
 

OpenOffice.org TestTool
Version 1.16

Introduction to Automated GUI Testing

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

June 2003



Table of Contents

1  The OpenOffice.org TestTool.............................................................................................................7

1.1  About the TestTool........................................................................................................................7

1.2  Location of the TestTool................................................................................................................7

1.3  Installing the TestTool...................................................................................................................8

1.4  Setting up the TestTool.................................................................................................................8

1.5  Adding the TestTool Library to an OpenOffice.org Installation............................................9

1.6  Starting a TestTool Script............................................................................................................10

1.7  TestTool Editor.............................................................................................................................11

1.8  Result File......................................................................................................................................12

1.9  Starting a Test Script From the Command Line......................................................................13

1.10  Testing a Non-Product Version ..............................................................................................14

2  The TestTool Environment................................................................................................................15

2.1  Introduction..................................................................................................................................15

2.2  global-Module..............................................................................................................................17

2.3  CVS information...........................................................................................................................17

3  Declaration of OpenOffice.org for the TestTool...........................................................................18

3.1  Introduction..................................................................................................................................18

3.2  Types of Declaration....................................................................................................................19

3.3  Determining the SlotID of a Menu Item...................................................................................20



3.4  Determining the HelpIDs or UniqueIDs of Controls.............................................................21

3.5  Declaring a New Menu Item......................................................................................................23

3.6  Declaring a New Dialog or Control..........................................................................................24

3.7  About the hid.lst File...................................................................................................................25

3.7.1  Location of the hid.lst file...................................................................................................25

3.7.2  Creating a working hid.lst.................................................................................................25

3.7.3  Viewing hid.lst errors.........................................................................................................25

4  The Structure of Test Scripts.............................................................................................................26

4.1  Introduction..................................................................................................................................26

4.2  sub main........................................................................................................................................26

4.3  GetUseFiles....................................................................................................................................26

4.4  testcase ... endcase........................................................................................................................27

4.5  try ... catch ... endcatch................................................................................................................27

4.6  sub and function...........................................................................................................................28

5  Internal Commands, Methods and Functions for TestTool........................................................29

5.1  Testscript Structure......................................................................................................................31

5.2  Global.............................................................................................................................................31

5.2.1  Statistic..................................................................................................................................33

5.3  Commands on The Office Side..................................................................................................34

5.4  Windows, Controls and Objects................................................................................................34

5.4.1  Any Control, Window, Object...........................................................................................34

5.4.2  CheckBox..............................................................................................................................36

5.4.3  Image-CheckBox .................................................................................................................36

5.4.4  ComboBox ...........................................................................................................................36

5.4.5  Dialog....................................................................................................................................36

5.4.6  ModelessDialog...................................................................................................................36

5.4.7  DockingWin.........................................................................................................................37

5.4.7.1  Splitting Windows .........................................................................................................37

5.4.8  EditWindow.........................................................................................................................37

5.4.9  Edit-Field..............................................................................................................................38

5.4.10  MultiLineEdit-Field...........................................................................................................38

5.4.11  FloatWin (Flyer).................................................................................................................38

5.4.12  ListBox.................................................................................................................................38

5.4.13  MultiListBox.......................................................................................................................38

 - Page 3 / 64



5.4.14  MenuButton........................................................................................................................39

5.4.15  Menu and Context Menu.................................................................................................39

5.4.15.1  special methods.............................................................................................................40

5.4.16  MessBox / InfoBox............................................................................................................40

5.4.17  WarningBox / ErrorBox ..................................................................................................40

5.4.18  QueryBox............................................................................................................................40

5.4.18.1  with checkbox(es)..........................................................................................................40

5.4.19  MoreButton ........................................................................................................................40

5.4.20  PushButton, ImageButton................................................................................................41

5.4.21  RadioButton, ImageRadioButton....................................................................................41

5.4.22  SpinField.............................................................................................................................41

5.4.23  PatternField........................................................................................................................41

5.4.24  NumericField.....................................................................................................................41

5.4.25  MetricField..........................................................................................................................41

5.4.26  CurrencyField....................................................................................................................41

5.4.27  DateField.............................................................................................................................41

5.4.28  TimeField............................................................................................................................41

5.4.29  StatusBar.............................................................................................................................41

5.4.30  System Dialog....................................................................................................................42

5.4.31  TabPage...............................................................................................................................42

5.4.32  Toolbar................................................................................................................................42

5.4.33  TreeListbox.........................................................................................................................43

5.4.34  BrowseBox..........................................................................................................................43

5.4.35  Control................................................................................................................................43

5.4.35.1  with Checkbox(es).........................................................................................................44

5.4.36  TriStateBox.........................................................................................................................44

6  Working With XML Files....................................................................................................................45

6.1  Introduction..................................................................................................................................45

6.1.1  Main Commands.................................................................................................................45

6.1.2  Working With Elements, Attributes And Characters....................................................46

6.1.3  Navigate And Search in The DOM...................................................................................46

7  Typekeys Instruction...........................................................................................................................47

7.1  Description....................................................................................................................................47

Page 4 / 64 - 



8  Resource Types of all Controls and Windows...............................................................................49

9  All Supported Languages...................................................................................................................50

10  The Style and Coding Standard 
used in the Automated Testing.......................................................................................................51

10.1  Revisions......................................................................................................................................51

10.2  Introduction................................................................................................................................51

10.3  Section One - MUST...................................................................................................................51

10.3.1  Variable...............................................................................................................................51

10.3.2  Indentation.........................................................................................................................52

10.3.3  Blank Spaces ......................................................................................................................53

10.3.4  Comments...........................................................................................................................53

10.3.4.1  Block Comments............................................................................................................54

10.3.4.2  Single Line Comments.................................................................................................54

10.3.4.3  Trailing Comments.......................................................................................................54

10.3.5  File Organization...............................................................................................................54

10.3.5.1  Sections inside of .inc files...........................................................................................54

10.3.5.2  Sections inside of .bas files...........................................................................................54

10.3.6  Program Organization......................................................................................................55

10.3.6.1  Sections inside of testcases/subs/functions.............................................................55

10.3.7  Methods, Hints, Annotations..........................................................................................55

10.3.7.1  Selecting the same string in different languages......................................................55

10.3.7.2  Saving files during a test..............................................................................................55

10.3.7.3  Using testing levels.......................................................................................................56

10.4  Section Two - ADVANCED.....................................................................................................56

10.5  Appendix.....................................................................................................................................56

10.5.0.1   if..then...else...................................................................................................................57

10.5.0.2  select...case......................................................................................................................57

10.6  Bibliography................................................................................................................................57

11  Testcase Documentation in Test Scripts.......................................................................................58

11.1  Description..................................................................................................................................58

11.2  The *.bas files..............................................................................................................................59

11.3  The *.inc-files...............................................................................................................................60

11.4  Standards for Testcase Documentation..................................................................................60

 - Page 5 / 64



12  Configuration file entries.................................................................................................................62

12.1  GUI Platform...............................................................................................................................62

13  Alphabetical Index.............................................................................................................................63

Page 6 / 64 - 



1  The OpenOffice.org TestTool

Tool for Automated Testing of OpenOffice.org

1.1  About the TestTool
The TestTool is a standalone program that is used for the automated testing of OpenOffice.org. The
TestTool communicates with the TCP/IP-Interface of OpenOffice.org and can test each installation
of OpenOffice.org on a PC or in a local area network (LAN). The current TestTool can be used on
OpenOffice.org 1.1beta and higher. However, as there can be some incompatible changes in future
OpenOffice.org builds you may need to use a newer version of the TestTool.

You do not need a complete OpenOffice.org installation to run the TestTool so long as the
OpenOffice.org libraries that are required by the tool are in the same directory as the 'testtool'-script
on UNIX or the testtool.exe application on Win32. Furthermore, the the .testtoolrc (UNIX) and the
testtool.ini (Win32) files must be in the home directory of the user (UNIX) or in the profile directory
of a user on Win32.

The TestTool communicates with OpenOffice.org using SlotIDs, UniqueIDs, and HelpIDs that are
associated with each menu item, window, dialog, and window or dialog control in OpenOffice.org.
The IDs are automatically generated during the OpenOffice.org build-process or are assigned by
developers.

SlotIDs: Each menu item has a SlotID that is used, for example, to open a dialog or perform an
action.

HelpIDs: Each control, window, or dialog automatically receives a HelpID for the internal Help-
System. The TestTool uses HelpIDs to identify specific controls, windows, or dialogs.

UniqueIDs: A developer can assign a UniqueID to a control that does not have a HelpID so that
the TestTool can identify the control.

You can create test scripts for the TestTool that the same functionality as StarBasic (like
VisualBasic). Several commands are available for the TestTool, for example, to get or put
information into OpenOffice.org controls. For a complete list of the available commands, see chapter
5: Internal Commands, Methods and Functions for TestTool.

You can simulate most mouse or keyboard actions with the TestTool as well as gather information
from controls or change the default settings in OpenOffice.org. In other words,.the TestTool lets you
simulate an OpenOffice.org user.

1.2  Location of the TestTool
The TestTool application and the TestTool Environment can be checked out via CVS on
openoffice.org.  We provide also beta or final versions archives of the TestTool Environment and the
TestTool application on http://qa.openoffice.org/qatesttool. 

The OpenOffice.org TestTool - Page 7 / 64



1.3  Installing the TestTool
To install the TestTool, extract the contents of the downloaded TestTool archive to your local disk. If
more than one user will use the TestTool, copy the contents of the extracted archive to a network
drive. You can run the TestTool on Solaris (SPARC and x86), Linux, and Win32.

When you run the TestTool executable file, the testtool.ini and .testtoolrc control files are created on
Win32 and UNIX, respectively.

If you place a TestTool control file in the directory that contains the TestTool executable file, the
control file is automatically copied to the profile directory on Win32, and the user's home directory
on UNIX.

Linux only: If you get a message similar to "Couldn't bootstrap uno servicemanager for reason :
Couldn't create registry file ...services.rdb for writing", ensure that you are using 'nfslock'. For
example, on Linux run '/etc/init.d/nfslock status'. If it is not running, switch to root and run
'/etc/init.d/nfslock start' and 'chkconfig nfslock on'. This is necessary for the TurboLinux and the
SuSe 8.1 Linux distributions.

1.4  Setting up the TestTool
Choose Extra - Settings - Profile.

1. Profile: Enter a name for your profile.

2. Log base directory: Enter the path where you want to save the test results.
For example: /opt/qatesttool/errorlog/mymachine or d:\qatesttool\errorlog\mymachine

3. Base directory: Enter the root path for the TestTool Environment (without a slash at the
end!)
For example: /opt/qatesttool or d:\qatesttool

4. HID directory: Enter the path to the hid.lst for the TestTool Environment 
For example: /opt/qatesttool/global/hid or d:\qatesttool\global\hid

Page 8 / 64 - The OpenOffice.org TestTool



If you want, you can also edit these settings in the .testtoolrc / testtool.ini files.

