
12003-02-26

OOoCon 2003

OpenOffice.org
Software Development Kit (SDK)

For own solutions and products based on
OpenOffice.org and Java

by
Jürgen Schmidt

jsc@openoffice.org

22003-02-26

Agenda

About the speaker
Overview of the OpenOffice.org Software Development
Kit (SDK)

What is it good for

The UNO component model
Introduction, Concepts, Key features

The OpenOffice.org API
Usage Scenarios
Examples
Outlook

32003-02-26

About the speaker

Jürgen Schmidt
Technical Lead Software Engineering

have been working for StarOffice/Sun more than 5 years
involved in UNO development since the beginning in 1997

OpenOffice.org/StarOffice Software Development Kit

UNO supporter and fan

42003-02-26

OpenOffice.org SDK

The essential extension for all who want to program,
extend or control OpenOffice.org

What is the SDK?
Add-on to an existing office installation
Documentation

Developer's Guide
IDL reference
Java/C++ UNO runtime and helper classes/functions

Tools and Libraries
Examples

Java, C++, OpenOffice.org Basic and OLE

52003-02-26

SDK Documentation

Developer's Guide
~ 900 pages

a growing document

covers the whole API
each chapter provides at least one example
target language Java (with exception of language
specific chapters)

PDF and HTML version
HTML version provides cross references into the IDL
reference for easy navigation

62003-02-26

SDK Documentation

IDL Reference
generated documentation based on the IDL sources

cross references in the Developer's Guide
where the type is described mainly
where the type is referenced

references of type usage
as return type
as parameter
as member
...

generated with autodoc
Javadoc like

72003-02-26

SDK Tools and Libraries

Deployment tool (pkgchk)

IDL compiler (idlc)

“interface” generators (cppumaker, javamaker)

Type library tools (regmerge, regview, regcompare, regcomp)

Documentation tool (autodoc)

UNO component loader (uno)
tool for loading components and provide an instance of
them as a named object

OfficeBean
Jar file and native library
since OpenOffice.org 1.1 part of the office installation

UNO protocol library (prot_uno_uno)
is a bridge: binary uno  binary uno
core feature

82003-02-26

SDK Tools and Libraries

Deployment tool
easy deployment of

components
configuration
OpenOffice.org Basic libraries

part of the office installation
deploying of final extensions without SDK

currently no live deployment

92003-02-26

SDK Examples

Developer's Guide
Java, C++, OpenOffice.org Basic

Java
component examples
“remote” control
several API areas (text, drawing, spreadsheet, ...)
Lotus Notes Access

C++
core UNO
Filter example

used for the Developer's Guide

OpenOffice.org Basic
OLE

ActiveX control, VB script, Delphi

102003-02-26

The UNO component model

Introduction
UNO  Universal Network Objects
Why UNO?

started in June 1997, at this time no sufficient component technology
was available
providing a component technology

implementations are exchangeable
more flexibility
hide implementation details
new external API

Now in the third generation

112003-02-26

UNO Concepts

Language Bindings
bridge, runtime, component loader, ...

Abstract definition of interfaces and services
use of an Interface Definition Language (IDL)

Mediation between UNO environments
Factory concept

122003-02-26

UNO Concepts

Binary UNO

Java bridge

C++ bridge X bridge

URP bridge
Implement 1 bridge  binary UNO  get n

132003-02-26

UNO Features

Language independent
C, C++ (various compiler)
Java
OpenOffice.org Basic
OLE

Seamless remote interoperation
remote calls are transparent
preserves thread and object identity
supports asynchronous calls

No overhead in case of co-location
Supports exception
Multi threaded

142003-02-26

UNO Features

Has a security concept, which is derived
from the Java security model
Uses Unicode for strings
No code generation
Basically independent from OpenOffice.org
Remote protocols exchangeable

currently used: URP (UNO Remote Protocol)

UNO Url for getting remote objects
e.g. uno:socket, host=localhost,port=8100;urp;MyObject

152003-02-26

The OpenOffice.org API

Design goal
One API for all

macros
use components
exchange/modify components
extend functionality by new components

Programming against specifications
UNO objects

service based
UNO objects should implement at least one service

Instantiation
by a factory using a service name
context dependent
implicitly by accessing subobjects, return value or
out parameter

162003-02-26

The OpenOffice.org API

Supported IDL types
service

abstract object specification
implementation independent
we have to kind of services

services which can be instantiated directly
abstract base services

interface
only methods

in/out/inout parameter
Exceptions

no data
no implementation
independent of any programming language

modules

172003-02-26

The OpenOffice.org API

Supported IDL types
struct

data containers of different types
support inheritance
easy be transferable into other UNO environments

exception
support inheritance

enum
similar to a “C” enum type

const
constant

group of constants
used to categories functional dependent consts

182003-02-26

The OpenOffice.org API

Common Design Patterns
Factory

global and document centric

PropertySet, PropertyAccess, ...
Collection/Containers
Enumerators/Iterators
X...Supplier
Events
Exceptions for error handling

