the power line noise is removed through notch filtering and the artifacts

are detected by adapting the outlier detection framework presented in [157].

2.6 Feature extraction

The feature extraction module is in charge of computing statistical measurements or features

on the EEG-trial (free of perturbations), delivered by the preprocessing module, that are
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relevant for the recognition of the MAs in the controlling set. Such measurements are

grouped into a feature vector.

Thus, the feature extraction module maps the EEG-trial set into a feature space. The

mapping properties are determined by the type of features (see Chapter 4). For instance,

a mapping can be defined by the coefficients of an autoregressive model [6, 123, 146] fitted

to the EEG-trial, the synchronization coefficients [16], or the powers in different frequency

bands [128, 176]. It appears that the mappings achieving the best recognition performance

in each MA in the controlling set are different(see Chapter 6). Thus, for its optimal oper-

ation a BCI should support several mappings. In [41], low recognition errors are obtained

through the combination of mappings for the off-line classification of EEG-trials recorded

during the imagination of left and right hand finger movements.

Most of the current BCIs use features based on the parametric and nonparametric

spectral representations of EEG signals. In fact, such methods were extensively used to

analyze EEG signals recorded during sleep, cognitive functions, epilepsy, and other clinical

applications [78].

Nonparametric spectral representations are obtained through the discrete Fourier trans-

form [114]. In [126], the power in the alpha and beta bands at electrodes located near the

motor cortex are used to discriminate between EEG-trials produced between the imagina-

tion of left and right index finger movements. In [132, 175], the powers in the alpha band

at frontal, central and occipital electrodes are used in a 1D cursor positioning application.

In [107, 106], the powers in 2 Hz wide frequency bands from 8 to 30 Hz at every electrode

are used as features to discriminate between five MAs, namely relaxing, imagination of left

and right hand movements, rotation of a cube, and arithmetic.

Parametric spectral representations include: autoregressive (AR) [123] and autoregressive-

moving-average (ARMA) [87] models for each EEG channel, and multivariate autoregressive

models that characterize all the channels simultaneously [6].

The above mentioned approaches require EEG to be stationary. Since stationarity is not

necessarily satisfied for EEG signals, alternative approaches which do not require station-

arity were considered. Thus, in [129] lower recognition errors, with respect to the analysis

of the powers in the alpha and beta band are reported by using adaptive autoregressive

models. In [57, 58, 59, 60, 61, 62], we used time-frequency analysis to obtain features for the

recognition of imagined left and right index finger movements, and mental multiplication

in a cursor positioning application.

In [110], a set of space filters, optimized to discriminate between EEG-trials generated

during the imagination of left and right index finger movements, are designed using the

eigenvalue feature extraction [53] method. This method basically consists in simultane-

ously diagonalizing the mean autocorrelation matrices of EEG-trials recorded during the

performance of each MA. By using this method in different frequency bands, we derive

in [63] a set of space frequency filters to characterize each MA in the controlling set. Fur-

thermore, in [60] we combine the diagonalization of the mean autocorrelation matrices with

the analysis of time-frequency correlations to derive a set of features to discriminate be-

tween three mental activities, namely imagined left and right index finger movements and
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mental counting. To handle the continuous adaptation to possible changes in the user’s

EEG dynamics, the joint diagonalization of the mean autocorrelation matrices needs to be

done periodically.

Nonlinear feature extraction methods were sporadically used in the BCI context. In [162],

phase space reconstruction of the chaotic attractor associated with signals recorded at elec-

trodes O1 and O2 are used to discriminate between three cognitive mental states, namely

eyes open subject alert, eyes closed subject alert, and eyes closed subject performing visual-

ization tasks. Phase synchronization [16] measures appear to be adequate for the recognition

of certain mental states from EEG. Furthermore in [161] measures of the EEG complexity

are used to provide 1D control.

In this thesis, we use several mappings from the EEG-trial set into different feature

spaces. Such mappings are defined, for example, by the powers in certain frequency bands,

autoregressive coefficients, coherence values, and synchronization. For each MA we select

the mapping that produces the lowest recognition error (see Chapters 4 and 6).

2.7 Pattern recognition

As mentioned earlier, the feature vectors produced during the performance of a given MA

define a set associated with such MA. The pattern recognition module measures the mem-

bership of a feature vector with respect to each MA set by means of machine learning

approaches.

In [86], the distribution of the feature vectors belonging to a given MA set is assumed

to be (multi-dimensional) Gaussian, thereby an optimal Bayesian classifier [53] is used to

determine the memberships. If in addition to the Gaussian distribution assumption, one

considers that the covariance matrices are all equal, linear discriminant analysis (LDA)

can be used [64]. LDA classifiers are simple and can be easily updated. They are used

in [129] to discriminate between EEG-trials produced during left and right hand movement

imagination, and in [21, 87] to recognize the readiness potentials associated with the finger

movements. Moreover, when the feature vectors are considerably high dimensional [58,

60] LDA classifiers appear to be the most suitable. However, if the separating boundary

between different MA sets, in the space of feature vectors, is significantly different from

linear, LDA classifiers can lead to high recognition error rates.

Clustering methods such as vector quantization and distance sensitive vector quan-

tization (a variant of vector quantization in which the distance takes into account the

discriminative power of each feature) are used in [83] and [133] respectively.

Multi-layer neural networks are used in [6, 106] to deal with general separation bound-

aries between the MA sets. Auto-associative neural networks which are able to directly

operate in the time domain (the feature extraction procedure is therefore no longer nec-

essary) are used in [38]. Linear and nonlinear classifiers are compared in [112] for BCI

applications.

Other approaches include logistic regression classifiers [123], hidden Markov models [120]

and microstates decomposition [52, 122] to classify sequences of features, and Bayesian time
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series classification [137].

Machine learning state-of-the-art kernel methods such as support vector machines and

kernel novelty detection algorithms are used in [62, 59, 63, 61].

Few research groups [127] mention their strategy to continuously adapt their recognition

algorithms. The usual approach consists in the periodical retraining of such algorithms.

When kernel methods are used, a simple updating strategy can be applied [63] by consid-

ering the fact that in such methods, a reduced set of support vectors characterizes the data

(training data) that was used to set up the recognition algorithm. Thus, when new training

data become available, they are used in conjunction with the old support vectors to update

the recognition algorithm.

In this thesis, we efficiently solve the updating problem by using an online learning of

kernel-based classifiers (see Chapter 5).

2.8 Training protocols

The recognition algorithms mentioned in the previous section have parameters that are es-

timated during a training phase. In general, a first estimation of the recognition parameters

take place after some training-without-feedback sessions in which the subject is asked to

perform those MAs in the controlling set. Then, to improve control, in subsequent training

sessions a feedback is provided, telling the subject how successfully the BCI recognized

the MA he was asked to perform. Thus, in parallel to the subject, who can improve his

controlling skills through feedback, the BCI updates the recognition parameters after each

training session. Such training-with-feedback sessions need to be periodically programmed

in order to maintain the BCI updated.

The schedule according to which the MAs are trained is random [128, 176], or decided

by the subject [107]. In this thesis, the training schedule is determined according to the

subject’s performance; so that he can achieve similar controlling skills with each MA (see

Chapter 6, Section 6.5). Thus, the MAs having the largest recognition errors are trained

more frequently.

2.9 Action generation

The action executed by the BCI’s active device is decided upon action rules which depend

on the BCI application, its operation mode, and the vector of memberships delivered by

the pattern recognition module. A dependency on the previous actions can be introduced

in order to predict the next action (this can be especially important in a spelling applica-

tion [124]) or to avoid abrupt changes [63].

In synchronous BCIs, the simplest action rule consists in executing the action corre-

sponding to the highest score in the vector of memberships [128, 176]. On the opposite,

when the BCI is asynchronous, a neutral action is executed whenever the BCI considers

that the subject did not perform any of the MAs in the controlling set [63, 107].
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In [63], we use an action rule in which the transition from one action to another depends

on the probability of confusion between these actions. For large confusion probabilities

the transition is done only if the subject confirms it a sufficient number of times. By

improving his performance (i.e. decreasing the confusion probability), the subject can make

the transition faster.

In this thesis, an action has an associated strength coefficient (see Chapter 6, Section 6.4)

which depend on the level of confidence with which the corresponding MA is recognized.

When this level is large the strength with which the action is executed is large.

2.10 Evaluation

The BCI performance can be evaluated as: 1) speed and accuracy in specific applications

and 2) theoretical performance measured as an information transfer rate. The information

transfer rate, as defined in [151], is the amount of information communicated per unit of

time. This parameter encompasses speed and accuracy in a single value. The bit rate

can be used for comparing different BCI approaches and for the measurement of system

improvements [167].

The bit rate (in bits per minute) [46, 177] for a BCI with N mental activities in its

controlling set, mean accuracy pa (i.e. 1 − pa is the mean recognition error), and action

period Tact (in seconds), is:

Bit rate =
60

Tact

(

log2N + pa log2 pa + (1− pa) log2

1− pa

N − 1

)

In Fig. 2.4 we depict the bit rate (in bits per action period) for some typical values of N .

Obviously, these curves make sense for values of pa that are larger than 1
N , i.e. the chance

threshold.

2.11 BCI applications

BCI applications are in a continuum, from a binary on/off switch [18] at one end to hand

orthosis at the other end [128]. Along this continuum, more and more degrees of control

appear, and these may show finer gradations of control going from binary on-off to analog

positioning.

In most of present-day BCIs, the output device is a computer screen. Cursor move-

ment [63, 128, 176], spelling programs [124, 128], and environmental control panels [40] are

among the applications rendered on a computer screen. Recently, virtual reality environ-

ments have been introduced to simulate the use of a BCI in real situations. For instance,

in [11], the BCI is used to control a virtual apartment. Moreover, external hardware is used

in [128], to control a hand orthosis and in [107], to control a robot.

The application can influence the choice of signals that are used to control the BCI.

In a relatively precise control application, the slow changes of some EEG signals may be

inadequate whereas changes in the oscillatory activity can be more suitable.
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Figure 2.4. Bit rate in bits per action period. For a BCI with N mental activities in its controlling

set and mean accuracy pa, the information transfer, in bits per action period is: log2N+pa log2 pa+

(1− pa) log2
1−pa

N−1

In this thesis we consider an asynchronous two dimensional cursor positioning applica-

tion (see Chapter 6).

2.12 Summary

In this chapter we have presented the general architecture of a brain-computer interface and

considered the possible choices in terms of brain activity monitoring and types of mental

activities.

Because of its relative simplicity, low cost, and high time resolution, scalp recorded

EEG constitutes the most used brain monitoring method in current BCIs. The choice of

mental activities and conditions (evoked and operant) under which they are executed, were

inspired by the results from brain hemispheric specialization studies and behavioral and

cognitive psychological methods.

We focused our attention to scalp recorded EEG based BCIs that are controlled by

mental activities performed under operant functional conditions. The detailed architecture,

operating protocol, and implementation of current BCIs were then discussed. In particular,

we considered: the implementation of the preprocessing, extraction of relevant features

from EEG-trials, recognition algorithms, training protocols, and the rules that govern the

execution of actions by the BCI. In table 2.1, we report the main features of current BCI

implementations 1.

1Some systems were not included because their published descriptions did not contained enough infor-

mation about their implementations or parameters choice
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In the next chapters we present our implementation for each module of the general

architecture presented here.
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Group MAs

EEG-trial duration/

Action period (milliseconds)

Electrodes

Features

Recognition algorithm

Application

Number of subjects

Bit rate

Training

time

ABI Project

European Union

JRC [106, 107]

• Relax, imagination of left

and right hand movement,

cube rotation, and subtrac-

tion

• 1000/500

• F3, F4, C3, Cz, C4, P3, Pz,

P4

• Power in 2 Hz wide bands

from 8 to 30 Hz

• Neural network

• Asynchronous control of a

mobile robot

• Five subjects

• 33 bit/min (max)

Days

EPFL

Switzerland [63]

• Imagined left and right fin-

ger movements, mental count-

ing, and object rotation.

• 2000/500

• Fp1, Fp2, F7, F3, F4, F8,

T3, C3, C4, T4, T5, P3, P4,

T6, O1, O2

• Several types of feature vec-

tors ( see Chapter 4)

• Online kernel based algo-

rithm (Chapter 5)

• Asynchronous 2D Object

positioning

• Six subjects

• 25 bits/min (avg)

35 bits/min (max)

Days

Neil Squire Foun-

dation

Canada [19, 101]

• Recognition of movement

imagination against other

MAs

• 1000/62.5

• Bipolar recordings: F1-

FC1, Fz-FCz, F2-FC2, FC1-

C1, FCz-Cz, FC2-C2

• Bi-scale wavelength analysis

• One-Nearest neighbor clas-

sifier

• Asynchronous switch

• Seven subjects

• 51 bits/min (max)

Weeks

Table 2.1. Comparison of current BCI systems (continued on next page)
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Comparison of current BCI systems (continued from previous page)

Group MAs

EEG-trial duration/

Action period

Electrodes

Attributes

Recognition algorithm

Application

Number of subjects

Bit rate

Training

time

Technical Univer-

sity of Graz

Austria [127]

• Imagination of left and right

hand, and foot movements

• 1000 to 3000/500

• 2 electrodes 2.5 cm anterior

and posterior to electrode po-

sitions C3 and C4 respectively

• Power in the alpha and be-

ta band. Autoregressive coef-

ficients

• Linear discriminant analy-

sis, hidden Markov models

• Synchronous virtual key-

board, hand orthosis control,

and cursor movement

• Four subjects, 17 bits/min

(avg), 99 subjects (with the

cursor positioning applica-

tion [69] avg 11.3 bits/min)

Days

Tsinghua Univer-

sity

China [28, 181]

• Steady state visual evoked

response

• 3000/3000

• O1 and O2

• Identification of the peaks

in the spectrum, correspond-

ing to the desired choice fre-

quency

• Synchronous selection of

targets on a panel for environ-

mental control

• Thirteen subjects

• 27 bits/min (avg)

Minutes

University of Illi-

nois

USA [40, 46]

• P300 component of the

event related potentials

• 1500/1500

• Fz, Cz, Pz, O1, O2

• Averaging

• Thresholding

•Synchronous 6 × 6 virtual

keyboard

• Ten subjects

• 9 bits/min

Minutes
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Comparison of current BCI systems (continued from previous page)

Group MAs

EEG-trial duration/

Action period

Electrodes

Attributes

Recognition algorithm

Application

Number of subjects

Bit rate

Training

time

University of

Rochester

USA [11, 12]

• P300 component of the

event related potentials

• 1600/1600

• Fz, Cz, Pz, P3, P4

• Averaging

• Thresholding

• Synchronous control of five

elements in a virtual apart-

ment

• Nine subjects

• 12 bits/min (avg)

Minutes

University of

Tübingen

Germany [18, 73]

• Control of slow brain poten-

tials

• 8000/8000

• Fz, Pz, Cz

• Low-pass filtering

• Thresholding

• Synchronous on/off switch

• Eleven locked-in patients

• 6 bits/min (avg)

Months

Wadsworth center

USA [104, 103,

176]

• Mu and beta rhythm modu-

lation

• 200/100

• 64 EEG electrodes

• Power in the mu and beta

band

• Linear classifier

Synchronous 2D positioning

of a cursor

• Eight subjects

• 22.5 bits/min (avg)

Weeks
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Acquisition and

Preprocessing 3
“Nature uses as little as possible of anything” Johannes Kepler

3.1 Introduction

In the previous chapter we presented the general architecture of a BCI based on scalp record-

ed electroencephalogram, and discussed different implementations and operation modes. In

this chapter we present a review of the physiological principles of electroencephalography,

the recording procedure, and the methods we use to remove external noise and detect ar-

tifacts. A more detailed description of electroencephalography and related fields can be

found in [115].

The extraction of information from EEG data is hindered by external noise and sub-

ject generated artifacts. Most sources of external noise can be avoided by appropriately

controlling the environment in which the measurement takes place. Thus, power line noise

can be easily filtered since it occupies a narrow frequency band that is located beyond the

EEG band.

Subject generated artifacts (eye movements, eye blinks and muscular activity) can pro-

duce voltage changes of much higher amplitude than the endogenous brain activity. Even

when artifacts are not correlated with tasks, they make it difficult to extract useful informa-

tion from the data. In this situation the data are discarded and the subject is notified by a

special action executed by the BCI. If the data containing artifacts were not discarded they

could lead to misleading conclusions about the controlling performance of a subject. For

instance, a subject could (voluntarily or not) be controlling the BCI by producing artifacts.

25
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Figure 3.1. Origins of the rhythmic activity observed in EEG signals. The signal recorded at

a particular electrode is composed of rhythms whose frequencies are visible in the signal power

spectral density. These rhythms are produced by neuronal oscillators whose natural frequencies are

determined by their internal cytoarchitecture.

3.2 An overview of electroencephalography

3.2.1 EEG origins

The generators of electric fields that can be registered with scalp electrodes are groups of

neurons with uniformly oriented dendrites. Neurons communicate with each other by send-

ing electrochemical signals from the synaptic terminal of one cell to the dendrites of other

cells. These signals affect dendritic synapses, inducing excitatory and inhibitory postsynap-

tic potentials [44, 174]. The EEG is a result of the summation of potentials derived from

the mixture of extracellular currents generated by populations of neurons. Hereby the EEG

depends on the cytoarchitectures of the neuronal populations, their connectivity, including

feedback loops, and the geometries of their extracellular fields. The main physical sources

of scalp potentials are the pyramidal cells of cortical layers III and V1.

The appearance of EEG rhythmic activity in scalp recordings results from the coordi-

nated activation of groups of neurons, whose summed synaptic events become sufficiently

large. The rhythmic activity may be generated both by pacemaker neurons having the in-

herent capability of rhythmic oscillations, and by neurons which cannot generate a rhythm

on their own but can coordinate their activity through excitatory and inhibitory connections

in such a manner that they constitute a network with pacemaker properties. The latter

may be designated as neuronal oscillators [174]. The oscillators have their own discharge

frequency (Fig. 3.1) which depends on their internal connectivity. The neuronal oscillators

start to act in synchrony after application of external sensory stimulation or hidden signals

from internal sources, e.g. resulting from cognitive loading.

1The brain cortex is composed of six layers, namely molecular layer (I), external granular layer (II),

external pyramidal layer (III), internal granular layer (IV), internal pyramidal layer (V) and polymorphic

or multiform layer (VI)
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3.2.2 EEG Rhythms

The usual classification of the main EEG rhythms based on their frequency ranges is as

follows: delta (2 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 30 Hz), and

gamma (higher than 30Hz). However, this classification only partially reflects the functional

variation of rhythmic activities. For example, EEG rhythms within the alpha range may be

distinguished by their dynamics, place of generation and relation to certain behavioral acts.

Since the pioneering work of Hans Berger in 1929 [15], the main EEG rhythm (the alpha

one) has been known. This rhythm is typical of a resting condition and disappears when the

subject perceives a sensory signal or when he makes mental efforts. It was shown that the

alpha rhythm is generated by reverberating propagation of nerve impulses between cortical

neuronal groups and some thalamic nuclei, interconnected by a system of excitatory and

inhibitory connections and resulting in rhythmic discharges of large populations of cortical

neurons [33].

The theta rhythm originates from interactions between cortical and hippocampal neu-

ronal groups [108]. It appears in periods of emotional stress and during rapid-eye-movement

sleep.

The delta rhythm appears during deep sleep, anesthesia, and is also present during

various meditative states involving willful and conscious focus of attention in the absence

of other sensory stimuli [48].

The neuronal oscillators, which generate the beta rhythm are located presumably inside

the cortex [33]. The beta rhythm is typical of periods of intense activity of the nervous

system and occurs principally in the parietal and frontal regions.

The basis for gamma oscillations is interneuronal feedback with quarter-cycle phase lags

between neurons situated close to each other in local areas of the cortex [51]. It is thought

that gamma oscillations are associated with attention, perception and cognition.

Most of the rhythms are rather widespread in brain structures. Induced gamma, theta

and alpha rhythms were found in cortex, hippocampus, thalamus, and brain stem. In [50],

the expression “common modes” was used for the existence of similar rhythms in various

networks of the brain. This may play a role in the integration of activities of neuronal

oscillators distributed over various brain structures. The candidate mechanism for such

integration is coordination of the distant neuronal oscillators activity. The coordination

concept (see Chapter 4 for a mathematical treatment) encompasses the interaction in time

(as measured by the correlation function), frequency (as measured by the coherence func-

tion), time-frequency (as measured by the ambiguity function), and phase (as measured by

the synchronization function).

The analysis of EEG rhythms and their interactions provide indices that are correlated

with mental states such as attention [65], memory encoding [156], motor imagery [7, 128,

176] and perception/recognition [159].
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3.2.3 EEG recording procedure

EEG recording is a routine procedure that usually includes the following steps: 1. The

subject is seated in a comfortable chair in a dimly illuminated room; 2. Electrodes are

placed on his head according to a certain scheme; 3. The reference electrode(s) are chosen;

4. Calibration of the acquisition system is executed; 5. EEG is recorded.

The silver/silver chloride (Ag-AgCl) electrodes are the most appropriate ones to record

scalp EEG because they avoid potential shifts due to electrode polarization. To improve

the conduction between the skin and electrode surfaces, electrode gel or salt solutions are

used.

The scheme generally used for electrode placement is the 10-20 scheme [79], which is

shown in Fig. 3.2. Even numbers indicate electrodes located on the right side of the head and

odd numbers indicate electrodes on the left side. The letter before the number designates

the general area of the cortex on which the electrode is located. A stands for auricular,

C for central, Fp for frontal pole, F for frontal, P for parietal, O for Occipital, and T for

temporal.

The most common way to place the electrode array on the scalp is the use of a cap (or

helmet) with the electrodes fixed on it. Such devices can be placed and removed rapidly

and cause a minimal unpleasant feeling. This is especially important in the BCI framework

in which the subjects wear the cap for relatively long time (in the order of one hour).

These caps automatically provide the electrode placement with appropriate interelectrode

distance.

One of the important questions in EEG recording is that of the reference electrodes

which should be placed on a presumed “inactive” zone. Frequently, this is the left or right

earlobe or both of them (labelled as A1 and A2 in Fig. 3.2). If one earlobe electrode is

used as a reference, there is the systematic decrease of EEG amplitudes at the electrodes

which are closer to the reference side. If linked earlobes are used, this kind of asymmetry

is avoided, but this linking distorts the EEG picture since the electric current flows inside

the linking wire. Alternatively, the EEG may be recorded with any scalp electrode as a

reference, and then the average reference is computed as a mean of all electrodes. The

latter avoids all kinds of asymmetry and makes the EEG recorded in various laboratories

comparable. In this thesis, we use Cz as physical reference and re-reference with respect to

the signals average.

Since the frequency content of EEG signals is mainly confined to the 0-40 Hz band a

minimum sampling rate of 100 samples/second is recommended [115]. This rate permits to

analyze frequencies up to 50 Hz because the maximal allowed frequency of the input signal

(the Nyquist frequency) should be half the sampling rate.

3.3 EEG perturbations

In the context of EEG driven BCIs, the signal is the endogenous brain activity measured

as voltage changes at the scalp while a perturbation is any voltage change generated by
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Figure 3.2. Electrodes placement according to the 10-20 international system. Even numbers

indicate electrodes located on the right side of the head and odd numbers indicate electrodes on

the left side. Capital letters are used to reference each cortical zone, namely frontal (F), central

(C), parietal (P), temporal (T), and occipital (O). Fp and A stand for frontal pole and auricular

respectively. The designation 10-20 comes from the percentage ratio of the inter-electrode distances

with respect to the nasion-inion distance.

other sources. The perturbation sources include: electromagnetic interferences, eye blinks,

eye movements and muscular activity (particularly head muscles). While the terms “noise”

and “artifact” are often used interchangeably, in this thesis the term noise is used for

external perturbations (e.g. power line noise) and artifact for subject related perturbations

(e.g. muscular and eye movement artifacts).

• Electromagnetic interferences. Most of these interferences can be avoided or at least

attenuated by controlling the environment in which the measurements are carried

out. Nonetheless, since the BCI setup requires at least an amplifier connected to a

computer, the EEG data can be corrupted by the noise from the A/C power supplies.

These perturbations are usually well localized in frequency and located beyond the

EEG band (see Fig. 3.3b).

• Eye blink and eye movement artifacts. Eye blink artifacts are very common in EEG

data; they produce low-frequency high-amplitude signals that can be quite greater

than EEG signals of interest (see Fig. 3.3c). Indeed, while regular EEG amplitudes

are in the range of -50 to 50 microvolts eye blink artifacts have amplitudes up to 100

microvolts.

Eye movement artifacts are caused by the reorientation of the retinocorneal dipole [121].

They are recognized by their quasi square shape and their amplitude in the range of

that of regular EEG [121].

Eye blink and eye movement artifacts (henceforth called ocular artifacts) often occur

at close intervals as shown in Figure 3.3c. They are mainly reflected at frontal sites
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(e.g. electrodes Fp1, Fp2) although they can corrupt data on all electrodes, even those

at the back of the head.

• Muscular movement artifacts. These artifacts can be caused by activity in different

muscle groups. However, the activity in neck and facial muscles has more influence

in EEG recordings. Muscular artifacts are characterized by their wide frequency

content (see Fig. 3.3d). Depending on the location of the source muscles they can be

distributed across different sets of electrodes. They mainly appear in temporal and

parietal electrodes.

3.3.1 Perturbations handling

External interferences can often be attenuated by carefully controlling the environment in

which the recordings are made. However, we have to deal with power noise as most of the

equipment we use (computers, monitors, etc.) is connected to the power grid. Since the

power line noise is well localized in frequency it can be easily filtered using a notch filter

(as presented in Section 3.4.1).

Even if muscular and ocular artifacts are not correlated with the mental activities that

the subject is executing, they make it difficult to extract useful information from the data.

Furthermore, artifacts can lead to erroneous conclusions about the BCI controlling perfor-

mance of a subject. Indeed, the BCI could be responding to muscular or ocular activity

instead of genuine EEG. To prevent these errors we detect these artifacts, discard the cor-

responding data and notify the subject. The detection method is described in Section 3.4.2.

3.4 EEG preprocessing

As mentioned in Chapter 2, the EEG signals are processed in segments (EEG-trials) in

which the BCI attempts to recognize the MAs in the controlling set. In this section we

present the methods to remove the power line noise and detect eye and muscular artifacts

in an EEG-trial. When an artifact is detected in an EEG-trial, the latter is not sent to

the feature extraction module (see Fig. 3.14). Instead, the BCI notifies the subject by

generating special actions that indicate if the detected artifact was muscular or ocular.

A digitized EEG-trial is represented by a real Ne×Nspt matrix where Ne is the number

of electrodes and Nspt the number of samples per EEG channel. We denote as S̃ a non-

preprocessed (raw) EEG-trial and as S an EEG-trial in which the power line noise was

removed and no artifact was detected, so that it can be sent to the feature extraction

module (see Fig. 3.14).

The rows of S̃ and S, which correspond to the EEG channels are denoted as s̃1, . . . , s̃Ne,

and s1, . . . , sNe respectively. The indexes m and n are used to reference the electrode and

time index respectively. Thus, s̃m(n) corresponds to the n-th sample of the m-th EEG

channel or the (m,n)-th element of the matrix S̃.
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Figure 3.3. EEG signals perturbed by noise and artifacts and their corresponding power spectral

densities (PSD) (a): clean EEG signal recorded at electrode T3. (b): EEG signal, recorded at

electrode O1, perturbed by power line noise. The corresponding PSD shows clearly the perturbation

at 50 Hz. (c): Signal recorded at electrode Fp1 containing an eye movement (left) and eye blink

artifacts (right). The corresponding PSD reveals a concentration of the power in the theta band

(4-8 Hz). (d): Signal recorded at electrode T3, containing a muscular movement artifact. The

corresponding PSD shows that the power is concentrated in the beta band (13 to 30 Hz).
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As mentioned in Section 3.2.3, the raw EEG-trial is first re-referenced with respect to

the average of the EEG channels. In addition, the time average of every EEG channel is

subtracted from the corresponding EEG channel. Therefore, the following relations hold.

