
Comparing ODF and OOXML

Treating the extensibility, modularization,
expressivity, packaging, performance, reuse of

standards, programmability, ease of use,
application/OS neutrality of the formats, along

with other whims of the author

Rob Weir
IBM
robert_weir@us.ibm.com
http://www.robweir.com/blog

OpenOffice.org Conference
Lugdunum, Gaul
Ides of September, 2006

mailto:robert_weir@us.ibm.com

The age of proprietary formats

● Created by a single vendor
● Controlled a single vendor
● Evolved by a single vendor

Rich Text Format

“The RTF standard provides a format for text and graphics
interchange that can be used with different output devices,
operating environments, and operating systems. RTF uses the
ANSI, PC-8, Macintosh, or IBM PC character set to control
the representation and formatting of a document, both on the
screen and in print. With the RTF standard, you can transfer
documents created under different operating systems and
with different software applications among those operating
systems and applications”

From RTF 1.0 specification (1987)

We once had documentation
● Microsoft Excel Developers Handbook, Microsoft Press, 1997

● MSDN CD's had the Office binary file format documentation
● MSDN web site had the Office binary file format documentation
● Visual C++ came with the Office binary file format documentation

But at some point, the updates stopped coming,
and the documentation was pulled.

What happened ???

The door is shut...
“...you may use documentation identified in the

MSDN Library portion of the SOFTWARE
PRODUCT as the file format specification for
Microsoft Word, Microsoft Excel, Microsoft
Access, and/or Microsoft PowerPoint ("File
Format Documentation") solely in connection
with your development of software product(s)
that operate in conjunction with Windows or
Windows NT that are not general purpose word
processing, spreadsheet, or database management
software products or an integrated work or
product suite whose components include one or
more general purpose word processing,
spreadsheet, or database management software
products.”

MSDN Licence, 1998

...and locked...
By 1999 the format documentation is no
longer available for download.

Alternative is to license from Microsoft
under these terms;

“ISV License Program

This program entitles qualified
software developers to license the
Microsoft .doc, .xls, or .ppt file format
documentation for use in the development
of commercial software products and
solutions that support the .doc, .xls, or .ppt
file formats from Microsoft and to
complement Microsoft Office.”

..and a guard posted at the door
● Since Office 2003, Digital Rights

Management is being pushed into
Office.

● The Digital Millennium Copyright Act

and the EU Copyright Directive have
provisions which make it illegal to
circumvent DRM

● So although progress at interop to date
has been heroic, proponents of closed
formats have the technological and legal
means to prevent document exchange if
they wish. This is true in XML word as
well as in the binary world.

Standardization Process
● ODF

– Based on OO.org XML
formats

– 12 Dec 2002 -- submitted to
OASIS

– 1 May 2005 – OASIS ODF
standard released

– 16 Nov 2006 – Submitted to
ISO/IEC JTC1 under Publicly
Available Specification (PAS)
rules.

– 3 May 2006 – ISO/IEC IS
26300 approved

– 706 page specification in 867
days

● OOXML
– Based on Office 2003 XML

formats
– 15 Dec 2005 -- submitted to

Ecma
– est. by 31 Dec 2006 – Ecma

standard approved at Ecma
General Assembly

– est. by 31 January 2007 –
Submitted to ISO/IEC JTC1
under FastTrack rules.

– est. Q1/2008 – ISO/IEC
JTC1 approval of
OOXML???

● Gartner forecasts low
likelihood of approval *

– 5,419 page specification
(draft 1.4) in 254 days

 * http://www.gartner.com/resources/140100/140101/iso_approval_of_oasis_opendo_140101.pdf

Know the SDO's

● OASIS
– DocBook
– DITA
– RELAX NG
– ebXML
– LegalXML

– Emphasis on e-
business standards

● Ecma
– C#
– CLI
– EcmaScript
– Eiffel Programing

Language

– As well as various
hardware and media
standards

How open is open?

OASIS Ecma
Allows individual members Yes No
Mailing lists viewable by the public Yes No

Meeting agendas and minutes public Yes
Received public comments are viewable Yes No

Only report of
face-to-face
meetings

Reuse of standards
“If I have seen a little further it is by
standing on the shoulders of Giants.”

