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ABSTRACT 
 
In this study we present a method for classifying EEG 
signals based on the information content of their  
correlative time-frequency-space representation (CTFSR). 
A support vector machine (SVM) kernel is proposed that 
can be calculated in the time domain while it computes a 
similarity measure in the CTFSR space. This classification 
method is used in a brain-computer interface (BCI)  
application.  
The use of the SVM approach allows us to propose a  
simple strategy for adapting the BCI to possible long term 
variations in the brain activity. 
 

1. INTRODUCTION 
 

An electroencephalogram (EEG) is the measurement of 
electrical potentials in the brain, by an array of electrodes 
placed at the scalp or on the brain’s cortex. The relative 
simplicity, good time resolution and non-invasiveness of 
the scalp-measured EEG are the main reasons that made it 
a privileged tool for monitoring brain activity in  
therapeutic and neurophysiologic research. In the sequel, 
we use the term EEG for a scalp-measured EEG. 
Since the first experiments, there is clear evidence that 
observable changes in EEG result from performing given 
mental activities [1]. Under the light of this evidence it 
becomes possible to conceive a communication system 
between human brain and a computer, in which the 
information support is the EEG pattern, voluntarily 
generated by the user and independent of any muscular 
activity. Such a system is called a Brain-Computer  
Interface (BCI) and is the object of intense research, 
mainly for people with severe motor disabilities [2]. 
“Think and make it happen without any movement” is a 
dream that might become reality through a BCI.  
A BCI is composed of three subsystems, namely signal 
acquisition, signal processing and output generation. 
(Figure 1) 
The acquisition subsystem is responsible for the  
measurement and digitization of EEG signals. These  

signals are often noisy and may contain artifacts (due to 
muscular and ocular movements) that can mask the  
EEG patterns generated by the user. 
The signal processing subsystem is generally subdivided 
into a preprocessing unit, responsible for artifact  
detection, and a feature extraction and recognition unit 
that determines the command sent by the user to the BCI. 
This command is sent to the output subsystem, which 
generates a “system answer” that constitutes a feedback to 
the user who can modulate his mental activities so as to 
produce those EEG patterns that make the BCI  
accomplish his intents. 
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Figure 1. General BCI architecture. 

Figure 2 illustrates the basic scheduling of a BCI. We 
define the BCI period as the average time between two 
consecutive system answers and the EEG trial duration as 
the amount of EEG (in terms of time) that the BCI needs 
to analyze in order to generate an answer. These parame-
ters are crucial for the usability of the BCI and depend on 
the brain dynamics, the type of mental activities (MAs) 
used and the computation load.[2] 
In this paper we focus on the recognition of EEG patterns 
(associated with given MAs) by the BCI and we propose a 
strategy for adapting the system to possible long term 
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variations in the EEG patterns that can appear as a result 
of different brain’s background activities over time. 
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Figure 2. BCI scheduling. 

 
2. TRENDS IN EEG ANALYSIS FOR BCI 

APPLICATIONS 
 
In the context of BCI, EEG signals were mainly analyzed 
in the time, frequency, and time-frequency domains. 
Most of the research groups work in the frequency  
domain and extract the information characterizing mental 
activities from the nonparametric and parametric spectral  
representations of EEG [2]. Also, the joint spectral  
properties of the EEG components are analyzed in [3] for  
detecting particular emotional states. 
The relationship between the time courses of the signals 
coming from different electrodes serves as an indication 
of motor activities in [4]. Useful information can also be 
extracted from particular brain configurations that can be 
interpreted in terms of brain states [5][6]. 
Time-frequency and time-scale representations of EEG 
signals were exploited for finding those neuronal groups 
that synchronize their activity as a response to a particular 
stimulus (event related potentials) [7][8]. 
From the above considerations it can be stated that mental 
activities, when mapped onto the time-frequency  
representation of EEG signals, display a picture that  
illustrates the cooperative activity of neuronal groups. A  
possible way to explore this activity consists in analyzing 
the joint time-frequency-space correlations between the 
components of an EEG signal. 