Nspt−1∑

n=0
sm(n) = 0 m = 1, . . . ,Ne

Ne∑

m=1
sm(n) = 0 n = 0, . . . ,Nspt − 1

3.4.1 Power line noise filtering

The power line noise is concentrated around a single frequency (50 Hz in Europe) that falls

beyond the EEG band. Therefore, it can be filtered using a notch filter [74] which highly

attenuates a single frequency while leaving nearby frequencies relatively unchanged. The

digital notch filter z-transform is given by [67, 74]:

Hn(z) =
1 + a2 − 2a1z

−1 + (1 + a2) z
−2

1− a1z−1 + a2z−2
(3.1)

where

a1 =
2 cos

(
2πfn
fs

)

1 + tan
(

πβn

fs

) a2 =
1− tan

(
πβn

fs

)

1 + tan
(

πβn

fs

)

fn is the notch frequency at which there is no transmission through the filter, and fs is the

sampling frequency. Within the frequency band centered at fn and of width βn (3-dB band)

all signal components are attenuated by more than 3 dB. The smaller βn the lower the

attenuation of the notch frequency (see Fig . 3.4).

To determine the tradeoff between the width of the 3-dB band and the attenuation of

the notch frequency, we estimate the power line noise level by measuring the signals coming

from the electrodes before the conducting gel was applied. Depending on this level we select

the adequate value of βn using the graph depicted in Figure 3.4b.

If no artifact is detected in the raw EEG-trial S̃, the rows of the preprocessed EEG-

trial S (that is sent to the feature extraction module) are obtained through the difference

equation (which is obtained directly from Eq. 3.1):

sm(n)−a1sm(n−1)+a2sm(n−2) = (1 + a2) s̃m(n)−2a1s̃m(n−1)+(1 + a2) s̃m(n−2) (3.2)

for m = 1, . . . ,Ne.

3.4.2 Artifact detection

The presence of eye movements, eye blinks and muscular artifacts in EEG signals can be

easily detected from simple observation (Fig. 3.3). As a matter of fact, each type of artifact

has characteristics in time and frequency that make it distinguishable from regular EEG.
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Figure 3.4. Notch filter characteristics. (a): Modulus of the notch filter (centered at the power line

frequency, i.e. 50 Hz) transfer function. (b): The attenuation of the notch frequency increases with

the width of the 3-dB band, βn. The power line noise should be estimated in order to select the

adequate value of βn.

Ocular artifacts have large amplitudes, their spectral content is mainly concentrated in

the theta band and are more prominent at frontal pole electrodes, i.e. Fp1 and Fp2. As it

can be seen in Fig. 3.5, the time-frequency representation of a signal containing a series of

ocular artifacts exhibits an abnormal concentration of the power in the theta band when

ocular artifacts appear.

Muscular artifacts have amplitudes in the order of that of regular EEG but their spectral

content is concentrated in the beta band. These artifacts are more noticeable in central

temporal and parietal electrodes, i.e. electrodes T3, T4, T5, P3, P4 and T6 [164]. As

depicted in Fig. 3.6, the time-frequency representation of a signal containing a muscular

artifact reveals the presence of the artifact by exhibiting an abnormal concentration of the

power in the beta band.

Artifacts can be considered as singular events in the time-frequency plane that appear

randomly in EEG signals. To detect the presence of artifacts in an EEG-trial we divide it

into one-second long segments (that overlap by 500 milliseconds) and check if an artifact

is present in any of the segments. For instance, if the EEG-trial is 1500 milliseconds long,

two segments are considered, namely from zero to 1000 milliseconds and from 500 to 1500

milliseconds.

The detection of an artifact in a one-second long segment (we call it artifact detection

block ADB) is based on the following two facts. First, an ocular artifact implies that the

power spectral densities of the signals at electrodes Fp1 and Fp2 are concentrated in the

theta band and second, a muscular artifact at a given electrode makes its power spectral

density concentrated in the beta band.
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Figure 3.5. Top: Signal at electrode Fp1 containing three ocular artifacts delimited by the dashed

lines. There is a considerable difference of amplitudes between the first and third artifact and the

clean part of the signal. However, the amplitudes present in the second artifact are in the range

of that of the clean part. A simple threshold on the signal amplitude is therefore insufficient to

reliably detect the ocular artifacts. Bottom: Time-frequency representation of the signal. The

times at which the ocular artifacts appear are characterized by a concentration of the signal power

in the theta band. Thus, the frequency domain constitutes a good candidate to host the detection

of ocular artifacts. Furthermore, it is important to note that an ocular artifact generally implies a

strong correlation between the signals recorded at electrodes Fp1 and Fp2. Therefore, we take into

account the frequency content of both electrodes in the detection procedure.

The time-frequency representation was obtained using the short term Fourier transform [30] which

breaks the signal into chunks (which usually overlap each other) and computes the Fourier transform

of each chunk.
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Figure 3.6. Top: Signal at electrode T3 containing a muscular artifact which is delimited by

the dashed line. The difference between the signal amplitudes in the clean part and those in the

muscular artifact is not as important as in the case of ocular artifacts. Bottom: Time-frequency

representation of the signal. The signal power is concentrated in the beta band at the periods in

which the artifact is present. As in the case of ocular artifacts, the frequency domain appears as

more suitable than the time domain to host the detection of muscular artifacts. Muscular artifacts

are more noticeable in temporal and parietal electrodes, i.e. electrodes T3, T4, T5, P3, P4 and T6.

We thus, take into account the frequency content of the signal recorded at these electrodes in the

detection procedure.
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Figure 3.7. Set of clean ADBs in the space of their power spectral densities. The shape of this

set depends on the subject and the environmental conditions at the time of recording, hence a

calibration phase to adjust the artifact detection parameters is needed. The initial shape of the set

of clean vectors is approximated by a sphere whose parameters are estimated using the calibration

set.

From the above considerations it can be said that in the space of ADBs power spectral

densities ℵ, the clean ADBs lie close to each other. This means that the set of clean

ADBs lies in a small region of the space that is surrounded by ADBs containing artifacts

(see Fig. 3.7). The shape of the set of clean ADBs depends on the subject and on the

environmental conditions at the time of recording. Hence, the detection parameters need

to be adapted at the beginning of each recording session (calibration phase).

For reasons of robustness and execution speed, the detection of ocular and muscular

artifacts is performed separately. The space in which ocular artifacts are detected (ocular

space) is composed of vectors containing the powers in 2 Hz wide bands from 2 to 40 Hz

at electrodes Fp1 and Fp2. The space in which muscular artifacts are detected (muscular

space) is composed of vectors containing the powers (in the same bands as in the ocular

space) at electrodes T3, T4, T5, P3, P4 and T6. Therefore, the vectors are 38 and 114

dimensional in the ocular and muscular spaces respectively. The band powers are estimated

using the Welch method, presented in Chapter 4 (Section 4.3).

The detection procedure is the same for both types of artifacts. Only its parameters

need to be adapted to each artifact type during the calibration phase which lasts for a period

varying from five to ten minutes. During the calibration, the subject is asked to blink his

eyes and to execute slight head and hand movements, about 30 times each, at randomly

chosen times. The resulting EEG is segmented into ADBs and the ocular and muscular

vectors are computed for each ADB. At the end of the calibration phase two sets (one set

per type of artifact) of vectors are available. In each of these sets we approximately know

the percentage of vectors corresponding to ADBs containing artifacts (the exact percentage

cannot be known since the subject could have generated additional artifacts).

In the following we present the general detection procedure which was adapted from the

novelty detection framework presented in [147, 157].
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Artifact detection procedure

Let ℵ be the space of vectors computed from every possible ADB. We call artifact (clean)

vector a vector resulting from an ADB that contains (does not contain) an artifact. The

shape of the set of clean vectors is unknown. To effectively discriminate between clean and

artifact vectors we seek for a criterion that evaluates whether or not a given vector belongs

to the clean set.

The detection criterion is built using the calibration set ℵcal = {V1, . . . , VNcal
} ⊂ ℵ where

Ncal is the number of ADBs recorded in the calibration phase. Since we ask the subject

to produce a certain number of artifacts we approximately know the fraction of artifact

vectors in the calibration set1. We denote as ra the expected fraction of artifact vectors.

From the considerations in Section 3.4.2, we know that the clean vectors belonging to

the calibration set must lie in a compact region of ℵ (the assumption of compactness is

reasonable since the clean vectors are close to each other with respect to their Euclidean

distance). To start, we assume that this region can be approximated by a sphere of radius

Rc centered at Cc ∈ ℵ (see Fig. 3.7). The radius and the center are found by solving the

optimization problem:

minimize
Rc,Cc,ξi

(

R2
c + κ

Ncal∑

i=1

ξi

)

(3.3)

under constraints

‖Vi − Cc‖
2
ℵ 6 R2

c + ξi (3.4)

ξi > 0 (3.5)

for i = 1, . . . ,Ncal

where κ is a penalization constant whose value is linked to the fraction of artifact vectors

(see Eq. 3.19) and ‖·‖ℵ is the Euclidean norm in the space ℵ. The positive slack variable ξi
controls the position of Vi with respect to the approximating sphere. Indeed, if the value

of ξi at the optimum is larger than zero then, Vi lies outside the approximating sphere and

is therefore considered as an artifact.

To solve the optimization problem (3.3) under constraints (3.4) and (3.5), one in-

troduces positive Lagrange multipliers µ1, . . . , µNcal
, γ1, . . . , γNcal

to obtain the primal La-

grangian [130]:

Lg = R2
c + κ

Ncal∑

i=1

ξi −

Ncal∑

i=1

γi

(

R2
c + ξi − ‖Vi − Cc‖

2
ℵ

)

−

Ncal∑

n=1

µiξi (3.6)

The primal Lagrangian should be minimized with respect to the primal variables, Rc, ξi, Cc

and maximized with respect to the dual ones, γi, µi. Taking derivatives of Lg with respect

1Such fraction is only approximately known since the subject could have produced more artifacts
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to the primal variables Rc, ξi, Cc and setting them to zero leads to the following results.

∂RcLg = 0 ⇒

Ncal∑

i=1

γi = 1 (3.7)

∂CcLg = 0 ⇒

Ncal∑

i=1

γiVi = Cc (3.8)

∂ξi
Lg = 0 ⇒ γi + µi = κ (3.9)

By replacing (3.7), (3.8), and (3.9) in (3.6), one obtains the dual optimization problem:

maximize
γ1,...,γNcal





Ncal∑

i=1

γi 〈Vi, Vi〉ℵ −

Ncal∑

i1,i2=1

γi1γi2 〈Vi1, Vi2〉ℵ



 (3.10)

under the following constraints

0 6 γi 6 κ ; i = 1, . . . ,Ncal (3.11)

where 〈Vi1, Vi2〉ℵ is the inner (scalar) product of Vi1, Vi2. The dual optimization problem

can be easily solved using standard quadratic optimization techniques [168]. By abuse of

notation, we continue to write γi, µi, ξi for the values, at the optimum, of these parameters.

Thus, the center and the radius of the approximating sphere are given by:

Cc =

Ncal∑

i=1

γiVi (3.12)

R2
c =

∥
∥Vî − Cc

∥
∥2

ℵ

= 〈Vi, Vi〉ℵ − 2

Ncal∑

i=1

γi

〈
Vî, Vi

〉

ℵ
+

Ncal∑

i1,i2=1

γi1γi2 〈Vi1, Vi2〉ℵ (3.13)

where Vî is a vector that is on the approximating sphere, i.e. 0 < γî < κ (see Fig. 3.8).

At the optimum, the Karush-Kuhn-Tucker conditions [95] imply that the following

relations hold.

γi

(

R2
c + ξi − ‖Vi − Cc‖

2
ℵ

)

= 0 (3.14)

µiξi = 0 (3.15)

The position of Vi with respect to the approximating sphere depends on the value of γi.

Three possibilities exist:

• If γi = 0, Vi is inside or on the approximating sphere. Therefore, Vi is considered as

a clean vector (see Fig. 3.8a).

• If 0 < γi < κ, Vi is on the approximating sphere. Vi is still considered as a clean

vector (see Fig. 3.8b).
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Figure 3.8. Position of Vi with respect to the approximating sphere for different values of γi. For

values of γi in [0, κ[, the corresponding Vi is considered as a clean vector. Conversely, if γi = κ

the corresponding Vi is considered as a clean or artifact vector depending on the value of the slack

variable ξi.

• If γi = κ, the position of Vi depends on the value of ξi. If ξi > 0, Vi is outside the

approximating sphere and then considered as an artifact vector. Conversely, ξi = 0

implies that Vi is on the approximating sphere and hence, it is considered as a clean

vector. (see Fig. 3.8c).

The constant κ controls the fraction of vectors in the calibration set ℵcal that are

considered as artifacts. To see this, we decompose (3.7) into the sum of the γ’s corresponding

to vectors that are inside (I), on (B) and outside (O) the approximating sphere:
∑

i∈ I

γi +
∑

i∈ B

γi +
∑

i∈ O

γi = 1 (3.16)

The first term on the left vanishes, so:
∑

i∈ B

γi +
∑

i∈ O

γi = 1 (3.17)

⇒
∑

i∈ O

γi 6 1 (3.18)

From Fig. 3.8 we know that if a vector Vi is outside the approximating sphere, the

corresponding γi is equal to κ. Thus, we obtain the following inequality that links κ to the

expected fraction of artifact vectors ra.

κ 6
1

raNcal
(3.19)
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To decide whether a vector Ṽ , not belonging to the calibration set, is an artifact vector

or not, we compute its square distance to the center of the approximating sphere:

∥
∥
∥Ṽ − Cc

∥
∥
∥

2

ℵ
=
〈

Ṽ , Ṽ
〉

ℵ
− 2

Ncal∑

i=1

γi

〈

Ṽ , Vi

〉

ℵ
+

Ncal∑

i1,i2=1

γi1γi2 〈Vi1, Vi2〉ℵ (3.20)

This distance is compared to R2
c to obtain the detection ratio:

∥
∥
∥Ṽ − Cc

∥
∥
∥

2

ℵ

R2
c

(3.21)

Ṽ is considered as an artifact if the detection ratio is larger than 1 and as a clean vector

otherwise.

It is worth mentioning that (3.20) depends only on those calibration vectors that are at

the boundary or outside the approximating sphere (indeed, the vectors inside the approx-

imating sphere have their corresponding γ equal to zero). Such vectors are usually called

support vectors [157].

So far, we assumed that the shape of the set of clean vectors could be approximated by

a sphere. This approximation permitted to obtain a simple detection criterion through the

solution of a standard quadratic optimization problem.

However, there is no a priori reason that makes the sphere the preferred approximation

shape for the set of clean vectors. In certain cases, especially when the clean set is non-

convex the sphere approximation is clearly flawed. Thus, we need to consider more flexible

shapes to approximate the clean set. This can be easily done by means of the ”Kernel

trick” [1] which consists in replacing the inner products 〈·, ·〉ℵ in the the detection proce-

dure by a kernel function K (·, ·) that satisfies the Mercer conditions [1] (see Chapter 5,

Section 5.2). One can show [169] that the latter amounts to project the space ℵ into a high

(possibly infinite) dimensional space Jℵ, through a map J , such that K (·, ·) is the inner

product in Jℵ. This means that the following relation holds.

K (V1, V2) = 〈J (V1) ,J (V2)〉Jℵ
(3.22)

where J (Vi) is the image of Vi through the map J .

The advantage of using kernels resides in the fact that a sphere in Jℵ can represent

a complex shape in the space ℵ. A kernel function that satisfy the Mercer conditions

and permits to flexibly approximate the shape of clean vectors is the Gaussian kernel (see

Chapter 5, Section 5.4):

K (V1, V2) = exp

(

−
‖V1 − V2‖

2
ℵ

σ2

)

(3.23)

where σ is the Gaussian kernel parameter. One can show that for fixed κ, the smaller σ the

smaller the number of artifact vectors in the calibration set [157]. Because of the definition

of the Gaussian kernel in terms of the ratio between the distance of its arguments and σ,
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we discuss the influence of this parameter by considering its normalized version, σr = σ
∆m

where ∆m is the minimum distance between two different calibration vectors.

From relation (3.19) linking κ to the expected fraction of artifact vectors in the cali-

bration set, we can deduce that for fixed σ, the larger κ the smaller the fraction of artifact

vectors in the calibration set. In geometrical terms we can think of κ as a factor limiting

the generalized volume of the approximating region.

For the sake of visualization we illustrate the role of σr and κ in a 2D toy problem.

In Fig. 3.9 we illustrate the influence of the Gaussian kernel parameter (for fixed κ) on

the shape of the approximating region. In particular, a small σr makes the approximating

region over-fit the data while a large σ makes the approximating region become a sphere.

In Fig. 3.10 we illustrate the influence of κ (for fixed σ, which amounts to fix the shape of

the approximating region) on the extent of the approximating region.

Thus, we can control the shape and volume of the approximating region through σ

and κ respectively. The adequate choice of these parameters depends on the data. In

Fig. 3.11 we report the fraction of artifact vectors as a function of σr for different values

of κ (detection curves). As predicted by the relation (3.19), κ establishes an upper bound

on the fraction of artifact vectors. This means that it is possible to fix κ by using the

expected fraction of artifact vectors and then adjust σ to match the requirements in terms

of detection sensibility.

3.4.3 Practical parameter setting

As mentioned before, we know the approximative number of artifacts that the subject

produced during the calibration phase. The values of κ and σ are decided by the operator

through the observation of the detection curves (as shown in Fig. 3.11) for four values of

κ, namely: 1
4raNcal

, 1
2raNcal

, 3
4raNcal

and 1
raNcal

and σr ranging from 1 to 50 (the range for σr

can be adjusted by the operator). For a given choice, the operator can visually check those

ADBs identified as containing artifacts.

Thus, the operator can effectively control the sensibility of the artifact detection based

on his own experience. In Figures 3.12 and 3.13, the detection procedure for ocular and

muscular artifacts respectively is illustrated. As it can be seen, too small a value of σr

diminishes the detection sensibility. On the other hand, large values of σr prompt the

rejection of clean data.
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Figure 3.9. Influence of the Gaussian kernel parameter (for fixed κ = 0.05) on the shape of the

approximating region. The data are represented by the black dots. The darker the region the smaller

the detection ratio computed using (3.21). The white zone surrounding the approximating region

corresponds to the region in which the rejected data lie.

As it can be seen, the shape of the approximating region is effectively controlled by σr. In particular,

the smaller σr the smaller the fraction of rejected data (rejected data corresponds to artifact vectors

in the framework of artifact detection). As σr increases the shape of the approximating region

becomes more spherical.
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Figure 3.10. Influence of the parameter κ (for fixed σr = 15) on the volume of the approximating

region in the context of the toy problem considered in Fig. 3.9. Once the shape of the approximating

region is fixed by σr, its volume is limited by κ. Thus, the larger κ the smaller the fraction of rejected

data (or the larger the allowed volume of the approximating region).
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Figure 3.11. The parameters σr and κ allow us to control the shape and the volume of the approx-

imating region respectively. The adequate selection of these parameters is data dependent. The

detection curves (for the toy problem of Figs. 3.9 and 3.10 ) depicted here show the joint influence

of the detection parameters on the fraction of rejected data. The limiting role of κ becomes evident

on the detection curves.
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Figure 3.12. Detection of ocular artifacts. Top: Signal recorded at electrode Fp1 containing ocular

artifacts. Middle: Detection ratio (σr = 4 and κ = 3
4raNcal

) for the ADBs (one-second long segments

overlapped by half a second) of the signal on the top. Bottom: Detection ratio for σr = 40 and

κ = 3
4raNcal

. In this example, the algorithm for σr = 4 fails to detect the artifact in the middle. On

the opposite, σr = 40 leads to false artifact detections.
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Figure 3.13. Detection of muscular artifacts. Top: Signal recorded at electrode T3 containing

muscular artifacts. Middle: Detection ratio (σr = 4 and κ = 3
4raNcal

) for the ADBs (one-second

long segments overlapped by half a second) of the signal on the top. Bottom: Detection ratio for

σr = 40 and κ = 3
4raNcal

.

3.5 Summary

In this chapter we have presented an overview of electroencephalography concepts and the

details of the EEG acquisition method used in this thesis. The electrode Cz was selected

as physical reference and in a posterior step the signals were re-referenced with respect to

their average.

The influence of external noise is attenuated by controlling the recording environment.

As power line noise is almost unavoidable since most of the equipment used in the experi-

ences need to be connected to the power grid, we filter it by using a notch filter centered

at the power line frequency. The tradeoff between the degree of attenuation and the width

of the filtered band is resolved by estimating the level of power noise.
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The presence of ocular and muscular artifacts makes it difficult to extract useful informa-

tion that can be exploited by the BCI. Furthermore, they can lead to erroneous conclusions

about the control performance of a subject. To prevent these issues we discard the da-

ta containing artifacts. To implement the rejection criterion we considered the frequency

domain characteristics of artifacts which make them easily identifiable from regular EEG.

By using an adapted version of the novelty detection algorithm presented in [157] we

can easily control the artifact detection sensibility through two parameters that can be set

by the operator in an interactive way.

In Fig. 3.14 we summarize the function of the acquisition and preprocessing modules

within the BCI system. The raw EEG-trials delivered by the acquisition module are re-

referenced and their power line noise is filtered. If the EEG-trial contains muscular or

ocular artifacts the BCI does not attempt to generate an action command from such a

trial. Instead, it notifies the subject by executing predefined actions depending on whether

ocular or muscular artifacts were detected.

Figure 3.14. Role of the EEG acquisition and preprocessing modules. The non-preprocessed EEG-

trials delivered by the acquisition module are re-referenced and their power line noise is filtered.

If the EEG-trial contains muscular or ocular artifacts the BCI does not attempt to generate an

action command from such a trial. Instead, it notifies the subject by executing predefined actions

depending on whether ocular or muscular artifacts were detected.
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Feature extraction 4
“We are always paid for our suspicion by finding

what we suspect.” Henry David Thoreau

4.1 Introduction

In the previous chapter we presented the preprocessing procedure through which the exter-

nal noise is removed and the EEG-trials containing artifacts are detected and discarded. In

this chapter we focus on the estimation of statistical measurements (or features) from the

perturbation free EEG-trials delivered by the preprocessing module. The features comput-

ed on a given EEG-trial are grouped into a vector called feature vector that is sent to the

pattern recognition module which evaluates the likelihoods that the EEG-trial (represented

by its feature vector) was produced during the execution of the MAs in the controlling set

(see Fig. 4.1).

Features need to reflect properties of EEG that are relevant for the recognition of MAs.

The choice of adequate features to characterize EEG has been the object of active research

during the last decades [115, 174]. As a matter of fact, the techniques used to analyze EEG

evolved in parallel with the development of novel signal processing concepts. In particular,

the analysis of the generalized interaction (in time, frequency, and phase) between EEG

channels has emerged as a tool to study EEG data [4, 43].

A complete analysis that takes into account time, frequency and phase would result in

a very large number of features (Section 4.2.2) and consequently a high dimensional feature

vector. Because of the particular requirements of BCI applications, according to which a

continuous adaptation of the recognition models and a reasonable training time are required

(Chapter 5), high dimensional feature vectors are clearly non-suitable.

49
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Figure 4.1. The feature extraction module is in charge of computing statistical properties (features)

on an EEG-trial (free of artifacts) S delivered by the preprocessing module. The mappings associated

with each MA in the controlling set, ψ(1)(S), . . . , ψ(NMA)(S) are computed (x(k) = ψ(k)(S)) and sent

to the pattern recognition module which evaluates the likelihoods that S was generated during the

performance of each MA.

By assuming certain hypotheses on the properties of EEG, less features are required to

characterize an EEG-trial. In this chapter, we present such hypotheses and derive different

mappings from the EEG-trial set into feature spaces. A mapping is associated to a certain

number of hypotheses that are used to define it. As presented in Chapter 6, depending

on the subject a single mapping is not sufficient for the recognition of all the MAs in the

controlling set. Therefore, the best mapping to recognize each MA has to be chosen. Such

choice is carried out according to the optimality criterion presented in Chapter 6. The

mapping associated to MAk is denoted as ψ(k) (see Fig. 4.1).

This chapter is organized as follows. First, the general time-frequency analysis of sto-

chastic signals is considered. Second, the hypotheses that permit to obtain the mappings

are discussed and finally the resulting mappings are presented.

4.2 An overview of time-frequency analysis for stochastic sig-

nals

Being composed of the univariate signals (or univariate components) recorded at each elec-

trode, EEG signals can be modelled as realizations of a multivariate stochastic process.

Time-frequency (TF) analysis of multivariate signals aims at describing the time variations

of their intra and inter component spectral properties by means of a time-frequency repre-

sentation (TFR). TF analysis is particularly useful for non-stationary signals (e.g. EEG) for

which an analysis restricted to time or frequency is not sufficient to describe their dynamics.

TFRs are broadly categorized by their inherent mathematical structure as linear or

quadratic. As we consider second order statistical moments to describe the EEG signals,

we concentrate on quadratic TFRs. The latter may be further subdivided as power or

correlation based, depending on whether they seek to combine power or correlation analysis

in the TF plane.

It is worth noting that we focus on those concepts of TF analysis that are useful for our

purpose, namely to extract relevant features to recognize MAs from EEG. More complete

descriptions of TF analysis can be found in [30] and [49].
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For convenience of exposition we first consider the TF analysis of univariate stochastic

signals and then, generalize the obtained results to the multivariate case. As the signals

that we consider are discrete, we develop our results in the discrete framework.

4.2.1 Time-frequency analysis of univariate stochastic signals

Let s be an univariate stochastic signal of length N , composed of the random variables:

{s(n)|n = 0, . . . , N − 1} where n is the time index.

Time domain analysis

The properties of s can be described in time using first and second order moments computed

on the random variables s(n). These moments are:

• The expectation of s(n): Ep(s(n)) [s(n)], where p (s(n)) is the probability density func-

tion associated with s(n).

• The expectation of the product s(n1)s(n2): Ep(s(n1),s(n2)) [s(n1)s(n2)], where p (s(n1), s(n2))

is the joint probability density function of s(n1) and s(n2).

Expectations taken with respect to the probability density functions associated with

the random variables s(n) are called ensemble averages. For convenience of notation, we

denote as Es [·] any ensemble average over s.

The signal power Ps and time autocorrelation function Rs(n, τ) are defined as:

Ps =
1

N
Es

[
N−1∑

n=0

|s(n)|2
]

(4.1)

Rs(n, τ) = Es [s∗(n− τ)s(n)] (4.2)

where ∗ stands for the complex conjugate operator1, n is the time at which Rs is computed,

and τ ∈ {−N + 1, . . . , N − 1} is the time lag. Since Ps can be written as an average

over time of: Es

[

|s(n)|2
]

= Rs(n, 0), it follows that Es

[

|s(n)|2
]

can be considered as the

signal power density in the time domain (or power time density PTD). Thus, we can use

Es

[

|s(n)|2
]

to compute the average, over the PTD of any time function γ(n) as follows.