CurrentProfile=_profile_TestTool
(...)
[_profile_TestTool]
LogBaseDir=/opt/qatesttool/errorlog/extern
BaseDir=/opt/qatesttool
HIDDir=/opt/qatesttool/global/hid

1.5  Adding the TestTool Library to an OpenOffice.org
Installation
Before you can run the TestTool scripts, you need to add a special library to the [{Drive:}]
{OpenOffice.org}/program-directory of the OpenOffice.org installation that you want to test. On
UNIX, the library is  libsts* (For example: libsts644ss.so for a Solaris SPARC library) and on
Win32, the library is sts***mi.dll, where *** corresponds to the major source number of the
OpenOffice.org installation (For example: sts644mi.dll).

The OpenOffice.org TestTool - Page 9 / 64



1.6  Starting a TestTool Script
Start local OpenOffice.org installations using the TestTool command line parameter
-enableautomation. In the TestTool Environment, executable scripts use the *.bas extension. To run a
script, load a *.bas-file, and then run the script from the menu or with a shortcut.

 Start 
Starts the script, opens a new or old result file,
and inserts the result of the test in the file.

 Single stepping
Runs the script by single steps.

 Single step over procedures
Runs the script one sub routine at a time.

 Set / Select a break point
Creates a breakpoint (red circle) in the script on
the blue border on the left side.

 Cancel 
Cancels a running script.

+  Interrupt
Interrupts a running script.

+  Next Error
Jumps to the next error after a syntax error in a
script.

+  Previous Error
Jumps to the previous error in a script.

Page 10 / 64 - The OpenOffice.org TestTool



1.7  TestTool Editor
The TestTool uses syntax highlighting for all BASIC, StarBasic, and internal TestTool commands
(For more information, see chapter 5: Internal Commands, Methods and Functions for TestTool).
Highlighting can increase the load time for large files.

The OpenOffice.org TestTool - Page 11 / 64



1.8  Result File
The TestTool automatically saves a result file after a test script is run. The name of the result file is
the name of the script *.bas-file that generated the result, but with the *.res extension (For example:
first.bas → first.res). To set the path for saving the result file, choose Extra - Settings - Profile and
enter the path in the Log Base directory box.

If a result file already exists, the file is opened and the new result is added at the beginning of the
file.

The results are presented as a hierarchical tree list where you can click plus sign (+) or minus sign (-)
to expand or collapse the outputs.

• The first output is
Reading the files. Expand
this entry to see the
declaration files. If the
entry is orange, the
declaration files (*.win /
*.sid) contain errors. The
sum of the errors is
displayed at the end of a
test as Warnings
occurred during
initialization.

• The next output is a short
entry that is generated
automatically by the start
up routines. The entry
displays information
about the TestTool
version, the paths where
OpenOffice.org is installed,
and where the application
was started. The office-
and the system language
is also displayed.

• Each entry that has a [+]
in front of it is a testcase.
If the testcase entry is a
color other than black,
the test contains errors.

• An orange testcase
indicates that one or more
warnings are present. To
see where the error occurred, expand the entry and examine the warnlogs, which are the
outputs from the developer of the test script. To jump directly to the place in the test script
where a warning occurred, double-click the warning.

• A light red testcase (not shown in example) indicates a QAErrorLog entry that was
inserted by the developer of the testcase to give the tester some information (for example,
about an existing bug or workaround)

• A red testcase indicates that one or more errors are present. The tree is expanded to
display the error(s). In the example result file, the error occurred when the TestTool did

Page 12 / 64 - The OpenOffice.org TestTool



not find the 'HTML ...' entry in the file-export-dialog (the squares indicate Korean
characters that cannot be displayed because the corresponding font is not installed.). The
error occurred because the name of the export filter was changed in the OpenOffice.org
version that was tested.

• When you expand a red entry by double-clicking the plus sign (+) in front of the entry, a
level by level (sub main → testcase ... → subroutine ... → .....) view of the error is
displayed. You can also see what the TestTool did to return OpenOffice.org to a defined
base state so that the TestTool can run the next testcase without any open windows or
dialogs.
For example: 
• a DockingWindow is closed (geschlossen = closed) with ID 23021
• the WORKINGWINDOW ".... 6.1' is closed
• and a Message Box is closed with NO

• Explanation  :
• the navigator-window is closed
• the working document is closed

However, since changes were made to the document, a message box opened and
had to be closed by clicking No.

• The TestTool then started the next testcase at the base state of OpenOffice.org (that
is, with one open document and no open dialog).

• At the end of a test, the number of errors and warnings is displayed

1.9  Starting a Test Script From the Command Line
To start a test-script from the command line, use the following syntax:

testtool.exe [/port=xxx /host=xxx] [startprogram] [/run]

/Port The com port on the machine that the TestTool uses to communicate with
OpenOffice.org. If you do not include this parameter, the TestTool looks for
relevant  information in the .testtoolrc or testtool.ini files.

/Host The hostname of the machine that contains the OpenOffice.org installation that
you want to test. If the installation is on the same machine as the TestTool, enter
localhost. If you do not include this parameter, the TestTool looks for relevant
information in the .testtoolrc or testtool.ini files.

/Startprogram The *.bas-file that contains the main-routine.

/run Runs the test script, writes the result to the result file, and exits the TestTool at
the end of the test. If you do not include this parameter, the TestTool remains
open at the end of the test.

Example
:

testtool.exe /port=12481 /host=localhost /
opt/qatesttool/writer/update/w_update.bas /run

The TestTool runs the w_update.bas-test on the local machine through port 12481, and
exits the TestTool when the test is over.

The OpenOffice.org TestTool - Page 13 / 64



1.10  Testing a Non-Product Version 
You can only test and debug a non-product version of OpenOffice.org on the Win32 platform.

1. Define the files where you want to store the debug-settings for OpenOffice.org by inserting the
following section into the win.ini file:

                        [SV]
                        dbgsv=c:\dbgsv.ini
                        dbgsvlog=c:\dbgsv.log                

2. In OpenOffice.org, press , and then select “TestTool” in the Error list
box.

In the TestTool, assertions are indicated by yellow and green dots. The TestTool cannot handle
some assertions (for example, OSL-assertions). Instead, you must manually reproduce the
assertion, or use a product version to test OpenOffice.org. To manually reproduce an assertion,
select “MessageBox” in the Error list box.

Page 14 / 64 - The OpenOffice.org TestTool



2  The TestTool Environment

2.1  Introduction
The structure of the TestTool Environment was changed after the release of source SRC641
(OpenOffice.org 1.0, StarOffice 6.0 / StarSuite 6.0). The following description of paths is only valid
for source versions SRX641 and higher.

The TestTool Environment contains the start scripts, the test scripts, and the libraries (include files)
that are required to automatically test OpenOffice.org. The TestTool Environment is modular, so that
a module exits for each application or area that you want to test in OpenOffice.org. To test a single
OpenOffice.org application, such as Writer, you only need the “application module” and the
“global” module.

When you export modules from the cvs, the module names and the path names are the same.

module name / path name Description

application modules

base Database / Data source functionality in OpenOffice.org

calc Calc (spreadsheet)

chart Chart, the functionality of charts in a spreadsheet

graphics Impress (presentation application) and Draw (drawing application)

math Math (formula)

setup Installation

writer Writer (text document, HTML document, master document)

xml XML file format for all of the OpenOffice.org applications

general modules

framework General functionality for all applications (for example, galleries and
extras)

global All general routines (for example, startup, tooling, declaration files)

errorlog Output directory for all result files

tools useful standalone applications (hid.lst perl script)

The TestTool Environment - Page 15 / 64



The following subcategories are defined for the TestTool Environment modules:

module name / path name Description

update Resource test: Activates all menu items and opens all dialogs of the
tested application.

loadsave Loads, saves, or exports tests 

options Tests all of the settings in the Tools - Options area of the tested
application.

level1 Performs a general functionality test for each feature in the tested
application, including each menu item.

level2 Performs intensive tests for separate areas in the tested application 

special modules

input Includes general input files that are required by all tests

tools Includes libraries that contain the general subroutines that are required
by all test scripts in the module or application.

These are only the defined name, you can also find other subcategories in the paths. Mostly the
named of the directory mirror the tested area.

If you find a *.bas-file in one of these directories you are in a test-module. Those module should
include the following directories/files:

module name / path name Description

*.bas Indicates executable test scripts. To run the script, open the *.bas file in

TestTool, and then press  or choose Program - Start.

inc Includes the libraries and any associated files that are required for a test
(included by use-method in the *.bas-file)

input Inputs the files that are required for the test.

tools Includes libraries that have general subroutines that are required by test
scripts (*.bas). The libraries must be in the same directory as the test
script.

Page 16 / 64 - The TestTool Environment



2.2  global-Module

The global-directory is required for each test. The directory contains the main routines for running a
test script, including the hid.lst, the declaration files that identify menu items, dialogs and controls in
OpenOffice.org, and general tooling routines.

directory name description

hid Contains the hid.lst file.

input Contains common files that are required by the TestTool.

• translated, office language dependent default filter names for
each application (filters-directory)

• translated, office language dependent OLE-object names
(olenames-dir)

• files for each graphic format that OpenOffice.org can read
(graf_inp-dir)

sid Includes all SlotID declarations.

system Contains the routines to start a test script in these inc-files.

tools Contains general tooling routines in these inc-files (for example,
declare.bas).

update Contains general resource-test routines in these files (options-dialog
and autopilots)

win Contains all HelpID declarations.

2.3  CVS information

The complete TestTool Environment is checked into a CVS-tree under the module name qatesttool.
You can then check out the module or the global-module along with the application or module that
you want to test. Since the content (such as global routines and the hid.lst) of the global-module can
change, update the global-module regularly.

The TestTool Environment - Page 17 / 64



3  Declaration of OpenOffice.org for the TestTool

3.1  Introduction

To function properly, the TestTool needs to identify the menu items, dialogs, and controls in
OpenOffice.org. The identification of these items for testing is not done automatically, but rather by
developers through a process called Declaration. OpenOffice.org is nearly fully declared, with each
new feature being declared as soon as the feature is added. However, discrepancies exist between the
declaration of older and newer features. Older dialogs and controls are declared in German, whereas
all new features are declared in English. As the declared names are only variables, you can use this
documentation to correctly identify older features.

Page 18 / 64 - Declaration of OpenOffice.org for the TestTool



3.2  Types of Declaration
The TestTool can only be used on menu items, windows, dialogs,and controls that have been
declared (see also chapter 5: Internal Commands, Methods and Functions for TestTool). You can
find the declarations in *.sid and *.win files in the .../global/sid and .../global/win directories.

There are five types of declarations in OpenOffice.org:

SlotID Most menu items in OpenOffice.org have SlotIDs (short integer with max. 5 numbers)
that are executed directly to call a function, open a dialog, and so on. However, these
IDs cannot be used by the TestTool. Instead you can use the declaration names
(longnames) for the SlotIDs that are listed in the *.sid –files contained in the ../
global/sid directory.
SlotIDs are not automatically generated during the OpenOffice.org process, but rather
are assigned by developers when a new menu item is inserted.

HelpID Most windows, dialogs, and controls automatically receive HelpIDs during the build
process of OpenOffice.org. The HelpID is used to open the correct help topic for
dialogs or controls in OpenOffice.org. The TestTool uses HelpIDs to identify an item
in OpenOffice.org, but rather . However, HelpIDs cannot be used in a TestTool script.
Instead, speakable names are declared in the *.win-files in ../global/win for
identification.
You can use any of the commands described in chapter 5 (Internal Commands,
Methods and Functions for TestTool) on the items that are identified by a HelpID.
File names that start with an “e” refer to items that are in English, whereas those that
do not start with “e” are in German.

