
 1

Java Coding Standard 
 

 

 

 

 

Arnaud Blandin [blandin@intalio.com] 

 

                                                                 Contributions 

Assaf Arkin [arkin@intalio.com] 

Keith Visco [kvisco@intalio.com] 

 

Revision: October 18, 2000 

 

 

 

 



 2

  

JAVA CODING STANDARDJAVA CODING STANDARDJAVA CODING STANDARDJAVA CODING STANDARD ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 1111 

CONTRIBUTIONS: ....................................................................................................................................................... 1 
NOTE TO THE READER................................................................................................................................................. 3 

1 INTRODUCTION AND C1 INTRODUCTION AND C1 INTRODUCTION AND C1 INTRODUCTION AND CONTENTSONTENTSONTENTSONTENTS ............................................................................................................................................................................................................................................................................................................................................................................................................................ 4444 

1.1 Introduction ............................................................................................................................................... 4 
1.2 Contents....................................................................................................................................................... 4 

2 STRUCTURE AND DOCU2 STRUCTURE AND DOCU2 STRUCTURE AND DOCU2 STRUCTURE AND DOCUMENTATIONMENTATIONMENTATIONMENTATION.................................................................................................................................................................................................................................................................................................................................................................................................... 5555 

2.1 Packages ...................................................................................................................................................... 5 
2.2 Program Files ............................................................................................................................................. 5 
2.3 Classes and Interfaces.............................................................................................................................. 7 
Declaration order: ........................................................................................................................................... 8 
2.4 Class Variables ........................................................................................................................................... 8 
2.5 Methods ....................................................................................................................................................... 9 
2.6 Local declarations, statements, and expressions ............................................................................ 9 
2.7 Layout......................................................................................................................................................... 10 
2.8 Blank Spaces ............................................................................................................................................. 12 
2.9 Wrapping Lines ....................................................................................................................................... 13 

3 NAMING CONVENTIO3 NAMING CONVENTIO3 NAMING CONVENTIO3 NAMING CONVENTIONSNSNSNS....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................15151515 

4 RECOMMENDATIONS4 RECOMMENDATIONS4 RECOMMENDATIONS4 RECOMMENDATIONS ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................17171717 

4.1 Classes......................................................................................................................................................... 17 
4.2 Variables.................................................................................................................................................... 18 
4.3 Methods ..................................................................................................................................................... 20 
4.4 Technical points ...................................................................................................................................... 22 
4.5 Common Sense......................................................................................................................................... 24 

5 CODE EXAMPLES5 CODE EXAMPLES5 CODE EXAMPLES5 CODE EXAMPLES ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................26262626 

5.1 Example.java............................................................................................................................................ 26 
5.2 package.html............................................................................................................................................ 30 

6 RELATED DOCUMENTS6 RELATED DOCUMENTS6 RELATED DOCUMENTS6 RELATED DOCUMENTS ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................32323232 

APPENDIX A : DOCUMENAPPENDIX A : DOCUMENAPPENDIX A : DOCUMENAPPENDIX A : DOCUMENT HISTORYT HISTORYT HISTORYT HISTORY ............................................................................................................................................................................................................................................................................................................................................................................................................33333333 

    



 3

Note to the reader  
 

 

Before complaining about this document, please read the following: 

 

Whenever possible, use the conventions from this document; do not reinvent them. Keep in 

mind that projects (whether it is a software project or not) are not developed in a vacuum and 

organizations do not work in a vacuum either.  

 

A standard is never perfect and can not fit all situations: it is be possible that one day you find 

yourself in a situation where none of these conventions could be applied. Thus, you might 

want to break the conventions to fit your particular situation; if you do so, document itdocument itdocument itdocument it.  

If you go against a standard, you must document why you broke it and the potential 

implications of breaking it. 

 

The bottom line is that you need to understand each standard and understand fully when to 

apply it (and also when not to apply it). 

 

To conclude please note that some parts of this document are freely adapted or quoted from 

Doug Lea’s Java Coding Standard. 



 4

1 Introduction and Contents 

    

1.1  Introduction 

Code conventions are important to programmers for a number of reasons:  

• 80% of the lifetime cost of a piece of software goes to maintenance.  

• Hardly any software is maintained for its whole life by the original author.  

• Code conventions improve the readability of the software, allowing engineers to 

understand new code more quickly and thoroughly.  

