
Moving OOo to XCanvas,
Step 2 –
Draw and Impress

Thorsten Behrens
StarOffice/OpenOffice.org
Sun Microsystems

2

Outline
• The What and the Where of the DrawingLayer
• What are the problems?
• How does the architecture look now?
• Migration plan
• XCanvas: recap
• How was XCanvas integrated?
• Demo

To
p L

ay
er

Mi
d L

ay
er

W
rite

r

Ca
lc

Im
pr

es
s

Ba
se

ID
E

Ma
th

W
iz
ar
ds

XM
L

BASIC

Utilities

i18n

Framework

VCL

GUI

UNOCUIGUI

UNO

CUI UNO FWK System Integration

ODF

Common GUI

Drawing Layer

He
lp

DrawingLayer: Where and What For?

• Part of module svx
• Used from all apps, to view & control Draw shapes

Problems With Current DrawingLayer

• Model and view basically in one object
• deep inheritance and usage of concrete instances,

with app framework, control layer, and VCL
• (almost) no points of customization:
> impossible to exchange render backend
> extremely hard to add new shape types

• rendering is a crosscutting concern

DrawingLayer Rework

• Split up into two CWS:
> Overlay/Interaction/BaseGfx stuff: aw024. Will hit HEAD

soon
> DrawingLayer primitives: aw033

– Needs the changes from aw024 merged in, and then at least ½
year additional effort

ViewModel

Reworked DrawingLayer: Overview

SdrObject ViewContact Object(s)Contact SdrViewViewObjectContact1..* 1..*ViewObjectContact

getPrimitiveList()
getRecPrimitiveList()

ViewContact

 getChild()
 getVOC()
 getViewIndependentPrimitiveList()

basePrimitive

getRange()
getDecomposition()

generates:

Reworked DrawingLayer: Details

• Separates model & view (controller: later)
> SdrObject (model)
> ObjectContact & ViewObjectContact: view + “content” of

the view
• Bins ad hoc output/geometry generation, instead

employs factored-out graphics tooling (basegfx)
• Provides scene-graph like hierarchy of view content,

makes it easy to “plug in” different renderers

Migration Plan

✔ Design XCanvas API, provide set of working
implementations

✔ Base newly implemented UNO slideshow
component on XCanvas

✔ Port Draw/Impress to XCanvas
> Utilize overlays from aw024

• Make XCanvas accessible from remaining UNO API
• Port Calc to XCanvas
• Port Writer to XCanvas

XCanvas, What Was That Again?

• 'X' because it's a UNO interface
• new UNO-API based rendering subsystem for OOo
• slated to replace VCL's OutputDevice for rendering

application content:
> Impress slideshow (OOo 2.0)
> Draw/Impress edit view

> UNO API for rendering
> Significantly better portability

– low impedance towards modern graphics APIs
– easy to start with, for contributors

> Separation of concerns
– XCanvas: rendering
– toolkit: controls & windowing

> Speed
– low impedance towards contemporary graphics hardware

> Quality
– ubiquituous alpha compositing
– anti-aliasing
– color management

Reasons for XCanvas

• Contemporary set of render primitives
• Multitude of backends feasible
• Stateless, concurrency-friendly design
• Flexible caching concept

Key XCanvas Features

How's XCanvas Plugged In?

• It's Model/View: you just need to reimplement the
view part
• Tacid assumption: XCanvas output and VCL

OutputDevice output must mix on the same area
(until all of OOo has been migrated)!

Demo

Further Info

• OOo Wiki's DrawingLayer rework page

http://wiki.services.openoffice.org/wiki/DrawingLayerPrimitives

Q&A

Thorsten Behrens
thorsten.behrens@sun.com