〈γ(n)〉PTD =
1

N

N−1∑

n=0

γ(n)Es

[

|s(n)|2
]

(4.3)

1It is worth nothing that even though we consider real signals, the complex conjugate in the definition

of Rs(n, τ) facilitates further developments
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Frequency domain analysis

The frequency properties of s can be examined using its discrete Fourier transform defined

as:

ŝ(ϑ) =
N−1∑

n=0

s(n) exp

(

−j
2πnϑ

N

)

(4.4)

where ϑ is the frequency index. The correspondence between the frequency index ϑ and

the actual frequency f (in Hz) is given by [114]:

f =
fsϑ

N
ϑ = 0, . . . ,

N

2
(4.5)

where fs is the sampling frequency. The values: ŝ
(

N
2

)
, . . . , ŝ(N − 1) correspond to the

negative part of the spectrum of s [135]. In fact, one can easily verify that:

ŝ(ϑ) = ŝ∗(N − ϑ) ϑ = 1, . . . ,
N

2
(4.6)

Using the discrete inverse Fourier transform, s can be obtained from ŝ as follows.

s (n) =
1

N

N−1∑

ϑ=0

ŝ(ϑ) exp

(

j
2πnϑ

N

)

(4.7)

This relation is easily verified by replacing ŝ(ϑ) by its definition (4.4) and using the identi-

ties:

1

N

N−1∑

n=0

exp

(

j
2πnϑ

N

)

= δd(ϑ) (4.8)

N−1∑

ϑ=0

g(ϑ)δd(ϑ− ϑ
′) = g(ϑ′) ϑ′ = 0, . . . , N − 1 (4.9)

where δd (·) is the digital delta function which is equal to one at zero and equal to zero

elsewhere.

Similarly to the time domain, first and second order moments can be defined on the

random variables ŝ(ϑ). In particular, the frequency autocorrelation function can be defined

as:

Rs (ϑ, υ) =
1

N
Eŝ [ŝ∗ (ϑ− υ) ŝ (ϑ)] (4.10)

where υ is the frequency lag and the normalization factor 1
N takes into account the Parseval

identity (4.12). Note that the ensemble average in (4.10) is taken with respect to the joint

probability density function: p(ŝ(ϑ− υ), ŝ(ϑ)).

It is well known that if a new signal s′ is obtained from s through an invertible function

F then:

Es [G(s)] = Es′

[
G(F−1(s′))

]
(4.11)

where G(·) is any function of s. In the following, for brevity of notation we use Es[·] to

denote any ensemble average over s or any other signal obtained from s.
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Replacing s(n) by (4.7), in the power definition (4.1) yields:

Ps = Es




1

N3

N−1∑

ϑ=0

ŝ(ϑ)

N−1∑

ϑ1=0

ŝ∗(ϑ1)

N−1∑

n=0

exp

(

j
2πn (ϑ− ϑ1)

N

)




using (4.8), (4.9), and (4.1), we get the Parseval identity:

Ps = Es




1

N2

N−1∑

ϑ=0

ŝ(ϑ)
N−1∑

ϑ1=0

ŝ∗(ϑ1)δd(ϑ− ϑ1)





Ps = Es

[

1

N2

N−1∑

ϑ=0

|ŝ(ϑ)|2
]

=
1

N
Es

[
N−1∑

n=0

|s(n)|2
]

(4.12)

This result can be thought of as a power conservation relation between the time and fre-

quency domains.

Since the signal power, according to (4.12), can be written as an average over ϑ of:
1
N Es

[

|ŝ(ϑ)|2
]

= Rs (ϑ, 0), it follows that 1
N Es

[

|ŝ(ϑ)|2
]

can be considered as the signal

power density in the frequency domain (or power spectrum density PSD). Thus, we can use
1
N Es

[

|ŝ(ϑ)|2
]

to compute the average, over the PSD of any frequency function g(ϑ) as:

〈g(ϑ)〉PSD =
1

N2

N−1∑

ϑ=0

g(ϑ)Es

[

|ŝ(ϑ)|2
]

(4.13)

In particular, when g (ϑ) = exp
(
j 2πτϑ

N

)
, one obtains the characteristic function of the

power spectrum density (i.e. its inverse Fourier transform):

〈

exp

(

j
2πτϑ

N

)〉

PSD

=
1

N2

N−1∑

ϑ=0

Es

[

|ŝ(ϑ)|2
]

exp

(

j
2πτϑ

N

)

(4.14)

By replacing ŝ(ϑ) by (4.4) in the PSD characteristic function (4.14) and using the

definition of the time autocorrelation function (4.2), we obtain:

〈

exp

(

j
2πτϑ

N

)〉

PSD

=
1

N2
Es

[
N−1∑

n1=0

s∗(n1)
N−1∑

n=0

s (n)
N−1∑

ϑ=0

exp

(

j
2π (n1 − n+ τ)ϑ

N

)]

=
1

N
Es

[
N−1∑

n1=0

s∗(n1)
N−1∑

n=0

s (n) δd (n1 − n+ τ)

]

=
1

N

N−1∑

n=0

Es [s (n) s∗ (n− τ)] =
1

N

N−1∑

n=0

Rs (n, τ) (4.15)

From (4.15) and (4.14) it comes out that Es

[

|ŝ(ϑ)|2
]

is the Fourier transform of
N−1∑

n=0
Rs(n, τ).

Hence, we can write:

1

N
Es

[

|ŝ(ϑ)|2
]

=
1

N

N−1∑

τ=0

N−1∑

n=0

Rs(n, τ) exp

(

−j
2πτϑ

N

)

(4.16)



54 Chapter 4. Feature extraction

Thus, the PSD of s can be obtained by taking the Fourier transform, with respect to

the time lag variable τ of the sum over n of the time autocorrelation functions Rs(n, τ).

This result constitutes a generalization of the Wiener-Khinchin theorem [135] for stochastic

signals.

Following the same line of reasoning, the characteristic function of the power time

density (4.3) is:

〈

exp

(

j
2πnυ

N

)〉

PTD

=
1

N

N−1∑

n=0

Es

[

|s(n)|2
]

exp

(

j
2πnυ

N

)

(4.17)

By replacing s(n) by (4.7) in the above relation we obtain the dual form of the Wiener-

Khinchin theorem:

Es

[

|s(n)|2
]

=
1

N

N−1∑

υ=0

N−1∑

ϑ=0

R∗
s(ϑ, υ) exp

(

−j
2πnυ

N

)

(4.18)

Notice that the Parseval identity (4.12), the Wiener-Khinchin relation (4.16), and its

dual form (4.18) connect time and frequency ensemble averages.

The time and frequency power densities: Es

[

|s(n)|2
]

and 1
N Es

[

|ŝ(ϑ)|2
]

along with the

time and frequency autocorrelation functions: Rs(n, τ) and Rs(ϑ, υ) allow us to indepen-

dently analyze s in time and frequency. We now turn to obtaining TF representations of s

that permit to characterize the power and the correlation in the TF plane

Wigner-Ville transform

The fundamental power based TFR of a signal is its Wigner-Ville transform (WVT) [30].

The WVT of s is defined as:

Ws (n, ϑ) =
1

N

N−1∑

τ=0

s∗(n− τ)s(n) exp

(

−j
2πτϑ

N

)

(4.19)

the normalizing factor 1
N is introduced to satisfy the marginal properties (4.23) to (4.25).

The frequency version of the WVT is obtained by replacing s(n) by (4.7), in the WVT

definition. This yields:

Ws (n, ϑ) =
1

N2

N−1∑

υ=0

ŝ∗(ϑ)ŝ(ϑ− υ) exp

(

−j
2πnυ

N

)

(4.20)

By taking ensemble averages on both sides in (4.19) and (4.20), and using the definitions

of time (4.2) and frequency (4.10) autocorrelation functions, we obtain the expected WVT

of s:

Es [Ws (n, ϑ)] =
1

N

N−1∑

τ=0

Rs(n, τ) exp

(

−j
2πτϑ

N

)

(4.21)

=
1

N

N−1∑

υ=0

R∗
s(ϑ, υ) exp

(

−j
2πnυ

N

)

(4.22)
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The expected WVT can be considered as an indicator of the signal power density in

time and frequency. Indeed, Es [Ws (n, ϑ)] is real everywhere (since: Ws(n, ϑ) = W ∗
s (n, ϑ))

and it satisfies the marginal properties, i.e. its sum over frequency (4.23) and time (4.24)

gives the signal power density in time and frequency respectively, and the sum over time

and frequency (4.25), scaled by N , gives the signal power.

N−1∑

ϑ=0

Es [Ws (n, ϑ)] =
1

N
Es

[
N−1∑

ϑ=0

N−1∑

τ=0

s∗ (n− τ) s (n) exp

(

−j
2πτϑ

N

)]

= Es

[

|s(n)|2
]

(4.23)

N−1∑

n=0

Es [Ws (n, ϑ)] =
1

N2
Es

[
N−1∑

n=0

N−1∑

υ=0

ŝ∗ (ϑ) ŝ (ϑ− υ) exp

(

−j
2πnυ

N

)]

=
1

N
Es

[

|ŝ (ϑ)|2
]

(4.24)

1

N

N−1∑

n=0

N−1∑

ϑ=0

Es [Ws (n, ϑ)] = Ps (4.25)

It is important to note that Es [Ws (n, ϑ)] is but an indicator of the signal power density.

In fact, it cannot be interpreted in a point-wise sense because of the uncertainty principle,

according to which the time and frequency power densities cannot both be made arbitrarily

narrow1. In addition, Es [Ws (n, ϑ)] can be negative in some regions of the TF plane [30].

Since the WVT represents the signal in the TF plane, we can generalize the time (4.2)

and frequency (4.10) autocorrelation functions and define the signal TF autocorrelation as:

Rs(n, τ, ϑ, υ) =
1

N
Es [W ∗

s (n− τ, ϑ− υ)Ws(n, ϑ)] (4.26)

where n and ϑ are the time and frequency at which the TF correlation is computed, and τ

and υ are the time and frequency lags respectively.

Ambiguity function

Whereas the WVT seeks to combine power analysis in time and frequency, the fundamental

correlative based TFR, namely the ambiguity function (AF) seeks to combine time and

frequency correlation as embodied by the definitions (4.2), (4.10), and (4.26). The AF, is

defined as the Fourier transform of the product: s∗(n− τ)s(n) with respect to time:

As (τ, υ) =
1

N

N−1∑

n=0

s∗(n− τ)s(n) exp

(

−j
2πnυ

N

)

(4.27)

The frequency version of the AF is obtained by replacing s(n) by (4.7) in the above defini-

tion.

As (τ, υ) =
1

N2

N−1∑

ϑ=0

ŝ∗(ϑ− υ)ŝ(ϑ) exp

(

j
2πτϑ

N

)

(4.28)

1The uncertainty principle and its implications are detailed in [30]
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By taking ensemble averages on both sides in (4.27) and (4.28), and using defini-

tions (4.2) and (4.10), we obtain the expected AF of s:

Es [As(τ, υ)] =
1

N

N−1∑

n=0

Rs(n, τ) exp

(

−j
2πnυ

N

)

(4.29)

=
1

N

N−1∑

ϑ=0

Rs(ϑ, υ) exp

(

j
2πτϑ

N

)

The expected AF satisfies the marginal properties (4.30) and (4.31), i.e. the sum over

the frequency lag gives the time autocorrelation computed at time n = 0 and the sum over

the time lag gives the frequency autocorrelation function computed at frequency ϑ = 0.

N−1∑

υ=0

Es [As(τ, υ)] = Rs(0, τ) (4.30)

N−1∑

τ=0

Es [As(τ, υ)] = Rs(0, υ) (4.31)

The expected square modulus of the AF, Es

[

|As(τ, υ)|
2
]

is an indicator of the global

TF correlation for all the TF points separated, in time by τ and in frequency by υ. Indeed,

by taking the sum over n and ϑ of the TF autocorrelation definition (4.26) and using the

WVT (4.19) and AF (4.27) definitions, we have:

N−1∑

n=0

N−1∑

ϑ=0

Rs(n, τ, ϑ, υ) =
1

N

N−1∑

n=0

N−1∑

ϑ=0

Es [Ws(n, ϑ)W ∗
s (n− τ, ϑ− υ)]

=
1

N3
Es





N−1∑

τ1,τ2,n,ϑ=0

s∗(n− τ1)s(n)s(n− τ − τ2)s
∗(n− τ) exp

(

j
2π(τ2υ − τ1υ − τ2υ)

N

)




N−1∑

n=0

N−1∑

ϑ=0

Rs(n, τ, ϑ, υ) = Es

[

|As(τ, υ)|
2
]

(4.32)

This result constitutes a global indicator of the interaction in the TF plane. Its gen-

eralization to the analysis of a multivariate signal permits to characterize the interaction

between its univariate components.

4.2.2 Time-frequency analysis of multivariate stochastic signals

Let S be an M dimensional multivariate stochastic signal of length N , composed of the

random vectors:
{
S(n) = (s1(n) . . . sM (n))t

∣
∣n = 0, . . . , N − 1

}
where s1, . . . , sM are the

univariate components of S and t is the transpose operator.

The TF analysis of multivariate signals that we consider in this thesis is based on second

order statistics. Thus, the results obtained in the previous section can be easily generalized

by considering second order moments between the univariate components of S.
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Time and frequency inter-correlations

We define the time and frequency inter-correlation functions of sm1 and sm2 as1:

Rm1,m2 (n, τ) = ES [s∗m1 (n− τ) sm2 (n)] (4.33)

Rm1,m2 (ϑ, υ) =
1

N
ES [ŝ∗m1 (ϑ− υ) ŝm2 (ϑ)] (4.34)

where ŝm1 and ŝm2 are the Fourier transforms of sm1 and sm2 respectively. As we did

in the previous section, we do not explicitly write the probability density functions with

respect to which the ensemble averages are computed. Instead, we simply denote as ES [·]

any ensemble average over S.

In the previous section we have seen that the PSD could be obtained by taking the Fouri-

er transform, with respect to the time lag, of the sum over time of the time autocorrelation

function (4.16). This result can be generalized to the multivariate case by substituting the

time autocorrelation function in (4.15) by the time inter-correlation function (4.33). Hence,

we obtain:

1

N

[
N−1∑

τ=0

N−1∑

n=0

Rm1,m2(n, τ) exp

(

−j
2πτϑ

N

)]

=
1

N
ES [ŝ∗m1(ϑ)ŝm2(ϑ)] (4.35)

As in the univariate TF analysis, we call 1
N ES [ŝ∗m1(ϑ)ŝm2(ϑ)], the power inter-spectrum

density of sm1 and sm2. In fact, this result generalizes the signal cross-spectrum defini-

tion [135].

Inter Wigner-Ville transform and inter ambiguity function

Similarly to the time and frequency inter-correlation functions, the inter-WVT and inter-AF

of sm1 and sm2 can be respectively defined as:

Wm1,m2 (n, ϑ) =
1

N

N−1∑

τ=0

s∗m1(n− τ)sm2(n) exp

(

−j
2πτϑ

N

)

(4.36)

Am1,m2 (τ, υ) =
1

N

N−1∑

n=0

s∗m1(n− τ)sm2(n) exp

(

−j
2πnυ

N

)

(4.37)

The TF inter-correlation function of sm1 and sm2 at time n and frequency ϑ for a time

lag τ and frequency lag υ is:

Rm1,m2(n, τ, ϑ, υ) =
1

N
ES

[
W ∗

m1,m2(n− τ, ϑ− υ)Wm1,m2(n, ϑ)
]

(4.38)

The global TF inter-correlation between sm1 and sm2 at time lag τ and frequency lag

υ is given by the sum over time and frequency of the TF inter-correlation function (4.38).

Using (4.36) and (4.37), we obtain:

N−1∑

n=0

N−1∑

ϑ=0

Rm1,m2(n, τ, ϑ, υ) = ES

[

|Am1,m2(τ, υ)|
2
]

(4.39)

1We use the prefix inter in a general sense. When m1 = m2, this prefix is usually replaced by intra
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In consequence, the expectation of the modulus of the inter-AF of sm1 and sm2 gives

an indication of the global TF interaction between these two signals.

It should be noted that:

ES

[

|Am1,m2(τ, υ)|
2
]

= ES

[

|Am2,m1(τ, υ)|
2
]

and, if sm1 and sm2 are real then1:

|Am1,m2(τ,N − υ)| = |Am1,m2(τ, υ)| υ = 1, . . . ,
N

2
(4.40)

The multivariate stochastic signal S can therefore be characterized by the set:

IS =

{

ES

[

|Am1,m2 (τ, υ)|2
]∣
∣
∣ 1 6 m1 6 m2 6 M ; τ = 0, . . . , N − 1; υ = 0, . . . ,

N

2

}

which contains the values of the modulus of the inter-AFs for every possible pair of uni-

variate components, time lags and frequency lags. The number of elements in IS is:

|IS| =
MN (M + 1) (N + 2)

4

Typical values of M and N , in the EEG framework are in the order of ten channels and

a few hundreds of samples respectively. With these values, the number of elements in IS
is in the order of hundred of thousands. Clearly, a mapping from the EEG-trial set to a

feature vector space directly generated by IS cannot be used for BCI applications.

Under certain hypotheses on the nature of the S it is possible to reduce the number of

statistical measurements that are necessary to characterize it. In the following we present

these hypotheses and establish their implications in the framework of the analysis of S.

4.2.3 Stationarity

Stationarity of S implies that its statistical properties do not change with time. However,

this condition is hardly met in practice. As we employ statistical moments up to second

order, we consider a weaker form of stationarity called wide sense stationarity. In the

following we use stationarity to refer to wide sense stationarity. Thus, S is stationary if:

• The average ES [sm (n)] is independent of n, i.e. ES [sm (n)] = µm

• The inter-correlation function of any pair of univariate components sm1 and sm2

depends only upon the time lag τ for every time n, i.e. Rm1,m2 (n, τ) = Rm1,m2 (τ).

In particular, when m1 = m2 = m, one has: Rm(n, τ) = Rm(τ) = R(−τ).

Because of the stationarity conditions, the power inter-spectrum density of sm1 and

sm2 (4.35) becomes simply the Fourier transform of the time inter-correlation function:

1

N
ES [ŝ∗m1(ϑ)ŝm2(ϑ)] =

N−1∑

τ=0

Rm1,m2(τ) exp

(

−j
2πτϑ

N

)

(4.41)

1For convenience we assume that N is even
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and the expected inter-WVT depends only upon the frequency. Indeed, by taking ensemble

averages on both sides in (4.36) we have:

ES [Wm1,m2 (n, ϑ)] =
1

N

N−1∑

τ=0

Rm1,m2(τ) exp

(

−j
2πτϑ

N

)

(4.42)

This result implies that the spectral properties of S do not change over time. Furthermore,

by taking ensemble averages on both sides of (4.37), we obtain:

ES [Am1,m2 (τ, υ)] = Rm1,m2 (τ) δd (υ) (4.43)

Therefore, a stationary signal does not present any correlation in frequency.

Since the spectral properties of a stationary signal do not change over time and there

is no frequency correlation, we can describe S using (4.41).

4.2.4 Ergodicity

For a stationary signal S, ergodicity implies that ensemble averages can be replaced by

time averages. Thus, the stationary time inter-correlation function, under the hypothesis

of ergodicity becomes:

Rm1,m2(τ) =
1

N

N−1∑

n=0

sm1(n− τ)sm2(n) (4.44)

Replacing this result in the stationary power inter-spectrum density (4.41) we obtain:

1

N
ES [ŝ∗m1(ϑ)ŝm2(ϑ)] =

1

N
ŝ∗m1(ϑ)ŝm2(ϑ) (4.45)

where ŝm1 and ŝm2 are the Fourier transforms of sm1 and sm2 respectively.

If m1 = m2 = m then, 1
N |ŝm(ϑ)|2 represents the PSD of sm. Therefore, according

to (4.12) and (4.45), the power of sm, is:

Psm =
1

N2

N−1∑

ϑ=0

|ŝm(ϑ)|2 (4.46)

Replacing (4.6) in the above relation yields:

Psm =
1

N2






N
2∑

ϑ=0

|ŝm(ϑ)|2 +
N−1∑

ϑ=N
2

+1

|ŝm(ϑ)|2






=
1

N2



2

N
2∑

ϑ=0

|ŝm(ϑ)|2 −

∣
∣
∣
∣
ŝm

(
N

2

)∣
∣
∣
∣

2


 (4.47)

Since the sampling frequency is at least twice the maximum frequency present in the

spectrum of sm, i.e. the sampling frequency is chosen in accordance with the sampling
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theorem [119, 150], the second term on the right in (4.47) is close to zero. Therefore, the

following approximation holds.

Psm ≈
2

N2

N
2∑

ϑ=0

|ŝm(ϑ)|2 (4.48)

Using this approximation and the correspondence between ϑ and the real frequency (4.5),

we can approximate the power contained in a frequency band, Bf = [f1; f2] ⊂
[
0; fs

2

]
, as

follows.

P̃sm (Bf) =
2

N2

ϑ2∑

ϑ=ϑ1

|ŝm(ϑ)|2 (4.49)

where:

ϑi = nint

(
N fi
fs

)

i = 1, 2

The function nint(·) gives the nearest integer to its argument. In particular, it can be

said that 2
N2

∣
∣
∣ŝm

(

nint
(

N f
fs

))∣
∣
∣

2
represents the power contained in an fs

N wide band centered

at f.

Ensemble averages allowed us to theoretically develop the TF analysis framework. In

practice, such averages are difficult to compute as in practice, one has no access to the

signal’s generative mechanism. Thus, under the hypothesis of ergodicity this problem has

been overcome in the framework of stationary signals.

The stationarity and ergodicity hypothesis are used in the stationary PSD (Section 4.3),

autoregressive (Section 4.5), multivariate autoregressive (Section 4.7), and coherence (Sec-

tion 4.4) mappings.

4.2.5 Absence of coupling between the univariate components

The hypothesis of absence of coupling between the univariate components of the S im-

plies that the correlations between two different univariate components can be ignored.

Thus, in the general characterization set IS (see Section 4.2.2) only the terms of the form:

ES

[

|Am,m (τ, υ)|2
]

need to be considered. In particular, if S is stationary only the PSDs

associated with each component are considered.

This hypothesis is used in the stationary PSD (Section 4.3), and autoregressive (Sec-

tion 4.5) mappings.

4.2.6 Existence of a linear prediction model

According to this hypothesis, S can be generated by a a linear prediction model of the form:

S(n) = −

Q
∑

i=1

A(n, i)S(n− i) + e(n) (4.50)
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where Q is the model order, the A(n, i) are N ×N matrices and e(n) (the prediction error)

is an N -dimensional zero mean random vector with covariance matrix Ce(n). Thus, S is

completely determined by the parameters of the model.

It can be shown [22] that if S is stationary and ergodic, the matrices A(n, i) are time

independent, i.e. ∀n,A(n, i) = A(i). In this case the linear prediction model is called a

stationary autoregressive model (AR model). On the other hand, if S is non-stationary,

the matrices A(n, i) are time dependent. In this case, the linear prediction model is called

a non-stationary autoregressive model (NAR model).

The hypothesis of existence of a linear prediction model is used in the autoregressive

(Section 4.5), non-stationary autoregressive (Section 4.6), and the multivariate autoregres-

sive mappings (Section 4.7).

4.2.7 Weak coupling

This hypothesis is based on the assumption that the univariate signals composing S are

generated by self-sustained oscillators1 which are weakly coupled.

The interaction between two self-sustained oscillators of natural frequencies f1 and f2
(without loss of generality we can assume that f1 < f2) whose mutual influence is approxi-

mately symmetrical, entrains frequency locking as their observed coupled frequencies f̃1 and

f̃2 are such that f̃1 = f̃2 = f̃ where typically, f1 < f̃ < f2. Frequency locking implies a certain

relation between the oscillators phases that depends not only on the frequency detuning,

f1 − f2, and coupling strength, but also on the way in which the oscillators are interacting.

It is well known that weak coupling affects primarily the phases of the oscillators but not

their amplitudes [131]. Thus, when the natural frequencies obey the relation i1f1 = i2f2
(where i1, i2 are positive integer numbers), phase locking (or synchronization [16]) of order

i1 : i2 arises. The condition of synchronization can be formulated as:

|i1ϕ1 − i2ϕ2| < ǫ (4.51)

where ϕ1 and ϕ2 are the phases of the coupled oscillators, and ǫ is a small value [131]. As

the oscillators considered come from the same physiological system, only synchronization

of order 1 : 1 is considered [16].

Thus under the weak coupling hypothesis, the analysis of the interaction between the

univariate components of S focuses on the computation of the degree of synchronization

between them. Since phase locking implies frequency locking, synchronization should be

determined in narrow frequency bands. This hypothesis is used in the synchronization

mapping in Section 4.8.

So far we have presented the theoretical elements to analyze a multivariate stochastic

signal S in time and frequency. In addition, we established hypotheses on the nature of S

that make it possible to simplify the analysis. As mentioned in Section 4.1, in the framework

1A self-sustained oscillator is an active system that contains an internal source of energy that is trans-

formed into oscillatory activity which is entirely determined by the oscillator internal parameters. Neuronal

oscillators are good examples of self-sustained oscillators
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of BCI applications we have at our disposal a realization of S, namely an EEG-trial from

which a feature vector should be extracted. The computation of this feature vector is done

through a mapping from the EEG-trial set into a feature vector space. In the following we

present different mappings that are based on the hypotheses afore mentioned.

For all the mappings we assume that the EEG-trial:

S =






s1(0) . . . s1(Nspt − 1)
...

...
...

sNe(0) . . . sNe(Nspt − 1)






where Ne and Nspt are the number of electrodes and number of samples per trial respectively,

is given (for simplicity, we assume that Nspt is even). In addition, as mentioned in Chapter 3

the averages over time and electrode are both equal to zero. This implies:

Nspt−1∑

n=0
sm(n) = 0 m = 1, . . . ,Ne

Ne∑

m=1
sm(n) = 0 n = 0, . . . ,Nspt − 1

(4.52)

4.3 Stationary PSD mapping

The stationary PSD mapping, denoted as ψP is built on the hypotheses of stationarity,

ergodicity, and absence of coupling. Thus, each EEG channel can be independently analyzed

by means of its power spectrum density.

To compute the feature vector ψP(S), NB frequency bands {B1, . . . ,BNB
} are chosen in

accordance with physiological considerations (for instance the typical delta, theta, alpha,

beta, and gamma frequency bands). The frequency bands used in this thesis are presented

in Chapter 6.

The powers for each frequency band and EEG channel are computed and grouped into

an NeNB dimensional vector:

ψP(S) =
(

P1(B1) . . . Pm(Bi) . . . PNe(BNB
)
)t
∈ R

NeNB

where Pm(Bi) is the power of sm in the frequency band Bi.

To compute Pm(Bi), the PSD of sm is estimated using the Welch method [172] (see

Fig. 4.2). In this method, the signal sm is segmented into Nβ (possibly) overlapping blocks

containing N samples each. The blocks are then multiplied by an N -point Hamming win-

dow [135] which smoothly reduces the samples in each block to zero at the end points (see

Fig. 4.2). Windowing aims at attenuating the spectral leakage effect1 due to the disconti-

nuities in time introduced by the segmentation.

1Spectral leakage means that signal energy which should be concentrated only at one frequency instead

leaks into all the other frequencies
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The Welch estimate of the PSD of sm, denoted as Wsm(ϑ), is the average of the PSDs

of the windowed blocks. Using (4.46), we have:

Wsm(ϑ) =
1

NβN

Nβ∑

β=1

|ŝβ(ϑ)|2 (4.53)

where ŝβ(ϑ) is the Fourier transform of the β-th windowed block.