192003-02-26

The OpenOffice.org API

Module structure
UNO base
application independent
miscellaneous components

e.g. Configuration Manager, Universal Content Broker

environment integration framework
application domain specific
office components

202003-02-26

Usage Scenarios

Macro programming
automated tasks
forms

“remote” control
document conversion
report generation

Extensions  Components
specialized components (e.g. Calc Add-ins)
more complex extension

own menu items and/or dialogs
complex functionality

Embedded in own GUI applications
OfficeBean

212003-02-26

Examples

Calc Add-in
mandatory service

com.sun.star.sheet.AddIn

mandatory interfaces
com.sun.star.lang.XServiceInfo
com.sun.star.lang.XTypeProvider

own Add-in service
com.sun.star.sheet.addin.ExampleAddIn

with own Add-in interface XExampleAddIn

Further requirements/constraints
display names and descriptions for the functions and parameters
Add-in functions have restricted set of possible return
and parameter types

222003-02-26

Examples

Define your own Add-in
module com {

module sun {
module star {

module addin {
interface XExampleAddIn : com::sun::star::uno::XInterface {

/// Sample function that just increments a value.
 long getIncremented([in] long nValue);

/// Sample function that returns a volatile result.
com::sun::star::sheet::XVolatileResult getCounter([in] string aName);

};

service ExampleAddIn {
/// specify the mandatory base service which have to be implemented
service com::sun::star::sheet::Addin;

/// our own Add-in interface with our Add-in functions
interface XExampleAddIn;

};
};

};
};

};

232003-02-26

Examples

Implementation class
public class ExampleAddIn
{

static public class _ExampleAddIn extends com.sun.star.lib.uno.helper.WeakBase implements
com.sun.star.sheet.addin.XExampleAddIn, com.sun.star.sheet.XAddIn,
com.sun.star.lang.XServiceName, com.sun.star.lang.XServiceInfo

{
....

 private static final String[] aFunctionNames = { "getIncremented", "getCounter" };
private static final String[] aDisplayFunctionNames = { "Increment", "Counter" };
....
// XExampleAddIn
public int getIncremented(int nValue) {

return nValue + 1;
}
....

 // XAddIn
public String getProgrammaticFuntionName(String aDisplayName) {

for (int i = 0; i < aFunctionNames.length; i++)
 if (aDisplayName.equals(aDisplayFunctionNames[i]))

return aFunctionNames[i];
return "";

}
....

}
}

242003-02-26

Examples

Implementation class
public class ExampleAddIn
{

static public class _ExampleAddIn extends com.sun.star.lib.uno.helper.WeakBase implements
com.sun.star.sheet.addin.XExampleAddIn, com.sun.star.sheet.XAddIn,
com.sun.star.lang.XServiceName, com.sun.star.lang.XServiceInfo

{
static private final String aExampleService = "com.sun.star.sheet.addin.ExampleAddIn";
....

}

/// required component function to get a factory for objects of this service implementations
public static com.sun.star.lang.XSingleServiceFactory __getServiceFactory(String implName,

com.sun.star.lang.XMultiServiceFactory multiFactory,
com.sun.star.registry.XRegistryKey regKey) {

com.sun.star.lang.XSingleServiceFactory xSingleServiceFactory = null;
if (implName.equals(_ExampleAddIn.aImplName))

xSingleServiceFactory = com.sun.star.comp.loader.FactoryHelper.getServiceFactory(
_ExampleAddIn.class, _ExampleAddIn.aExampleService, multiFactory, regKey);

return xSingleServiceFactory;
}

/// required component function to get information about the implementation, used for registration
public static boolean __writeRegistryServiceInfo(com.sun.star.registry.XRegistryKey regKey) {

....
}

}

252003-02-26

Outlook

IDE integration (wizards)

specialized OfficeBeans (e.g. WriterBean, CalcBean)

Scripting Framework
ANT build scripts for Java examples
(popular build tool for Java, IDE independent)

more examples
real life examples,
Developer's Guide examples in C++/OpenOffice.org Basic
improved documentation of the source code

improved developer documentation
extended and improved Developer's Guide
improved reference documentation (IDL, Java, C++)

maybe simplified wrapper APIs
(depends on user demand)

262003-02-26

Links & questions

OpenOffice.org http://www.openoffice.org
API project http://api.openoffice.org
UDK project http://udk.openoffice.org

Questions?