• If you ship your source code as a product, you need to make sure it is as well packaged 

and clean as any other product you create.  

1.2 Contents 
 

Structure and Documentation  
Standard ways to write and document constructions.  

 

Naming conventions  
Standard ways to name identifiers (class names, method names, variable names, etc).  

 

Recommendations  
Some rules of thumb that tend to avoid common errors and development obstacles. You 

can use these guidelines to make your own design and coding checklists to be used in 

retrospective code clean-up or when classes need to be used in new contexts or placed 

in reusable libraries.  

But please do not forget to follow the last one. 

 

Code Examples 
 ‘Example.java’ uses the code conventions of this document. ‘Package.html’  

 outlines the purpose of a package. 

  

Related Documents  
References to other style guidelines etc.  

 



 5

2 Structure and Documentation 

    

2.1 Packages 
 

Create a new java package for each self-contained project or group of related functionality. 

Create and use directories in accord with java package conventions.  

Consider writing a package.html file in each directory briefly outlining the purpose and 

structure of the package.  

2.2 Program Files 
 

Place each class in a separate file. This applies even to non-public classes (which are allowed by 

the Java compiler to be placed in the same file as the main class using them) except in the case 

of one-shot usages where the non-public class cannot conceivably be used outside of its 

context.  

Begin each file with a comment including:  

1. The copyright. (http://www.exolab.org/license.html) 

2. The ‘$Id$’ tag 

3. A history table listing dates, authors, and summaries of changes.  

4. If the file contains more than one class, list the classes, along with a very brief 

description of each.  

5. If the file introduces a principal entry point for a package, briefly describe the 

rationale for constructing the package.  

Immediately follow each file header with:  

• The package name  

• Empty line 

• The import list.  

 

 

 

 



 6

Example:  

/**

* Redistribution and use of this software and associated

* documentation

* ("Software"), with or without modification, are permitted provided

* that the following conditions are met:

*

* 1. Redistributions of source code must retain copyright

* statements and notices. Redistributions must also contain a

* copy of this document.

*

* 2. Redistributions in binary form must reproduce the

* above copyright notice, this list of conditions and the

* following disclaimer in the documentation and/or other

* materials provided with the distribution.

*

* 3. The name "Exolab" must not be used to endorse or promote

* products derived from this Software without prior written

* permission of Exoffice Technologies. For written permission,

* please contact info@exolab.org.

*

* 4. Products derived from this Software may not be called "Exolab"

* nor may "Exolab" appear in their names without prior written

* permission of Exoffice Technologies. Exolab is a registered

* trademark of Exoffice Technologies.

*

* 5. Due credit should be given to the Exolab Project

* (http://www.exolab.org/).

*

* THIS SOFTWARE IS PROVIDED BY EXOFFICE TECHNOLOGIES AND CONTRIBUTORS

* ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT

* NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

* EXOFFICE TECHNOLOGIES OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*



 7

* Copyright 1999 (C) Exoffice Technologies Inc. All Rights Reserved.

* $Id: Example.java ,v 1.1 2000/08/03 22:11:13 authorname Exp $

* Date Author Changes

* Aug 2 2000 author-name Created

* Aug 2 2000 author-name Added new methods

*/

package demo;

import java.util.NoSuchElementException;

    

2.3 Classes and Interfaces 
Write all /** ... */ comments using javadoc conventions.  

Preface each class with a /** ... */ comment describing the purpose of the class, 

guaranteed invariants, usage instructions, and/or usage examples. Also include any reminders 

or disclaimers about required or desired improvements. Use HTML format, with added tags:  

• @author <a href=”mailto:e-mail address” >author-name </a> 

• @version $Revision $  $Date$ (CVS will expand automatically) 

• @see string  

• @see URL  

• @see classname#methodname  

 

 

 

Example:  

/**

* A class representing a window on the screen.

* For example:

* <pre>

* Window win = new Window(parent);

* win.show();

* </pre>

*



 8

*

* @author <a href=”mailto:clown@exolab.org”>Bozo the Clown</a>

* @version $Revision: 1.4 $ $Date: 2000/02/29 22:11:13 $

* @see awt.BaseWindow

* @see awt.Button

*/

class Window extends BaseWindow {

...

}

 

    

Declaration order: 
 

• member variables 

• class constructors 

• public methods 

• protected and private methods 

• inner classes when necessary (see 2.2) 

    

2.4 Class Variables 
First declare public variables, then protected ones , then package level ones and then 

the private ones. 