Finally, using (4.49) the power in the frequency band Bi = [fi,1; fi,2] is:

Pm(Bi) =
2

N

ϑi,2∑

ϑ=ϑi,1

Wsm(ϑ) =
2

NβN2

ϑi,2∑

ϑ=ϑi,1

Nβ∑

β=1

|ŝβ(ϑ)|2 (4.54)

where:

ϑi,l = nint

(
N fi,l
fs

)

l = 1, 2

Variants of this mapping, e.g. taking different frequency bands and subsets of electrodes

(following physiological considerations) are used in numerous current BCIs [106, 128, 132,

176].

4.4 Coherence mapping

The coherence mapping, denoted as ψC is built on the hypotheses of stationarity and

ergodicity of the EEG signals. Under these hypotheses, an EEG-trial can be analyzed by

means of the power inter-spectrum densities (4.45) between its channels.

The coherence function evaluates the inter-spectrum density of two EEG channels nor-

malized by the channel PSDs. The coherence between sm1 and sm2 at frequency ϑ is defined

as:

Cm1,m2(ϑ) =
|ŝ∗m1(ϑ)ŝm2(ϑ)|2

|ŝm1(ϑ)|2 |ŝm2(ϑ)|2
(4.55)

where ŝm1(ϑ) and ŝm2(ϑ) are the Fourier transforms of sm1 and sm2 respectively.

Because of the normalization by the channel PSDs, the coherence function takes values

in the interval [0, 1]. In particular, if sm1 and sm2 are uncorrelated their coherence is zero

at all frequencies.

In practice, the coherence is not directly computed using (4.55), instead it is estimated

by segmenting the observed sm1 and sm2 into Nβ (possibly) overlapping N -length blocks

and computing [14]:

Cm1,m2(ϑ) =

∣
∣
∣
∣
∣

Nβ∑

β=0

ŝ∗m1,β(ϑ)ŝm2,β(ϑ)

∣
∣
∣
∣
∣

2

Nβ∑

β=0

|ŝm1,β(ϑ)|2
Nβ∑

β=0

|ŝm2,β(ϑ)|2
(4.56)
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Figure 4.2. Welch method to estimate the power spectral density PSD. The signal is segmented into

blocks that can overlap. These blocks are windowed by a Hamming window, their respective PSDs

are computed and averaged. This average constitutes the estimated PSD. The signal under study

was recorded at electrode T3 while the subject was reading a text on a computer screen.
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where ŝm1,β and ŝm2,β are the Fourier transforms of the β-th blocks of signals sm1 and sm2

respectively (see Fig. 4.3).

To compute the feature vector ψC(S), NB frequency bands {B1, . . . ,BNB
} are chosen

and the average coherence for each frequency band and pair of EEG channels are computed

and grouped into an Ne(Ne−1)
2 NB dimensional vector:

ψC(S) =
(

〈C1,2(ϑ)〉B1
. . . 〈Cm1<m2,m2(ϑ)〉Bi

. . . 〈CNe−1,Ne(ϑ)〉BNB

)t
∈ R

Ne(Ne−1)
2

NB

where 〈Cm1,m2(ϑ)〉Bi
is the average coherence in the frequency band Bi = [fi,1; fi,2]. Such

average is computed as follows.

〈Cm1,m2(ϑ)〉Bi
=

1

ϑi,2 − ϑi,1

ϑi,2∑

ϑ=ϑi,1

Cm1,m2(ϑ) (4.57)

where

ϑi,l = nint

(
N fi,l
fs

)

l = 1, 2

The coherence function is extensively used as a tool for quantifying the degree of inter-

action between two EEG channels in a frequency band. A large value of the average of the

coherence function in a certain frequency band indicates that the corresponding oscillatory

activities are of the same origin or interact with each other [14, 117, 118, 174].

4.5 Autoregressive mapping

The autoregressive (AR) mapping, denoted as ψAR is built on the hypotheses of stationarity,

ergodicity, absence of coupling between the univariate components, and existence of a linear

prediction model.

Since the coupling between the channels is ignored, the model in (4.50) can be split

into linear prediction models corresponding to each univariate component. Thus, the m-th

univariate component of S can be written in the form:

sm(n) = −

Qm∑

i=1

am(n, i)sm(n− i) + em(n) (4.58)

where the am(n, i) are the AR coefficients and Qm is the AR order corresponding to sm,

and em is the m-th prediction error process.

Furthermore, as stationarity and ergodicity are assumed, it can be shown [22] that the

AR coefficients are time independent. Thus, the AR model for the m-th channel becomes:

sm(n) = −

Qm∑

i=1

am(i)sm(n− i) + em(n) (4.59)
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Figure 4.3. Estimation of the coherence function between two EEG channels. In this example,

the coherence function is estimated by segmenting both signals into blocks of one second duration,

computing the PSDs of each block and using (4.56).

The signals under study were recorded at electrodes C3 (top left) and C4 (top right) while the

subject was imagining the movement of his left index finger.
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The coefficients: am(1), . . . , am(Qm) can be determined by minimizing the averaged

squared prediction error, i.e. the prediction error power:

E(Qm) =
1

Nspt

Nspt−1
∑

n=0

e2m(n) =
1

Nspt

Nspt−1
∑

n=0

(

sm(n) +

Qm∑

i=1

am(i)s(n− i)

)2

(4.60)

in this relation, the samples prior to sm(0) are assumed to be zero.

Taking the derivatives of E(Qm) with respect to am(1), . . . , am(Qm) and setting them

to zero, yields:

1

Nspt

Nspt−1
∑

n=0

sm(n)sm(n− i) +

Qm∑

i′=1

am(i′)
1

Nspt

Nspt−1
∑

n=0

sm(n− i′)sm(n− i) = 0 i = 1, . . . , Qm

(4.61)

By replacing the ergodicity condition on the time correlation function (4.44) in (4.61),

we obtain the so called Yule-Walker [170, 182] equations:

Qm∑

i′=1

am(i′)Rsm(i− i′) = −Rsm(i) i = 1, . . . , Qm (4.62)

The AR coefficients can be efficiently found by solving (4.62) using the recursive Levinson-

Durbin algorithm [42, 97].

Since sm is ergodic, it can be shown [22] that em is an independent and identically

distributed (IID) stochastic process with mean zero and finite variance E(Qm). Therefore,

the spectrum of em is [22]: êm(f) = E(Qm)
fs

where fs is the sampling frequency.

Taking the z-transform [135] on both sides in (4.59) yields:

Zsm(z) =
Zem(z)

1 +
Qm∑

i=1
am(i)z−i

(4.63)

where Zsm(z) and Zsm(z) are the z-transforms of sm and em respectively. The spectrum of

sm is obtained by evaluating (4.63) along the unit circle in the z-plane, i.e. z = exp
(

j 2πf
fz

)

:

ŝm(f) =
E(Qm)

fs

(

1 +
Qm∑

i=1
am(i) exp

(

−j 2πfi
fs

)
) =

E(Qm)

fs
Hm(f) (4.64)

where fs is the sampling frequency.

The PSD of sm is given by:
∣
∣
∣
E(Qm)

fs
Hm(f)

∣
∣
∣

2
. Thus, the flat spectrum of em is filtered

by the all-pole filter Hm(f) (see Fig. 4.4) to produce an output spectrum which contains

sharp peaks at certain frequencies corresponding to the zeros of the denominator of (4.64)

(poles). This property makes the AR model particularly suited for EEG signals whose PSD

is generally characterized by dominant frequencies (see Figs. 4.2 to 4.5) rather than by the

absence of power at certain frequencies (notches).
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Figure 4.4. AR modelling of the m-th channel as an all-pole filter. The current output sm(n)

depends on the Qm most recent outputs, sm(n− 1), . . . , sm(n−Qm) and the current input, em(n).

The AR order Qm needs to be selected so as to appropriately approximate the signal

PSD. Enough poles must be used to resolve all the peaks of the PSD with additional poles

added to provide general spectral shaping and to approximate any notches in the PSD [178].

Too high a value of the AR model over-fits the signal and introduces spurious details such as

false peaks into the PSD, whereas too low a value produces a PSD that is over-smoothed.

Between these two extremes the minimum value of Qm that adequately represents the

signal being modelled is chosen. Determining this value is often based upon a goodness-

of-fit term such as the prediction error power E(Qm) combined with a cost function that

penalizes some measure of the model complexity, i.e some monotonically growing function of

Qm. Indeed, since the fit of the model improves as Qm increases, the prediction error power

is a non-increasing function of Qm (see Fig. 4.5) and the optimum order is rarely apparent

form the inspection of E(Qm) alone (Fig. 4.5). Order selection methods include the final

prediction error (FPE) [2], the Akaike information (AIC) [3], and minimum description

length (MDL) [140] criteria.

FPE(Qm) = log (E(Qm)) + log

(
Nspt −Qm − 1

Nspt +Qm + 1

)

≈ log (E(Qm)) +
2 (Qm + 1)

Nspt
(4.65)

AIC(Qm) = log (E(Qm)) +
2Qm

Nspt
(4.66)

MDL(Qm) = log (E(Qm)) +Qm
log(Nspt)

Nspt
(4.67)

where the approximation (4.65) holds for Qm < Nspt. In practice, Nspt is at least ten times

larger than Qm [178].

Notice that each of the above mentioned criteria can be written in the form:

log (E(Qm)) + ηQmQm

where ηQm is a penalization factor. Since the penalization factor associated with the MDL

criterion is the largest, this criterion gives the smallest AR order (Fig. 4.5). In practice, the
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MDL criterion is generally preferred [9]. In the framework of linear prediction, the MDL

criterion takes the general form: log(error) + number of parameters× log(number of samples)
number of samples

The feature vector ψAR(S) is composed of the AR coefficients associated to each channel:

ψAR(S) =
(

a1(1) . . . a1(Q1) . . . aNe(1) . . . aNe(QNe)
)t
∈ R

∑

m Qm

where am(i) is the i-th AR coefficient and Qm is the AR order associated to the m-th

channel.

The AR mapping does not require to select a set of frequency bands and can lead

to feature vectors whose dimensionality is smaller than that of the previous mappings.

However, in BCI applications, the AR mapping presents an inconvenience residing in the

fact that a direct connection between the AR coefficients and the power in a given frequency

band is not evident [167]. Instead, this power is an intricate non-linear function of the AR

coefficients. This makes difficult to explain the physiological mechanism that the subject

actually uses to control an AR coefficient based BCI [175].

4.6 Non-stationary autoregressive mapping

The non-stationary autoregressive (NAR) mapping, denoted as ψNAR is built on the hy-

potheses of absence of coupling between the univariate components of EEG, and existence

of a linear prediction model. As in the AR mapping, the hypothesis of absence of cou-

pling permits to split the model in (4.50), into linear prediction models for each univariate

component:

sm(n) = −

Qm∑

i=1

am(n, i)sm(n− i) + em(n) (4.68)

where Qm is the model order of the m-th channel.

When sm is stationary (Section 4.5), the coefficients am(n, i) are time independent and

the prediction model can be interpreted as an all-pole (time-invariant) filter in which the

filter output s(n) depends on the weighted sum of its time-shifted versions (Fig. 4.4). In

the non-stationary case, the linear prediction model can be interpreted as a time-varying

filter which introduces frequency shifts in addition to time-shifts [77, 100, 136]. Hence, the

linear prediction model in (4.68) becomes (see Fig. 4.6):

sm(n) = −

Qm∑

i=1

Um∑

u=−Um

ãm(i, u) exp

(

−j
2πun

Nspt

)

sm(n− i) + em(n) (4.69)

where Um is the spectral order associated with sm. Clearly, this equation is equivalent

to (4.68) with:

am(n, i) =

Um∑

u=−Um

ãm(i, u) exp

(

−j
2πun

Nspt

)

(4.70)
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Figure 4.5. Autoregressive estimation of the PSD. Top left : Signal under study (the same as the

one in Fig. 4.2). Top right : estimated PSD computed using the Welch method (Section 4.3). Bottom

left : PSD approximations for different AR orders. As it can be seen, an AR order of 2 leads to

the PSD over-smoothing, for AR orders equal to 5 and 10, the PSD is relatively well approximated.

Bottom right : Logarithm of the prediction error power and the three AR order selection, i.e. final

prediction error (FPE), Akaike information (AIC) and minimum description length (MDL), criteria

are represented. The prediction error slowly decreases as the AR increases making this parameter,

considered alone, not suitable to adequately chose the AR order. Because of the penalization of too

large values of the AR order, the order selection criteria present an optimum which is more evident

in the MDL criterion as it has the largest penalization factor (see Equations 4.65 to 4.67).
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Figure 4.6. Block diagram of the non-stationary autoregressive model of the m-th channel. The

current output sm(n) depends on frequency shifted (frequency shifts are introduced via the products

by: exp
(

±j 2πn
Nspt

)

) versions of the Qm most recent outputs, sm(n − 1), . . . , sm(n − Qm) and the

current input em(n).

The coefficients ãm(i, u) (NAR coefficients) can be determined by minimizing the pre-

diction error power:

E(Qm, Um) =
1

Nspt

Nspt−1
∑

n=0

e2
m(n) (4.71)

=
1

Nspt

Nspt−1
∑

n=0

(

sm(n) +

Qm∑

i=1

Um∑

u=−Um

ãm(i, u) exp

(

−j
2πun

Nspt

)

sm(n− i)

)2

Taking the derivatives of E(Qm, Um) with respect to the NAR coefficients and setting

them to zero, yields:

Qm∑

i′=1

Um∑

u′=−Um

ãm(i′, u′)
1

Nspt

Nspt−1
∑

n=0

sm(n− i′)sm(n− i) exp

(

−j
2π(u+ u′)n

Nspt

)

+
1

Nspt

Nspt−1
∑

n=0

sm(n)sm(n− i) exp

(

−j
2πun

Nspt

)

= 0 for

{

1 6 i 6 Qm

−Um 6 u 6 Um

Taking expectations on both sides in the above equation and using the definition of

expected ambiguity function (4.29) yields:

Qm∑

i′=1

Um∑

u′=−Um

ãm(i′, u′)Esm

[
Asm(i− i′, u− u′)

]
= −Esm [Asm(i, u)] (4.72)

This set of linear equations generalize the Yule-Walker ones (4.62) to the non-stationary

case. The total number of NAR coefficients is equal to: Qm (2Um + 1). For slowly time-

varying am(n, i), a small Um suffices to characterize the frequency shifts [77].
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The model and spectral orders Qm and Um can be selected similarly to the AR order in

Section 4.5. Namely, choosing those values that make the MDL criterion (4.67) minimum:

(Qm, Um) = argmin
Q∗

m,U∗
m

(

log (E(Q∗
m, U

∗
m)) +Q∗

m (2U∗
m + 1)

log(Nspt)

Nspt

)

(4.73)

The estimation of Esm [Asm(i, u)] is obtained by segmenting sm into Nβ (possibly) over-

lapping N -length blocks and computing the average of the blocks ambiguity functions:

Esm [Asm(i, u)] =
1

Nβ

Nβ∑

β=1

1

N

N−1∑

n=0

sm,β(n− i)sm,β(n) exp

(

−j
2πnu

N

)

(4.74)

where sm,β(n) is the n-th sample of the β-th block.

The feature vector ψNAR(S) is composed of the NAR coefficients associated to each

channel:

ψNAR(S) =
(

ã1(1,−U1) . . . ãm(i, u) . . . ãNe(1,−UNe) . . . ãNe(QNe , UNe)
)t

ψNAR(S) ∈ R
∑

m Qm(2Um+1)

Since for EEG signals, the parameters am(n, i) of the general linear prediction mod-

el (4.68) slowly change in time [129, 146] the spectral orders: U1, . . . , UNe are relatively

small (up to three, see Chapter 6). This makes the NAR particularly well suited for BCI

applications. However, alike the AR mapping (Section 4.5), the physiological interpreta-

tion of the NAR coefficients is difficult since there is no direct link between them and the

observed signals.

4.7 Multivariate autoregressive mapping

The multivariate autoregressive (MVAR) mapping, denoted as ψMVAR, is built on the hy-

potheses of ergodicity and existence of a linear prediction model. Because of the ergodicity,

the matrices A(n, i) in the general prediction model in (4.50) are time independent. Thus,

the EEG-trial S can be characterized using the MVAR model:

S (n) = −

Q
∑

i=1

A(i)S(n− i) + e(n) (4.75)

where the A(i) are Ne ×Ne matrices, S(n) =
(

s1(n) · · · sNe(n)
)t

, and

e(n) =
(

e1(n) · · · eNe(n)
)t

is the prediction error vector at time n.

As in the two previous mappings, the elements of matrices A(i) are determined by

minimizing the prediction power error:

E(Q) =
1

Nspt

Nspt−1
∑

n=0

et(n)e(n) (4.76)

=
1

Nspt

Nspt−1
∑

n=0

(

St(n) +

Q
∑

i=1

St(n− i)At(i)

)(

S(n) +

Q
∑

i=1

A(i)S(n− i)

)
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Taking the derivatives of E(Q) with respect to the elements of the matrices A(i) yields the

multivariate Yule-Walker equations [85, 134]:

−
(

K(1) . . . K(Q)
)

=
(

A(1) . . . A(Q)
)

K̃ (4.77)

where K(τ) =
Nspt−1∑

n=0
S(n− τ)St(n) and

K̃ =









K(0) K(1) · · · K(Q− 1)

Kt(1) K(0) · · · K(Q− 2)
...

...
...

Kt(Q− 1) Kt(Q− 2) · · · K(0)









The matrices A(1), . . . ,A(Q) can be found by inverting the QNe × QNe matrix K̃

in (4.77). However, (4.77) can be more efficiently solved by applying a generalized version

of the Levinson recursions [173].

The frequency domain form of the MVAR model is obtained by taking the Z-transform

on both sides in (4.75) and evaluating it in the unit circle in the z-plane, i.e. at z =

exp
(

j 2πf
fz

)

where fs is the sampling frequency. Thus, the MVAR frequency-domain model

is: 




ŝ1(f)
...

ŝNe(f)




 =






H1,1(f) · · · H1,Ne(f)
...

...

HNe,1(f) · · · HNe,Ne(f)











ê1(f)
...

êNe(f)




 (4.78)

where ŝm(f) is the spectrum of the m-th channel and êm(f) is the spectrum of the m-th

prediction error. The ê1(f), . . . , êNe(f) can be thought of as the input spectra which are

filtered by the transfer functions Hm1,m2(f) to produce the outputs ŝ1(f), . . . , ŝNe(f) (see

Fig. 4.7). Since Hm1,m2(f) is different from Hm2,m1(f), the transfer function: Hm1,m2(f) is a

sort of ”directed” intra-spectrum from the m2-th channel to the m1-th one [145].

The model order Q determines the shape of the transfer functions Hm1,m2(f). In fact,

higher orders imply more peaks in the transfer functions (see Fig. 4.8). To determine the

optimal order Q we use the MDL criterion (Section 4.5). Thus, the optimal Q is selected

as:

Q = argmin
Q∗

(

log((Q)) +QNe
log(NsptNe)

Nspt

)

(4.79)

The feature vector ψMVAR is composed of the elements in matrices A(1), . . . ,A(Q):

ψMVAR(S) =
(

Ä(1) . . . Ä(Q)
)t
∈ R

QN2
e

where the notation Ä indicates that the elements in A are taken column-wise and rearranged

in a single row.

The MVAR mapping was used to determine the spreading of brain activity in a defined

frequency band by exploiting the concept of ”directed” intra-spectrum [145] that we men-

tioned earlier. As in the two previous mappings a direct connection between physiological
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Figure 4.7. Frequency domain interpretation of a multivariate autoregressive model. In this

interpretation, the inputs are the source spectra: ê1(f), . . . , êNe
(f), the outputs the observed signal

spectra: ŝ1(f), · · · , ŝNe
(f) and the connection weights are filters that determine the contribution of

each source to the observed signals. Generally Hm1,m2(f) 6= Hm2,m1(f) then, the transfer function

Hm1,m2(f) can be interpreted as the ”directed” cross-spectrum from the m2-th channel to the m1-th

one.

concepts and the MVAR coefficients does not exist. However, the representation of the

transfer functions as in Fig. 4.8 allows us to evaluate the interaction between channels at

different frequencies which appears to be non-symmetrical.

4.8 Synchronization mapping

The synchronization mapping, denoted as ψY is built on the hypothesis of weak coupling.

Under this hypothesis an EEG-trial is characterized by the degree of synchronization, in

narrow frequency bands, between its channels (see Section 4.2.7).

The synchronization between two EEG channels sm1 and sm2, in a frequency band

B = [f1; f2], is determined by the phase locking (4.51) between s
(B)
m1 and s

(B)
m2 which are

respectively, the signals resulting from the filtering of sm1 and sm2 in B.

The phase of a signal s can be determined by means of its complex analytic form [82]

defined as:

s̄(n) = s(n) + jHs(n) (4.80)

where Hs is the Hilbert transform1 of s. The analytic form can be further decomposed

as: s̄(n) = As(n) exp (jϕs(n)), where As(n) is the instantaneous amplitude and ϕs(n) the

instantaneous phase of s.

The degree of phase locking between sm1 and sm2 in the frequency band B is given by

1The Hilbert transform can be determined using standard methods as presented in [82]
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Figure 4.8. Multivariate autoregressive model for two EEG channels (C3 and C4). On the left, the

power spectral and inter-spectral densities and on the right, the corresponding transfer functions.

As it can be seen the higher Q the more peaks appear in the transfer function. The optimal order

Q is determined using the MDL criterion (4.79)

The signals under study are the same than that in Fig. 4.3
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the modulus of the average of the set of complex relative phases [111]:

{

exp
(

jϕ(B)
sm1,sm2

(n)
)∣
∣
∣n = 0, . . . ,Nspt − 1

}

where ϕ
(B)
sm1,sm2(n) = ϕ

(B)
sm1 − ϕ

(B)
sm2 is the relative phase of s

(B)
m1 and s

(B)
m2 .

The synchronization between sm1 and sm2 in the frequency band B is (see Fig. 4.9):

Y(m1,m2,B) =

∣
∣
∣
∣
∣
∣

1

Nspt

Nspt−1
∑

n=0

exp
(

jϕ(B)
sm1,sm2

(n)
)

∣
∣
∣
∣
∣
∣

(4.81)

One can easily verify that Y(m1,m2,B) varies from zero, when the complex relative

phases are uniformly distributed in the complex unit circle, to one when the complex

relative phases are all equal.

The feature vector ψY is determined by selecting NB frequency bands {B1, . . . ,BNB
},

computing the synchronization for each frequency band and pair of EEG channels and

grouping the results into an Ne(Ne−1)
2 NB dimensional vector:

ψY(S) =
(

Y(1, 2,B1) . . . Y(m1,m2,Bi) . . . Y(Ne − 1,Ne,BNB
)
)t
∈ R

Ne(Ne−1)
2

NB

Synchronization appears to be a basic mechanism for neuronal information processing

within a brain area as well as for communication between different brain areas. The iden-

tification of phase locking between two EEG channels can provide useful insight into the

cooperation mechanisms between the underlying neuronal groups during the execution of

mental activities [16, 96, 98]. It is worth mentioning that synchronization, in contrast to

coherence, can be high even if the amplitudes are uncorrelated [16, 96].

4.9 Summary

The characterization of EEG is based on the analysis of the generalized interactions between

the EEG channels. By assuming some hypotheses on the properties of EEG signals, we

derived different mappings from the EEG-trial set into feature spaces whose characteristics

are determined by the hypotheses that define the corresponding mapping. Since a single

mapping appears to be insufficient for the recognition of all the MAs that are used to control

the BCI (see Chapter 6), an optimal association between an MA and a mapping should be

established.

The following hypotheses were used: stationarity and ergodicity, absence of coupling

between the EEG channels, existence of a linear prediction model and weak coupling be-

tween the EEG channels. The way in which these hypotheses are combined to obtain

the stationary PSD, coherence, autoregressive, non-stationary autoregressive, multivariate

autoregressive and synchronization mappings is depicted in Fig. 4.10.

The dimensionality of the feature vector spaces associated to each mapping is reported in

Table 4.1. In general, the mappings built on the hypothesis of existence of a linear prediction

model generate feature vectors with lower dimensionality. Furthermore such mappings do
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Figure 4.9. Estimation of the synchronization between two EEG channels in the alpha band. The

signals are first filtered in the alpha band, then their instantaneous phases and relative phase are

computed. In the lower right panel we represent the complex relative phases in the complex unit

circle. The value of the synchronization determined using (4.81) is: 0.759. The signals under study

are those in Fig. 4.3.



78 Chapter 4. Feature extraction

not require the choice of given frequency bands. However, the features that compose them

are not directly connected to specific brain events (e.g. the power in a given frequency band

or morphological signal properties). Thus, in a BCI based on feature vectors based on

general autoregressive features it can be difficult to understand the type of physiological

mechanisms that are actually used to control the BCI.

Figure 4.10. Derivation of the mappings from hypotheses on the nature of EEG trials.

Mapping Dimension of feature

vectors

Typical dimension *

Stationary PSD (ψP) NeNB 160

Coherence (ψC) Ne(Ne−1)
2 NB 1200

Autoregressive (ψAR)
∑Ne

m=1Qm 32

Non-stationary

autoregressive (ψNAR)

∑Ne

m=1Qm (2Um + 1) 160

Synchronization (ψY) Ne(Ne−1)
2 NB 1200

Multivariate

autoregressive (ψMVAR)

QN2
e 512

Table 4.1. Dimensionality of the feature vectors associated to each mapping. (*) Typical values

for the parameters in the third column are (see Chapter 6): Ne = 16,NB = 10, Qm=1,...,Ne
= 2,

Um=1,...,Ne
= 2, and Q = 2. Using such values it appears that the coherence and synchronization

mappings produce the highest dimensional feature vectors whereas the autoregressive mapping pro-

duces the lowest dimensional one. Thus, unless a small number of frequency bands is considered,

the mappings built on the hypothesis of existence of a linear prediction model produce the feature

vectors with the smallest number of elements.



Pattern recognition 5
“The purpose of models is not to fit the data

but to sharpen the questions”

Samuel Karlin

5.1 Introduction

In the previous chapter we presented different mappings from the EEG-trial set into a

feature vector space X that is suitable for the recognition of a given MA in the controlling

set. We pointed out that the choice of the optimal mapping (which determines X ) depends

on the subject and the mental activity. In this chapter we assume that the choice of

the optimal mapping is done according to an optimality criterion (see Chapter 6) and

concentrate on the recognition process.

Let Ω be the set of all possible EEG-trials and Ωk the set of EEG-trials produced during

the performance of mental activity MAk. The optimal mapping for the recognition of MAk,

denoted as ψ(k) maps Ω and Ωk into the feature vector space (induced by ψ(k)) Xk and the

target set Xk respectively (see Fig. 5.1). Our goal is to estimate a measure of the likelihood,

denoted as fk(x) that a feature vector x ∈ Xk belongs to Xk. We call fk(·) the membership

function associated with the mental activity MAk.

As shown in Fig. 5.2, the feature extraction module delivers to the pattern recognition

one, NMA feature vectors denoted as x(1), . . . , x(NMA), which are computed by applying the

optimal mappings ψ(1), . . . , ψ(NMA) to an EEG-trial S ∈ Ω. The pattern recognition module

in turn computes NMA membership functions: f1(x
(1)), . . . , fNMA

(x(NMA)) that are grouped

into a vector of memberships ~f that is sent to the action generation module which decides

on the action that the BCI executes (see Chapter 6).