UniqueID A developer can assign an UniqueID to an item in OpenOffice.org that does not have a
HelpID, so that you can refer to the item a TestTool script. Please note that the
TestTool internally treats HelpIDs as UniqueIDs.

UNO-Slot Some newer menu items in OpenOffice.org (BASE or HELP) do not use SlotIDs, but
rather UNO-slots (Universal Network Objects). The UNO-slots (For example,
FileOpen_uno .uno:Open1) are the declared the same way as SlotIDs and are listed in
e_all.sid file in the ..\global\sid directory.

Macro-
URL

Some menu items (For example, File - New - Autopilot) are Macro-URLs and as a
result do not have SlotIDs. At present, the TestTool cannot handle Macro-URLs and a
workaround is used (the menus are opened).

1 The name 'Open' is taken from the document: http://framework.openoffice.org/servlets/ProjectDocumentView?documentID=367 from the column
Command

Declaration of OpenOffice.org for the TestTool - Page 19 / 64



3.3  Determining the SlotID of a Menu Item
Before you can determine the SlotID of a menu item in OpenOffice.org, you need to set the
HELP_DEBUG environment variable to TRUE.

1. Do one of the following:

• On the Win32 platform, open a DOS window, type set HELP_DEBUG=TRUE, and then press
Enter.

• On UNIX, open a terminal window (for example, xterm), type set HELP_DEBUG=TRUE, and
then press Enter.

2. In the same window, type soffice.exe (Win32) or soffice to start OpenOffice.org.

3. Choose Help and ensure that the Extended Tips option is selected.

4. Open the menu containing the item that you want to determine the SlotID for and rest the mouse
pointer over the item.
The Extended Tip is displayed. To keep the Extended Tip open, press Ctrl+F2. The SlotID is
displayed at the bottom of Extended Tip window (for example, if you choose Format -
Character in Writer, the SlotID is displayed as swriter – 10296)

If you declared a SlotID using the method described in the Declaring a new menu item section of this
chapter and receive an error similar to ': UNO URL "slot:58991" could not be executed: No
dispatcher was found.' when you try to determine the SlotID, you must then use the following
method to determine the SlotID: MenuGetItemId(iNumber as Integer).
Example: 
For the Calc menu item Insert - Function list, where the SlotID is 58991 and the longname  is
HID_SC_FUNCTIONLIST, use this testtool-script:

•    DocumentCalc.UseMenu                ' to access the menu bar
   MenuSelect MenuGetItemId(4)         ' to open the 4th menu Insert
   print MenuGetItemId(11)             ' to get the ID for the 11th entry
from
                                       ' the top including separators
   print MenuGetItemText(MenuGetItemId(11)), MenuGetItemCommand
(MenuGetItemId(11))
                                       ' to verify it is the correct entry

This leads to the ID 26248 with the 
longname 'FID_FUNCTION_BOX'.

Page 20 / 64 - Declaration of OpenOffice.org for the TestTool



3.4  Determining the HelpIDs or UniqueIDs of Controls
Instead of using the SlotID method to determine the HelpIDs or the UniqueIDs of controls and
dialogs, you can use the DisplayHID  TestTool command or the ..\global\tools\declare.bas script.
This script starts OpenOffice.org, but does not reset the application (that is, close open documents).
This behavior allows you to open a dialog and then run the declare.bas script.

When you run the declare.bas script, the the following window opens in OpenOffice.org:

To display the HelpID, the resource type number, and the title of the dialog (or control) , hold

down the Display ID button ( ). In
this example, the View - Zoom dialog
in a Writer document was opened. The
ID of the dialog is 10000, the resource

type number is 316 and the title of the dialog is Zoom.

For the same example, the following dialog opens in the TestTool:
Note: This example contains German
strings in the declaration.
The complete dialog is declared in the
TestTool environment. All entries
have a name and no HelpID is
displayed with the complete help text.
If the dialog contains the line --0:
EDIT: 90% No entries in hid.lst, at
least one ListBox or  another control is
present in your dialog. A ListBox is
an edit-field that has a button that you
can use to display a list. The list
contains one entry with an ID and
another entry with a zero.

The Zoom dialog in the TestTool
Environment is called Massstab,

whereas the controls in the dialog are called GanzeSeite (=Entire Page), Seitenbreite (=Page width),
and so on. 
These are the same names that are used in the test scripts that work with this dialog. Although the
OK, Cancel, and Close buttons are in a global class for dialogs, they are not declared for each dialog.
If you want to close a dialog that does not contain one of these standard buttons, you will need to
find another method to the close the dialog.

In the Slots field, you can see which SlotIDs are declared for this dialog, for example,
OL_Seitenansicht_Massstab is a declaration  for a button on a toolbar, while ViewZoom is the slot
that  opens this dialog when you choose the menu item View - Zoom.

Declaration of OpenOffice.org for the TestTool - Page 21 / 64

Illustration I DisplayHID Window (TestTool) with declaration



This example is also for
the Zoom dialog, but
without the declaration.
The asterisk (*) in front of
the first entry indicates
that the dialog is correctly
defined in the TestTool
Environment. The first
column lists the names of
the controls and the
second column lists the

resource type (in this example, radio buttons), the longname that was generated automatically by the
OpenOffice.org build process, and the HelpIDs (not visible in this dialog). The longnames and
HelpIDs are also listed in the hid.lst file.

Page 22 / 64 - Declaration of OpenOffice.org for the TestTool

Illustration II DisplayHid Window (TestTool) without declaration.



3.5  Declaring a New Menu Item
Declaring a new menu item is a four-step process: determining the SlotID of the new menu item (see 
Determining the SlotID for a Menu Item section in this chapter), determining the longname using the
SlotID, inserting the longname in the e_all.sid file, and restarting the test script. Please note that
English menu items are listed in the e_all.sid file and German menu items are listed in the all.sid file
in the./global/sid directory. Only add new menu items to the e_all.sid file.

Example: Adding a new item to the View – Zoom menu.

1. Open a DOS or terminal window and type HELP_DEBUG=TRUE.

2. Start soffice.exe. If the Quickstarter is running, exit the Quickstarter.

3. Choose Help, and ensure that Extended Tips is selected.

4. Open the View menu in a Writer document and rest the mouse pointer over the Zoom command.

The name of the application and the SlotID are displayed at the bottom of the Extended Tip
window (in this example, swriter – 10000).

5. In the ../global/hid/ directory, open the hid.lst file and search for the longname of the 10000 entry
(in this example 1000 SID_ATTR_ZOOM).

6. Select and copy the longname.

7. Change to the ../global/sid directory, open the e_all.sid file, and go to the View section.

8. Add a new entry called ViewZoom, and paste the SID_ATTR_ZOOM longname behind the entry.

9. Save the e_all.sid file. The new menu item is added to the TestTool environment.

Declaration of OpenOffice.org for the TestTool - Page 23 / 64



3.6  Declaring a New Dialog or Control
Example: Adding a new dialog or control to the View - Zoom menu item:

1. In OpenOffice.org, Choose View – Zoom.

2. In the TestTool, open the ../global/tools/declare.bas script and press  to run the script.

3. In OpenOffice.org, hold down the left mouse button and rest the mouse pointer over the
DisplayHid dialog.

4. Release the mouse after the dialog is read. The “DisplayHID” dialog appears in TestTool.

5. Select all of the entries in the dialog and press copy.

6. In the ../global/win/... directory, open the edia_t_z.win  file, where the leading e stands for
English and dia stands for dialog, and the t_z stands for dialog names that start with T through Z.
For tab pages (registers), a tab is added to the filename instead of dia. a_d means only names
with leading “a” until leading “d”)

7. Paste the content of the clipboard into the open file.

8. Add an asterisk (*) as a separator in front of the dialog name Zoom and ensure that all the controls
have names.

• For example:
*Zoom SID_ATTR_ZOOM
EntirePage svx:RadioButton:RID_SVXDLG_ZOOM:BTN_WHOLE_PAGE
PageWidth svx:RadioButton:RID_SVXDLG_ZOOM:BTN_PAGE_WIDTH
Optimal svx:RadioButton:RID_SVXDLG_ZOOM:BTN_OPTIMAL
Percent200 svx:RadioButton:RID_SVXDLG_ZOOM:BTN_200
Percent150 svx:RadioButton:RID_SVXDLG_ZOOM:BTN_150
Percent100 svx:RadioButton:RID_SVXDLG_ZOOM:BTN_100
Percent75 svx:RadioButton:RID_SVXDLG_ZOOM:BTN_75
Percent50 svx:RadioButton:RID_SVXDLG_ZOOM:BTN_50
Variable svx:RadioButton:RID_SVXDLG_ZOOM:BTN_USER
ReductionAsVariable svx:MetricField:RID_SVXDLG_ZOOM:ED_USER

You cannot use numbers or special characters in the names.

You can, however, use a plus sign (+) to refer to a dialog or a control that you previously declared. in
other words, you only need to declare a dialog or a control once. A good example is the File – Open
Dialog which is also used for Insert - Graphics.

• For example:
*GeneralFileDialog HID_EXPLORERDLG_FILE
UebergeordneterOrdner
svtools:MenuButton:DLG_SVT_EXPLORERFILE:BTN_EXPLORERFILE_UP
NeuerOrdner svtools:ImageButton:DLG_SVT_EXPLORERFILE:TN_EXPLORERFILE_NEWFOLDER
...
+GrafikEinfuegenDlg GeneralFileDialog
Stil HID_FILEOPEN_IMAGE_TEMPLATE
Verknuepfen HID_FILEDLG_LINK_CB HID_IMPGRF_CB_LINK
Vorschau HID_FILEDLG_PREVIEW_CB HID_IMPGRF_CB_PREVIEW
Link HID_FILEDLG_LINK_CB
Preview HID_FILEDLG_PREVIEW_CB

Page 24 / 64 - Declaration of OpenOffice.org for the TestTool



3.7  About the hid.lst File
The hid.lst is a list that is automatically generated during the OpenOffice.org build process. The
hid.lst contains longnames, SlotIDs, HelpIDs, and UniqueIDs.

An inherent problem of the OpenOffice.org declaration method is that IDs can change when a
developer, for example, rearranges the order of controls in a dialog or adds a control to a dialog. As a
result the same controls on the same dialog in two different versions of OpenOffice.org can have
different IDs. However, the longname (unique name) of a control is automatically assigned during
the build process. The longname only changes if the dialog is renamed or if the OpenOffice.org
project is renamed.

The version of the hid.lst that was by a script is listed in the header for the script in the result file.
You only need to use a new hid.lst when new features are added to the OpenOffice.org GUI.

3.7.1  Location of the hid.lst file

The hid.lst is located in the program directory of your OpenOffice.org installation.

3.7.2  Creating a working hid.lst

1. Get the Perl script from CVS at qa/qatesttool/tools/hid.
Batch files for windows (hid.bat) and Unix (hid.sh) are found in the same directory.

2. Copy the original hid.lst into the same directory (qa/qatesttool/tools/hid/) and run the appropriate
batch file.

3. Copy the generated hid.txt file to your workspace (qa/qatesttool/global/hid.lst).
4. Open the hid.txt in a text editor and add the version of the build to the first line of the file (for

example, 644m9s1_HID_Eigen 01010100101010101010101010).
5. Generate a diff to the version stored in CVS. This gives you an indication as to how useable the

new hid.lst is.