Use javadoc conventions to describe nature, purpose, constraints, and usage of instances 

variables and static variables. Use HTML format, with added tags:  

• @see string  

• @see URL  

• @see classname#methodname  

Example:  

/**

* The current number of elements.

* must be non-negative, and less than or equal to capacity.

*/

protected int _count; 



 9

2.5 Methods 
Use javadoc conventions to describe nature, purpose, preconditions, effects, algorithmic notes, 

usage instructions, reminders, etc. Use HTML format, with added tags:  

• @param paramName description.  

• @return description of return value  

• @throws exceptionName description (why and when) 

• @see string  

• @see URL  

• @see classname#methodname  

Be as precise as reasonably possible in documenting effects.  

    

2.6 Local declarations, statements, and expressions 
Use /* ... */ comments to describe algorithmic details, notes, and related documentation 

that spans more than a few code statements.  

You can also use // (see below). 

Do not forget to document whywhywhywhy something is being done, not just what. With some time every 

one can figure out what your code is doing but can hardly say why you choose to do that. 

Example:  

/*

* Strategy:

* 1. Find the node

* 2. Clone it

* 3. Ask inserter to add clone

* 4. If successful, delete node

*/

Use running // comments to clarify non-obvious code. But don't bother adding such comments 

to obvious code; instead try to make code obvious!  

Example:  

int index = -1; // -1 serves as flag meaning the index isn't valid 

 

Or, often better:  

 

static final int INVALID = -1;

int index = INVALID;



 10 

 

 

    

2.7 Layout 
 

• Indentation  
 

  Avoid the ‘Tab’ key; four spaces should be used as the unit of indentation. 

 Note: most editors have an option to convert tabs to spaces. 

 

• Line Length 
    

Lines up to 70 characters are easier to read and print. 

Note: this is only a recommendation, lines can be longer, just don't abuse it. 

           So think about it when writing comments. 

 

• Left and Right braces 
 

At the beginning of classes, the left-brace (‘{‘) could be placed at the beginning of a new 

line or at the end of the naming line.  

 For internal code, it should be put at the end of the line. 

 

Right-brace (‘}’) starts a line by itself intended to match its corresponding opening 

statement, except when it is a null statement the ‘}’ should appear immediately after 

the ‘{‘. 

Try to comment a right-brace that closes a 10-line or more method. 

 

• Put the ‘extend’ line under the ‘naming’ line if the ‘extend line is too long. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

Examples: 

class Example1

extends Class1,Class2,Class3,Class4,Class5

{

if (condition) {

...

} else {

...

}

} //--Example1

 

 

 

 

class Example2 extends Class1 {

...

if (condition) {

...

}

else {

...

}

} //--Example2

• A blank line should separate methods. 

 

• Declare all class variables at the top of the class. 

 

• Declare all method variables at the top of the method (except for loop initializers or 

local loop variables) 

 

 



 12 

 

2.8 Blank Spaces  

Blank spaces should be used in the following circumstances:  

• A keyword followed by a parenthesis should be separated by a space.  

Example:  

while (true) {

...

}

Note: a blank space should not be used between a method name and its opening 

parenthesis. This helps to distinguish keywords from method calls.  

• A blank space should appear after commas in parenthesis.  

Example: 

public void foo(int a, int b, string c) {

}

for (expr1; expr2; expr3) {

...

}

 

• All binary operators except ‘.’ should be separated from their operands by spaces. Blank 

spaces should never separate unary operators such as unary minus, increment ("++"), 

and decrement ("--") from their operands.  

Examples:  

a += c + d;

a = (a + b) / (c * d);

while (condition) {

n++;

}

printSize("size is " + foo + "\n");



 13 

• Casts shouldshouldshouldshould be followed by a blank space (this is only a recommendation). 

Examples:  

myMethod((byte) aNum, (Object) x);

myMethod((int)aInt, (Object)x);

myMethod((int) (cp + 5), ((int)(i + 3)) + 1);                              

    
• Concerning the blank space in the naming line of a method, do as you want: 

 

Examples: 

  public foo(int i, byte b){

}

public foo(int i, byte b) {

}

public foo (int i, byte b){

}

public foo (int i, byte b) {

}

2.9 Wrapping Lines 
 

When an expression does not fit on a single line, break it in order to make your code as readable 

as possible. 