 
3. TIME-FREQUENCY-SPACE CLASSIFICATION 

OF EEG TRIALS 
 

The BCI is first presented with a set of labeled EEG trials 
(training set) i.e. recorded during the performance of 
known MAs, in order to build the classifier. 
Let the training set be ( ){ },  ;  1i iX y i LΓ = ≤ ≤  where iy is 

the label of the EEG trial iX . 
For our purposes we consider the two-class classification 
problem, i.e. { }1, 1iy ∈ − + . Multi-class classification can 
be done with multiple pairwise comparisons. The binary 
classification problem is solved here using the support 
vector machine (SVM) approach [9]. 
The goal is to determine a mappingΦ , from the EEG trial 
space X into a feature space F (endowed with an inner 
product) such that the classes can be separated by a  
hyperplane in F. 
Therefore, the decision function f for an EEG trial X∈X is 
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The SVM theory has established that one does not need to 
explicitly calculate the mapping ( )Φ i if there is a kernel 

function ( ),k i i such that 

 ( ) ( ) ( ), ,X X k X XΦ Φ =� �  (1) 

Some classical types of kernels satisfying the above  
property are: the polynomial, radial Gaussian and sigmoi-
dal kernels [9].  
In this study we propose to map X on the space F, defined 
by the correlative time-frequency-space representations 
(CTFSR) of the elements in X. The CTFSR choice is  
motivated by the promising results obtained in previous 
works [10]. 
The CTFSR of an EEG trial X(t), composed of the signals 
measured at N electrodes, is an NxN  matrix defined as. 
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where [ ]T1( ) ( ) ... ( )NX t x t x t= , ( )Ti is the transpose 

operator, θ andτ  are the frequency and time lags respec-
tively, and ( ) ( ), ( , ) / 2 * / 2 j t

xm xn m nA x t x t e dtθθ τ τ τ= + ⋅ −∫  

is the cross correlative time-frequency function (also 
called ambiguity function [11]) between ( )mx t and ( )nx t . 
We define the kernel function between two EEG trials X 
and X�  as 
 ( ) ( ) ( )H T

( ) ( ), , ,N X NXk X X d dθ τ θ τ θ τ= ⋅ Φ ⋅Φ ⋅∫∫1 1�
�  (3) 



where N1  is a 1xN real matrix with unit components, and 

( )Hi is the Hermitian operator. 
Substituting Eq. (2) into Eq. (3) we get. 

( ) ( ) ( ) ( ) ( )H H T, N Nk X X X t X t X t X t dtdτ τ τ= ⋅ + ⋅ ⋅ ⋅ + ⋅∫∫1 1� � �

The last result shows that we do not need to explicitly 
compute ( )XΦ and ( )X

Φ � as only ( ),k X X� matters. 

The estimates for w∈F and b∈\ are found by  
minimizing the regularized risk regR which depends on the 
classifier complexity and the empirical risk empR : 
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The support vectors (SVs) are those training points for 
which ( )i iy f X ρ⋅ ≤ , ρ is called the loss parameter, ν is 
a lower bound on the fraction of training points that are 
SVs [9].  
The results in [9] show that w is a linear combination of 
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and that solving Eq. (4) is equivalent to find 
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The offset b and the loss parameter ρ can be found using 

( )( ) 1,      when 0,i i iy w X b
L
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A key requirement in BCI applications consists in the 
regular adaptation of the classifier to the possible changes 
in user’s mental activities [2]. As only the SVs determine 
the classification parameters (w and b) we can easily up-
date them by including the old SVs in a new training set. 