3.7.3  Viewing hid.lst errors

To view hid.lst errors that occur when you run an automated script or declare.bas, expand the second
line in the resultfile called 'Reading the files'.
There are two possible hid.lst errors :

1. The hid.lst is corrupted (several errors in the declaration part of the result file).
2. The OpenOffice.org GUI has changed and the declaration is not correct. You have to check

the dialogs with declare.bas (from qa/qatesttool/global/tools/).

The following error that occurs whenever you run declare.bas and you can safely ignore the warning:
'/q_testtool/qatesttool/global/win/setup.win''Warning: Name double: *Active'

Declaration of OpenOffice.org for the TestTool - Page 25 / 64



4  The Structure of Test Scripts

4.1  Introduction
The script language for the TestTool is StarBasic, the OpenOffice.org form of BASIC (similar to
VisualBasic). In addition to StarBasic, the TestTool has methods and commands for communicating
with and controlling OpenOffice.org.

To automate the TestTool using scripts, use the following guidelines:
• Start a test only when the application that you want to test is in its base state.
• Do not stop the complete test if an error occurs during a testcase.
• Print the results of a test to a file (=result file)

4.2  sub main
The start routine for a test script is not the same as the simple start routine for a BASIC script. The
sub main keyword must be written in lowercase, with one space between the two words, otherwise
only a normal BASIC script is started. The sub main routine makes an internal call to the
LoadIncludeFiles function and must reside in same *.bas file as the function.

The LoadIncludeFiles function contains the main processes and routines that are required to start a
test script:

sub LoadIncludeFiles
use
"global\system\inc\gv
ariabl.inc"
use
"global\system\inc\ma
ster.inc"
Call GetUseFiles
gApplication =
"WRITER"

end sub

'automatic start of LoadIncludeFiles
'includes the inc file that contains the most important global
variables (g_variabl.inc)
'includes the global library (master.inc)
'calls the sub routine to get the information required for a test (sets
global variables, starts the office, ...)
'sets the global variable gApplication for the application that you
want to test (here: Writer = Text document )

4.3  GetUseFiles
In GetUseFiles, the following actions are executed:

• Includes all important tooling files
• Loads complete declaration ( all *.sid and *.win files )
• Gets the environment information of the TestTool (for example, platform and system

language)
• Gets the environment information of the OpenOffice.org (platform, system language,

installation type [FAT or network], version, build number, installation path(s), language, and
so on)

• Sets all applicable global variables
• Adjusts some important settings in OpenOffice.org
• Creates the header in the result file
• Starts OpenOffice.org

The GetUseFiles subroutine was written especially for the TestTool and is contained in the
master.inc in the ../global/system/inc directory. The TestTool can only work after this subroutine is

Page 26 / 64 - The Structure of Test Scripts



run.

4.4  testcase ... endcase
A tested area (  testcase  ) should be as small as possible  , for example, one feature or one dialog. This
way, if a testcase fails, the remainder of the test script can still be executed. Insert each testcase into a
testcase ... endcase routine. If an error occurs during the testcase routine, the OpenOffice.org state is
recovered to a known state.

When the test script reaches a testcase routine, the testenter subroutine is automatically called. The
testenter subroutine checks the base state of OpenOffice.org, automatically closes any open dialogs
and all but one document window. The subroutine then copies the associated error messages to the
result file.

Similarly, when the test script reaches the endcase routine, the testexit subroutine is automatically
called to check and recover the last known base state of OpenOffice.org. The subroutine then copies
the associated error messages to the result file.

If an error occurs during a test process, the testcase stops and jumps directly to the testexit
subroutine. All errors are written to the result file. If an error occurs outside the testcase ... endcase
structure, the test script stops executing.

The testcase ... endcase construction must be used for each testcase. Use this construction in the
same way as a sub- or function-routine.

The testenter and testexit routines are located in ../global/system/inc/master.inc.

Note: The words testcase and endcase are keywords and must be written in lowercase. Do not use
these words in documentation strings or in any other strings in the script.

Note: Never exit a testcase with 'exit sub', 'return', or with any command that does not call the
TestExit sub routine. If you do, then no cleanup is performed. Instead, use goto endsub to recover the
OpenOffice.org application that you are testing.

4.5  try ... catch ... endcatch
To avoid a known OpenOffice.org problem in a test script, do not test the affected area with the test
scrip, otherwise use try-catch-endcatch. 

If an error occurs in the try-part of the script, the script automatically jumps to the catch-part and not
to the recovery section of the   testexit   routine  . If you do have a method to handle the error in the the
catch-part of the test script, the test breaks and the script automatically jumps to the testexit-routine
of endcase. 

You can only branch this method once, that is, you can also use one try-catch-endcatch construction
in the try-part and in the catch-part. 

The Structure of Test Scripts - Page 27 / 64



try

...

try

...

catch

...

endcatch

...

catch

...

try

...

catch

...

endcatch

...

endcatch

Note: try, catch, and endcatch are keywords and as such, cannot be used in documentation strings or
as variables in the BASIC-scripts.

Only use the try-catch-endcatch construction when you need to circumvent a problem in a long test
script. In all other instances, it is better to run into an error and then use the TestTool to recover the
test.

4.6  sub and function
You can use sub and function routines in test scripts in the same way as in BASIC. You can call the
routines from any part of the test script, including testcases, and try-catch-endcatch constructions.

Page 28 / 64 - The Structure of Test Scripts



5  Internal Commands, Methods and Functions for
TestTool

June 19, 2003 Testscript Structure

Global

Remote Testing

Windows, Controls and Objects

Any Control, Window, Object MenuButton TimeField

CheckBox Menu and Contextmenu StatusBar

Image-CheckBox MessBox / InfoBox System Dialog

ComboBox WarningBox / ErrorBox TabPage

Dialog QueryBox Toolbar

ModelessDialog MoreButton TreeListbox

DockingWin PushButton, ImageButton BrowseBox

Splitting Windows RadioButton,
ImageRadioButton

Control

EditWindow SpinField TriStateBox

Edit-Field PatternField

MultiLineEdit-Field NumericField

FloatWin (Flyer) MetricField

ListBox CurrencyField

MultiListBox DateField

Internal Commands, Methods and Functions for TestTool - Page 29 / 64



Page 30 / 64 - Internal Commands, Methods and Functions for TestTool



5.1  Testscript Structure
Kontext String:Window Specifies the dialog or window that you want to test. You can use all of the controls in

the dialog or windows, so long as you declared the 'Kontext' in the win-files.
Furthermore, if you do not declare the 'Kontext', you cannot work with the dialog or
window. For example, If you want to write to a Writerdocument, you must include
the following:
Kontext "DokumentWriter"
DokumentWriter.TypeKeys "This is a test."

sub main
...
...
end sub

Specifies the main routine for the TestTool. Write 'sub main' in lowercase letters with
only one space between the two words. As the 'LoadIncludeFiles' routine is called at
the start of a test script, the routine must be in the bas-file that contains the 'sub main'
routine.

sub LoadIncludeFiles
use "inc\gvariabl.inc"
use "inc\master.inc"
call GetUseFiles ()
...
...
end sub

This routine must be included in the bas-file that contains the 'sub main' routine.

sub TestEnter
...
...
end sub

The TestEnter routine is located in the master.inc file and is automatically called
when the testscript enters a testcase routine.

sub TestExit
...
...
end sub

The TestExit routine is located in the master.inc file and is automatically called when
a testscript exits a testcase-routine.

testcase 
....
....
endcase

A special test routine that tests one item, such as a control. The words testcase and
endcase must be written in lowercase. 
If an error occurs in a testcase, the testcase ends and OpenOffice.org is reset to a base
state. The error is then written to the resultfile.

try
.... 
 catch
....
endcatch

If you want to circumvent an error, use the try-catch-endcatch method. If an error
occurs during the try-part, the test breaks and jumps to the catch-part. You can only
branch this method once, that is, you can add a try..catch..endcatch in the try- or in
the catch-part, but only in one level.

5.2  Global
ActivateDocument nNr Activates the document window that has the number that you specify. Note:

The list of document windows does not correspond to the order in which the
windows are opened, that is, you do not know which document corresponds
to which number.

AppAbort Deletes all communication-instructions in the queue between the TestTool
and OpenOffice.org.

AppDelay nNr Waits in OpenOffice.org (not in TestTool) for the number of milliseconds
that you specify.

Boolean ApplicationBusy Returns 'FALSE' if the OpenOffice.org is in the waitcursor state, otherwise
returns 'TRUE'.

Assert [Text] Outputs an assertion from TestTool.

Internal Commands, Methods and Functions for TestTool - Page 31 / 64



AutoExecute = Boolean If AutoExecute = FALSE, all commands behind it are collected, otherwise
the commands are executed. You can also use Execute to run the collected
commands.

CaptureAssertions [Bool] To catch the assertions in TestTool, set this variable to TRUE, otherwise set
the variable to FALSE to throw the assertions back to OpenOffice.org.

caselog "" Stops the output at startup (used behind the win-declaration output)

DialogHandler String Old instruction – N/A

DisplayHid [TRUE] Call DisplayHid to display a window in OpenOffice.org that lets you select
the windows that you want get the UniqueIDs for. To declare windows, use
the  declare.bas script.

DisplayPercent A method on Windows for returning information about the mouse position in
the window. The position is given as a percentage of the distance between the
top left corner of the window (0,0) and the bottom (0,100) and right (100,0)
edges of the window.

ErrorLog Writes the last error to the resultfile (without a callstack).

ExceptLog Writes the last error to the resultfile with a callstack.

Execute Executes the collected commands when AutoExecute = FALSE

String GetApplicationPath Returns the correct path to TestTool.ini / .TestToolrc.

String GetClipboard Returns the string from the OpenOffice.org clipboard. If the clipboard
contains a picture, nothing is returned.

[tt_env] String GetClipboardText Supplies the real string from the clipboard. Use this function to return the
information that is selected in a document. This function is not an internal
TestTool command, but rather a function from the TestTool Environment.

USHORT GetDocumentCount Returns the number of open documents in the OpenOffice installation that
you are testing.

String GetTestCaseFileName Returns the file name of the current testcase, otherwise this function returns
an empty string. This file name is useful for the statistics output in the
recover routine. 

Nr GetTestCaseLineNr Returns the line number of the current testcase.

String GetTestcaseName Returns the name of the current testcase. Outside a testcase it returns an
empty string. The testcase name is useful for the statistics output in the
recover routine. 

GPF Crashes OpenOffice.org.

String MakeIniFileName (String
BaseName)

Returns the correct name of an ini-file on the current operating platform.
For example, MakeIniFileName (“TestTool”) returns TestTool.ini on
Windows and .TestToolrc on UNIX.

NoDebug / Debug Deprecated.

PrintLog String Writes a string to the resultfile

Profile [Bool][,nNr1][,nNr2][,nNr3]
[,nNr4][,String]

Old instruction to get system-information (not used in the tests)

Page 32 / 64 - Internal Commands, Methods and Functions for TestTool



RemoteCommandDelay [msec][,msec]
|
TRUE | FALSE

• Delays the execution of OpenOffice.org commands (=remote) (not local
BASIC routines).