Here are some simple principles you can follow: 

• Break after a comma  

• Break before an operator 

• Prefer high-level breaks to lower-level breaks 

• Align the new line with the beginning of the expression at the same level on the 

previous line. 

Examples: 

SomeMethod(longExpression1,longExpression2,

longExpression3, longExpression4,

longExpression5);

var = someMethod1(longExpression1,

someMethod2(longExpression2,

longExpression3));

 



 14 

 

 

Following are two examples of breaking an arithmetic expression. The first is preferred, since 

the break occurs outside the parenthesized expression, which is at a higher level.  

longName1 = longName2 * (longName3 + longName4 - longName5)

+ 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4

- longName5) + 4 * longname6; //AVOID



 15 

3 Naming Conventions 
 

packages packages packages packages     

lowercase  

Consider using the recommended domain-based conventions described in the Java 

Language Specification, page 107 as prefixes.   

 

files files files files     

The java compiler enforces the convention that file names have the same base name as 

the public class they define.  

 

    

classclassclassclasseeees s s s     

CapitalizedWithInternalWordsAlsoCapitalized  

    

    

classclassclassclass (When necessary to distinguish from similarly named interfaces)::::  

ClassNameEndsWithImpl OR  

ClassNameEndsWithObject  

    

    

exception class exception class exception class exception class     

ClassNameEndsWithException.  

    

    

constantsconstantsconstantsconstants (finals)  

UPPERCASE_WITH_UNDERSCORE_IF_MORE_THAN_ONE_WORD

    

    

private or protectedprivate or protectedprivate or protectedprivate or protected    

_firstWordLowerCaseWithUnderscoreAndInternalWordsCapitalized  

    

    

local variableslocal variableslocal variableslocal variables    

firstWordLowerCaseButInternalWordsCapitalized  

    

    

methodsmethodsmethodsmethods    

firstWordLowerCaseButInternalWordsCapitalized()  

    

    

    

http://www.javasoft.com/doc/language_specification/index.html
http://www.javasoft.com/doc/language_specification/index.html


 16 

factory method for objects of type X:factory method for objects of type X:factory method for objects of type X:factory method for objects of type X:    

newX  OR 

createX

 

converter method that returns objects of type Xconverter method that returns objects of type Xconverter method that returns objects of type Xconverter method that returns objects of type X    

toX  

 

method tmethod tmethod tmethod that reports an attribute x of type X hat reports an attribute x of type X hat reports an attribute x of type X hat reports an attribute x of type X     

X getX()  

    

method that changes an attribute x of type X method that changes an attribute x of type X method that changes an attribute x of type X method that changes an attribute x of type X     

void setX(X value)  



 17 

 

4 Recommendations 
 

4.1 Classes 
 

 

• When sensible, consider writing a main for the principal class in each program file. The 

main should provide a simple unit test or demo.  

 

Rationale: Forms a basis for testing. Also provides usage examples.  

 

• For self-standing application programs, the class with main should be separate from 

those containing normal classes.  

 

Rationale: Hard-wiring an application program in one of its component class files 

hinders reuse.  

 

• Consider writing source code templates for the most common kinds of class files you 

create: Applets, library classes, application classes.  

 

Rationale: Simplifies conformance to coding standards.  

 

• If you can conceive of someone else implementing a class's functionality differently, 

define an interface, not an abstract class. Generally, use abstract classes only when 

they are ``partially abstract''; i.e., they implement some functionality that must be 

shared across all subclasses.  

 

Rationale: Interfaces are more flexible than abstract classes. They support multiple 

inheritances and can be used as `mixins' in otherwise unrelated classes.  

 

• Consider whether any class should implement Cloneable and/or Serializable.  

 

Rationale: These are ``magic'' interfaces in Java, that automatically add possibly-

needed functionality only if so requested.  

 

 

 

 

 

 

 



 18 

• Declare a class as final only if it is a subclass or implementation of a class or interface 

declaring all of its non-implementation-specific methods. (And similarly for final 

methods).  

 

Rationale: Making a class final means that no one ever has a chance to reimplement 

functionality. Defining it instead to be a subclass of a base that is not final means that 

someone at least gets a chance to subclass the base with an alternate implementation. 

Which will essentially always happen in the long run.  