79
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Figure 5.1. The optimal mapping for the recognition of MAk, ψ(k) maps the set of EEG-trials Ω

into a feature vector space Xk. In Xk a feature vector is characterized with respect to its membership

to the target set Xk (i.e. the set of feature vectors produced during the performance of MAk)

Each membership function fk is learned in a supervised way, i.e. the exact membership

of a given set (the training set) of feature vectors belonging to Xk is known and fk is

estimated so as to minimize the discrepancy between the memberships computed by fk and

the real ones. Note that the exact membership of an element in the training set can only

take two values: belongs or not to the target set. In contrast, the range of fk(·) is in the

real numbers, i.e. different degrees of membership exist.

The shape of target sets can change over time as a consequence of environmental factors

or the subject’s state of mind (fatigue, stress, etc [29]). Moreover, as the subject acquires

more experience in using the BCI his brain dynamics may exhibit some changes resulting

from his adaptation to the BCI [36]. Such adaptation induces changes on the target sets.

Thus, a static learning approach, in which the membership functions remain constant is

clearly suboptimal. Instead, they need to be continuously adapted according to a dynamical

learning strategy in which they are updated as new training data become available while

progressively forgetting the contribution of old data.

In the following we present the methods to learn and dynamically update the mem-

bership functions. These methods are based on the statistical learning theory [166], kernel

methods [147] and support vector machine learning algorithms [23]. Instead of introducing

the support vector machine learning concepts using the classical large margin classifier ap-

proach [23, 113, 147, 165] we focus on the concept of loss and risk to derive the learning

and dynamical updating algorithms from the same framework.
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Figure 5.2. The feature extraction module delivers to the pattern recognition one, NMA feature

vectors: x(1), . . . , x(NMA), where x(k) = ψ(k)(S), S is the current EEG-trial, and ψ(k) is the optimal

mapping for the recognition of mental activity MAk.

The pattern recognition module computes NMA membership functions: f1(x
(1)), . . . , fNMA

(x(NMA))

which are grouped into a vector of memberships ~f , that is sent to the action generation module

which decides on the action that the BCI executes.

The membership functions can be thought of as comparison models for the mental activities that

are used to control the BCI. Such models are subject dependent and continuously updated.

5.2 Membership functions

The vector of memberships ~f that is sent to the action generation module (see Fig. 5.2) is

a vector field that maps X1 × . . .×XNMA
into RNMA and is defined as follows

~f(x1, . . . , xNMA
) =


















f1(x
(1))

...

fk(x
(k))

...

fNMA
(x(NMA))


















where x(k) ∈ Xk and fk(x
(k)) is the membership function associated with MAk. The ideal

fk (i.e. the error free membership function) is such that:







fk(x
(k)) + bk > ρk if x(k) ∈ Xk

fk(x
(k)) + bk 6 −ρk if x(k) /∈ Xk

(5.1)

where ρk > 0 and bk ∈ R are the threshold and the offset of fk(·) respectively (see Fig. 5.3).

We call fk, ρk, and bk the membership parameters associated with MAk whose estimation

from observed data is the object of next section.
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Figure 5.3. Distribution of the ideal membership function, fk with respect to its target set Xk.

According to (5.1) the membership values of the feature vectors in Xk are located right from:

ρk − bk and that of feature vectors not belonging to Xk are located left from: −ρk − bk.

In the practical implementation (see Chapter 6) it is more advantageous to consider a

normalized form of the membership function. The normalized membership is defined as:

ζk(x
(k)) =

fk(x
(k)) + bk
ρk

(5.2)

one can easily verify that: ζk(x
(k)) > 1 if x(k) ∈ Xk, and ζk(x

(k)) 6 −1 if x(k) /∈ Xk. In this

chapter, as we seek to determine the membership parameters we consider the form in (5.1).

5.3 Estimation of the membership parameters

The membership parameters are estimated in a supervised way, i.e. using a set of feature

vectors (training vectors) for which the exact membership is known. The training set is

composed of the training vectors and their respective membership values. We denote as

Str-k the training set for the estimation of the membership parameters associated with MAk.

Str-k =
{(

x
(k)
l , y

(k)
l

)∣
∣
∣x

(k)
l ∈ Xk, y

(k)
l ∈ {−1,+1}, and l = 1, 2, . . . ,L

}

where the membership value (or label) y
(k)
l of x

(k)
l is defined as:

y
(k)
l =







+1 if x
(k)
l ∈ Xk

−1 otherwise

We assume that the training set was independently drawn from a probability density

function pk(x
(k), y(k)).

From the definition of the ideal membership function (5.1) and Fig. 5.3 it comes out that

the ideal distribution of the product y(k)
(
fk(x

(k)) + bk
)

(we call it product-distribution)

should be concentrated right from ρk. However, the product-distributions corresponding to

estimates of the membership parameters can spread left from ρk. Thus, the quality of an
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estimation is characterized by the deviation of its product-distribution from the ideal one.

Such deviation is given by the risk functional presented in Section 5.3.2.

Henceforth, we adopt the following notation conventions. First, in order to simplify

the notation we remove the index k from every parameter. Indeed, the concepts behind

the estimation of ρk, bk, fk are identical for every MAk (thus, the feature vector space, the

target set and the training set are denoted as X , X, and Str respectively). Second, we use

the ideal superscript to denote the ideal value of the membership function, i.e. f should be

interpreted as an estimate of f ideal.

5.3.1 Loss function

The loss function associated with an estimation (ρ, b, f) of the membership parameters,

maps X × {−1; +1} × R into R, and is defined as:

c(x, y, f(x)) =







−νρ y (f(x) + b) > ρ

γ(y (f(x) + b)) y (f(x) + b) < ρ

(5.3)

where γ(·) is a derivable monotonically decreasing function in ]−∞; ρ[ such that: γ(ρ) =

−νρ in order to ensure the continuity of the loss function.

A non-zero constant loss of −νρ is assigned to the (non-penalized) zone located right

from the straight line: yf(x) + yb = ρ. The reason for this is that ν permits to es-

tablish a bound on the membership errors (or recognition errors) in the training set (see

Section 5.3.5).

As shown in Fig. 5.4, the penalized zone, located left from yf(x) + yb = ρ is penalized

by the function γ(·). We consider γ(·) as a polynomial function of degree q > 1 defined as:

γ(u) = (ρ− u)q − νρ (5.4)

As shown in Sections 5.3.3 and 5.6, the penalty degree q plays an important role in the

dynamical updating of the membership parameters.

5.3.2 Risk functional

The risk functional R [·] is defined as the mathematical expectation of the loss function with

respect to the probability density function p(x, y) from which the training set was drawn.

R [f ] = Ep [c(x, y, f(x))] =

∫

c(x, y, f(x))dP (x, y) (5.5)

where P (x, y) is the cumulative distribution function of p(x, y).

The smaller the risk associated with an estimation of the membership parameters, the

better the quality of the estimation. Indeed, a small value of the risk indicates that the

estimation’s product-distribution is concentrated right from ρ (i.e. in the non-penalized

zone). Thus, the membership parameters can be estimated by taking the values that make
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Figure 5.4. The loss function penalizes the values of the product y (f(x) + b) that are smaller than

ρ. The penalization function γ(·) is a polynomial of degree q that ensures the continuity of the loss

function at the limit between the penalized and the non-penalized zones. The non-penalized zone

corresponds to a constant loss of −νρ. The reason for having a non-zero loss in the non-penalized

zone is because ν permits to control the fraction of membership errors in the training set (see

Section 5.3.5).

the risk functional minimum. However, the probability density function p(x, y) is generally

unknown in practical applications. An empirical estimate of p(x, y) can be obtained from

training data as follows.

pemp(x, y) =
1

L

L∑

l=1

δa(x− xl)δa(y − yl) (5.6)

where (xl, yl) ∈ Str and δa(·) is the analog Dirac’s delta function.

By replacing pemp(x, y) into the definition of the risk functional, we obtain the empirical

risk functional:

Remp [f ] =
1

L

L∑

l=1

c(xl, yl, f(xl)) (5.7)

Direct minimization of the empirical risk to obtain ρ, b and f is an ill conditioned

problem [147, 165], i.e. small changes in the training set may induce large changes in the

estimated parameters. Furthermore, the resulting estimation is biased [72] because the risk

functional is an ensemble statistic independent from any particular pair (xl, yl) whereas the

empirical risk depends on the training set only.

Ill posed problems can be effectively solved by adding a regularization term [27, 166] to

the original (ill posed) problem. In order to regularize the minimization of the empirical

risk we introduce a functional space H to which f belongs. We then obtain the regularized

risk functional Rreg [f ] as follows.

Rreg [f ] = Remp [f ] +
ℓ

2
〈f, f〉H (5.8)

where 〈·, ·〉H is the inner product in H, ℓ ∈ R+ is the regularization constant, and ℓ
2 〈f, f〉H

is the regularization term.
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Figure 5.5. The ideal membership function f ideal is in a general functional set which is not nec-

essarily a functional space. The minimizer of the regularized risk (optimal estimate) lies in the

functional space H. The (functional) distance between the optimal solution and the true solution is

the approximation error which depends on the choice of H.

5.3.3 Nature of the functional space H

In addition to have made the risk minimization better conditioned, the functional space

provides f with a structure that facilitates its estimation (see Equation 5.11). Nonetheless,

the ideal membership function f ideal does not necessarily belong to H. The element in H

which minimizes the regularized risk is called the optimal estimate and its distance from

f ideal is the approximation error (Fig. 5.5). Provided that H is a reproducing kernel Hilbert

space (RKHS), it is possible to show that as the training set grows, the optimal solution

converges to the true one [147].

Recent works on statistical learning theory have proved that when the minimizer of

the regularized risk belongs to an RKHS it has good generalization capabilities and is able

to capture complex data structures [147, 165] in a theoretically well founded and elegant

way. In addition, in [93] and [147] an online framework to estimate the minimizer of Rreg is

presented. By virtue of these considerations we choose H to be an RKHS. Before defining

an RKHS we recall the definition of a Hilbert space.

Definition 5.1. Hilbert space [34]

H is a Hilbert space if it is complete with respect to its norm
(
‖f‖H =

√
〈f, f〉H; f ∈ H

)

Completeness in this context means that any Cauchy sequence of elements of the space

converges to an element in the space, in the sense that the norm of differences approaches

zero.

All finite dimensional inner product spaces (such as Euclidean space with the ordinary

dot product) are Hilbert spaces. However, the infinite dimensional Hilbert spaces such as
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the spaces L2(Rn) of square-Lebesgue-integrable functions with values in R or C are more

important in the applications. The inner product allows to perform many ”geometrical”

constructions familiar from finite dimensions also in the infinite dimensional settings. Of

all the infinite dimensional topological vector spaces, the Hilbert spaces properties are the

closest to those of the finite dimensional spaces.

Definition 5.2. Reproducing Kernel Hilbert Space (RKHS) [93, 147, 169]

H is a RKHS if it is a Hilbert space and the following properties are satisfied

• There exists a map K from X × X into R such that K(x, ·) ∈ H and

〈h(·),K(x, ·)〉
H

= h(x) for all x ∈ X and h ∈ H. This is the reproducing property and

the mapping K(·, ·) is known as the kernel function which generates H. This property

implies

〈K(xl1, ·),K(xl2, ·)〉H = K(xl1, xl2) ∀xl1, xl2 ∈ X (5.9)

• ∀x1, . . . , xN ∈ X and ∀a1, . . . , aN ∈ R, the sum:
∑

l,m

alamK(xl, xm) is positive or zero.

This property implies that any matrix K with elements Kmn = K(xl, xm) is positive

semi-definite.

• H = span {K(x, ·)|x ∈ X}

According to this property, any h ∈ H can be written as a linear combination of the

functions K(x, ·)

h =
∑

x∈X

αxK(x, ·)

The set X can therefore be considered as an index set for the RKHS. The dimension

of H depends on the kernel function K(·, ·). In particular, when K is a Gaussian

kernel (see Section 5.4.2), H is infinite dimensional.

Using the fact that H is equal to the span of functions K(x ∈ X , ·), the minimizer of the

regularized risk (5.8) can be decomposed into a part contained in the span of the elements

in the training set and one in the orthogonal complement. This yields:

f(·) =

L∑

l=1

αlK(xl, ·) + f⊥(·) (5.10)

where (xl, yl) belongs to the training set, αl ∈ R, and the function f⊥ ∈ H is such that:

〈f⊥,K(xl, ·)〉H = 0 for l = 1, . . . ,L.

By replacing (5.10) into the regularized risk (5.8), one gets

Rreg [f ] = Remp [f ] +
ℓ

2

(〈
L∑

l=1

αlK(xl, ·),
L∑

l=1

αlK(xl, ·)

〉

H

+ 〈f⊥, f⊥〉

)

> Remp [f ] +
ℓ

2

〈
L∑

l=1

αlK(xl, ·),
L∑

l=1

αlK(xl, ·)

〉

H
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Thus, for any fixed α1, . . . , αL ∈ R the regularized risk is minimized for f⊥ = 0. Therefore,

f is a linear combination of {K(xl, ·)| (xl, yl) ∈ Str}.

f(·) =
L∑

l=1

αlK(xl, ·) (5.11)

The coefficient αl is called the expansion coefficient associated with xl. Thus, to estimate

f amounts to estimate the expansion coefficients of the training vectors. This result is a

particular case of the representer theorem of Kimeldorf and Wahba [92].

5.3.4 Geometrical interpretation

We mentioned that Hilbert spaces permit to generalize the geometrical constructions in

finite dimensional vector spaces endowed by the classical Euclidean inner product to general

spaces (possibly infinite dimensional) such as functional ones.

To obtain a geometrical interpretation of the regularized risk minimization we start by

defining a map φ from the feature vector space X into the functional space H as:

φ(x) = K(x, ·) where x ∈ X .

The reproducing property (5.9) implies that for all x, x′ ∈ X the following equation

holds
〈
φ(x), φ(x′)

〉

H
=
〈
K(x, ·),K(x′, ·)

〉

H
= K(x, x′) (5.12)

This relation states that the inner product of two elements in H, namely φ(x) and φ(x′) can

be simply calculated by applying the kernel function on the pre-images of those elements

(i.e. x and x′). This constitutes the essence of the well known ”kernel trick” (see Chapter 3,

Section 3.4.2 and [1]).

By computing the membership function (5.11) of an x ∈ X , using the reproducing

property (5.9) and the mapping φ we get

f(x) =
L∑

l=1

αlK(xl, x) (5.13)

=
L∑

l=1

αl 〈K(xl, ·),K(x, ·)〉H (5.14)

= 〈w, φ(x)〉H (5.15)

where

w =
L∑

l=1

αlK(xl, ·) =
L∑

l=1

αlφ(xl) (5.16)

Thus, f(x) + b = 0 represents a hyperplane in H that is normal to w and has an offset

b. Note that the norm 〈f, f〉H in the regularization term is equal to the norm of w.

〈f, f〉H = 〈w,w〉H = ‖w‖2H (5.17)
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Therefore, the membership of x̃ ∈ X (decided by f) depends on the position of φ(x̃) with

respect to the hyperplanes 〈w, φ(x)〉H + b = ρ and 〈w, φ(x)〉H + b = −ρ (these hyperplanes

are called separating margins). As shown in Fig. 5.6 we have:

if







〈w, φ(x̃)〉H + b > ρ x̃ is recognized as belonging to X

−ρ < 〈w, φ(x̃)〉H + b < ρ x̃ is a margin error

〈w, φ(x̃)〉H + b 6 −ρ x̃ is recognized as not belonging to X

From the above considerations, it can be said that the map φ makes the sets:

Φ+ = {φ(xl)| (xl, yl) ∈ Str and yl = +1}

Φ− = {φk(xl)| (xl, yl) ∈ Str and yl = −1}

linearly separable by f with margin M (see Fig. 5.6) defined as the distance between the

separating margins.

2M =
2ρ

‖w‖H
(5.18)

Figure 5.6. Separating margins 〈w, φ(x)〉H + b = ±ρ in H. The filled squares represent the φ(xl) for

which yl = +1 and the stars those for which yl = −1 (the elements (xl, yl) belong to the training

set). The φ(xl) that are located between the separating margins are called margin errors (they have

positive expansion coefficients equal to 1
L ). The on-margin-elements have their positive expansion

coefficients in
]
0; 1

L

[
.

Those φ(xl) whose membership is correctly decided by f and are not on the margins are called

non-support vectors and their expansion coefficients are equal to zero.
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5.3.5 Regularized risk minimization

To determine the membership parameters, the regularized risk (5.8) needs to be minimized.

We assume for the moment that the kernel function is given (the kernel choice is described

in Section 5.4). By replacing 〈f, f〉H by ‖w‖2H, the regularized risk becomes

Rreg [f ] = Remp [f ] +
ℓ

2
‖w‖2H (5.19)

The membership parameters are then given by

(f, ρ, b) = arg min
f,ρ,b

{Rreg [f ]} (5.20)

To solve this optimization problem, we make first the following hypothesis

Hypothesis 5.3. ∀ (xl, yl) ∈ Str, yl (f(xl) + b) > ρ, i.e. the training data lie in the non-

penalized zone of the loss function. In other words the membership of each element in Str

is correctly decided by f .

Under this hypothesis, the loss function of each element in the training set is equal to:

−νρ (see Section 5.3.1). The empirical risk (5.7) being the average of the loss function in

the training set, is also equal to −νρ. Thus, the regularized risk becomes

Rreg [f ] =
ℓ

2
‖w‖2H − νρ (5.21)

Since f and w are equivalent (5.14), we can obtain the first from the latter. Thus, the

membership parameters are obtained by solving the optimization problem1:

(f, ρ, b) = arg min
w,ρ,b

{
ℓ

2
‖w‖2H − νρ

}

(5.22)

constrained to

yl (〈w, φ(xl)〉H + b) > ρ for l = 1, . . . ,L (5.23)

ρ > 0 (5.24)

Geometrically, to minimize (5.21) amounts to maximize the distance between the sepa-

rating marginsM (5.18). This concept is central (and usually the starting point) to support

vector machines learning algorithms which are considered as large margin classifiers [10].

The minimization of Rreg subject to constraints (5.23) and (5.24) is called ”hard margin”

optimization because no membership errors in the training set are allowed. However, a small

number of membership errors in the training set (training error) does not necessarily lead to

good predictions of the membership of feature vectors that were not used in the membership

1By abuse of notation (since f and w are equivalent (5.14)) we write (f, ρ, b) = arg min
w,ρ,b

{. . .} for (w, ρ, b) =

arg min
w,ρ,b

{. . .}.
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parameters estimation (unseen feature vectors). The error incurred by f in predicting the

membership of unseen feature vectors is called the generalization error. As it is pointed out

in Section A.1 in the appendix, a too small training error leads to over-fitting, i.e. small

training error and large generalization error.

To control the over-fitting, we modify our initial hypothesis (Hyp. 5.3) by relaxing the

constraints (5.23). Such relaxation is carried out by introducing positive slack variables

ξ1, . . . , ξL so that the new constraints become: yl (〈w, φ(xl)〉H + b) > ρ − ξl. The slack

variables have the effect of bringing the training data into the penalized zone of the loss

function (see Section 5.3.1), i.e. c(xl, yl, f(xl)) = −νρ + ξq
l for l = 1, . . . ,L. The empirical

risk (5.7) associated with the training data under the relaxed constraints is:

Remp = −νρ+
1

L

L∑

l=1

ξq
l (5.25)

By replacing (5.25) into (5.19) we obtain the relaxed risk

Rξ [f ] =
ℓ

2
‖w‖2H − νρ+

1

L

L∑

l=1

ξq
l (5.26)

Therefore, the membership parameters are estimated by minimizing the relaxed risk

under the relaxed constants, as follows:

(f, ρ, b) = arg min
w,ρ,b,ξ1,...,ξL

(

ℓ

2
‖w‖2H − νρ+

1

L

L∑

l=1

ξq
l

)

(5.27)

constrained to

yl (〈w, φ(xl)〉H + b) > ρ− ξl (5.28)

ξl > 0 (5.29)

ρ > 0 (5.30)

for l = 1, . . . , L.

It is worth noting that while the constraints are relaxed by the slack variables, the sum
L∑

l=1

ξq
l prevents too many ξl becoming larger than zero. In this way, the slack variables

determine the tradeoff between over-fitting and training error.

The relaxed optimization is handled by introducing positive Lagrange multipliers

α̃1, . . . , α̃L, β1, . . . , βL, δ > 0 and a Lagrangian ΛP .

ΛP =
ℓ

2
‖w‖2H − νρ+

1

L

L∑

l=1

ξq
l

−

L∑

l=1

(α̃l (yl (〈w, φ(xl)〉H + b)− ρ+ ξl) + βlξl)− δρ

(5.31)
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The Lagrangian ΛP has to be minimized with respect to the primal variables w, ρ, b,

ξ1, . . . , ξL and maximized with respect to the dual variables α̃1, . . . , α̃L, β1, . . . , βL, δ, i.e. a

saddle point has to be found. Taking partial derivatives of ΛP with respect to the primal

variables and setting them to zero leads to the following results.

∂wΛP = 0 ⇒ w =
1

ℓ

L∑

l=1

α̃lylφ(xl) (5.32)

∂ρΛP = 0 ⇒

L∑

l=1

α̃l − δ = ν (5.33)

∂bΛP = 0 ⇒
L∑

l=1

ylα̃l = 0 (5.34)

∂ξl
ΛP = 0 ⇒ α̃l + βl =

q

L
ξq−1
l (5.35)

By replacing (5.32) to (5.35) in the Lagrangian ΛP and using:

‖w‖2H =
1

ℓ2

L∑

l,m=1

α̃lα̃mylymK(xl, xm)

L∑

l=1

α̃lyl 〈w, φ(xl)〉H =
1

ℓ

L∑

l,m=1

α̃lα̃mylymK(xl, xm)

we get the dual Lagrangian:

ΛD = −
1

2ℓ

L∑

l,m=1

α̃lα̃mylymK(xl, xm)−
q − 1

L

L∑

l=1

ξq
l (5.36)

which has to be maximized with respect to α̃1, . . . , α̃L, ξ1, . . . , ξL.

Two parameters remain to be determined, namely the penalty degree q and the regu-

larization constant ℓ (the kernel function is assumed fixed).

Let q be assumed as fixed. Then, the regularization constant determines the tradeoff be-

tween the margin (defined as the distance between the separating margins see Section 5.3.4)

maximization and training error. Indeed, 1
ℓ penalizes the first term on the right in (5.36)

which is proportional to the inverse of the margin (5.18), i.e. the smaller ℓ the larger the mar-

gin and the larger the training error since more ξl’s are allowed to become strictly positive.

The optimal value of ℓ is data dependent and can be determined using cross-validation.

A similar argument can be used for q. Indeed, the larger q the smaller the training

error and the smaller the margin. Again, its optimal value could be determined using

cross-validation. However, the value of q is related to the uniqueness of the maximizing

arguments of ΛD [24] and (as described in Section 5.6) to the dynamic updating of the

membership parameters.

In fact, one can show [24] that the maximizing arguments of ΛD, i.e. α̃1, . . . , α̃L, ξ1, . . . , ξL,

are unique if q > 1 (because the sum of convex functions is convex). When q = 1 the maxi-

mizing arguments are non-unique only if the separating margins (see Fig. 5.6) can be rigidly
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translated without changing the optimum value of ΛD [24]. This situation is highly excep-

tional in practice. Furthermore, in Section 5.6 we show that in order to dynamically update

the membership parameters q must be set to one.

By setting q = 1, the second term on the right in (5.36) vanishes making the regulariza-

tion constant ℓ no longer relevant. For convenience we set ℓ to one. Thus, the α̃l are found

by minimizing: −ΛD|ℓ=1,q=1.

(α̃1, . . . , α̃L) = arg min
α̃1,...,α̃L




1

2

L∑

l,m=1

α̃lα̃mylymK(xl, xm)



 (5.37)

constrained to:

0 6 α̃l 6
1

L
(results from 5.35, q = 1, and βl > 0 ) (5.38)

L∑

l=1

α̃l > ν (results from (5.33) and δ > 0) (5.39)

L∑

l=1

ylα̃l = 0 (results from (5.34)) (5.40)

Standard quadratic programming techniques [168] can be used to solve the above opti-

mization problem and find the optimum values of α̃1, . . . , α̃L. These coefficients completely

determine the membership parameters as we explain later in the text. For ease of explana-

tion we analyze the solution in function of the α̃l’s.

At the optimum, the Karush-Kuhn-Tucker (KKT) conditions [95] imply that the fol-

lowing relations hold.

α̃l (yl (〈w, φ(xl)〉H + b)− ρ+ ξl) = 0 (5.41)

βlξl = 0 (5.42)

δρ = 0 (5.43)

The position of φ(xl) with respect to the separating margins: 〈w, φ(x)〉H + b = ±ρ,

depends on the α̃l. According to (5.38) three possibilities exist:

• If α̃l = 0 then, yl (〈w, φ(xl)〉H + b) > ρ. Therefore, the membership of xl with respect

to X is correctly determined (see Fig. 5.7a).

• If 0 < α̃l <
1
L , then yl (〈w, φ(xl)〉H + b) = ρ. Again the membership of xl with respect

to X is correctly determined (Fig. 5.7b). In this case, φ(xl) is an on-margin-element,

i.e. it lies on the separating margin: 〈w, φ(x)〉H + b = ylρ (see Fig. 5.6).

• If α̃l = 1
L , depending on whether ξl = 0 or ξl > 0, yl (〈w, φ(xl)〉H + b) = ρ or

yl (〈w, φ(xl)〉H + b) < ρ respectively. In the first case φ(xl) is on the separating margin

and in the latter case the membership of xl is wrongly determined (see Fig. 5.7c).
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Figure 5.7. Membership of xl depending on the value of α̃l. Top: when α̃l = 0, the membership

of xl is correctly determined. Middle: when 0 < α̃l <
1
L

, φ(xl) is on the separating margin:

〈w, φ(x)〉H + b = ylρ. The membership of xl is correctly decided. Bottom: when α̃l = 1
L

, the

membership is correctly determined if ξl = 0 and wrongly determined if ξl > 0.

For properly collected training data and an adequate choice of the kernel function

(Sect. 5.4) one expects that most of the training elements satisfy the condition in Fig. 5.7a,

i.e. the solution is expected to be sparse in the α̃l’s. As a matter of fact, the number of α̃l’s

different from zero constitutes an indication on the expected generalization error [147, 165].

The role of ν

In Section 5.3.1 we assigned a constant loss of −νρ to the non-penalized zone and mentioned

that the parameter ν permits to control the training error. To illustrate this, we consider

the KKT condition on ρ (5.43). If ρ is strictly positive then, δ = 0 which according to (5.33)

imply:
L∑

l=1

α̃l = ν. In particular, the sum of the α̃l’s for which the membership of their

respective xl is wrongly determined (i.e. ξl > 0) should satisfy:

∑

l|α̃l=
1
L

; ξl>0

α̃l 6 ν (5.44)
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From Fig. 5.7c it comes out:

1

L
|{ l| yl(〈w, φ(xl)〉H + b) < ρ}| 6 ν (5.45)

where |{ l| yl(〈w, φ(xl)〉H + b) < ρ}| is the number of membership errors in the training set.

This above inequality states that the fraction of training errors (FTE) is upper bounded

by ν [147].

In addition to bounding the FTE, ν is a lower bound on the fraction of α̃l’s different

from zero. Indeed, using α̃l 6 1
L and

L∑

l=1

α̃l = ν one can easily obtain:

ν =
∑

l|α̃l>0

α̃l 6
1

L
|{ l| α̃l > 0}| (5.46)

The φ(xl) (and by extension the respective xl) for which αl > 0 are called support vectors

because they completely determine the membership of any x ∈ X. Thus, from (5.46), ν

lower bounds the fraction of support vectors (FSV). Combining (5.46) and (5.45) we obtain

the ν inequality:

FTE 6 ν 6 FSV (5.47)

The smaller ν the smaller the FTE. However, a too small FTE will not generally lead to

a small generalization error because of the over-fitting. Thus, ν needs to be adjusted in order

to reach a compromise between the good generalization (i.e. small expected generalization

error) and the FTE. As we show in the next section, the generalization error and the FTE

depend also on the kernel function. An interdependent choice of ν and the kernel function

is presented in Section 5.5.