• functions  :

• msec,[msec] is the delay range (for example, if you enter
100,100, the   delay is always 100 msec, whereas if you enter
100,200, the delay can  be 100, 120, ... 130, ...190, 200). The
second value is OPTIONAL.

• TRUE | FALSE Boolean expression for enabling or disabling the
delay.

• Examples  :

• RemoteCommandDelay 100
RemoteCommandDelay TRUE

• RemoteCommandDelay 100,200
RemoteCommandDelay TRUE

String ResetApplication Returns OpenOffice.org to its base state and writes the errors to the
resultfile. This function can only be used in the recoverroutine 
(TestEnter, TestExit).

SetClipboard String Copies a string to the clipboard

Start exe-file [, String2 ] Starts OpenOffice.org and opens the communication between
OpenOffice.org and the TestTool. Use start sAppExe in a script file to
specify the OpenOffice.org application that you want to start.

WarnLog String Writes a warning to the resultfile.

QAErrorLog String Writes the string that you specify when this function is encountered in a test
script or by internal TestTool code (Example: Extracting an XML package
over  existing XML files returns a QAError that tells the QA engineer that
the directory is not empty). You enable or disabled the logging of these QA
errors/notes with EnableQAErrors.

EnableQAErrors = [Bool] Enables or disables the logging of QAErrorLogs. The default value is TRUE
(=on). See the QAErrorLog command.

WinTree Shows the complete window hierarchy of OpenOffice.org, so long as you set
the  output to a variable. Use the following structure to show the complete
tree:
Dim sInterim
sInterim = WinTree
Printlog sInterim

Use Include file If you want to use inc-file in a subroutine, you must add the files with the
use-instruction. If you want, you can use relative pathnames (relative to
TestTool path in TestTool.ini/.TestToolrc) or absolute pathnames.

UseBindings = TRUE
UseBindings = FALSE

A test script aborts if you call a menu item slot that requires parameters. In
this case, set 'UseBindings=TRUE' before the slot call. If the scripts still
crashes, write the bug UseBindings => FALSE in each ResetApplication-
Routine in TestEnter and TestExit.

5.2.1  Statistic
GetErrorCount Returns the matching count of errors in the running test.

GetWarningCount Returns the matching count of warnings in the running test.

GetUseFileWarningCount Returns the matching count of warnings out of the declaration part in the
running test.

Internal Commands, Methods and Functions for TestTool - Page 33 / 64



5.3  Commands on The Office Side
These commands work in OpenOffice.org applications and not in TestTool. You can also use them

for remote testing. For normal file commands, please use BASIC commands.

String app.Dir Filename You can get the information if a file/directory exists or not. For example: 
for the files: if app.dir ("d:\officedir\program\soffice.exe") <> "" than
print "The file exists!"
for directories: if app.dir ("d:\officedir\", 16) <> "" than print "the
directory exists!"

app.Kill Filename Deletes a file.

app.rmDir Filename Deletes a directory (only an empty directory)

app.mkDir Filename Creates a new directory.

app.FileCopy Old_filename,
New_filename

Copies a file.

app.Name Old_filename,
New_filename

Renames a file.

nSize app.FileLen Filename Returns the length of a file.

Date app.FileDateTime Filename Returns the date that a file was created.

GetSystemLanguage Returns the ISO language code (Integer) of the system that the
OpenOffice.org application is running on.

5.4  Windows, Controls and Objects

5.4.1  Any Control, Window, Object
String Object.Caption Returns the name of dialogs (name on the titlebar of a dialog) or

controls. For controls that do not have a name, the returnvalue is empty.
Only the fixedtext  belongs to a control.

Bool Object.Exists [Timeout in Sek.] Checks to see if a dialog or a control exists.

String Window.GetFixedText [Nr] Returns the content of the nth fixed text. If you do not specify the [Nr]
parameter, the first fixed text is returned.

Nr Window.GetFixedTextCount Returns the number of fixed texts on a given window or control and
associated child windows or controls.

Nr Object.GetRT Returns the resource type of the object, window, or control

Nr Window.GetPosX Returns the x-position of the edge at the top left (in pixels).

Nr Window.GetPosY Returns the y-position of the edge at the top left (in pixels).

Nr Window.GetSizeX Returns the x-size of a dialog (in pixels).

Nr Window.GetSizeY Returns the y-size of a dialog (in pixels).

Nr Object.ID Returns the UniqueID of a window or a control.

Bool Object.IsEnabled Checks if a control is enabled.

Bool Object.IsVisible Checks if a control or a window is visible.

Page 34 / 64 - Internal Commands, Methods and Functions for TestTool



Objekt.MouseDown x, y [, nButton ]
[,Focus]

Presses the mouse button at the specified x/y-position (in percent) in a
window. Ensure that you use the mouseup command after each instance of
the  mousedown command.
nButton is:
1 = left mouse button
2 = middle mouse button
3 = right mouse
The default (without nButton) is the left mouse button.

If the MouseDown and MouseUp combination does not work like a normal
mouse click, then set the Focus parameter to TRUE.
(x,y):= (1,1) top left; (99,99) bottom right

Objekt.MouseDoubleClick x, y [,
nButton ] [,Focus]

Double-clicks with a mouse button at the x/y-position (in percent) of a
window.
If MouseDoubleClick does not work like a normal mouse double click, set
the Focus parameter to TRUE.

Objekt.MouseMove x, y [, nButton ]
[,Focus]

Moves the mouse. To perform a mouse drag and move or drag and copy, add
the MouseDown command before the MouseMove.

Objekt.MouseUp x, y [, nButton ]
[,Focus]

Releases the mouse button.
If the MouseDown and MouseUp commands do not work like a normal
mouse click, set the Focus parameter to TRUE.

Autoexecute = FALSE 
Objekt.MouseDown x, y [, nButton ]
[,Focus]
Objekt.MouseUp x, y [,nButton]
[,Focus]
Autoexecute = TRUE

Use this construction for a rapid mouse click.
By setting the appropriate gApplication, you can use the following
subroutine for every OpenOffice.org document.
gMouseClick (x, y)

[nNr.] GetMouseStyle Returns the actual state/look of the cursor, from a list of 85 possible values.
Some important states: ARROW = 0, TEXT = 3, MOVE = 6 (moving
objects), REFHAND = 28 (links/references) and FILL = 31(fillbox).

String Object.Name Returns the name of the object from the declaration.

Bool Object.NotExists [Timeout in
Sek.]

Checks to see if a control or window does not exist.

Objekt.OpenContextMenu [Focus] Opens the context menu of a window. If you set the Focus parameter to
TRUE, the context menu opens at the position of the mouse.
To open the context menu at a specific position in a window, you have to
first move the mouse to the position before using the OpenContextMenu
command.

Object.SnapShot String:Dateiname 
[PosX, PosY, SizeX, SizeY ] 

Takes a screenshot of a control or a window. If you want, you can also
specify the position and size of the screenshot in pixels.

Dokumentobject.TypeKeys String [Nr.]
[, Focus] 

Prints a string on the document, where Nr. is the number of times that you
want to print the string.
To use special keys, enclose them with "<>". 
For example: DokumentWriter.TypeKeys "<Shift F1>"

The Focus parameter is a Boolean expression. Normally, typekeys works
without this parameter; however, to set the typekeys command directly in
this window, set the Focus parameter to 'TRUE'. Use this parameter only
when the normal command does not work correctly.

Internal Commands, Methods and Functions for TestTool - Page 35 / 64



5.4.2  CheckBox

5.4.3  Image-CheckBox 
[ Restype: 336 ], [ Restype: ??? ]

Object.Check Selects the check box.

Object.Click Changes to the next state of the check box, that is, removes the check
mark from a selected check box.

Bool Object.IsChecked Returns the state of the check box (TRUE = selected).

Object.UnCheck Clears the check box.

5.4.4  ComboBox 
[ Restype: 340 ]

Nr Object.GetItemCount Returns the numbers of entries in the combo box.

String Object.GetItemText [Nr] If you do not include the Nr parameter, the text of the selected entry is
returned. If you include the Nr parameter, you can return the text of any
entry that you specify, including an entry that is not selected.

Nr Object.GetSelCount Returns the numbers of the entries that are selected in a combo box (You
can select more than one entry).

Nr Object.GetSelIndex [Nr] Returns the index of the selected entry in the list.

String Object.GetSelText [Nr] Returns the text of the selected entry.

Object.Select Nr Selects an entry with the index number that you specify.

Object.Select String Selects the entry that has the same text as the String that you specify.

Object.SetNoSelection Sets no selection in a list (sometimes this corresponds to the first entry in
the list).

Object.SetText [String] Enters the text string that you specify in a combo box. If the combo box
contains an entry that matches the string, the entry is selected.

5.4.5  Dialog

5.4.6  ModelessDialog

[ Restype: 314 - 316 ]

Dialog.Cancel Closes a dialog by pressing the Cancel button.

Dialog.Close Closes a dialog with the Close button.

Dialog.Default Not important

Dialog.Help Presses the Help button to open the help topic for the dialog.

Dialog.Move Nr:x, Nr:y Moves a dialog in OpenOffice.org by the number of pixels that you
specify.

Dialog.OK Closes a dialog with the OK button.

Page 36 / 64 - Internal Commands, Methods and Functions for TestTool



5.4.7  DockingWin

[ Restype: 370 ]

Window.Close Closes a window by pressing the X button in the title bar of the window.

Window.Dock Docks a window on one edge of the StarDesktop.

Window.Help Opens the Help viewer.

Bool Window.IsDocked Returns the docking state.

Bool Window.IsMax Returns the state of the window (maximize or minimize).

Window.Maximize Maximizes a window so that the contents of the window are visible.

Window.Minimize Minimizes a window so that only the title bar of the window is visible.

Window.Move Nr:x, Nr:y Moves a window.

Window.Size Nr:x, Nr:y Resizes a window.

Window.Undock Undocks a window.

5.4.7.1  Splitting Windows 

(in dockingmode)

Bool Office.IsPin [Align] Returns the state of the pin.

Bool Office.IsFadeIn [Align] Returns the state of a window (visible or not).

Office.Pin Bool [Align] Presses the pin.

Office.FadeOut [Align] Fades out a window (visible).

Office.FadeIn [Align] Fades in a window (not visible).

If there is more than one splitting window in a docking window, you must set the following Align operators. 
- AlignLeft
- AlignRight
- AlignTop
- AlignBottom

5.4.8  EditWindow

(Documents - the active SDI window)

[ Restype: 312 ]

Special Note:
The first document is not enabled for the TestTool - most of the slot (calls of menu items) and TypeKeys commands do
not work. This is a feature and not a bug.

Dokumentobject.TypeKeys String [Nr.] [,
Focus] 

Prints the string that you specify in the document. The Nr. parameter
specifies the number of times that you want to print the string.
To use special keystrokes, enclose the keystrokes by "<>" brackets. 
For example: DokumentWriter.TypeKeys "<Shift F1>"

The Focus parameter is a Boolean expression. In
StarSchedule and base documents, you must set this
parameter to TRUE, to print the string. Otherwise, only
set this parameter to TRUE when the string is not
correctly inserted into the document.