 

• Whenever reasonable, define a default (no-argument) constructor so objects can be 

created via Class.newInstance().  

 

Rationale: This allows classes of types unknown at compile time to be  

dynamically loaded and instantiated (as is done for example when loading unknown 

Applets from html pages).  

 

4.2 Variables 
 

• Never declare instance variables as public(that does not include constant variables 

(final static)).  

 

Rationale: The standard OO reasons. Making variables public gives up control over 

internal class structure. Also, methods cannot assume that variables have valid values.  

 

• Minimize reliance on implicit initializers for instance variables (such as the fact that 

reference variables are initialized to null).  

 

Rationale: Minimizes initialization errors.  

 

• Minimize statics (except for static final constants).  

 

Rationale: Static variables act like globals in non-OO languages. They make methods 

more context-dependent, hide possible side-effects, sometimes present synchronized 

access problems. and are the source of fragile, non-extensible constructions. Also, 

neither static variables nor methods are overridable in any useful sense in subclasses.  

 

 

 

 

 

 

 



 19 

• Generally prefer double to float and  use int for compatibility with standard Java 

constructs and classes (for the major example, array indexing, and all of the things this 

implies, for example about maximum sizes of arrays, etc).  

 

Rationale: fewer precision problems occur with doubles than floats. On the other 

hand, because of limitations in Java atomicity guarantees, use of 

double(respectively int) must be synchronized in cases where use of 

floats(long) sometimes would not be.  

 

• Use final and/or comment conventions to indicate whether instance variables that 

never have their values changed after construction are intended to be constant 

(immutable) for the lifetime of the object (versus those that just so happen not to get 

assigned in a class, but could in a subclass).  

 

Rationale: Access to immutable instance variables generally does not require any 

synchronization control, but others generally do.  

 

• Avoid unnecessary instance variable access and update methods. Write get/set-style 

methods only when they are intrinsic aspects of functionality. Always write these 

methods when coding an interface.  

 

Rationale: Most instance variables in most classes must maintain values that are 

dependent on those of other instance variables. Allowing them to be read or written in 

isolation makes it harder to ensure that consistent sets of values are always used.  

 

• Minimize direct internal access to instance variables inside methods. Use protected 

access and update methods instead (or sometimes public ones if they exist anyway).  

 

Rationale: While inconvenient and sometimes overkill, this allows you to vary 

synchronization and notification policies associated with variable access and change in 

the class and/or its subclasses, which is otherwise a serious impediment to 

extensibility in concurrent OO programming. (Note: The naming conventions for 

instance variables serve as an annoying reminder of such issues.)  

 

• Avoid giving a variable the same name as one in a superclass.  

 

Rationale: This is usually an error. If not, explain the intent.  

 

• Declare a very local variable (such as loop variable or array index) only at that point in 

the code where you know what its initial value should be.  

 

Rationale: Minimizes bad assumptions about values of variables.  

 



 20 

• Declare and initialize a new local variable rather than reusing (reassigning) an existing 

one whose value happens to no longer be used at that program point.  

 

Rationale: Minimizes bad assumptions about values of variables.  

 

• Assign null to any reference variable that is no longer being used. (This includes, 

especially, elements of arrays.)  

 

Rationale: Enables garbage collection.  

    

4.3 Methods 
 

• Avoid cascading method calls 

 

Rationale: While convenient, the resulting method cascades 

(a.meth1().meth2().meth3()) can be the sources of synchronization problems and 

other failed expectations about the states of target objects.  

 

• Avoid overloading methods on argument type. (Overriding on arity is OK, as in having 

a one-argument version versus a two-argument version). If you need to specialize 

behavior according to the class of an argument, consider instead choosing a general 

type for the nominal argument type (often Object) and using conditionals checking 

instanceof. Alternatives include techniques such as double-dispatching, or often 

best, reformulating methods (and/or those of their arguments) to remove dependence 

on exact argument type.  However if overload is still convenient, just give the type in 

the function argument 

Example 

 bind(object) 

 bindInt(int) 

 bindString(string) 

 

Rationale: Java method resolution is static; based on the listed types, not the actual 

types of argument. This is compounded in the case of non-Object types with coercion 

charts. In both cases, most programmers have not committed the matching rules to 

memory. The results can be counterintuitive; thus the source of subtle errors. For 

example, try to predict the output of this. Then compile and run.  