Isaac Newton, letter to Robert Hooke, 1676

Choose reuse because:

●Reduced time to write specification
●Higher quality specifications
●Can leverage existing community expertise
●Can leverage existing education materials
●Better interop, especially in a word of
promiscuous mashups, not monolithic silos
●Network effects – synergy is good

Reuse: Head to Head

● ODF reuses:

– Dublin Core
– XLS:FO
– SVG
– MathML
– XLink
– SMIL
– XForms

● OOXML reuses:

– Dublin Core

Packaging

● Both formats use a ZIP-format container file

– Good balance of compression and runtime
efficiency, allows easy access to subdocuments
and works with existing tools

– Notable that Microsoft did not go with their
proprietary CAB format.

– A loose end to clean up? The ZIP format is 18
years old, but was never formally submitted for
standardization.

Some comparative metrics

● 176 Word documents from Ecma TC45's
document library

● Convert all to OOXML and ODF format

● Record:
– Number of pages
– ZIP size
– Numbered of contained files
– Numbered of contained XML files
– Total uncompressed size of contained files
– Total uncompressed size of contained XML files.

Page Count

Fr
eq

ue
nc

y

0 100 200 300 400

0
20

40
60

80
10

0
12

0

Mean = 34 pages
Median = 8 pages

* All charts and calculations done with the excellent open source “R” environment; http://www.r-project.org/

0.0 e+00 5.0 e+06 1.0 e+07 1.5 e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ODF Compression

Original DOC size

C
om

pr
es

si
on

 R
at

io

Mean = 0.38

0.0 e+00 5.0 e+06 1.0 e+07 1.5 e+07

0.
2

0.
4

0.
6

0.
8

1.
0

OOXML Compression

Original DOC size

C
om

pr
es

si
on

 R
at

io

Mean = 0.50

Ratio of ODT size to DOCX size

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1.0 1.2

0
10

20
30

Observed compression ratios

● ODF size / DOC size = 0.38
● OOXML size / DOC size = 0.50

● Net is ODF documents were smaller, on
average 72% of the size of the OOXML
document

● Double check with empty files
– ODF size = 6,888 bytes
– OOXML size = 10,001 bytes
– ODF/OOXML = 0.69

Platform/Application Neutrality

● ODF's status is clear from the multiple
implementations in the market today, from
multiple vendors on multiple platforms

● The situation with OOXML is not so clear

Things to look for in the spec

● Windows
● blob
● Base64Binary
● bit
● Implementation-defined
● Undefined
● Legacy
● Backwards compatibility
● Reserved

3.2.1.68 – DEVMODE

This binary blob stores printer settings in a format that can only be understood
on Windows.

7.4.1.5 – Clipboard formats

The OOXML specification does not say what any of these values mean, but
merely restricts them to seemingly arbitrary numbers.

So, not only is the data stored in binary format, it is in a an unspecified
format identified merely by number.

3.1.29 – Sheet-level passwords

Problem is a CRC is not defined unless you give the polynomial as well as the bit length.
We would also need to know exactly how Unicode characters are to be turned into 8 bit ones.
Hex encode? Throw out the high bits? Two bytes for each character?

Insufficient information is disclosed to allow interop.

2.7.2.17 – Locale Signature

typedef struct tagLOCALESIGNATURE {
 DWORD lsUsb[4];
 DWORD lsCsbDefault[2];
 DWORD lsCsbSupported[2];
} LOCALESIGNATURE, *PLOCALESIGNATURE;

C:

XML:

Can you tell the difference?

2.7.2.17 – Locale Signature

Bitmasks in XML ?!

Conformance according to ODF

● Documents may contain elements in foreign
namespaces

● Document Consumers must be able to read
any document which would have been valid if
all foreign markup were removed.