Boolean Documentobject.HasScrollbar [Align] If the document has a scrollbar => TRUE

Internal Commands, Methods and Functions for TestTool - Page 37 / 64



Boolean Documentobject.IsScrollBarEnabled
[Align]

If the document has a scrollbar and it is enabled => TRUE

If more than one scrollbar is visible, use the
following parameters to define the position of
the scrollbar. The default is AlignRight. 
- AlignLeft
- AlignRight
- AlignTop
- AlignBottom

For example:
if (DocumentWriter.IsScrollBarEnabled AlignLeft) = TRUE
then ...

5.4.9  Edit-Field

5.4.10  MultiLineEdit-Field

[ Restype: 338 ], [ Restype: 339 ]

String Object.GetText Returns the text from the edit field.

Object.SetText String Enters the text string in the edit field.

Objekt.TypeKeys String Appends text at the end of the edit field (does not overwrite existing
text)

Bool Object.IsWritable Checks if a control is writable (only for visible Edit- and MultiLine Edit-
fields).

5.4.11  FloatWin (Flyer)

[ Restype: 313 ]

Window.Close Closes the window (x-button in the title bar of the window).

Window.Help Opens the help for the current window (help button).

Bool Window.IsMax Returns the state of the window (maximize or minimize).

Window.Maximize Maximizes the window.

Window.Minimize Minimizes the window so that only the title bar is visible.

Window.Move Nr:x, Nr:y Moves the window by the number of pixels that you specify.

Window.Size Nr:x, Nr:y Resizes the window.

5.4.12  ListBox

5.4.13  MultiListBox

[ Restype: 341 ], [ Restype: 342 ]

Nr Object.GetItemCount Returns the number of entries in a list box.

String Object.GetItemText [Nr] Leave out the Nr parameter to return the text of the selected entry. If you
include the Nr parameter, you can return the text of any entry in the list
box.

Nr Object.GetSelCount Returns the number of selected entries in a multi-list box (you can select
more than one entry).

Nr Object.GetSelIndex [Nr] Returns the index number of the selected entry in the list.

String Object.GetSelText [Nr] Returns the text of the selected entry.

Page 38 / 64 - Internal Commands, Methods and Functions for TestTool



Boolean Documentobject.HasScrollbar
[Align]

If the document has a scrollbar => TRUE

Boolean
Documentobject.IsScrollBarEnabled
[Align]

If the document has a scrollbar and it is enabled => TRUE

If more than one scrollbar is visible, you
have to use the following parameters to add
the position. The default is AlignRight. 
- AlignLeft
- AlignRight
- AlignTop
- AlignBottom

Example:
if (DocumentWriter.IsScrollBarEnabled AlignLeft) = TRUE then ...

Object.Select Nr Selects an entry and its index.

Object.Select String Selects the text of an entry.

Object.SetNoSelection Set no selection in a list (sometimes this corresponds to the first entry).

5.4.14  MenuButton

[ Restype: 331 ]

Button.Click 1. Performs the function that is assigned to a menu button, otherwise the
menu of the button is not opened.
2. For menu buttons that are accessed through a context menu, use the
menu-instructions.

Button.Open Opens the context menu of the menu button so that you can use the
menu-instructions.

Button.OpenMenu Opens the context menu of the menu button so that you can use the
menu-instructions.

Toolbox.OpenMenu ButtonID Opens the context menu of the menu button in Toolbars so that you can
use the menu-instructions.

5.4.15  Menu and Context Menu

Special notes:
The following instructions can only be carried out on an open context menu or an open sub context
menu, otherwise and error is returned. Only use these instructions if you cannot find an equivalent
instruction in the menu.inc file. 
Warning: Make sure that you close each context menu after the instruction has been carried out,
otherwise the test encounters a GPF (crashes).

Objekt.OpenContextMenu [Bool] Opens a context menu for a window or a document.
The Boolean parameter in StarSchedule and in base documents must be set to
TRUE. The default value is FALSE.

nNr MenuGetItemCount Returns the numbers of menu entries (including the menu separators)

nID MenuGetItemID nPos Returns the ID of an menu entry (the ID is required for the remaining menu
instructions).

nNr MenuGetItemText nID Returns the text of the menu entry that has the same nID as the one that you
specify (from MenuGetItemID).

nNr MenuGetItemPos nID Returns the position of the menu entry that has the same nID as the one you
specify (from MenugetItemID).

Internal Commands, Methods and Functions for TestTool - Page 39 / 64



Bool MenuIsItemChecked nID Returns the state of a menu entry with a hook (from MenugetItemID).

nNr MenuIsItemEnabled nID Returns the state “disabled” or “enabled” (from MenugetItemID)

Bool MenuIsSeperator nPos Returns TRUE if the menu entry is a separator.

MenuSelect nID Activates the menu item that has the same nID as the one that you specify. If
the menu does not automatically close after you activate it, you must close the
menu using MenuSelect (0).

MenuSelect (0) Closes all active menus.

5.4.15.1  special methods
DocumentWindow.UseMenu Use this method before you activate a menu in a document. For example: 

Kontext &ldquo;DocumentWriter&rdquo;
DocumentWriter.UseMenu
After you apply this method, you can then use the normal menu-methods.

String MenuGetItemCommand
nItemID

Reads out the command of a MenuItem. This is useful for determining the
UNO URLs so you can declare the UNO Slots.

Description: The first menu is the menu bar with the entries (File, Edit, View ...). To open the File-Menu, open the
submenu of the first menu entry.

5.4.16  MessBox / InfoBox

5.4.17  WarningBox / ErrorBox 

5.4.18  QueryBox

[ Restype: 304 - 308 ] (Messagebox)
(these boxes are handled by the active-operator)

Active.Cancel Closes the box with the Cancel button.

Active.Click ButtonID Not important

Active.Default Closes the box with the Default button (that has the focus).

Active.GetText Returns the text from the messagebox.

Active.No Closes the box with the No button.

Active.OK Closes the box with the OK button.

Active.Repeat Closes the box with the Repeat button.

Active.Yes Closes the box with the Yes button.

5.4.18.1  with checkbox(es)
String Active.GetCheckBoxText Puts the text of the check box into a string.

BOOL Active.IsChecked Returns TRUE if the box is checked, otherwise FALSE is returned.

Active.Check Selects the check box on the message/info/warning/error/query box.

Active.UnCheck Clears the check box on the message/info/warning/error/query box.

5.4.19  MoreButton 

(for additions in a dialog) 

[ Restype: 332 ]

Page 40 / 64 - Internal Commands, Methods and Functions for TestTool



String Object.Caption Returns the text of the button.

Object.Click Clicks the button.

Object.Close Closes the addition window.

Bool Object.IsOpen Returns the state of the addition window (TRUE == Open).

Object.Open Opens the addition window.

5.4.20  PushButton, ImageButton

[ Restype: 326 ], [ Restype: 330 ]

Object.Click Clicks the button.

5.4.21  RadioButton, ImageRadioButton

[ Restype: 334 ],[ Restype: 335]

Object.Check Selects the radio button.

Bool Object.IsChecked Returns the state of the radio button (TRUE = checked).

5.4.22  SpinField

5.4.23  PatternField

5.4.24  NumericField

5.4.25  MetricField

5.4.26  CurrencyField

5.4.27  DateField

5.4.28  TimeField

[ Restype: 353 - 359 ]

String Object.GetText Returns the text from the field.

Object.More [ Nr ] Moves one entry higher.

Object.Less [ Nr ] Moves one entry lower.

Object.SetText String Prints text in the field (only in the right format).

Object.ToMax Goes to the maximum value.

Object.ToMin Goes to the minimum value.

5.4.29  StatusBar

(on edit-windows - documents)

Int
DocumentWindow.StatusGetItemCoun
t 

Returns the number of items on the status bar.

Internal Commands, Methods and Functions for TestTool - Page 41 / 64



Int
DocumentWindow.StatusGetItemID
nNr 

Returns the ItemID of a control on the status bar.

String
DocumentWindow.StatusGetText
[ ItemID ] 

Returns the text of the status bar or of the item that has the ItemID that is
not on the status bar.

Bool
DocumentWindow.StatusIsProgress 

Returns true if the status bar is a progress bar.

5.4.30  System Dialog

(system File- or Folder-dialogs - only for Win32)

Boolean ExistsSysDialog (which) Returns TRUE if a system dialog is open (which = FolderPicker or
FilePicker).

CloseSysDialog (which) Closes the system dialog (which = FolderPicker or FilePicker).

FolderPicker If you want to handle a system folder dialog, you have to substitute the
FolderPicker method for the 'which' statement in the above methods.

FilePicker If you want to handle a system file dialog, you have to substitute the
FilePicker method for the 'which' statement in the above methods.

5.4.31  TabPage

[ Restype: 372 ]

for activating a Tabpage with the
'Active'-Operator (normal TabDialogs)

for activating a Tabpage with the TabControl-
Operator (only special dialogs)

Kontext
Active.SetPage TabZeichen
Kontext "TabZeichen"

Kontext "XYZ-Dialog" 
TabControl.SetPage TabZeichenXYZ
Note: Do not use  Kontext "Active" before Active.SetPage – this
no longer works.

Nr Active.GetPage Returns the UniqueID for the active tab page.

Nr Active.GetPageCount Returns the number of tab pages in the dialog.

Nr Active.GetPageId [Nr] Returns the TabpageID from the dialog. This not the UniqueID and is
only needed for the SetPageID instruction.

Active.SetPage TabpageObjekt Changes to the tab page that you specify.

Active.SetPageId Nr Changes to the tab page that has the TabpageID that you specify.

Active.SetPageNr Nr Not important

5.4.32  Toolbar

[ Restype: 369 ]

Button.Click Activates or deactivates a button.

String Button.GetItemText nNr Returns the text of a button (if available).

Page 42 / 64 - Internal Commands, Methods and Functions for TestTool



5.4.32  Toolbar

[ Restype: 369 ]

nNr Button.GetState nNr, nType Returns the state in
dependent on nType.

nType = 0
nType = 1
nType = 2
nType = 3
sonstiges

=> HelpID (0 = Separator)
=> ItemTyp (1=Button,
3=Separator ...)
=> ItemState (1=pressed, 0=not
pressed)
=> ItemID
=> HelpID

String Toolbar.GetText Returns the internal name of a toolbar.

Button.TearOff Tears off a toolbar, but only after a toolbar has been opened by clicking on a
button.
(You do not need to click click the button a second time)

Nr Leiste.GetItemCount Returns the number of items in a toolbar (buttons and separators).

String Leiste.GetNextToolbox Returns the next toolbar if you can change to another toolbar that has a
button on it.

Leiste.SetNextToolbox [ String ] Changes to the next toolbar, or to the toolbar whose name you enter.

5.4.33  TreeListbox

5.4.34  BrowseBox

5.4.35  Control

[ Restype: 376 ]

Special Notes (SetControlType):
OpenOffice.org uses two types of list box controls, namely TreeListbox or a Browsebox. Each list
box type can use one of the following list box styles: list boxes with check boxes in front of each
entry, list boxes with icons in front of each entry, or list boxes with plus signs “+” or minus signs
“–“ in front of each entry. Use the SetControlType method to set the control type of a list box in a
test routine, otherwise the TestTool produces a GPF (=crash). Following a crash, the recover
routine resets the control to the default value of TreeListbox. Some of the following commands do
not work for both types of list box controls.