 21 

class Classifier{

String identify(Object x) { return "object"; }

String identify(Integer x) { return "integer"; }

} //class Classifier

class Relay {

String relay(Object obj) {

return (new Classifier()).identify(obj);

}

} //class Relay

public class App{

public static void main(String[] args) {

Relay relayer = new Relay();

Integer i = new Integer(17);

System.out.println(relayer.relay(i));

}

} //class App

      

 

• Declare when your class or method is thread-safe.  

 

Rationale: it helps you to master what you are coding. 

 

• Prefer synchronized methods to synchronized blocks.  

 

Rationale: Better encapsulation; less prone to subclassing snags; can be more efficient.  

 

• Always document the fact that a method invokes wait  

 

Rationale: Clients may need to take special actions to avoid nested monitor calls. 

 

 

 

 



 22 

• Prefer abstract methods in base classes to those with default no-op implementations. 

(Also, if there is a common default implementation, consider instead writing it as a 

protected method so that subclass authors can just write a one-line implementation 

to call the default.)  

 

Rationale: The Java compiler will force subclass authors to implement abstract 

methods, avoiding problems occurring when they forget to do so but should have.  

 

4.4 Technical points 
 

• A constructor or method must explicitly declare all unchecked (i.e runtime) exceptions 

it expects to throw. The caller can use this documentation to provide the proper 

arguments. 

 

Rationale: Constructors and methods may place restrictions on arguments passed to 

them or the order in which they are being called in order to preserve consistency (often 

they call throw IllegalArgumentException). Documentation allows the caller to avoid 

runtime exceptions. 

 

• Do not use unchecked exceptions instead of code that checks for an exceptional 

condition. 

 

Rationale: Comparing an index with the length of an array is faster to execute and 

better documented than catching ArrayOutOfBoundsException 

 

• If you override Object.equals, also override Object.hashCode, and vice-versa.  

 

Rationale: Essentially all containers and other utilities that group or compare objects in 

ways depending on equality rely on hashcodes to indicate possible equality.  

 

• Override readObject and writeObject if a Serializable class relies on any state 

that could differ across processes, including, in particular, hashCodes and transient 

fields.  

 

Rationale: Otherwise, objects of the class will not transport properly.  

 

• If you think that clone() may be called in a class you write, then explicitly define it (and 

declare the class as implements Cloneable).  

 

Rationale: The default shallow-copy version of clone might not do what you want.  

 



 23 

• Always use method equals instead of operator == when comparing objects. In 

particular, do not use == to compare Strings (unless comparing memory locations)  

 

Rationale: If someone defined an equals method to compare objects, then they want 

you to use it. Otherwise, the default implementation of Object.equals is just to use 

==.  

 

• Always embed wait statements in while loops that re-wait if the condition being 

waited for does not hold.  

 

Rationale: When a wait wakes up, it does not know if the condition it is waiting for is 

true or not.  

 

• Use notifyAll instead of notify or resume when you do not know exactly the 
number of threads which are waiting for something.  

 

Rationale: Classes that use only notify can normally only support at most one kind of 

wait condition across all methods in the class and all possible subclasses. And 

unguarded suspends/resumes are even more fragile.  

 

• Embed casts in conditionals. For example:  

C cx = null;

if (x instanceof C) cx = (C) x;

else evasiveAction();

Rationale: This forces you to consider what to do if the object is not an instance 
of the intended class rather than just generating a ClassCastException.

• When throwing an exception, do not  refer to the name of the method which has 

thrown it but specify instead some explanatory text 

 

Rationale: the name of the method could be given by the stack trace and good 

exception messages are always useful. 

 

• Document fragile constructions used solely for the sake of optimization.  

 

Rationale: See Jonathan Hardwick's Java Optimization pages (see Chapter 6).  

 

 

 

 

 



 24 

4.5 Common Sense 
 

• Always avoid assignments (“=”) inside if and while conditions.  

 

Rationale: There are almost always typos. The java compiler catches cases where (“=”) 

should have been (“==”) except when the variable is a boolean.  

 

• Document cases where the return value of a called method is ignored.  

 

Rationale: These are typically errors. If it is by intention, make the intent clear. A 

simple way to do this is:  

int unused = obj.methodReturningInt(args);

 

• Ensure that there is ultimately a catch for all unchecked exceptions that can be dealt 

with.  