● Document Consumers may preserve such
foreign markup

Implied validation pipeline

1)Load XML
2)Remove elements and attributes that are not

in an ODF namespace
3)Validate the resulting document according to

ODF schema

OOXML's approach

● Part 5 of recently posted 1.4 draft OOXML

● Much more complex, 37 pages describing a
sophisticated validation pipeline

● A new XML ML for Markup Compatibility

Markup Compatibility
● Ignorable
● MustUnderstand

– List of namespaces which either can be safely
ignored, or must not be ignored

● PreserveElements
● PreserveAttributes

– List of elements or namespaces which should be
preserved in editing, even if the namespace is
ignorable

● ProcessContent
– Content is processed even if element is ignored

AlternateContent/Choice/Fallback

● Similar to a “switch/case/default” construct

See example compliance.xml

Implied validation pipeline

1)Verify validity of Markup Compatibility markup
2)Process MustUnderstand's and generate errors if

needed
3)Remove Choice/Fallback markup for cases that

were not used
4)Namespace subsumption – remove markup in

obsolete namespaces and replace with new
namespaces

5)Process the Ignorable's removing the ones you
don't understand

6)Process the ProcessContent content

My take on it
● Intriguing idea, but not fully baked (still draft).

● Gives a lot of (too much?) flexibility in negotiating
fidelity of representation based on capabilities of
the consumer.

● Danger – it essentially lets a producer rewrite the
standard and the schema outside of a standards
setting. Could enable Office to maintain a two-tier
file format, with the high-fidelity version not
documented, and the low-fidelity version available
only in <Fallback>. Remember RTF?

Performance

● How to measure the performance of a format
versus the performance of an application?

● Some factors:
– Number of XML files in the Zip which must be

parsed
– Size of the XML files
– Preprocessing required to resolve Ignorable,

MustUnderstand, etc.

– Can't give an absolute answer, since not all
consumers of a the document are attempting the
same thing.

Licensing Problem

● The only implementation of OOXML is the
Office 2007 beta, and the End User License
Agreement (EULA) has this restriction:

“7. SCOPE OF LICENSE. ...You may not
disclose the results of any benchmark tests
of the software to any third party without
Microsoft’s prior written approval”

Solution: test the XML

● Take 176 working documents from Ecma
TC45's document library, in Word format

● Convert to ODF and OOXML formats
● Collect static and runtime metrics for these

document pairs, including:
– Size, compressed and uncompressed
– Size of just the XML
– Number of pages
– Number of files in the Zip
– Time to parse the XML – this is the core of any

tool which will consume these documents so
large differences here will directly map into large
differences in applications

Number of files in the Zip

0 100 200 300 400

0
10

0
20

0
30

0
40

0

ODF Files

O

O
X

M
L

Fi
le

s

OOXML files = 5.7 +
ODF files

R^2 = 0.9958

Total Size of the XML's

0 e+00 1 e+06 2 e+06 3 e+06 4 e+06

0
 e

+0
0

1
 e

+0
6

2
 e

+0
6

3
 e

+0
6

4
 e

+0
6

5
 e

+0
6

6
 e

+0
6

ODF XML Size

O
O

X
M

L
X

M
L

S
iz

e

OOXML size = 82,000 bytes +
1.5 * ODF size

R^2 = 0.92

Net effect on parse time

0 2 4 6 8 10 12

0
10

20
30

40

ODF parse time (seconds)

O
O

X
M

L
pa

rs
e

tim
e

(s
ec

on
ds

)

OOXML time = 3.5 * ODF time

R^2 = 0.9596

Time is time to parse all XML
files in the Zip archive with
Python's minidom

Bimodal behavior?

0 100 200 300 400

2
4

6
8

10
12

14

Pages

R
at

io
 o

f O
O

X
M

L
to

 O
D

F
tim

e

Ratio of OOXML to ODF parse times

Fr
eq

ue
nc

y

2 4 6 8 10 12 14

0
10

20
30

40

Performance Conclusions

● Choice of an XML parser is key
– ODF files have larger, but fewer XML files
– OOXML have many small XML files
– Many (most?) parsers are not well optimized for

the 2nd case.
● Be a wise consumer of benchmark data

– Beware of tests which confuse application
performance for file format performance

– Look to see if the documents used in the test are
typical.

– Consider the performance of all types of
applications, not just heavy-weight desktop
editor

The End

Thank you