So far, we have discussed the solution of the relaxed optimization in terms of the α̃l’s.

We now turn to determining the membership parameters f, ρ, b from the α̃l’s.

The membership function f is completely determined by the expansion coefficients αl

which in turn, according to (5.16) and (5.32) satisfy

αl = ylα̃l for l = 1, . . . ,L (5.48)

The membership function of an x ∈ X is then given by:

f(x) =
L∑

l=1

ylα̃lK(xl, x) (5.49)

The decision threshold ρ and decision offset b are obtained by taking two elements xl1

and xl2 such that:

l1 = arg min
l1|yl1=+1

[

abs

(
1

2L
− α̃l1

)]

l2 = arg min
l2|yl2=−1

[

abs

(
1

2L
− α̃l2

)]
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Figure 5.8. The functional map φ is such that it transforms an element x ∈ X into a function

φ(x) = K(x, ·) which represents a measure of the similarity between x and all the other elements

in X . Thus, we expect K(x, ·) to be centered around x and take its maximum value at this same

point.

From Fig. 5.7(b) we know that φ(xl1) and φ(xl2) are on the margins, therefore:

ρ =
1

2
(〈w, φ(xl1)〉H − 〈w, φ(xl2)〉H) (5.50)

b = −
1

2
(〈w, φ(xl1)〉H + 〈w, φ(xl2)〉H) (5.51)

Theoretically any xl1, xl2 whose corresponding α̃l1, α̃l2 are in
]
0; 1

L

[
can be selected to

estimate ρ and b. But, for numerical precision reasons, the choice of two elements such that

their positive expansion coefficients are close to L
2 allow us to improve the reliability of the

result.

5.4 Kernel function

In the previous section we have shown how the map φ transforms the set X into a functional

space H where the membership of the training data is determined by their position with

respect to the separating hyperplanes. In other words, the training data become linearly

classifiable, into classes defined by their membership, in H. The properties of H, namely its

dimensionality and its ability to achieve the linear separation with a reasonably small FTE

and good generalization depends on the kernel.

For classification purposes, the kernel function K(x, x′), where x, x′ ∈ X , is considered

as a measure of the similarity between x and x′. Thus, φ(x) maps x into the function

K(x, ·) which represents a measure of the similarity between x and all other elements in

X (see Fig. 5.8). In the classification framework the polynomial and Gaussian kernels are

commonly used. In the next sections we describe these kernels and discuss their properties.

5.4.1 Polynomial kernel

The polynomial kernel similarity measure is the cosine of the angle between its arguments.

For x1, x2 ∈ X and d ∈ N∗ (the polynomial kernel grade) the polynomial kernel is defined
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as:

Kd(x1, x2) = (〈x1, x2〉X )d (5.52)

If d is set to 1 we obtain the linear kernel which represents the inner product in X . In

this case the space H is equivalent to X .

Kd=1(x1, x2) = 〈x1, x2〉X (5.53)

One can prove [139] that the larger the polynomial kernel grade the smaller the FTE.

Yet, large generalization errors are associated with large values of d. A compromise can

be reached through cross-validation. In a more elaborated approach [26], d depends on the

minimization of a theoretical bound on the generalization error.

The disadvantage of the polynomial kernel resides in its sensitivity with respect to

scaling factors [157]. Indeed, if the x’s are not centered around the origin (usually they are

far from the origin, especially when band power values are used to determine the feature

vector space (see Chapter 4, Section 4.3), see Chapter 4) their norms are large and the

angle between them is small. In this case the polynomial kernel becomes:

Kd(x1, x2) = ‖x1‖
d
X ‖x2‖

d
X cosd ∡ (x1, x2) ≈ ‖x1‖

d
X ‖x2‖

d
X

Thus, Kd is determined only by the norm of its arguments, without taking into account

the angle (i.e. the genuine dissimilarity factor). A possible way to handle it, would consist

in normalizing the training data before estimating the membership parameters. The nor-

malization process consists in making each component of the training vectors zero average

and unit standard deviation. The normalization parameters are then stored so as to apply

them on new data. Another, more principled way to prevent scaling problems consists in

whitening the training data by diagonalizing their covariance matrix [20].

5.4.2 Gaussian kernel

The similarity measure of the Gaussian kernel is the Euclidean distance of its arguments

(this makes the Gaussian kernel less sensitive to scaling factors). For x1, x2 ∈ X and

(Gaussian kernel parameter) σ ∈ R+, the Gaussian kernel is defined as [148, 165]:

Kσ(x1, x2) = exp

(

−
‖x1 − x2‖

2
X

σ2

)

(5.54)

The dimension of the functional space generated by Kσ is infinite [147, 157]. This can

be intuitively understood because it is possible to find an infinite number of pairs x1, x2 ∈ X

such that: 〈φ(x1), φ(x2)〉H = Kσ(x1, x2) ≈ 0.

The Gaussian kernel constitutes an attractive choice for our application because of its

outstanding classification performance in the EEG framework [59, 61, 62, 63], its relative

insensibility to scaling factors and capacity to accurately approximate any classification

surface [148].

Generally, the smaller σ the smaller the FTE (see Section A.1 in the appendix). Howev-

er, a too small σ leads to over-fitting. The following proposition summarizes the influence

of σ on the FTE and FSV.
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Proposition 5.4. If the membership parameters are estimated in a functional space H,

generated by a Gaussian kernel with parameter σ and the membership threshold is such that

ρ > 0 then, the fraction of training errors FTE [Kσ, ν] and the fraction of support vectors

FSV [Kσ, ν] associated with a given choice of σ and ν satisfy:

i) FTE [Kσ, ν] −−−→
σ→0

0 and FSV [Kσ, ν] −−−→
σ→0

1.

Too small values of σ over-fit the training data.

ii) FTE [Kσ≫1, ν] = FTE [Kd=1, ν] where Kd=1 is the linear kernel defined in (5.53).

Too large values of σ under-fit the training data.

Proof

i) From the definition of Gaussian kernel (5.54) it is clear that

lim
σ→0

Kσ(xl, xm) =







0 if xl 6= xm

1 otherwise

(5.55)

By replacing (5.55) into (5.37), the coefficients α̃l are then found by solving:

(α̃1, . . . , α̃L) = arg min
α̃1,...,α̃L

(

1

2

L∑

l=1

α̃2
l

)

(5.56)

Since ρ > 0, (5.39) implies
L∑

l=1

α̃l = ν. Then the solution of (5.56) is:

α̃1 = . . . = α̃L =
ν

L
<

1

L

Thus, φ(x1), . . . , φ(xL) are all on the separating margin (see Fig. 5.7). Consequently,

the membership of all the training data is correctly determined, i.e. FTE [Kσ→0, ν] = 0.

Also, since all the α̃l’s are strictly positive FSV [Kσ→0, ν] = 1.

ii) If σ ≫ 1, the following approximation holds

Kσ≫1(xl, xm) ≈ 1−
‖xl − xm‖

2
X

σ2
= 1−

‖xl‖
2
X + ‖xm‖

2
X

σ2
+

2

σ2
〈xl, xm〉X (5.57)

Using this approximation, the term to minimize in (5.37) becomes

1

2

L∑

l,m=1

α̃lα̃mylymKσ≫1(xl, xm) ≈
1

2

L∑

l,m=1

ylymα̃lα̃m −
1

σ2

L∑

l=1

ylα̃l

L∑

m=1

ymα̃m ‖xm‖
2
X

+
1

σ2

L∑

l,m=1

ylymα̃lα̃m 〈xl, xm〉X

(5.58)
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Since, according to (5.34),
L∑

l=1

ylα̃l = 0 the first two terms on the right in (5.58) vanish.

Using the definition of linear Kernel (5.53), the coefficients α̃l are found by solving:

(α̃1, . . . , α̃L) = arg min
α̃1,...,α̃L




1

σ2

∑

l,m

ylymα̃lα̃mKd=1(xl, xm)



 (5.59)

The optimum α̃l being identical for Kσ≫1 and Kd=1, FTE [Kσ≫1] = FTE [Kd=1].

5.5 Choice of the parameters ν and σ

In Section 5.3.5 we discussed the role of ν as an upper bound on the FTE and as a lower

bound on the FSV. We pointed out that a too small value of ν leads to over-fitting. On

the other hand, according to Proposition 5.4 the FTE and the FSV depend on the kernel

parameter σ as well.

Both σ and ν are data dependent, their optimal values need to be jointly selected so as

to ensure a small generalization error. In this section we present two approaches to achieve

this. The first approach is based on the well known cross-validation method and the second

one on the minimization of a theoretical bound on the generalization error proposed in [165].

5.5.1 Cross-validation approach

In this approach, the generalization error associated with a given choice of ν and σ is

estimated as follows. The training data is split into P parts of (approximately) equal size.

Then, P estimations of the membership parameters are performed. Each estimation leaves

out one of the parts to compute the fraction of membership errors on it (validation errors

fraction), and estimates the membership parameters on the (P − 1) remaining parts. The

average of the P validation errors fractions constitutes the generalization error estimate

(GE). At the limit where each part contains a single training element one has the leave-

one-out estimate of the generalization error which is almost unbiased [37, 53, 147]. Similarly,

the average of the P fractions of training errors correspond to the FTE associated with the

chosen ν and σ.

The parameters ν and σ are determined in two steps. First, an initial ν is used to obtain

a relatively wide interval (we call it loose interval) in which the value of σ that makes the

GE minimum lies. Second, ν is set equal to the maximum training error in the loose interval

and finally the optimum σ in the loose interval is determined. In the following, we detail

this procedure.

The initial choice of ν (denoted as ν0) is based on the fact that this parameter constitutes

an upper bound on the FTE for any kernel function (Gaussian or not, see Section 5.3.5).

Then, a possible initial choice for ν would be the random classification threshold (i.e. 0.5).

However, a better choice is given by FTE [Kd=1, ν = 0.5] which according to Prop. 5.4

and the fact that the fraction of training errors generally increase with σ (see [147] and
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Section A.1 in the appendix) constitutes the maximum FTE for Gaussian kernels. In

practice, FTE [Kd=1, ν = 0.5] can be larger than 0.5; the initial ν is therefore given by:

ν0 = min

(
1

2
,FTE [Kd=1, ν = 0.5]

)

(5.60)

To determine the loose interval for σ we need to sample the function GE [Kσ, ν0], i.e. the

generalization error estimate in function of the Gaussian kernel parameter. Between the

small and large values of σ which respectively, over-fit and under-fit the training data

(Proposition 5.4) a small value for GE [Kσ, ν0] has to be found.

Since the Gaussian kernel dissimilarity measure is the Euclidean distance of its argu-

ments, it makes sense to take, as extreme values for σ, the minimum ∆min and the maximum

∆max of the Euclidean distance in the training set.

∆2
min = min

xl1,xl2∈Str

‖xl1 − xl2‖
2
X (5.61)

∆2
max = max

xl1,xl2∈Str

‖xl1 − xl2‖
2
X (5.62)

The evolution of GE [Kσ, ν0] for σ in [∆min,∆max] can be efficiently covered (i.e. with

relatively few values) by geometrically sampling in [∆min,∆max]. Thus, the set of σ values

at which GE [Kσ, ν0] is evaluated is:

Vσ =
{

σv = (∆min)
Nσ−v
Nσ−1 (∆max)

v−1
Nσ−1

∣
∣
∣ v = 1, . . . , Nσ

}

where Nσ is the number of samples. The sampling ratio is:
(

∆max
∆min

) 1
Nσ−1

Let σv∗ be the value for which the generalization error estimate in Vσ is minimum,

namely, v∗ = arg min
v=1,...,Nσ

(GE [Kσv , ν0]). Then, the loose interval for σ is:

Iσ = [σv∗−1;σv∗+1]

We mentioned earlier that the FTE is a growing function of σ. This means that ν can

be set to: FTE
[
Kσv∗+1 , ν0

]
, i.e. the training error associated with σv∗+1 and ν0.

By linearly sampling in Iσ, one can readily find an approximation of: arg min
σ∈Iσ

(GE [Kσ, ν]).

The approximation accuracy depends on the sampling resolution.

The cross-validation approach constitutes a practical way to select σ and ν that more

often than not leads to very good results [62, 147]. However, as explained in [147] this

approach amounts to optimize the parameters on the same set as the one used for training,

which can potentially lead to over-fitting.

In Fig. 5.9 we report a case (that appears often in practice) in which the location of the

σ that makes GE [σ, ν] minimum is rather fuzzy. Indeed, there is almost no difference in

choosing either of the σ values indicated by the vertical dashed lines. We can empirically

remove the fuzziness by also considering the FSV which, according to [147] constitutes

an upper bound on the generalization error and is also linked with the complexity of the

decision surface (see Section A.1 in the appendix). Thus, the selection of σ can be modified
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Figure 5.9. Evolution of the FSV, FTE, GE and the theoretical bound B in function of σ normalized

to ∆min. The dotted line marks the value of ν which upper bounds the FTE and lower bounds the

FSV. In this example, the optimum value of σ is rather fuzzy. Indeed, if the GE only is considered

there is almost no difference in choosing either of the values indicated by the vertical dashed lines.

On the opposite, the theoretical bound B clearly indicates the most adequate choice.

The theoretical bound curve was conveniently scaled for visualization purposes.

by taking the minimum of an empirical aggregate criterion that takes into account the

GE and a strictly growing function of the FSV. In fact, such criterion can be obtained

using the minimum description length (MDL) general framework (see [140] and Chapter 4

,Section 4.5). The MDL based choice for σ is:

σ = arg min
σ

(

log (GE [σ, ν]) + FSV [σ, ν]
log L

L

)

(5.63)

where ν is determined as explained above.

With the above example, we illustrated the fact that additional elements like the FSV

are sometimes necessary to refine the choice of σ. However, the combination of the GE and

the FSV is rather empirical. This lead us to consider another more theoretical approach

that considers a bound on the generalization error.
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5.5.2 Theoretical bound based approach

In [166] V. Vapnik proposes an upper bound, denoted as B, on the GE associated with

a separating hyperplane that passes through the origin. Although we consider separating

hyperplanes that do not necessarily satisfy this condition (i.e. the membership offset, b can

be non-zero) B can still be used to approximate [26, 61] the evolution of the GE in function

of ν and σ.

The bound, B depends on the the radius R (see Section A.2 in the appendix, for the

detailed computation of R) of the smallest sphere containing the set: {φ(xl)| (xl, yl) ∈ Str}

and the distance between the separating marginsM (5.18).

B =
1

L

R2

M2
(5.64)

(5.18)⇒ B =
1

L

R2 ‖w‖2H
(ρ)2

(5.65)

In Fig. 5.9 we report the evolution of B (conveniently scaled for visualization) in function

of σ normalized to ∆min. The position of the σ that makes B minimum is now far more

clear than in the cross-validation approach. It is worth noting that while B appears to be a

rough upper-bound on the GE, its minimum permits to select the optimal Gaussian kernel

parameter. Moreover, the smooth evolution of B makes possible the use of gradient descent

techniques to find its minimum.

The optimum kernel parameter, σ∗ is the solution of:

σ∗ = arg min
σ

(

1

L

R2 ‖w‖2H
(ρ)2

)

(5.66)

since B is differentiable, σ∗ can be iteratively estimated using gradient descent as follows.

σ∗ ← σ∗ − ησ
∂B

∂σ

∣
∣
∣
∣
σ∗

(5.67)

where ησ is the learning rate which has to be set so that it avoids oscillations around the

optimum value while granting a reasonable speed of convergence. Generally, the value of

ησ is adjusted in the curse of the algorithm.

If the value of σ∗ is sought by applying gradient descent (especially if a small ησ is

used) in the whole σ-range, i.e. between ∆min and ∆max, this process can take a considerable

amount of time. To overcome this problem we use the loose interval determined in the cross-

validation approach (Section 5.5.1), i.e. Iσ = [σv∗−1;σv∗+1]. From Iσ, a narrow interval Iσ
(in which gradient descent is applied) can be determined by considering the value of the

derivative ∂B
∂σ at σv∗:

if







∂B
∂σ

∣
∣
σv∗

< 0 Iσ = [σv∗;σv∗+1]

∂B
∂σ

∣
∣
σv∗

= 0 σ∗ = σv∗

∂B
∂σ

∣
∣
σv∗

> 0 Iσ = [σv∗−1;σv∗]

(5.68)
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The computation of ∂B
∂σ is detailed in Section A.3 in the appendix. In the following we

describe the algorithm through which the optimum values for ν and σ (denoted as ν∗ and

σ∗ respectively) are found.

Algorithm to determine ν∗ and σ∗

1: Determine the loose interval Iσ = [σv∗−1;σv∗+1] using cross-validation.

2: Compute the value of ∂B
∂σ

∣
∣
σv∗

3: If ∂B
∂σ

∣
∣
σv∗

= 0 then stop. The B minimum has been found. Thus, σ∗ is set to σv∗ and

ν∗ is set to the initial value of the cross-validation approach ν0 (see Eq. 5.60).

4: else determine the narrow interval Iσ = [σmin;σmax] using (5.68)

5: Initialization

σ∗(0) = σmax

ν∗(0) = min

(
1

2
,FTE [Kd=1, ν = 0.5]

)

B(0) = B(0)
(

σ∗(0), ν∗(0)
)

FTE(0) = FTE
[

Kσ∗(0) , ν∗(0)
]

n = 1

6: repeat

σ∗(n) = σ∗(n−1) − ησ ∂σB
(n−1)

∣
∣
∣
σ=σ∗(n−1)

ν∗(n) = FTE(n−1)

B(n) = B(n)
(

σ∗(n), ν∗(n)
)

FTE(n) = FTE
[

Kσ∗(n) , ν∗(n)
]

n = n+ 1

7: until B(n−1) > B(n−2) (i.e. B starts to increase). Thus, σ∗ and ν∗ are set to σ∗(n−1)

and ν∗(n−1) respectively.

The notation B(n) = B(n)
(
σ∗(n), ν(n)

)
means that B(n) is computed using the values

of the radius and the margin corresponding to σ∗(n) and ν∗(n). Note that since ν upper

bounds the FTE, its value at the n-th step is set to the previous FTE, namely FTE(n−1).

5.6 Dynamic updating of the membership parameters

So far, we have discussed the estimation of the membership parameters, f, ρ, b by minimizing

the regularized risk in a training set:

Str = {(xl, yl)|xl ∈ X , yl ∈ {−1,+1}, and l = 1, 2, . . . ,L}

In particular, we have shown that the membership function f can be written as:

f(·) =
∑L

l=1 αlK(xl, ·) and is sparse in the the expansion coefficients αl. The non-zero
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expansion coefficients determine which training elements need to be stored in order to

compute the membership of new EEG vectors.

If we denote as D the set composed of the estimated membership parameters, we have

D = arg min (Rreg [Str]) (5.69)

where Rreg [Str] is the regularized risk (5.8) associated with the training set.

When new feature vectors whose membership is known become available, the member-

ship parameters need to be estimated again so as to adapt them to possible changes. Let

{(xL+1, yL+1) , . . . , (xL+m, yL+m)} be the set of new training data, the new set of member-

ship parameters DL+m is therefore given by:

D(L+m) = arg min (Rreg [Str ∪ {(xL+1, yL+1) , . . . , (xL+m, yL+m)}]) (5.70)

Direct use of (5.70) to estimate D(L+m) results in a non-scalable problem of growing

complexity. Instead, we seek to determine an updating relation R such that:

D(L+m) = R
(

D(L+m−1), (xL+m, yL+m)
)

(5.71)

D(L) = D (5.72)

To determine R we apply the method presented in [93] according to which, the reg-

ularized risk (5.8) with ℓ = 1, is locally approximated at (xL+m, yL+m) by the stochastic

risk

Rstoch

[

f (L+m−1),L +m
]

= c
(

xL+m, yL+m, f
(L+m−1) (xL+m)

)

+
1

2

〈

f (L+m−1), f (L+m−1)
〉

H

(5.73)

where f (L+m−1) is given by

f (L+m−1) (·) =
L+m−1∑

l=1

α
(L+m−1)
l K(xl, ·) (5.74)

and c
(
xL+m, yL+m, f

(L+m−1) (xL+m)
)

is the loss function function corresponding to the new

training pair (xL+m, yL+m) and the previous membership function f (L+m−1)

If we denote as θ any element in D, its updating relation is:

θ(L+m) = θ(L+m−1) − ηm
∂Rstoch

[
f (L+m−1),L +m

]

∂θ(L+m−1)
(5.75)

where ηm ∈ R+ is the updating coefficient when the (L +m)-th training element becomes

available. The membership parameters of index (L) are those estimated using Str. This

means: α
(L)
l = αl, ρ

(L) = ρ and b(L) = b.
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5.6.1 Dynamic updating of the membership function

The membership function updating equation is obtained by replacing θ by f in (5.75). This

yields:

f (L+m) = f (L+m−1) − ηm
∂Rstoch

[
f (L+m−1),L +m

]

∂f (L+m−1)
(5.76)

Using the stochastic risk definition (5.73) and applying the chain rule to obtain ∂c(...)
∂f we

get:

f (L+m) = f (L+m−1)

− ηm

(

∂c
(
xL+m, yL+m, f

(L+m−1) (xL+m)
)

∂f (L+m−1) (xL+m)

)(

∂f (L+m−1) (xL+m)

∂f (L+m−1)

)

−
ηm

2

(

∂
〈
f (L+m−1), fL+m−1

〉

H

∂f (L+m−1)

)

(5.77)

The functional derivatives:
∂f (L+m−1)(xL+m)

∂f (L+m−1) and
∂〈f (L+m−1),fL+m−1〉

H

∂f (L+m−1) are computed using

the following definition.

Definition 5.5. Functional derivative

The derivative of the functional F [f ] with respect to f in a functional space H is defined [34]

by:
∂F [f ]

∂f
= lim

ǫ→0

F [f(u) + ǫδ (u− v)]−F [f(u)]

ǫ

In particular, for g, f ∈ H, we have:

∂ 〈g, f〉H
∂f

= g (5.78)

∂ 〈f, f〉H
∂f

= 2f (5.79)

Using (5.78), (5.79), and the reproducing property (Def. 5.2); the functional derivatives

in (5.76) are given by:

∂f (L+m−1) (xL+m)

∂f (L+m−1)
=

∂
〈
Kσ (xL+m, ·) , f

(L+m−1)
〉

H

∂f (L+m−1)
(5.80)

= Kσ (xL+m, ·)

∂
〈
f (L+m−1), fL+m−1

〉

H

∂f (L+m−1)
= 2f (L+m−1) (5.81)

Replacing the loss function definition (see Section 5.3.1), (5.80), and (5.81) in the mem-

bership function updating equation (5.77) yields:

f (L+m) = (1− ηm) f (L+m−1)

+ ηmyL+mq
(

g(L+m−1) (xL+m)
)q−1

Θ
[

g(L+m−1) (xL+m)
]

Kσ (xL+m, ·)
(5.82)
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where g(L+m−1) (xL+m) = −ρ(L+m−1) + yL+m

(
f (L+m−1) (xL+m) + b(L+m−1)

)
and Θ [u] is

such that

Θ [u] =







1 u < 0

0 u > 0

It should be noted that if g(L+m−1) (xL+m) is positive or zero the membership of xL+m is cor-

rectly determined by f (L+m−1). In this case, (5.82) reduces to: f (L+m) = (1− ηm) f (L+m−1)

By replacing the membership functions by their respective linear expansions in terms

of the kernel functions (5.74) we get the updating equations for the expansion coefficients

αl.

If the penalty degree q is larger than 1, the second term on the right side of (5.82) has

multiplicative terms of the form:

α
(L+m−1)
l1

· · ·α
(L+m−1)
lq−1

Kσ (xL+m, ·)Kσ (xl1 , ·) · · ·Kσ

(
xlq−1 , ·

)

Since such multiplicative terms do not exist on the left side of (5.82) they have to

be null, i.e. the penalty degree q should be set to 1. Thus, the update equations for the

expansion coefficients are:

α
(L+m)
l = (1− ηm)α

(L+m−1)
l for l = 1, . . . ,L +m− 1 (5.83)

α
(L+m)
L+m =







0 if g(L+m−1) (xL+m) > 0

ηmyL+m otherwise

(5.84)

If the membership of the most recent training element, namely xL+m is correctly de-

termined by f (L+m−1), its corresponding expansion coefficient α
(L+m)
L+m is set to zero. Given

the updating equation (5.83) it is clear that αL+m will remain equal to zero. Thus, xL+m

does not contribute to the decision function f and can be safely ”forgotten”.

On the other hand, if the membership of xL+m is wrongly determined, its corresponding

expansion coefficient is set to ηmyL+m, i.e. xL+m becomes a support vector. In Section 5.3.5

we have seen that the expansion coefficient associated with a support vector whose mem-

bership is wrongly decided is equal to 1
L+myL+m. The latter suggest that ηm should be

set equal to 1
L+m . However, for m large enough ηm becomes closer to zero which makes

the contribution of xL+m insignificant. This is certainly not suitable as f would be deter-

mined by the first training elements only. To deal with this problem we consider the fact

that only the support vectors determine the membership function. The effective number

of training elements when xL+m becomes available is then equal to the number of support

vectors at the time just after the (m− 1)-th updating is completed (this number is denoted

as NSV(m−1)). Therefore, the coefficient η at the m-th updating is given by:

ηm =
1

NSV(m−1) + 1
(5.85)
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We now turn to assessing the evolution of a expansion coefficient which appeared at the

m-th updating, after m̂ steps. Using the updating equations (5.83) and (5.84) we have:

α
(L+m+m̂)
L+m = ηmyL+m

m̂∏

l=1

(1− ηm+l)

= ηmym

m̂∏

l=1

NSV(m+l−1)

NSV(m+l−1) + 1
(5.86)

We consider two extreme cases:

• The memberships of xL+m+1, . . . , xL+m+m̂ are wrongly determined, i.e. the number

of support vectors increases at each updating. Then, after the m̂-th updating, αL+m

becomes:

α
(L+m+m̂)
L+m = ηmyL+m

m̂∏

l=1

l − 1 + NSV(m)

l + NSV(m)

= ηmyL+m
NSV(m)

m̂+ NSV(m)

(5.87)

• The memberships of xL+m+1, . . . , xL+m+m̂ are correctly determined, i.e. the number of

support vectors remained constant at each updating. Then, after the m̂-th updating,

αL+m becomes:

α
(L+m+m̂)
L+m = ηmyL+m

m̂∏

l=1

NSV(m)

1 + NSV(m)

= ηmyL+m

(

NSV(m)

1 + NSV(m)

)m̂
(5.88)

In both cases, α
(L+m+m̂)
L+m tends to zero as m̂ grows to infinity. However, (5.88) converges

exponentially to zero while (5.87) converges linearly. Thus, we can state that the forgetting

speed of an expansion coefficient is approximately determined by the number of correct

membership predictions in which it participated. Using this fact, we can approximate the

number of correct decisions M̂ that an expansion coefficient, associated with the training

element xL+m, ”survives to”. Let ε be the machine precision, then (5.88) yields:

ε >

(

NSV(m)

1 + NSV(m)

)M̂

(5.89)

M̂ =







log ε

log
(

NSV(m)

1+NSV(m)

)







(5.90)

where ⌈·⌉ is the ceiling function, i.e. this function gives the smallest integer that is larger

than its argument.
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5.6.2 Dynamic updating of the membership threshold and offset

The dynamic updating relations for the membership threshold and offset are obtained by

replacing θ in (5.75) by ρ and b respectively.

