
15 September 2006

Novell® VBA Interoperability

Noel Power

© Novell Inc, Confidential & Proprietary

2

Introduction

About Me
Working/hacking Openoffice.org ~ 4 years

working on VBA interoperability

A Bit of History
Started in response to customer demand

Various people have stuck there hand in here and there

Releases
– SUSE 10.1 (first appearance)
– SUSE SLED 10 (first supported version)

Started VBA Interoperability incubator project
– http://vba.openoffice.org or
– http://wiki.services.openoffice.org/wiki/VBA

© Novell Inc, Confidential & Proprietary

3

Why provide VBA Interoperability

Argghh!!
– “We already have all of these spreadsheets what are we going to do with them”
– “we don't event understand how they work anymore”

There is already a proprietary solution
VBA Interoperability is the “sugar” to sweeten the
migration path

Why bother, you will never get 100% compatibility?

© Novell Inc, Confidential & Proprietary

4

How does it work

Changes to import filters to
import the VBA macros (uncommented)

stitch additional event bindings

Changes to the basic engine
compatibility options

support additional “exotic” vba syntax
Option VBASupport 1

Sub SelectToFromCells()

Range("FromCell", "ToCell").Select

End Sub

Provides a compatibility model
Supporting changes to calc core

© Novell Inc, Confidential & Proprietary

5

Upstreaming

Not enough hacks upstreamed yet
Option VBASupport
provides a basic indicator that interoperability is 'on'

used a hook internally in the basic engine

css::com::ArrayWrapper
multi-dimensional array support for Objects

influence the base of the Array regardless of the Module 'Option Base'
setting

Array(...) function & Option Base
Support a 'default method' concept

© Novell Inc, Confidential & Proprietary

6

VBA exotics

set r1 = Range(“a1”)

r1 = “foo” ' value of cell A1 is set to “foo”

dim aVar as String ' or variant

'aVar wil contain “foo”

aVar = r1

'Collections

dSheets = Worksheets ' global

wrb = dSheets(1)

wrb = dSheets.Item(1)
wrb = dSheets.("Sheet1")
wrb = dSheets.Item("Sheet1")

© Novell Inc, Confidential & Proprietary

7

What needs to be upstreamed

Dim r1 as Range
Set and assignment for vba objects
Most vba constants are available (maho)
Default properties { LHS & RHS }
Global objects
Application, Sheets...

Compatibility API
Range, Workbook, Worksheet...

Better event support
Excel toolbox controls, shapes, images, workbook, worksheet

Larger basic module support

© Novell Inc, Confidential & Proprietary

8

Whats Next

Basic Support for Userforms & Controls
tie Userform module to Dialog

allow contols to be accessed from Worksheet
– Sheet(1).CommandButton1

– Sheet(1).MyComboxBox.AddItem(ListItem)

Compatibile Array handling
array of array syntax myarray(2)(3)

copy by value

Import internal Collection class
 handle string key in Item & add methods

Generally Improve API coverage
More document analysis

© Novell Inc, Confidential & Proprietary

9

What can you do to help

Get involved
irc, #go-oo { me = noelp }, mail noel.power@novell.com

http://wiki.services.openoffice.org/wiki/VBA

Identify missing api & test existing api
some basic tests at ooo-build/tests/macros

Donate representative documents
If you can't send documents, send code

– use test-msvba from the libgsf (see wiki)

Code some compatibility api
its easier than your think

its a good introduction into openoffice hacking