 

Rationale: Java allows you to not bother declaring or catching some common easily-

handlable exceptions, for example java.util.NoSuchElementException. Declare 

and catch them anyway.  

 

• Minimize * forms of import. Be precise about what you are importing. Check that all 

declared imports are actually used.  

 

Rationale: Otherwise readers of your code will have a hard time understanding its 

context and dependencies. 

 

• Prefer declaring arrays as Type[] arrayName rather than Type arrayName[].  

 

Rationale: The second form is just for incorrigible C programmers.  

 

• Ensure that non-private static variables have sensible values even if no instances 

are ever created. (Similarly ensure that static methods can be executed sensibly.) Use 

static intitializers (static { ... } ) if necessary.  

 

Rationale: You cannot assume that non-private statics will be accessed only after 



 25 

And above all, 

 

• Do not require 100% conformance to rules of thumb such as the ones listed here!  

 

Rationale: Java allows you program in ways that do not conform to these rules for good 

reason. Sometimes they provide the only reasonable ways to implement things. And 

some of these rules make programs less efficient than they might otherwise be, so are 

meant to be conscientiously broken when performance is an issue.  



 26 

 

5 Code Examples 

    

5.1 Example.java 
 

/**

* Copyright 2000 © Exolab Group Inc. All Rights Reserved

* $Id: Example.java ,v 1.1 2000/08/03 22:11:13 authorname Exp $

* File: Example.java

* Date Author Changes

* Aug 2 2000 author-name Created

* Aug 2 2000 author-name Added new classes

*/

package com.intalio.n3.xml;

import java.io.Serializable;

import java.net.URL;

import java.net.MalformedURLException;

/**

*Hold the URI reference and reference the base URI

*or the namespace in which the URI is defined. It

*allows URI references to be passed between application

*components as well as encoded into XML documents.

*

*@author <a href=e-mail address> author name </a>

*@version $Revision$

*@see URNNamespace

*/

public class URIReference implements Serializable{

/**

* Holds the identifier for this URI

*/

private String _identifier;



 27 

/**

* the URI reference to which this reference is relative

*/

private URIReference _baseURI;

/**

* The URNNamespace for this URI

*

*@see URNNamespace

*/

private URNNamespace _namespace;

/**

* Constructs a new URI reference from the given URL

*

* @param url The URL

*/

public URIReference(String url) {

_identifier = url;

}

/**

* Returns the resource identifier as a string. The return

* Is either the URL (absolute or relative) or the URN

* identifier (namespace specific string).

*

* @return The resource identifier as a string

*/

public String getIdentifier() {

return _identifier;

}

/**

* Returns true if both URI references are equal.

* Two URI references are equals if they have the same

* identifier, the base URI is null or equal, and the

* URN namespace is null or equal

*/

public boolean equals(Object other) {

...



 28 

while (condition) {

...

}

do {

...

} while (condition);

} //equals

public int hashCode() {

...

switch (condition) {

case ABC:

if (condition) {

...

} else {

...

}

break;

case DEF:

for (initialization; condition; update) {

statements;

}

break;

case XYZ:

{

...

}

break;

default:

statements;

break;

} //switch



 29 

try {

statements;

} catch (ExceptionClass e) {

statements;

} finally {

statements;

}

}//hashCode

}//-- Example

 



 30 

5.2 package.html 

<html> 

  <body> 

    <p><b>The Java Data Objects API</b></p> 

 

    <dl> 

      <dt><b>Version: </b></dt><dd>$Revision: 1.7 $ $Date:  

             2000/05/13 00:45:01 $</dd> 

 

      <dt><b>Author:</b></dt>      

          <dd><ahref="mailto:arkin@exoffice.com">   

               Assaf Arkin</a></dd> 

    </dl> 

 

<p>The class {@link org.exolab.castor.jdo.JDO}     

   provides the Castor JDO engine used for obtaining 

   database connection. A JDO object is constructed with the 

   name of a database and other properties, and <tt> 

   getDatabase}</tt> is used to obtain a new database connection.</p> 

 

<p>The class {@link org.exolab.castor.jdo.Database}    

   represents an open connection to the database that  

   can be used to perform transactional operations on  

   the database.</p> 

 

<p>Database operations can only be performed in the     

   context of a transaction. Client  applications     

   should begin and commit a transaction  using the   

   <tt>begin</tt> and <tt>commit</tt> methods. Server      

   applications should use implicit transaction demarcation   

   by the container or explicit transaction demarcation   

   using <tt>javax.transaction.UserTransaction</tt>.</p> 

 