ρ(L+m) =







ρ(L+m−1) + ηmν if g(L+m−1)(xL+m) > 0

ρ(L+m−1) − ηm (1− ν) otherwise

(5.91)

b(L+m) =







b(L+m−1) if g(L+m−1)(xL+m) > 0

b(L+m−1) + ηmyL+m otherwise

(5.92)

If the membership of xL+m is correctly determined by f (L+m−1) then, the membership

threshold is increased by ηmν and the membership offset remains constant. On the oth-

er hand, if the membership of xL+m is wrongly determined, the decision membership is

decreased by ηm (1− ν) and the decision offset increases by ηmyL+m.

5.7 Summary

The recognition of the mental activities that are used to control the BCI is carried out in

feature vector spaces that are subject and mental activity dependent. Thus, each mental

activity has an associated feature vector space in which we define a target set, composed

of the feature vectors produced during the performance of the targeted mental activity.

The recognition goal is to determine the membership of a feature vector with respect to

the target set. This is done by means of the membership parameters, namely the member-

ship function, threshold and offset. These parameters are estimated in a supervised way,

i.e. using a set of (training) feature vectors whose membership is known.

Since the shape of the target set can change because of different environmental and

user related conditions including the adaptation of the subject to the BCI, the membership

parameters need to be updated as new training data become available while forgetting the

contribution of old training feature vectors.

In this chapter we have presented an efficient method to estimate the membership

parameters and dynamically update them. The method is based on the minimization of a

regularized version of the risk functional which is a measure of the inadequacy of a given

estimation.

The regularization of the risk is made possible by the introduction of a RKHS to which

the membership function belongs. Such an RKHS has the property of having a kernel

function that generates it. By means of the kernel function each feature vector can be

transformed in a function in RKHS.

In addition to make the regularization possible, the RKHS provides the membership

function with a particularly flexible structure as a linear combination of the kernel functions
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associated with the training elements. Thanks to this structure a geometrical interpretation

for the membership parameters in terms of a separating hyperplane can be derived and their

updating equations are particularly straightforward.

The RKHS properties and ability to classify the feature vectors into classes defined by

their membership depend on the choice of the Kernel function. A suitable kernel function

is the Gaussian kernel which permits to easily control the over-fitting and generalization

through its parameter σ. Such parameter is selected using a theoretical bound on the

generalization error.



Protocols and evaluation 6
“It is a capital mistake to theorize before one has data” Sir Arthur Conan Doyle

6.1 Introduction

In previous chapters we presented the process through which, a vector of memberships is

obtained from an EEG-trial free of artifacts. This vector is sent to the action generation

module (see Fig. 6.1) which, in accordance with a set of rules (action rules), produces

commands that act on a computer-rendered environment (CRE). These rules are set exper-

imentally and depend on the MAs used to operate the BCI and the subject performance.

Henceforth, unless otherwise specified, the term MA refers to a mental activity used to

operate the BCI.

Figure 6.1. The vector of memberships computed by the pattern recognition module is sent to the

action generation one which, in accordance with a set of rules (action rules), produces commands

that act on a computer rendered environment. The action rules are set experimentally depending

on the MAs and on the subject control skills.

109
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Figure 6.2. Electrodes of the ten-twenty international system at which EEG was measured. Elec-

trode Cz was taken as physical reference. As mentioned in (Chapter 3, Section 3.2.3), the signals

were re-referenced with respect to their average.

In this chapter we apply the preprocessing, feature extraction, and recognition algo-

rithms presented in previous chapters, for the training of six subjects who participated in

nine training sessions, in the framework of an asynchronous 2D object positioning applica-

tion.

The first three sessions served to set up initial recognition models for each MA, determine

the optimal feature extraction methods or mappings (see Chapter 4), and establish the

action rules.

In the next training sessions, feedback was provided, indicating the subjects how well

the BCI recognized the MAs they were asked to perform. At the end of each session the

recognition models were updated. The controlling skills acquired by the subjects in these

sessions were assessed through positioning tests in which the subjects had to move an object

on the screen (by performing the trained MAs) to reach a goal. The training schedule was

adjusted in function of the recognition error associated with each MA. Thus, those MAs

associated with high recognition errors were trained more often.

6.2 Experiment description

Six male subjects (denoted as S1 to S6 respectively) aged 22, 24, 25, 25, 27, and 32 years

respectively participated in nine training sessions distributed over two months. These

sessions were carried out in a quiet and slightly illuminated room in which the subjects

were comfortably sitting in an armchair and placed in front of an LCD computer monitor

that was placed at a distance of about 1.5 meters from them.

Signals at electrodes Fp1, Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, P3, P4, P4, T6,

O1, and O2 were recorded. The electrode Cz was taken as physical reference (see Fig. 6.2).

As mentioned in (Chapter 3, Section 3.2.3) the signals were re-referenced with respect to

their average. The MAs used to operate the BCI are described in Table 6.1. In addition,

we denote as MA0 any mental activity but the controlling ones.
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Mental activity Description

MA1: Left index finger imagination Left index finger movement imagination

MA2: Right index finger imagination Right index finger movement imagination

MA3: Geometric rotation Imagined rotation of an object on the

screen. Actually, subjects were asked to

imagine the spaceship, shown in Fig. 6.3

rotating with respect to the x-axis.

MA4: Visual reverse counting From a three-digit starting number, sub-

jects imagined the numbers, obtained by

successively subtracting 3, being displayed

on the screen. The starting number was

not provided in the positioning tests.

Table 6.1. Mental activities used to operate the BCI

6.2.1 Object positioning application

We considered an asynchronous 2D object positioning application with four possible move-

ments, namely up, down, left, and right. In Fig. 6.3 we depict the CRE in which the

application took place and the associations between the possible movements of the space-

ship and the MAs. The controlling skills of a subject were tested in terms of his ability to

reach the target (the sun) with the spaceship (Section 6.5).

The CRE was a one-hundred step square where a step corresponded to the smallest

movement that the spaceship could execute. The number of steps that the spaceship moved

during a single action depended on the action rules (Section 6.4).

6.2.2 Training program

Subjects were trained to gain control of the spaceship according to the following program.

In the first three sessions (training-without-feedback sessions), the subjects were asked to

perform the MAs according to a defined protocol (see Section 6.3). On completion of these

sessions the optimal feature extraction mappings were chosen, the recognition models were

built, and the action rules were set.

The next six sessions (training-with-feedback sessions), were divided into two parts. In

the first part, the subjects were asked to perform the MAs and a feedback was provided

telling them how well the BCI recognized the MA they were asked to perform. In the

second part, we carried out two positioning tests in which we asked the subjects to reach

the target with the spaceship. In each run, the positions of the spaceship and the target

were randomized so that it took fifty steps to reach the target. In the following we detail
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the two types of training sessions and report the corresponding results.

Three training-without-feedback sessions were carried out before the training-with-

feedback sessions, in order to collect enough data to estimate the recognition models.

Figure 6.3. CRE in which the object positioning application takes place. The spaceship moves to

the left, right, up, and down when the BCI recognizes MA1, MA2, MA3, and MA4 respectively.

The CRE is a one-hundred step square where a step corresponds to the smallest movement that the

spaceship can execute.

6.3 Training without feedback

Training-without-feedback sessions were structured according to the following protocol.

Once the setup (i.e. the placement of the EEG cap, filling of the cap electrodes with the

electro-gel, etc.) was completed, the first five to ten minutes were spent at calibrating

the noise removal, and artifact detection algorithms according to the procedure explained

in Chapter 3, Section 3.4.3. The rest of the sessions were divided into three five-minute

slices with subject defined breaks between them (see Fig. 6.4). Each five-minute slice

consisted of thirty six second long active-times (i.e. the time segments in which a MA was

performed) followed by break-times whose duration was randomized between three to four

seconds. During break-times, the subjects were asked to perform any mental activity but

the controlling ones. In consequence, we consider the EEG-trials recorded during break-

times as generated during the performance of MA0.

The outset of an active-time was signaled by a visual cue which also indicated the MA

that had to be performed. Subjects were asked to perform the corresponding MA during the

entire active-time. In Fig. 6.5 we portray the visual cues associated with each controlling
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Figure 6.4. Protocol of a training-without-feedback session.

Figure 6.5. Visual cues used to indicate the MA that has to be performed during an active-time.

The absence of the sun and spaceship signaled the outset of a break-time whose EEG-trials were

considered as produced during the performance of MA0.

MA. The end of an active-time and consequently the outset of a break-time was signaled

by the absence of the spaceship and the target in the CRE. The MA corresponding to each

active-time was randomly chosen among the four MAs. Yet, we ensured that each MA was

requested at least 22 times in each training-without-feedback session.

The EEG-trial duration and action period (see Chapter 2, Section 2.4 for the definition

of these parameters) were set to 2000 and 500 milliseconds respectively. Using these values,

nine EEG-trials per active-time and an average of four EEG-trials per break-time were

potentially available. Indeed, an active or break-time was discarded if an artifact was

detected in it. The presence of an ocular or muscular artifact was signaled to the subject

by a vertical respectively horizontal oscillation of the sun. The number of EEG-trials per

MA that were available at the end of the third training-without-feedback session is reported

in Table 6.2 for each subject.
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Table 6.2. Number of EEG-trials per MA and subject

MA S1 S2 S3 S4 S5 S6

MA0 850 809 751 758 799 741

MA1 567 531 540 495 522 513

MA2 576 522 504 504 486 495

MA3 540 540 486 495 540 459

MA4 558 540 459 504 558 495

As mentioned in Chapter 4, different feature extraction methods (mappings) were con-

sidered for the recognition of each MA. Table 6.3 summarizes the parameters of those

mappings that were common to all the subjects, namely the stationary PSD (denoted as

ψP; see Chapter 4, Section 4.3), coherence (denoted as ψC; see Chapter 4, Section 4.4), and

synchronization (denoted as ψY; see Chapter 4, Section 4.8) mappings. The dimensions of

the corresponding feature vectors were obtained from the formulae shown in Table 4.1 for

Ne(number of electrodes)= 16 and NB(number of frequency bands)= 7.

Table 6.3. Common mapping parameters

Mapping Frequency bands [Hz] Feature vector dimension

ψP 2-6, 6-10, 10-14, 14-18, 18-22, 22-26, 26-30 112

ψC 2-6, 6-10, 10-14, 14-18, 18-22, 22-26, 26-30 840

ψY 2-6, 6-10, 10-14, 14-18, 18-22, 22-26, 26-30 840

The parameters and the dimension of the corresponding feature vectors (denoted as D) of

the mappings based on linear prediction parametric models, i.e. the autoregressive (denoted

as ψAR; see Chapter 4, Section 4.5), non-stationary AR (denoted as ψNAR; see Chapter 4,

Section 4.6), and multivariate AR (denoted as ψMVAR; see Chapter 4, Section 4.7) are

reported in Table 6.4. Notice that we chose the same orders Qm and Um for each channel.

In fact, such values were chosen as the maximum of the values given by the MDL (see

Section 4.5) criterion for each channel.

The optimal mapping for the recognition of a given MA was chosen by considering the

recognition error associated with each possible mapping. We recall that an EEG-trial is

considered as wrongly recognized if its membership is wrongly decided by the membership

function (see Chapter 5, Section 5.5). Thus, among the recognition errors associated with
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Table 6.4. Parameters of the mappings based on linear prediction models for each subject

Mapping S1 S2 S3 S4 S5 S6

ψAR (Qm/D) 3/48 2/32 2/32 2/32 4/64 4/64

ψNAR (Qm, Um/D) 3,2/240 2,1/96 2,2/160 2,3/224 4,2/320 4,1/192

ψMVAR (Q/D) 3/768 2/512 2/512 2/512 3/768 3/768

each mapping, the optimal mapping was the one associated with the lowest recognition

error.

To obtain the recognition error associated with a given mapping and MA (which we call

targeted MA), we proceeded as follows. Sixty percent of the EEG-trials (positive trials)

available for the targeted MA and the same number of EEG-trials (negative trials) randomly

chosen among the other MAs and MA0 were used to build the recognition models1 using the

algorithm explained in Chapter 5, Section 5.3. The rest of the positive EEG-trials and an

equal number of EEG-trials (which were not used to build the recognition models) randomly

chosen among the other MAs were used to determine the recognition error. To improve

the quality of the recognition error estimate, the cross-validation procedure described in

Chapter 5, Section 5.5.1 was used. Figure 6.6 shows the recognition errors for each mapping,

MA, and subject. The recognition errors are reported in fractions, i.e. a recognition error

equal to 0.5 implies that 50% of the tested EEG-trials were wrongly recognized.

Table 6.5 shows the optimal mapping and the associated recognition error for each MA,

and subject. From the results reported in this Table, it appears that the optimal mapping

choice for each MA is subject dependent. It is worth noticing that for each subject a

dominant mapping can be distinguished. In particular, for subjects S1 and S3 the ψNAR

and ψY mappings are the optimal ones for each MA.

Figures 6.7 to 6.12 depict the experimental distribution (computed using the optimal

mappings reported in Table 6.5) of the normalized membership (see Chapter 5, Section 5.2),

associated with each MA for subjects S1 to S6 respectively. We recall that a positive EEG-

trial is correctly recognized when its normalized membership is larger than one. On the

other hand, a negative EEG-trial is correctly recognized when its normalized membership

is smaller than minus one.

It is worth mentioning that positive and negative EEG-trials are relative to the targeted

MA. Thus, an EEG-trial generated during the performance of MA1 is a positive trial with

respect to MA1 and a negative one with respect to any other MA.

1As a matter of fact, the recognition models are composed of the membership parameters, namely the

offset, threshold, and membership function (see Chapter 5 for details)
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Figure 6.6. Recognition errors for each mapping, MA, and subject. The values are reported

in fractions, i.e. a recognition error equal to 0.5 implies that 50% of the tested EEG-trials were

wrongly recognized. The numerical values presented in this figure are reported in Appendix B,

Section B.1. For a given MA, the mapping providing the smallest recognition error is chosen as

the optimal mapping for this MA. For instance, in the case of subject S1, the non-stationary AR

mapping constitutes the optimal one for each MA.

The optimal mappings and the corresponding recognition errors for each MA, and subject are

reported in Table 6.5.
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Table 6.5. Choice of the optimal mapping for each MA and subjecta

MA S1 S2 S3 S4 S5 S6

MA1 ψNAR (0.136) ψY (0.226) ψY (0.326) ψMVAR (0.201) ψC (0.225) ψY (0.222)

MA2 ψNAR (0.125) ψNAR (0.239) ψY (0.306) ψNAR (0.196) ψC (0.157) ψNAR (0.172)

MA3 ψNAR (0.117) ψP (0.370) ψY (0.141) ψMVAR (0.254) ψP (0.148) ψY (0.154)

MA4 ψNAR (0.133) ψNAR (0.287) ψY (0.214) ψMVAR (0.294) ψC (0.295) ψY (0.065)

aThe numbers in parenthesis correspond to the associated recognition errors
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Figure 6.7. Subject S1: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.



118 Chapter 6. Protocols and evaluation

−4 −3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Normalized membership MA1
−3 −2 −1 0 1 2

0

20

40

60

80

100

120

140

160

Normalized membership MA2

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

70

80

Normalized membership MA3
−3 −2 −1 0 1 2 3

0

20

40

60

80

100

120

Normalized membership MA4

Positive trials
Negative trials

Figure 6.8. Subject S2: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.
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Figure 6.9. Subject S3: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.
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Figure 6.10. Subject S4: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.

−4 −3 −2 −1 0 1 2 3 4
0

20

40

60

80

100

120

140

160

Normalized membership MA1
−3 −2 −1 0 1 2 3

0

10

20

30

40

50

60

70

80

90

Normalized membership MA2

−3 −2 −1 0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200

Normalized membership MA3
−2 −1 0 1 2 3 4

0

10

20

30

40

50

60

70

80

Normalized membership MA4

Positive trials
Negative trials

Figure 6.11. Subject S5: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.
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Figure 6.12. Subject S6: Distribution of the normalized memberships corresponding to positive and

negative EEG-trials for each MA.



6.4. Action rules 121

6.4 Action rules

The action rules governing the movement of the spaceship were set by considering the

experimental distributions of the normalized membership of positive and negative trials as

depicted in Figs. 6.7 to 6.12.

We first define the action strength (denoted as kk) associated with MAk as a piecewise

linear function (see Fig. 6.13) of the normalized membership ζk:

kk =







0 ζk 6 uk

ζk−uk

vk−uk
uk < ζk 6 (vk − uk)Mstp + uk

Mstp uk > (vk − uk)Mstp + uk

(6.1)

where uk is the smallest value of ζk for positive trials, vk corresponds to the intersection

between the positive and negative trials distribution of ζk (see Fig. 6.13), and Mstp is the

maximum number of steps that the spaceship is allowed to move in a single action. In our

experiments Mstp was equal to 8.

The slope of kk was set so as to have kk = 1 for ζk = vk. The number of steps that the

spaceship moved in the direction corresponding to MAk was equal to the nearest integer

function of kk, namely nint(kk).

For each EEG-trial, four strengths: k1, . . .k4 were computed. The spaceship moved

by the corresponding number of steps in each direction. Notice that in a single action the

spaceship could simultaneously move in several directions. This possibility was allowed

during the positioning tests (Section 6.5). However, in training-with-feedback sessions only

the strength associated with the trained MA was considered.

6.5 Training with feedback

Training-with-feedback sessions were composed of two parts. The first part was organized

similarly to the training-without feedback sessions, namely the first five to ten minutes

were spent in the calibration procedure and the rest was divided into three five-minute

slices separated by breaks of variable duration determined by the subject (see Fig. 6.14).

Throughout this section the term session refers to a training-with-feedback one.

During active-times, in accordance with the values of the EEG-trial duration and the

action period, the feedback was provided at a rate of two per second starting from second

two after the presentation of the visual cue which indicated the MA that had to be performed

(see Fig. 6.14).

The feedback consisted in moving the spaceship in the direction corresponding to the

trained MA (see Table 6.1) by a number of steps determined by the action strength.

The number of times that a given MA was trained was proportional to the recognition

error associated with such MA in the previous session. Thus, those MAs with relatively

high recognition errors were trained more frequently.
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Figure 6.13. Action strength (kk) associated with MAk. The number of steps that the spaceship

moved in the direction corresponding to MAk was equal to the nearest integer function of kk.

The action strength depended on the experimental distribution of ζk. In particular, the value of the

smallest ζk for positive trials (denoted as uk) and the value of ζk corresponding to the intersection

of the positive and negative trials distribution of ζk (denoted as vk) determined the shape of kk.

The action strength was limited by the maximum number of steps (Mstp) that the spaceship was

allowed to move in a single action.

Figure 6.14. Protocol of a training-with-feedback session
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The second part consisted in assessing the controlling skills acquired during the session

by running two positioning tests. In each run, the positions of the target and the spaceship

were randomized in such a way that at least fifty steps were necessary for the spaceship

to reach the target. It is important to mention that the horizontal and vertical distances

between the target and spaceship were both equal to twenty-five steps. As two bits are

necessary to encode a single step in a given direction (up, down, left, or right), the number

of bits that are needed to encode any optimal trajectory between the initial position of the

spaceship and the target is equal to one-hundred bits. By measuring the average time a

subject took to reach the target we can experimentally measure the bit-rate reached in the

session.

As in training-without-feedback sessions, the EEG-trials with artifacts were discarded.

In Appendix B, Section B.2 we report the number of EEG-trials that were available after

artifact detection for each MA and subject.

The recognition errors (for each MA) corresponding to each session were determined

using the recognition models updated at the end of the previous session. This makes sense

since feedback was provided using such models. The recognition error of the first training-

with-feedback session was determined using the recognition models built at the end of the

training-without-feedback sessions.

The evolution through the sessions of the recognition errors associated with each MA,

are reported in the four upper graphs in Figs. 6.15 to 6.20 for subjects S1 to S6 respectively.

The values represented in these curves are reported in the Appendix B, Section B.2.

The recognition errors are represented with their two components, namely the false

negative (FN) and false positive (FP) fractions. The FN is the fraction of positive EEG-

trials whose normalized membership were smaller than one, and the FP is the fraction

of negative EEG-trials whose normalized membership were larger than minus one. The

recognition error is related to FN and FP by means of the following equation.

Recognition error =
FN

1 + Nn

Np

+
FP

1 +
Np

Nn

(6.2)

where Nn and Np are the number of negative, respectively positive EEG-trials that were

used to compute the recognition error.

To globally evaluate a session, we computed the theoretical bit rate (in bits per minute)

by adapting the formula given in Chapter 2, Section 2.10 as follows.

Bit rate =
60

Tact

(

log2 NMA + (1− pe) log2(1− pe) + pe log2

pe

NMA − 1

)

(6.3)

where pe is the mean recognition error over the MAs, NMA is the number of MAs (equal

to four), and Tact is the action period in seconds (equal to 0.5 seconds). The theoretical

bit rates for each session are represented on the lower left graph in Figs. 6.15 to 6.20 for

subjects S1 to S6 respectively..

Since the bit rate computed by means of (6.3) considers EEG-trials that are free of

artifacts, it constitutes an over optimistic estimation of the bit rate that can be achieved
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during actual BCI operation. Therefore, two positioning tests were carried out at the end of

each session. As mentioned before, an experimental estimate of the bit rate can be obtained

by dividing one hundred (i.e. the number of bits needed to encode an optimal trajectory)

by the average time spent in reaching the target. The lower right graph in Figs. 6.15 to 6.20

depicts the bit rates experimentally estimated for subjects S1 to S6 respectively. Missing

values correspond to those positioning tests in which the target could not be reached. These

situations were due to the subjects who were free to interrupt the experiment at any time.

The time spent in reaching the target for each positioning test, session, and subject are

reported in Appendix B, Section B.2.
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Figure 6.15. Subject S1.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate. Missing values correspond to positioning

tests in which the target was not reached.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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Figure 6.16. Subject S2.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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Figure 6.17. Subject S3.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate. Missing values correspond to positioning

tests in which the target was not reached.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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Figure 6.18. Subject S4.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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Figure 6.19. Subject S5.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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Figure 6.20. Subject S6.Top four graphs: Evolution of the recognition errors, associated with MA1

to MA4, throughout training-with-feedback sessions. The recognition errors are reported along with

their two components, namely the false negative (FP) and false positive (FP) fractions. Bottom left :

Theoretical bit rate. Bottom right : Experimental bit rate. Missing values correspond to positioning

tests in which the target was not reached.

Numerical values presented in these graphs are reported in Appendix B, Section B.2
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6.5.1 Discussion

The evolution of the recognition errors throughout the training-with-feedback sessions for

each MA and subject (see Figs. 6.15 to 6.20) shows a clear downwards trend. Figure 6.21

depicts the relative decrease of the recognition error between two consecutive sessions for

each MA, and subject. The relative decrease of the recognition error associated with MAk,

between sessions i + 1 and i ∈ {1, . . . , 5} was obtained by subtracting the recognition

error associated with MAk corresponding to session i+ 1 from that of session i. Negative

values of the relative decrease indicate that the recognition error increased with respect to

that of the previous session. Only a few negative values appear in Fig. 6.21. Notice that

increases in the recognition error never affected the whole set of MAs. This explains why

the theoretical bit rate, which can be thought of as an aggregate measure of the recognition

errors associated with each MA, exhibits an upwards trend.

It is worth mentioning that whereas the false negative and false positive fractions do

not necessarily exhibit a strict downwards trend (this is specially true for subject S1, see

Fig. 6.15), the recognition models updating ensures that the recognition errors do not

increase or at least not to the same extent. This sort of automatic control clearly appears

in Fig. 6.15 in which, the increases in the false negative fraction curves are countered by

corresponding decreases in the false positive fraction curves.

Figure 6.22 shows the relative increase of the theoretical (top) and experimental (bot-

tom) bit rate over sessions for each subject. Relative increase of theoretical (experimental)

bit rates between sessions i+ 1 and i were obtained by subtracting the theoretical (experi-

mental) bit rates corresponding to session i from that of session i+1. The missing values in

the experimental bit rates were replaced by the values corresponding to previous sessions,

i.e. we assume that the controlling skills were maintained since subjects themselves decid-

ed to interrupt positioning testings. The hypothesis of controlling skills remanence seems

reasonable, as the subsequent experimental bit rates always increase.

The theoretical bit rates for each subject almost always increase; the exception cor-

responds to the relative theoretical bit rate between sessions two and one for subject S1

which exhibit a slight decrease. This is confirmed by Fig. 6.21 in which the relative error

decrease between sessions two and one for subject S1, shows that three out of the four MAs

take negative values. Thus, the global theoretical evaluation of sessions indicates that the

information transfer (measured by the bit rate) and consequently BCI operation improved

over sessions.

A similar upwards trend is observed for the experimental bit rate. Since missing values

were replaced by those corresponding to previous sessions, null increases correspond to

those sessions. Yet, the relative experimental bit rate is always positive, meaning that when

subjects carried out the positioning tests they always improved their previous performance.

At the end of the sixth session subjects reached experimental bit rates of 26, 22, 21,

27, 35, and 19 bits per minute respectively. Thus, an average of 22 bits per minute was

achieved. This result situates our work among the most outstanding in the BCI research

community (see Table 2.1). It is worth mentioning that while the theoretical bit rate gives
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much higher values, the experimental bit rate presents the advantage of being measured in

the framework of a real application, and thus constitutes a closer approximation to the real

information transfer rate.
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Figure 6.21. Relative error decrease over training-with-feedback sessions for each MA and subject.

The relative decrease of the recognition error associated with MAk, between sessions i + 1 and

i ∈ {1, . . . , 5} was obtained by subtracting the recognition error of MAk corresponding to session

i + 1 from that of session i. Negative values of the relative decrease indicate that the recognition

error increased with respect to that of the previous session.

6.6 Summary

In this chapter we applied the artifact detection, feature extraction, and pattern recognition

algorithms developed in previous chapters, to the training of six subjects throughout nine

training sessions in the framework of an asynchronous 2D positioning application. Four

mental activities were used to move an object in the screen in four possible directions,

namely left, right, up, and down.

The first three sessions served to build the initial recognition models through the choice

of the optimal mappings for each MA and subject. Moreover, the action rules which de-
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termined the BCI operation were set with respect to the distribution of the normalized

memberships associated with each MA.

The next six sessions were used to adjust the BCI recognition models and improve user

controlling skills by means of feedback. Mental activities were trained on in such a way

that those MAs that had large recognition errors were trained on more often.

In addition, in each of the last six sessions positioning tests were carried out to evaluate

the subject controlling skills in a real application. The bit rate was estimated both theoret-

ically and experimentally. Both estimates exhibited clear upwards trends throughout the

sessions.
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Figure 6.22. Theoretical (left) and experimental (right) bit rate increase over training-with-feedback

sessions for each subject. Relative increase of theoretical (experimental) bit rates between sessions

i + 1 and i were obtained by subtracting the theoretical (experimental) bit rates corresponding to

session i from that of session i+ 1. The missing values in the experimental bit rates were replaced

by the values corresponding to previous sessions, i.e. we assume that the controlling skills were

maintained.
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In this chapter we review the most important issues and contributions presented in this

thesis. Then we discuss possible extensions and continuations to the presented work.