 
4. BCI IMPLEMENTATION 

 
Three types of MAs were used: imagination of left (MA1) 
or right (MA2) index finger movements and a baseline 
(MA3) where the subject can imagine anything except 
MA1 or MA2. The goal was to allow the user to control 

the movement, to the left or to the right, of a cursor on a 
computer screen. 
Our BCI implementation can be explained in terms of 
three states: the neutral state in which the BCI whether 
recognizes MA3 or cannot recognize any known MA, the 
active state in which the BCI recognizes MA1 or MA2 
and answers with an action and a transition state between 
the above mentioned states. 
State changes occur at a rate defined by the BCI period, 
and are determined by the activation of two Boolean  
variables: detection (B1) and confirmation (B2). B1 is true 
when MA1 or MA2 are recognized and B2 is true when 
B1 is true and if the M previously recognized MAs are 
equal to the currently recognized MA (Figure 3). The  
parameter M (latency time) depend on the rate of false 
positive recognitions, although it would not be larger than 
two seconds. 
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Figure 3. BCI states. 

The set of BCI parameters are summarized in Table 1. 
 

BCI period 
EEG trial duration 
Classification parameters 
Latency time 

Table 1. BCI parameters. 

The optimal values for these parameters are determined 
during several training sessions and continuously updated. 
 

5. RESULTS AND DISCUSSIONS 
 
Two male right-handed subjects participated in six  
twenty-minute sessions. The signals from electrodes: Fp1, 
Fp2, C1, C3, C4, C2, P3 and P4 of the 10-20 International 
System [1] were measured. 
The labeled EEG trials recorded in the first training  
session were used for estimating a preliminary set of  
classification parameters. In the next training sessions  



continuous feedback was provided to the subjects,  
indicating if the MA they were requested to perform was  
successfully recognized or not. The feedback of a session 
was provided using the updated classification parameters 
of the precedent session. 
The first five sessions were devoted to training. In the last 
session, the subjects were asked to move the cursor in a 
2D maze so as to reach one of the exit doors. 
Each session was preceded by a short calibration period in 
which the BCI was adjusted to the subject. In the  
meantime, the subject could see a representation of his 
EEG signals mapped onto a 2D or 3D scene in order to 
get familiarized with the system.  
After the first training session, the BCI period and the 
EEG trial duration were chosen among three possible  
alternatives depending on the classification error  
(Table 2). According to these results the BCI period and 
the EEG trial duration were set to 250 and 500  
milliseconds respectively. 
 

 0.12s/0.25s 0.25s/0.5s 0.5s/1s 
Subject 1 52 % 42 % 46 % 
Subject 2 48 % 38 % 45 % 

Table 2. Classification error rate in the first training session 
for different values of BCI period/EEG trial duration 

In Figure 4, we report the true and false positives rates of 
the last four sessions of training. As it can be observed the 
true positives rate increased over the sessions for both 
subjects reaching 86 % for subject 2.  
The false positive rate is not larger than 33 % for subject 1 
and 30 % for subject 2. As this result is not good enough 
we set the latency time to one BCI period (i.e. 250  
milliseconds), so that the system waits a confirmation of 
one EEG trial before executing any action. This parameter 
can reach the suitable value of zero if the user is able to 
decrease his false positives rate below 10 %. Thus, we can 
reward the user if he improves his ability to use the BCI. 
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Figure 4. Evolution of the false positives vs. true positives 

rate for both subjects. 

6. CONCLUSIONS 
In this paper we presented a method for classifying EEG 
trials, based on the information content of their  
time-frequency-space representation. The dimensionality 
of this representation that makes it difficult to manipulate 
[10] was avoided using SVM concepts and a kernel that 
can be calculated in the time domain. We also proposed a 
method for easy updating of the classifier parameters by 
adding the old support vectors to the next training set. 
Finally, we introduced a BCI implementation that can be 
adapted to the user performance and brain dynamics. 
As the immediate goal of our research is to provide  
control of a cursor in a 2D environment, we need to  
explore the recognition of at least five MAs. Since part of 
the success of a BCI depends on the user himself the  
feedback strategy needs to be carefully designed by taking 
into account physiological and psychological aspects. 
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