 <p>All objects queried and created during a transaction     

    are persistent. Changes to persistent 

    objects will be stored in the database when the   

    transaction commits. Changes will not be 

    stored if the transaction is rolled back or fails to    

    commit.</p> 

 

 <p>The class {@link org.exolab.castor.jdo.OQLQuery} is     



 31 

    obtained from the database and used to 

    construct and execute a query on that database. All   

    query operations are bound to the database 

    transaction.</p> 

 

  <p>The following example opens a connection to the  

   database 'mydb' configured from the 

     configuration file '<tt>database.xml</tt>', retrieves   

     all the products in the specified 

     groups and marks them down with a 25% discount and on-    

     sale status.</p> 

 

 <pre> 

  JDO          jdo; 

  Database     db; 

  Query        oql; 

  QueryResults results; 

 

<font color="red">// Define a new database source</font> 

jdo = new JDO( "mydb" ); 

jdo.setConfiguration( "database.xml" ); 

 

<font color="red">// Open a new database, begin a transaction</font> 

db = jdo.getDatabase(); 

db.begin(); 

 

<font color="red">// Select all the products in a given group</font> 

oql = db.getQuery( "SELECT p FROM Product p WHERE group=$" ); 

oql.bind( groupId ); 

results = oql.execute(); 

while ( results.hasMore() ) { 

<font color="red">// A 25% mark down for each    product and mark as sale</font> 

  prod = (Product) results.next(); 

  prod.markDown( 0.25 ); 

  prod.setOnSale( true ); 

     } 

<font color="red">// Commit all changes, close the database</font> 

db.commit(); 

db.close(); 

 </pre></p> 

 

  </body> 

</html> 



 32 

6 Related Documents 
 

For some others standards and style guides, see: 

 

• The JavaDoc Conventions: 

http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html 

• Javasoft Coding Standard (the present document uses some sections of it) 

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html 

• joodcs standards, with links to a Coding Standards Repository for various languages.  

      http://www.meurrens.org/ip-Links/java/joodcs/ 

• Doug Lea’s Java Coding Standard (the base of this document) 

      http://gee.cs.oswego.edu/dl/html/javaCodingStd.html 

• The AmbySoft Inc. Coding Standard for Java 

             http://www.AmbySoft.com/javaCodingStandards.pdf 

• Jonathan Hardwick's Java Optimization pages 

http://www.cs.cmu.edu/~jch/java/optimization.html

• Ten Java maxims From Bruce Eckel 

        http://www.java-zone.com/free/articles/top10/ 

    

http://www.meurrens.org/ip-Links/java/joodcs/
http://gee.cs.oswego.edu/dl/html/javaCodingStd.html


 33 

Appendix A : Document History 
 

10/18/2000 Added the ‘note to the reader’section 

Modified the section 2.4 (variables order) 

Added the wrapping lines section (section 2.9) 

Modified the section 6 (new references) 

9/14/2000 Added a recommendation (section 4.4) 

Modified the constant naming convention 

9/8/2000 Added document history  

9/1/2000 Added new examples and change section 2.8 

8/29/2000 Bones of contention ‘solved’ by a vote  

New section : 2.8 blank spaces 

8/14/2000 Creation of the document 

 

 

 

 

 

 

 

 


	JAVA CODING STANDARD	1
	Note to the reader

	1 Introduction and Contents
	
	Introduction
	1.2 Contents
	Structure and Documentation
	Naming conventions
	Recommendations
	Code Examples
	Related Documents



	2 Structure and Documentation
	
	2.1 Packages
	2.2 Program Files
	2.3 Classes and Interfaces
	Declaration order:
	2.4 Class Variables
	2.5 Methods
	2.6 Local declarations, statements, and expressions
	2.7 Layout
	Indentation
	Line Length
	Left and Right braces

	2.8 Blank Spaces
	2.9 Wrapping Lines


	3 Naming Conventions
	4 Recommendations
	
	4.1 Classes
	4.2 Variables
	4.3 Methods
	
	Example


	4.4 Technical points
	4.5 Common Sense


	5 Code Examples
	
	5.1 Example.java
	5.2 package.html


	6 Related Documents
	Appendix A : Document History