The objectives of this thesis were to:

• Design and develop an asynchronous operant conditioning based BCI system which

implements three adaptation levels, namely initial adaptation to the subject’s signal

characteristics, continuous adjustment of the BCI to maintain subject’s controlling

skills and reduce the impact of possible EEG changes, and subject adaptation through

feedback.

• Ensure that the BCI is not controlled by other type of signals such as ocular and

muscular artifacts.

• Design of efficient evaluation schemes and training protocols

7.1 Summary of achievements

The major achievements can be summarized as follows.

• An asynchronous operant conditioning BCI that operates with four mental activities

in the framework of a 2D object positioning application was developed. Such BCI

produces actions each half second based on the analysis of the last two second long

EEG segment (EEG trial).

• Development of an efficient algorithm to detect ocular and muscular artifacts based

on the kernel novelty detection framework. The parameters of this algorithm were set
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during a calibration procedure that took place before each experimental session. The

BCI did not attempted to generate an action from an EEG trial with an artifact in

it. Instead, it generated especial actions to notify the subject which type of artifact

had been detected.

• Several types of feature extraction methods were considered to characterize the EEG

trials produced during each controlling MA. From a general framework that con-

sidered the generalized interaction between the univariate signals composing EEG,

different feature extraction methods (or mappings) were derived by assuming certain

hypotheses on the nature of EEG. For a given MA, the mapping associated with

the lowest recognition error was chosen. Thus, the BCI presented in this thesis used

multiple types of feature vectors to operate.

• Recognition of MAs from feature vectors was done through the use of kernel based

learning methods. We have developed an efficient theoretical framework which per-

mits the dynamic updating of recognition models parameters as new training data

become available.

• Definition of action rules that adapt the BCI operation mode to the subject perfor-

mance. As the recognition models are dynamic these rules change accordingly.

• The algorithms and methods mentioned above were applied to the training of six

subjects who participated in nine training sessions. The controlling skills acquired

by subjects were measured using a theoretical and a experimental measure of the bit

rate. Through the sessions, both measures increased for each subject. At the end of

the ninth session, an average, over subjects of 126 and 25 bits per minute respectively

was achieved. This result situates our research among the most outstanding ones in

the BCI community.

7.2 Future directions

BCI research is still in its infancy, its continued success depends on further exploration of

neuroscience results, psychological methods, signal processing and machine learning algo-

rithms, evaluation criteria, operation modes, and applications. The following list contains

a non-exhaustive number of proposals for further extensions to the work presented in this

thesis:

• In this thesis we have considered a hierarchical model for the recognition of MAs,

i.e. feature vector extraction and classification were done independently. A possible

way to simultaneously consider the feature extraction and recognition problems would

consist in applying the Bayesian framework which is able to select those features that

make the recognition error lower.

• Generative models such as hidden Markov models (HMMs) were considered in the

framework of synchronous BCI operation only. A generalization to asynchronous
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operation can be made through ergodic HMMs. The training of such models could be

done in two phases. In the first stage general states can be identified, i.e. characterizing

all controlling MAs. In a second stage, the transitions that specifically characterize

each MA can serve as recognition model for such an MA. The advantage of this

approach resides in the fact that through the study of statistical properties of each

state, valuable physiological insights into the nature of the MAs can be obtained.

• In this thesis we have considered four MAs that were chosen in accordance with current

BCI studies which in turn made their choice based on hemispheric brain specialization

studies. In addition to the selection of the optimal feature spaces in which these MAs

can be recognized, it can be important to select the MAs as well. In this way, subjects

could select the MAs through which they are best able to operate the BCI.

• The improvements obtained by using more adequate signal processing and machine

learning algorithms aim at achieving large communication bandwidth as measured

by the information transfer rate. To some extent, the most promising avenues for

improvement will be determined by the particular application. Indeed, while higher

information transfer rate is clearly desirable, the design of intelligent applications can

handle much of the communication details. In this way, the subject can focus on

communicating goals rather than on the details of control.

• BCI research should adhere to standards for designing studies and for assessing and

comparing their results, both in the laboratory and in actual applications. In this

way, direct comparisons among different BCI designs will be facilitated.

• The degrees of freedom required for adaptive automation of cognitive tasks, pros-

thetics, and complex robotics may lie beyond the range of current BCI signals and

methods. However, BCIs can be used in combination with other human-computer

interface devices. In particular, through the study of the mutual influence (through

statistical measurements such as mutual information) between signals coming from

other input devices and EEG, one can determine the extent to which EEG can enrich

human-computer interaction.

• The position and number of electrodes can be optimized in accordance with physi-

ological considerations and evaluation criteria. Feature selection algorithms can be

used to rank the electrodes following their discriminative power among the MAs used

to operate the BCI. Yet, a minimum number of electrodes should be maintained in

order to cope with possible EEG changes.
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Appendix A
A.1 Membership boundary induced by the Gaussian kernel

In Chapter 5 we described the membership parameters in the functional space H. In par-

ticular, we saw that the separating boundary between the images, under the map φ of

the feature vectors belonging and not belonging to the target set, is a hyperplane. In this

section we study the shape of the separation boundary in the feature vector space X .

If the map φ uses a Gaussian kernel function, we know that a small value of the Gaussian

kernel parameter lead to a small fractions of training error (FTE) (see Proposition 5.4). On

the other hand, in real applications the joint distribution of feature vectors and labels asso-

ciated to the training set does not necessarily reflect the real joint distribution. In addition,

training errors are possible (this is particularly true in the BCI framework). Consequently,

having a too small FTE is not required and even not suitable since the membership pa-

rameters can over-fit the training data and exhibit poor performance in determining the

membership of unseen feature vectors.

In order to have a small FTE, one can intuitively understand that intricate separating

boundaries in X are needed. As a matter of fact, it can be shown that there is connection

between the minimization of the regularized risk and the ”complexity” of the decision

boundary [147]. Complexity in this context means that the separating boundary is highly

irregular and intricate.

To illustrate the connection between the complexity of the separating boundary in X

and the Gaussian kernel parameter we report the solutions obtained in the framework of a

2D toy problem.

In Fig. A.1 we depict the separating boundaries (between the dots and crosses) asso-

ciated to different values of the Gaussian kernel parameter normalized to the minimum

Euclidean distance in the training set (see Eq. 5.61) as it can be seen, the smaller σr the
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more complex the decision boundary and the smaller the FTE.

As discussed in Proposition 5.4, the fraction of support vectors (FSV) decreases as

σ increases. In Fig. A.2 we report the distribution of the absolute value of the expansion

coefficients in function of σr. For σr sufficiently small, the expansion coefficients are all equal

to ν
L , where L is the number of training elements, and ν = 1

2 (see Proof of proposition 5.4)

and consequently the FSV is equal to one.

In Section 5.3.5 we mentioned that the membership of a new feature vector is complete-

ly determined by the support vectors because their associated expansion coefficients are

non-zero. In fact, the Gaussian kernel parameter is associated with the area of influence

associated with a support vector. For a small σ, the area of influence is small and a large

number of support vectors is required to define the separating boundary which is highly ir-

regular. On the other hand, a large σ allow a support vector to have a strong influence over

a larger area reducing thus the number of support vectors needed to define the separating

boundary.

In Fig. A.3 we report the evolution of the FSV, the FTE and the estimation of the

generalization error via cross-validation (GE) (see Section 5.5.1) for growing σ. As σ in-

creases, the FTE increases and the FSV decreases. However, the GE exhibit a minimum

for σr near eight. This value constitutes a good compromise between generalization and

training errors. The optimal choice of σ is determined according to the procedure detailed

in Section 5.5.2.

A.2 Computing the radius of the smallest sphere containing

the training data in H

Let Str = {(xl, yl)|xl ∈ X , yl ∈ {−1,+1}, and l = 1, 2, . . . ,L} be the training set and φ the

map from X into H.

We denote as R and C ∈ H the radius and the center, respectively of the smallest sphere

containing the training data in H. The sphere parameters are found by solving:

minR2 (A.1)

constrained to:

‖C − φ (xl)‖
2
H 6 R2 for l = 1, . . . ,L (A.2)

where C ∈H is the center of the sphere. Introducing positive Lagrange multipliers λ1, . . . , λL,

we obtain the primal Lagrangian:

ΛP = R2 −
L∑

l=1

λl

(

R2 − ‖C − φ (xl)‖
2
H

)

(A.3)

Computing the derivatives of ΛP with respect to R and C and setting them to zero
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Figure A.1. Separating boundary (to discriminate between dots and crosses) for growing values

of the Gaussian kernel parameter normalized to the minimum Euclidean distance in the training

set (i.e. σr = σ
∆min

). The dark region encloses the dots. As σr increases more training errors are

allowed and the separating boundary becomes more regular.

leads to

∂RΛP = 0 ⇒
L∑

l=1

λl = 1 (A.4)

∂CΛP = 0 ⇒ C =
L∑

l=1

λlφ (xl) (A.5)

By replacing (A.4) and (A.5) in (A.3) we obtain the dual lagrangian that should be

maximized with respect to λ1, . . . , λL. Then,

R2 = max
λ1,...,λL





L∑

l=1

λl −
∑

l1,l2

λl1λl2Kσ (xl1, xl2)



 (A.6)



140 Chapter A. Appendix

0 2 4

x 10
−3

0

50

100

150

σ
r
=1.41

0 2 4

x 10
−3

0

50

100

150

σ
r
=1.99

0 2 4

x 10
−3

0

10

20

30

40

50

σ
r
=2.81

0 2 4

x 10
−3

0

10

20

30

40

σ
r
=3.96

0 2 4

x 10
−3

0

20

40

60

σ
r
=5.58

0 2 4

x 10
−3

0

20

40

60

80

σ
r
=7.87

0 2 4

x 10
−3

0

20

40

60

80

100

σ
r
=11.09

0 2 4

x 10
−3

0

20

40

60

80

100

σ
r
=15.64

0 2 4

x 10
−3

0

20

40

60

80

100

σ
r
=22.05

Figure A.2. Distribution of the absolute value of the expansion coefficients for growing values

of σr. As σr increases more expansion coefficients become equal to zero. For large values of σr

the distribution of the expansion coefficients becomes bimodal, i.e. concentrated in zero and 1
L (the

maximum allowed value).

subject to
L∑

l=1

λl = 1 (A.7)

By replacing (A.7) in (A.6), the λ1, . . . , λL are found by solving:

(λ1, . . . , λL) = min
λ1,...,λL




∑

l1,l2

λl1λl2Kσ (xl1, xl2)



 (A.8)

constrained to (A.7).

This convex quadratic problem [23] can be readily solved using standard quadratic

programming techniques [168].
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Figure A.3. Evolution of the fraction of support vectors (FSV), the fraction of training errors

(FTE) and the cross-validation estimate of the generalization error (GE) in function of σr. While

the FSV and the FTE exhibit a monotonically behavior in function of σr, the GE has a minimum

which corresponds to the tradeoff between generalization and the FTE.

A.3 Computing the derivative of the theoretical bound B

with respect to σ

To compute the derivative ∂σB we apply the chain rule and obtain:

∂B

∂σ
=
∂B

∂σ

∣
∣
∣
∣
~α fixed

+ (∇~αB)t
∂~α

∂σ
(A.9)

where ~α = (α̃1, . . . , α̃L, b)
t and t stands for the transpose operator.

Using (5.65), we have

∂σB =
1

L

‖w‖2H
ρ2

∂R2

∂σ

∣
∣
∣
∣
~α fixed

+
1

L

R2

ρ2

∂ ‖w‖2H
∂σ

∣
∣
∣
∣
∣
~α fixed

−
2

L

‖w‖2HR
2

ρ3

∂ρ

∂σ

∣
∣
∣
∣
~α fixed

+
R2

L

(

∇~α

(

‖w‖2H
(ρ)2

))t
∂~α

∂σ

(A.10)

A.3.1 Computing ∂R2

∂σ

∣
∣
∣
~α fixed

This derivative can be computed directly from (A.6) using the following lemma [26]:
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Lemma A.1. Suppose we are given a vector vζ ∈ Rd and a d × d matrix Aζ smoothly

depending on a parameter ζ. Consider the function:

G (ζ) = max
u∈Υ

(

utvζ −
1

2
utAζu

)

Υ =
{

u|Btu = a, u > 0, B ∈ R
d, a ∈ R

}

Let u∗ ∈ Υ be the vector where the maximum in G (ζ) is attained. If this maximum is

unique then
∂G (ζ)

∂ζ
= (u∗)t

∂vζ

∂ζ
−

1

2
(u∗)t

∂Aζ

∂ζ
u∗

In other words, it is possible to differentiate G with respect to ζ just as if u∗ did not depend

on ζ.

Thus, from (A.6) we have:

∂R2

∂σ

∣
∣
∣
∣
~α fixed

= −
∑

l1,l2

λl1λl2∂σKσ (xl1, xl2) (A.11)

A.3.2 Computing
∂‖w‖2

H

∂σ

∣
∣
∣
~α fixed

Using (5.32) we have:

∂ ‖w‖2H
∂σ

∣
∣
∣
∣
∣
~α fixed

=
∑

l1,l2

α̃l1α̃l2yl1yl2
∂Kσ (xl1, xl2)

∂σ
(A.12)

A.3.3 Computing ∂ρ
∂σ

∣
∣
~α fixed

Using (5.50) we have:

∂ρ

∂σ

∣
∣
∣
∣
~α fixed

=
1

2

L∑

l=1

ylα̃l

(
∂Kσ (xl, xl1)

∂σ
−
Kσ (xl, xl2)

∂σ

)

(A.13)

A.3.4 Computing ∂~α
∂σ

We define the set L =
{
l| 0 < α̃l <

1
L

}
and the vector ~αL = [α̃l∈L, b]

t (i.e. the vector com-

posed of those α̃’s corresponding to the φ (xl) that are on the margins and the membership

threshold b). Since α̃l /∈L is either 0 or 1
L , it is clear that:

∂α̃l /∈L

∂σ
= 0

.

Using the results shown in Fig. 5.7 and (5.40) we have:





KY YL

Y t
L 0






︸ ︷︷ ︸

K

~αL = ρ






1|L|

0






︸ ︷︷ ︸

U

(A.14)
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where 1|L| is the |L|×1 matrix with unitary elements, KY is a |L|×|L| matrix with elements

Kl,m∈ L = ylymKσ (xl, xm) and YL = (yl∈L) (i.e. the |L| × 1 matrix of labels corresponding

to the φ(xl) that are on the margins).

The matrix K is always invertible, then:

∂~αL

∂σ
=

∂
(
K−1ρU

)

∂σ
(A.15)

= −ρK−1

(
∂K

∂σ

)

K−1U +K−1U
∂ρ

∂σ
(A.16)

The derivative ∂K−1

∂σ is computed using:

K−1K = I

⇒
(
∂σK

−1
)
K +K−1∂σK = 0

⇒
∂K−1

∂σ
= −K−1

(
∂K

∂σ

)

K−1

A.3.5 Computing ∇α̃L
‖w‖2

H

Using (5.32) we have

∂ ‖w‖2H
∂α̃l∈L

=
∑

m6=l|m∈L

ylymα̃mKσ (xl, xm) + 2α̃l (A.17)

∂ ‖w‖2H
∂bk

= 0 (A.18)

A.3.6 Computing ∂ρ
∂~αL

Since φ (xl∈L) is in the margin

∂ρ

∂α̃l∈L
=

∂

∂α̃l∈L

(

yl

∑

m∈L

ymα̃mKσ (xl, xm)

)

= 1 (A.19)

∂ρ

∂b
= 0 (A.20)
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Appendix B
B.1 Training without feedback sessions

Subject S1: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.310 0.420 0.248 0.136 0.313 0.374

MA2 0.298 0.401 0.242 0.125 0.312 0.346

MA3 0.319 0.390 0.202 0.117 0.317 0.327

MA4 0.237 0.214 0.183 0.133 0.202 0.247

Table B.1.
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Subject S2: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.371 0.372 0.338 0.282 0.226 0.563

MA2 0.368 0.316 0.334 0.239 0.276 0.504

MA3 0.370 0.414 0.410 0.405 0.384 0.414

MA4 0.370 0.341 0.332 0.287 0.359 0.362

Table B.2.

Subject S3: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.406 0.453 0.489 0.521 0.326 0.552

MA2 0.389 0.474 0.454 0.458 0.306 0.500

MA3 0.287 0.221 0.440 0.390 0.141 0.434

MA4 0.268 0.228 0.366 0.394 0.214 0.347

Table B.3.

Subject S4: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.271 0.335 0.233 0.295 0.351 0.201

MA2 0.371 0.290 0.329 0.196 0.339 0.225

MA3 0.416 0.316 0.399 0.399 0.312 0.254

MA4 0.418 0.504 0.427 0.377 0.336 0.294

Table B.4.
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Subject S5: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.315 0.225 0.282 0.357 0.243 0.372

MA2 0.378 0.157 0.384 0.327 0.218 0.371

MA3 0.148 0.216 0.340 0.333 0.234 0.357

MA4 0.358 0.295 0.332 0.370 0.337 0.347

Table B.5.

Subject S6: Recognition error associated with each MA and mapping

Mapping ψP ψC ψAR ψNAR ψY ψMVAR

MAs

MA1 0.304 0.229 0.234 0.304 0.222 0.319

MA2 0.346 0.219 0.268 0.172 0.184 0.206

MA3 0.321 0.189 0.294 0.340 0.154 0.245

MA4 0.248 0.206 0.275 0.309 0.065 0.116

Table B.6.
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B.2 Training with feedback sessions

Subject S1: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 105 95 100 75 70 85

MA2 90 110 70 90 95 85

MA3 85 75 75 80 85 100

MA4 100 90 75 75 105 90

Table B.7.

Subject S1: Recognition error evolution over training-with-feedback sessions FN/FP/Errora

Session 1 2 3 4 5 6

MAs

MA1 0.048/0.245

0.165

0.032/0.219

0.146

0.030/0.194

0.126

0.067/0.156

0.126

0.029/0.170

0.126

0.012/0.139

0.095

MA2 0.056/0.234

0.169

0.127/0.216

0.178

0.071/0.193

0.153

0.100/0.181

0.150

0.074/0.169

0.132

0.071/0.120

0.103

MA3 0.035/0.226

0.160

0.040/0.239

0.174

0.080/0.181

0.146

0.062/0.178

0.137

0.024/0.153

0.106

0.050/0.135

0.102

MA4 0.070/0.244

0.176

0.078/0.237

0.178

0.093/0.188

0.155

0.040/0.170

0.126

0.048/0.137

0.100

0.033/0.115

0.085

Table B.8.

aFN and FP stand for false negative and false positive fractions respectively. See Chapter 6, Section 6.5

for details
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Subject S1: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 315 - 278 249 238 227

Test 2 307 - 277 256 246 234

Exp. bit rate [bits/min] 19.29 - 21.62 23.76 24.79 26.03

Table B.9. Time spent in reaching the target and experimental bit rate.

Subject S2: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 323 342 361 342 361 399

MA2 342 323 285 285 285 266

MA3 513 513 589 608 608 589

MA4 342 342 285 247 247 247

Table B.10.

Subject S2: Recognition error evolution over training-with-feedback sessions FN/FP/Error

Session 1 2 3 4 5 6

MAs

MA1 0.320/0.167

0.226

0.310/0.160

0.216

0.280/0.158

0.205

0.275/0.120

0.183

0.268/0.118

0.176

0.249/0.110

0.165

MA2 0.292/0.194

0.234

0.242/0.171

0.196

0.195/0.146

0.162

0.187/0.105

0.134

0.183/0.089

0.120

0.175/0.079

0.108

MA3 0.637/0.196

0.426

0.700/0.207

0.447

0.691/0.130

0.426

0.622/0.116

0.407

0.597/0.106

0.369

0.565/0.088

0.335

MA4 0.570/0.091

0.285

0.357/0.131

0.215

0.298/0.127

0.183

0.198/0.163

0.175

0.190/0.147

0.160

0.146/0.128

0.133

Table B.11.
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Subject S2: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 327 313 318 308 279 273

Test 2 337 326 306 293 286 266

Exp. bit rate [bits/min] 18.07 18.78 19.23 19.97 21.24 22.26

Table B.12. Time spent in reaching the target and experimental bit rate.

Subject S3: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 150 144 150 150 144 132

MA2 138 132 132 126 114 132

MA3 66 78 60 54 60 78

MA4 96 90 102 108 96 114

Table B.13.

Subject S3: Recognition error evolution over training-with-feedback sessions FN/FP/Error

Session 1 2 3 4 5 6

MAs

MA1 0.344/0.385

0.367

0.335/0.376

0.357

0.328/0.366

0.347

0.285/0.342

0.316

0.272/0.339

0.307

0.248/0.322

0.293

MA2 0.322/0.365

0.344

0.242/0.359

0.310

0.195/0.358

0.289

0.187/0.312

0.261

0.183/0.275

0.240

0.175/0.272

0.232

MA3 0.204/0.143

0.158

0.187/0.112

0.137

0.169/0.115

0.126

0.126/0.120

0.120

0.120/0.111

0.112

0.118/0.102

0.107

MA4 0.288/0.219

0.243

0.285/0.212

0.237

0.287/0.202

0.230

0.242/0.195

0.212

0.231/0.189

0.201

0.225/0.178

0.197

Table B.14.



B.2. Training with feedback sessions 151

Subject S3: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 - 378 - 319 321 284

Test 2 - 385 - 327 317 288

Exp. bit rate [bits/min] - 15.73 - 18.58 18.81 20.98

Table B.15. Time spent in reaching the target and experimental bit rate.

Subject S4: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 144 144 135 144 162 144

MA2 135 144 153 153 135 126

MA3 180 189 171 189 207 189

MA4 207 189 198 171 198 207

Table B.16.

Subject S4: Recognition error evolution over training-with-feedback sessions FN/FP/Error

Session 1 2 3 4 5 6

MAs

MA1 0.267/0.197

0.221

0.259/0.194

0.216

0.253/0.188

0.210

0.241/0.182

0.203

0.221/0.185

0.199

0.207/0.179

0.189

MA2 0.333/0.176

0.230

0.331/0.142

0.211

0.331/0.148

0.217

0.325/0.120

0.197

0.312/0.105

0.172

0.305/0.108

0.170

MA3 0.344/0.258

0.296

0.331/0.254

0.288

0.338/0.249

0.285

0.315/0.246

0.278

0.288/0.240

0.263

0.268/0.233

0.248

MA4 0.395/0.213

0.299

0.387/0.200

0.281

0.385/0.202

0.283

0.380/0.199

0.274

0.377/0.198

0.276

0.378/0.199

0.279

Table B.17.
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Subject S4: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 319 289 274 265 244 229

Test 2 332 279 282 253 233 219

Exp. bit rate [bits/min] 18.43 21.13 21.58 23.17 25.16 26.79

Table B.18. Time spent in reaching the target and experimental bit rate.

Subject S5: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 441 420 420 378 399 357

MA2 315 357 357 315 378 294

MA3 294 315 336 273 357 273

MA4 588 546 546 504 525 483

Table B.19.

Subject S5: Recognition error evolution over training-with-feedback sessions FN/FP/Error

Session 1 2 3 4 5 6

MAs

MA1 0.267/0.230

0.244

0.262/0.225

0.239

0.253/0.225

0.236

0.249/0.213

0.226

0.235/0.207

0.217

0.214/0.197

0.202

MA2 0.113/0.241

0.202

0.112/0.235

0.194

0.102/0.234

0.188

0.098/0.231

0.187

0.094/0.228

0.180

0.080/0.220

0.179

MA3 0.122/0.212

0.185

0.120/0.212

0.184

0.117/0.209

0.178

0.099/0.202

0.171

0.101/0.192

0.161

0.095/0.187

0.161

MA4 0.345/0.279

0.310

0.332/0.272

0.299

0.326/0.276

0.299

0.313/0.267

0.288

0.306/0.261

0.281

0.308/0.258

0.279

Table B.20.
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Subject S5: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 218 213 192 186 176 172

Test 2 214 206 212 179 180 166

Exp. bit rate [bits/min] 27.78 28.64 29.70 32.88 33.71 35.50

Table B.21. Time spent in reaching the target and experimental bit rate.

Subject S6: number of EEG-trials after artifact detection

Session 1 2 3 4 5 6

MAs

MA1 156 132 102 114 126 96

MA2 120 114 90 90 108 84

MA3 108 102 78 96 108 78

MA4 48 60 42 48 60 42

Table B.22.

Subject S6: Recognition error evolution over training-with-feedback sessions FN/FP/Error

Session 1 2 3 4 5 6

MAs

MA1 0.331/0.133

0.223

0.330/0.132

0.216

0.328/0.132

0.207

0.324/0.124

0.201

0.319/0.126

0.201

0.310/0.124

0.190

MA2 0.211/0.182

0.192

0.206/0.175

0.190

0.179/0.170

0.171

0.170/0.172

0.172

0.171/0.175

0.172

0.159/0.168

0.162

MA3 0.171/0.184

0.179

0.168/0.176

0.172

0.163/0.178

0.174

0.157/0.169

0.165

0.161/0.162

0.162

0.160/0.160

0.158

MA4 0.053/0.113

0.104

0.051/0.109

0.095

0.055/0.108

0.094

0.046/0.107

0.095

0.048/0.100

0.089

0.044/0.099

0.091

Table B.23.
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Subject S6: Positioning tests results

Session 1 2 3 4 5 6

Time [s]

Test 1 - 363 329 334 328 309

Test 2 - 371 334 328 322 315

Exp. bit rate [bits/min] - 16.35 18.10 18.13 18.46 19.23

Table B.24. Time spent in reaching the target and experimental bit rate.



Bibliography

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the po-

tential function method in pattern recognition learning. Automation and Remote

Control, 25:821–834, 1964.

[2] H. Akaike. Fitting autoregressions for prediction. Annals of the Institute of Statistical

Mathematics, 21:243–247, 1969.

[3] H. Akaike. A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974.

[4] M. Akay. Time Frequency and Wavelets in Biomedical Signal Processing. IEEE Press

Series on Biomedical Engineering, 1998.

[5] J. Allanson. upporting the Development of Electrophysiologically Interactive Computer

Systems. PhD thesis, Lancaster University, 2000.

[6] C.W. Anderson, E.A. Stolz, and S. Shamsunder. Multivariate autoregressive models

for classification of spontaneous electroencephalographic signals during mental tasks.

IEEE Transactions on Biomedical Engineering, 45:277–286, 1998.

[7] F. Babiloni, F. Cincotti, L. Lazzarini, J. Millan, J. Mourino, M. Varsta, J. Heikko-

nen, L. Bianchi, and M. G. Marciani. Linear Classification of Low-Resolution EEG

Patterns Produced by Imagined Hand Movements. IEEE Transactions Rehabilitation

Engineering, 8(2):186–188, 2000.

[8] A.B. Barreto, S.D. Scargle, and M. Adjouadi. A practical emg-based human-computer

interface for users with motor disabilities. Journal of Rehabilitation Research and

Development, 37(1):53–63, 2000.

[9] A.R. Barron, J. Rissanen, and B. Yu. The mdl principle in modeling and coding.

IEEE Transactions on Information Theory - Special issue commemorating 50 years

of information theory, 44:2743–2760, 1998.

[10] P.J. Bartlett, B. Schölkopf, D. Schuurmans, and A.J. Smola, editors. Advances in

Large-Margin Classifiers (Neural Information Processing). MIT Press, 2000.

155



156 Bibliography

[11] J.D. Bayliss. A Flexible Brain-Computer Interface. PhD thesis, Department of Com-

puter Science University of Rochester, 2001.

[12] J.D. Bayliss. Use of the Evoked Potential P3 Component for Control in a Virtu-

al Apartment. IEEE Transactions Rehabilitation Engineering, 11(2):113–116, June

2003.
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