SetControlType XXX XXX = CTBrowseBox => Sets the control as a Browsebox (for
example, Explorer)
XXX = CTTreeListBox => Sets the control as a TreelistBox.

 

Nr Object.GetItemCount Returns the number of entries.

String Object.GetItemText Nr Returns the selected text.

Nr Object.GetSelCount Returns the number of selected entries.

Nr Object.GetSelIndex [Nr] Returns the index of the selected entry in the list.

String Object.GetSelText [Nr] [,Nr] GetSelText returns the text of the selected entry.
GetSelText 1,2 returns the second text of the first selected entry (if the
list box has more than one column.
GetSelText 2 returns the first text of the second selected entry.

Internal Commands, Methods and Functions for TestTool - Page 43 / 64



5.4.33  TreeListbox

5.4.34  BrowseBox

5.4.35  Control

[ Restype: 376 ]

String Objekt.GetText Returns the text of the selected entry.

Object.Select Nr [, Bool ] Selects an entry by number.

Object.Select String Selects an entry by string.

5.4.35.1  with Checkbox(es)
Boolean Object.IsChecked If the check box is selected => TRUE else FALSE

Boolean Object.IsTriState If the check box is in tri state => TRUE else FALSE

Nr Object.IsGetState Returns the state of the box: 
Unchecked == 0
Checked == 1
TriState == 2

Object.Check Selects the check box.

Object.Uncheck Clears the check box.

Object.TriState Sets the check box in tri state.

5.4.36  TriStateBox

[ Restype: 337 ]

Object.Check Selects the tristatebox.

Object.Click Changes to the next state of the tristatebox.

Nr Object.GetState Returns the state of the box: 
Unchecked == 0
Checked == 1
TriState == 2

Bool Object.IsChecked Returns the checkstate (TRUE == checked).

Bool Object.IsTriState Returns the tristate (TRUE == in tristate).

Object.TriState Puts the object in the tristate.

Object.UnCheck Clears the tristatebox.

Page 44 / 64 - Internal Commands, Methods and Functions for TestTool



6  Working With XML Files

6.1  Introduction

In the SAX interface that is included in OpenOffice.org, you can use the XML parser "eXpat" so that
you can easily work with XML files in the TestTool environment. The SAXReadFile command
creates a DOM (Document Object Model; a tree like 'view') where you can navigate with TestTool
commands.

6.1.1  Main Commands

SAXReadFile filename Recommended command to open the XML file (or stream). The command
checks well-formedness and creates a DOM.

SAXRelease After TestTool has finished using the XML file, this command
closes the DOM.

String
SAXCheckWelltformed
filename

Opens an XML file, checks the well-formedness of the file, and
returns any errors in a string. This command does not create a
DOM. Open DOMs are closed after this command is executed.

Working With XML Files - Page 45 / 64



6.1.2  Working With Elements, Attributes And Characters

String SAXGetNodeType The operations that you can perform with nodes depends on the type of
node. There are two types of nodes that are also constants:

1. NodeTypeElement

a. Includes other nodes and elements (this is the
most important function)

b. Functions

• SAXGetElementName

• SAXGetAttributeCount

• SAXGetAttributeName

• SAXGetAttributeValue

2. NodeTypeCharacter

a. SAXGetChars is the only function that
returns the characters from that node.

String SAXGetElementName Returns the name of the XML element at the current 'pointer' location.

String SAXGetChars Returns the characters from the node type: NodeTypeCharacter.

String SAXGetAttributeValue integer Returns the value of the nth attribute in the recent node.

String SAXGetAttributeValue String Returns the value of the named attribute in the recent node.

Integer SAXGetAttributeCount Returns the count of attributes in the recent node.

String SAXGetAttributeName int Returns the name of the nth attribute in the recent node.

6.1.3  Navigate And Search in The DOM

Integer SAXGetChildCount Returns the count of child nodes (XML elements).

SAXSeekElement integer Searches for the nth element in the node.

To go to the parent node, set the integer to 0 (zero).

SAXSeekElement string Searches for the named element in the node. The string can be one of the
following:

• “/” go to root node

• “Name” searches in child nodes for named node (element)

• “*...” special string from SAXGetElementPath

Boolean SAXHasElement integer Checks if a child exists at the nth node.

Boolean SAXHasElement string Checks if a child exists at the named node.

String SAXGetElementPath Returns a special string for later navigation with the SAXSeekElement.

Page 46 / 64 - Working With XML Files



7  Typekeys Instruction

7.1  Description
This list includes all of the keyboard keys that you can use in the typekeys command, provided that
you use the following structure:

[control].typekeys "<[key(s)]>" 

Examples:

DocumentWriter.TypeKeys “<F11>”

This method allows you to simulate keyboard events such as [ESCape] or [ConTRoL] in the

TestTool. For key combinations such as  AND , use the following structure:

[control].typekeys "<MOD1 F2>" 

Ensure that you leave a blank between the keyboard keys.

Typekeys Instruction - Page 47 / 64



Value Key Value Key Value Key

Characters Y Y UNDO Undo

0 0 Z Z REPEAT Repeat

1 1 Cursor Keys FIND Find

2 2 DOWN Cursor down PROPERTIES Properties

3 3 UP Cursor up FRONT Front

4 4 LEFT Cursor left SHIFT Shift

5 5 RIGHT Cursor right MOD1 Ctrl / Strg

6 6 HOME Pos 1 MOD2 Alt

7 7 END End MODTYPE Alt Gr

8 8 PAGEUP Page up F1 F1

9 9 PAGEDOWN Page down F2 F2

A A Special Keys F3 F3

B B RETURN Return F4 F4

C C ESCAPE Escape F5 F5

D D TAB Tab F6 F6

E E BACKSPACE Backspace F7 F7

F F SPACE Space / Blank F8 F8

G G INSERT Insert F9 F9

H H DELETE Delete F10 F10

I I Arithmetic Keys F11 F11

J J ADD + F12 F12

K K SUBTRACT - F13 F13

L L MULTIPLY * F14 F14

M M DIVIDE : F15 F15

N N POINT . F16 F16

O O COMMA , F17 F17

P P LESS < F18 F18

Q Q GREATER > F19 F19

R R EQUAL = F20 F20

S S Function Keys F21 F21

T T OPEN Open F22 F22

U U CUT Cut F23 F23

V V COPY Copy F24 F24

W W PASTE Paste / Insert F25 F25

X X F26 F26

Page 48 / 64 - Typekeys Instruction



8  Resource Types of all Controls and Windows

To see the internal resource type ID for a control or a window (for example, a dialog) in the
declaration window, run the declare.bas script in TestTool. You can then use the ID to identify the
correct type of control or window to find the corresponding commands. You can also use
window.GetRT to determine  the resource type ID. The ID for control (324) is often used in
OpenOffice.org and represents a special control, such as a treelistbox or a browsbox, that was created
by a developer. Use trial and error to determine which commands can be used on a control.

resource type resource-ID resource type resource-ID

BASE 256 FIXEDTEXT 343
MESSBOX 304 FIXEDLINE 344
INFOBOX 305 FIXEDBITMAP 345
WARNINGBOX 306 FIXEDIMAGE 346
ERRORBOX 307 GROUPBOX 348
QUERYBOX 308 SCROLLBAR 349
WINDOW 309 SCROLLBARBOX 350
SYSWINDOW 310 SPLITTER 351
WORKWINDOW 311 SPLITWINDOW 352
FLOATINGWINDOW 313 SPINFIELD 353
DIALOG 314 PATTERNFIELD 354
MODELESSDIALOG 315 NUMERICFIELD 355
MODALDIALOG 316 METRICFIELD 356
SYSTEMDIALOG 317 CURRENCYFIELD 357
PATHDIALOG 318 DATEFIELD 358
FILEDIALOG 319 TIMEFIELD 359
PRINTERSETUPDIALOG 320 PATTERNBOX 360
PRINTDIALOG 321 NUMERICBOX 361
COLORDIALOG 322 METRICBOX 362
FONTDIALOG 323 CURRENCYBOX 363
CONTROL 324 DATEBOX 364
BUTTON 325 TIMEBOX 365
PUSHBUTTON 326 LONGCURRENCYFIELD 366
OKBUTTON 327 LONGCURRENCYBOX 367
CANCELBUTTON 328 TOOLBOX 369
HELPBUTTON 329 DOCKINGWINDOW 370
IMAGEBUTTON 330 STATUSBAR 371
MENUBUTTON 331 TABPAGE 372
MOREBUTTON 332 TABCONTROL 373
SPINBUTTON 333 TABDIALOG 374
RADIOBUTTON 334 BORDERWINDOW 375
IMAGERADIOBUTTON 335 BUTTONDIALOG 376
CHECKBOX 336 SYSTEMCHILDWINDOW 377
TRISTATEBOX 337 FIXEDBORDER 378
EDIT 338 SLIDER 379
MULTILINEEDIT 339 MENUBARWINDOW 380
COMBOBOX 340 TREELISTBOX 381
LISTBOX 341 HELPTEXTWINDOW 382
MULTILISTBOX 342 INTROWINDOW 383
Taken from build environment file: 'res_type'

Resource Types of all Controls and Windows - Page 49 / 64



9  All Supported Languages
The following languages are supported by the OpenOffice.org build process. To create a language
dependent testcase, use the corresponding „Tel.-Code“ number for a select case function.

Language Tel.-Code Num.-Code ISO-Code Asian2 CTL3

English (US)4 01 1033 en-US

English (GB) 44 en-GB

German4 49 1031 de

Greek 30 1032 el

Finnish 35 1035 fi

Hungarian 36 1038 hu

Czech 42 1029 cs

Slowak 43 1051 sk

Danish 45 1030 da

Norwegian 47 1044 no

Brazil (Port.) 55 2070 pt-BR

Korean 82 1042 ko *

Turkish 90 1055 tr

Arabic 96 1025 ar *

Hebrew 97 1037 he *

Russian 07 1049 ru

Polish 48 1045 pl

Japanese 81 1041 ja *

Chinese (simplifiled) 86 2052 zh-CN *

Chinese (traditional) 88 1028 zh-TW *

Portuguese 03 2070 pt

Dutch 31 1043 nl

French4 33 1036 fr

Spanish4 34 1034 es

Italian4 39 1040 it

Swedish4 46 1053 sv

Catalan 34c / 37 ca

Afrikaans 31b af

Thai 66 th *

L10N-Framework 99 ISO_CODE

Hindi 91 hi-IN *

2Asian: Option in Tools->Options->Language Setings->Languages: Asian Support checked by default
3CTL: Option in Tools->Options->Language Setings->Languages: CTL Support checked by default
4bold:  supported European Language for Automated QA Scripts

Page 50 / 64 - All Supported Languages



10  The Style and Coding Standard 
used in the Automated Testing

10.1  Revisions

Version Author Date Comment

0.1 Thorsten Bosbach 10/17/2002 Draft

0.2 Joerg Sievers 10/18/2002 Conversion to .sxw

0.3 Thorsten Bosbach 11/21/2002 Update with Feedback

0.4 Joerg Sievers 02/27/2003 Ready for OOo

0.5 Thorsten Bosbach 03/17/2003 Cleaned for OOo

10.2  Introduction
This chapter proposes guidelines to make the test code easier to read and to maintain.

There are two sections in this chapter:

• MUST: For everyone; especially for people who are not familiar with the (TestTool-)BASIC
programming language.

• ADVANCED: For people who who want to improve their code style.

The ADVANCED section is based on the articles [Gr00], [Gr01], [Gr02], and [Gr03] to help you
develop a better layout for your code.

These guidelines are relatively new and have not been applied to all of the test code that has been
written. However, any new code should follow these guidelines so that the code can be properly
maintained by all.

10.3  Section One - MUST

10.3.1  Variable

A variable is usually defined with ‘DIM name AS type’. Since the TestTool environment uses
‘OPTION explicit’, a variable must be defined before it is used, otherwise an error occurs.

You also have to declare the variable type and when you define a variable. The variable type is also
indicated by a lowercase prefix at the start of the variable name.

The Style and Coding Standard used in the Automated Testing - Page 51 / 64



Example: for an integer variable:

DIM iCounter AS integer 

prefix type

i integer

i long

d single

d double

s string

b boolean

The following prefixes must be combined with an additional prefix:

a array 
g global (from global.inc) 
l list (for variables declared for use of functions from t_list.inc)

   
Other naming schemes:

t testcase
s sub
f function

After the lowercase prefix that indicates the variable type, start each word in the variable name with
an uppercase character. Write CONSTANTS in uppercase characters only, after the lowercase prefix.

You can only make one declaration per line.

For variable and function names, you can only use letters from a-z/A-Z and numbers from 0-9. Do
not declare one-letter variables, except for loop counters and array indices such as i, x, y, j, n.

Do not use the a lowercase L (l) for a variable name as it cannot be distinguished from the number 1
(one) or an uppercase i (I).

A variable name can have a maximum of 255 characters and must start with a letter. You can use
both lowercase and uppercase letters. When declared, numerical values must be set to 0  and strings
must be set to “”.

10.3.2  Indentation

Use horizontal indentation to show the logical level of components in the code, for example, so you
can easily see which lines of an if-then-else-clause belong to the 'then' part and which lines belong to
the 'else' part. Use four spaces for instead of a tab for an indent as tab handling is different between
different platforms and editors. Do not mix spaces and tabs in your code.

Only use four SPACES per indentation level

A label must have a negative indentation.
If the length of a block of code is longer than 20 lines, include a comment as to why this is at the end
of the block.

The following is an example of a well-structured (indented) block of code:

    function fThisIsAnExample() as integer
        dim i as integer

Page 52 / 64 - The Style and Coding Standard used in the Automated Testing



        
        i = 1
        if (i <> 42) then
            bla
            bla
            if (i < 42) then
                bla
                bla
            label:   
                bla
                bla
            else
                bla
                ... > more than 20 lines :-)
                bla
                bla
            endif ' end of i < 42
            bla
        else
            blo
            blo
            for i = 1 to 42
                blu
                blu
                blu
            next i
            blo
        endif
    end function

10.3.3  Blank Spaces 

Only use soft spaces and not Tabulators in the code. Always include ONE SPACE AFTER  comma
(,) and semi-colon (;) delimiters but not BEFORE the delimiters. For example:

DIM i, z, s AS integer

The assign operator ‘=’ must have one space before and after it, for example, iNumber = 3

   
You can either include one space before and after a binary operator (binary: it needs two operands)
or leave the spaces out. Note: The inclusion of spaces with binary operators does not affect the
mathematical precedence.

iState = 3 + 4; iState = 3+4; iState = 3 * 4 + 5; iState = 3*4 + 5
BUT NOT: iState = 3 * 4+4

Include a SPACE between a keyword and its opening bracket, but not between a function name and
its opening bracket.

10.3.4  Comments

Each declaration should include a descriptive comment, so that someone else can easily read your
code. Temporary variables (for example, loop counters) are the exception to this rule. You do not
need to include a description if the name of the temporary variable indicates the variable type (for
example, iTemp). Avoid including information that is likely to become out-of-date. Do not enclose
comments in large boxes drawn with asterisks or any other character.

The Style and Coding Standard used in the Automated Testing - Page 53 / 64



There are three styles of comments: block, single-line, and trailing.

10.3.4.1  Block Comments

Block comments describe the contents of a file or the behavior of a function. Include block
comments at the beginning and inside of each function.

The block comment that precedes a function describes what the function does, including input
parameters, algorithms, and returned values.

For example:

 function fExample (iExample as integer) as boolean
    '/// ...functional description...                    ///'
    '///+ INPUTVALUES:                                  ///'
    '///+ affected variables outside of this function: ///'
    '///+ RETURNVALUE:                                ///'
 dim iTest as integer ...
end function   

10.3.4.2  Single Line Comments

Use single line comments to describe loop conditions that are not obvious and also the return values
of functions.

Indent a single line comment so that it is at the same indentation level of the code that the comment
describes. Include a space between the comment text and the opening (‘). For example:

    if (iTemp > 1) then
        ' Get input file from command line.
        if (iTemp < 9) then
            printlog("can't open %s\n")
        endif
    endif

10.3.4.3  Trailing Comments

Use trailing comments to document declarations. Trailing comments appear on the same line as the
code that they describe.

Include enough space to separate a trailing comment from the statement that it describes.

If a block of code includes more than one trailing comment, indent the comments to the same level.

10.3.5  File Organization

Separate each code section by a single blank line.

10.3.5.1  Sections inside of .inc files

 1. A small or big header
 2. Subs if they call the following testcases in this file
 3. testcases
 4. subs
 5. functions

10.3.5.2  Sections inside of .bas files

 1. A small or big header

Page 54 / 64 - The Style and Coding Standard used in the Automated Testing



 2. Declaration of global variables
 3. Function main with:

 3.1.Inclusion of files
 3.2.hStatusIn() (indicates if the status of the testrun is displayed)
 3.3.Call of functions
 3.4.hStatusOut() (indicates if the status of the testrun is displayed).

 4. sub LoadIncludeFiles

10.3.6  Program Organization

10.3.6.1  Sections inside of testcases/subs/functions

 1. Declaration of variables. You can only declare variables in this section.
 2. Initialization of variables
 3. Some code
 4. Set the returnvalue for functions
 5. Never exit a testcase with exit sub, return, or something else as these do not call the TestExit sub

routine and as a result, no cleanup is performed. Instead, use goto endsub to recover the
OpenOffice.org application that you are testing.

10.3.7  Methods, Hints, Annotations

10.3.7.1  Selecting the same string in different languages

Since most strings are language dependent, there are several ways to select what you want in each
language.

1. Use a list that contains the same word in each language that you want to
test. You can then use the list with an existing global routine. The routine
must be initialized in a .bas file, for example:
 global glLocale (15*20) as string 

   if hSetLocaleStrings ( gTesttoolPath + "graphics\tools\locale_1.txt" , glLocale () ) = FALSE then
      warnlog "Locales file doesn't exist"
   endif printlog glLocale (1)

2. If the entry is in the same position in all languages, use the number of the entry to select it.
3. Find out if someone knows how to get the language dependent string in another way, for example,

by using a name filter.

The decimal separator is also language or locale dependent. Although you can use the
qatesttool/graphics/tools/id_tools.inc:GetDecimalSeperator routine to return the separator, you can
usually just use integers instead of decimal numbers.

10.3.7.2  Saving files during a test

Do not save files to a directory in the TestTool environment during a test run! This can confuse the
cvs as well as create a conflict when more than one user running a test tries to save to the same
global location. Instead, save the files to the ${officepath}/user/work directory. This directory is
created when a test is started.

For example:

1. If it does not exist, create the following directory: ../user/work/math/level_1/export. On UNIX, use
mkdir to create the directory, as it generates the entire path.

2. Delete any existing files in the directory.
3. Use ConvertPath() to determine the right path separator.

The Style and Coding Standard used in the Automated Testing - Page 55 / 64



   dim i as integer
   dim sFilter (50) as string
   dim lExList(500) as string ' files to be deleted
   dim sPath as string        ' filename and path to export

   sFilter(0) = 0
   sPath = ConvertPath (gOfficePath + "user/work/"+Lcase(gApplication)+"/update/")
   if dir (sPath) = "" then 
      app.mkdir (sPath)
   endif
   GetFileList (sPath, "*", lExList())
   if (KillFileList (lExList()) <> TRUE) then
      Warnlog "Couldn't delete all in Output-Directory, these files are still there:"
      for i=1 to ListCount (lExList())
         printlog "  <> " + lExList(i)
      next i
   end if

10.3.7.3  Using testing levels

One approach to perform tests is to use three testing levels: update, level 1, and level 2.

Update: The update level ensures that all elements, including HelpIDs, that are required by the
test are present in a dialog. This is accomplished by performing actions on the elements.
If  an element is missing, the test fails. You do not need to check the result of changed
elements. The test must be language independent. Close the dialog with CANCEL.

Level 1: Performs more actions on the dialog to determine if the function of the
dialog has changed. Leave the dialog open with OK. Run the test in at
least the 01, 49 installations (where the numbers represent the English
and German language codes, respectively), and an Asian language of
your choice.

Level 2: These are the more complicated tests.

10.4  Section Two - ADVANCED
Ensure that the word types that you use in declarations for Boolean subroutines or Functions that
have a Boolean returnvalue can be answered with yes/no or true/false, for example,
FisAsianEnabled()

In an if statement, Boolean values do not need to be compared to the values TRUE and FALSE.

In the table below, the two sides are semantically identical.

If (bHasData = TRUE) If (bHasData)

If (bHasData = FALSE) If (not bHasData)

Word types are in the declaration of variable names.

Names for Boolean variables should name a property, for example, bWindowAvailable.

Names for all other variables should be nouns, for example, iWindowNumber.

10.5  Appendix
Acronyms used in this file that need an explanation? Examples

Page 56 / 64 - The Style and Coding Standard used in the Automated Testing



10.5.0.1   if..then...else
if (iNumber = 1) then ⌴⌴⌴⌴printlog (“snoopy”) else ⌴⌴⌴⌴if (iCount = 1) then ⌴⌴⌴⌴⌴⌴⌴⌴printlog (“lucy”)
⌴⌴⌴⌴else
⌴⌴⌴⌴⌴⌴⌴⌴printlog (“garfield”) ⌴⌴⌴⌴endif endif

10.5.0.2  select...case
select case iNumber ⌴⌴⌴⌴case 1: printlog (“1”) ⌴⌴⌴⌴case 2: printlog (“2”) ⌴⌴⌴⌴case 3: printlog (“3”)
⌴⌴⌴⌴case else: printlog (“???”) end select

10.6  Bibliography
[Gr00] GRÜNFELDER, Stephan: Quellcode wie aus einem Guss : Codierungsstandards erleichtern
Einarbeitung, Wartung und Zusammenarbeit.

In: Elektronik (2001), Nr. 11, S. 59-61

[Gr01] GRÜNFELDER, Stephan; GRIESAUER, Franz: Guter Code braucht Ordnung : Universelle
Regeln zur Namensgebung und zu Zahlenformaten in Programmiersprachen.

In: Elektronik (2001), Nr. 18, S. 52-59

[Gr02] GRÜNFELDER, Stephan; GRIESAUER, Franz: Guter Code braucht Ordnung : Teil 2: Das
Code-Layout – Übersichtliches Aussehen macht Code besser erfassbar.

In: Elektronik (2002), Nr. 8, S. 74-81

[Gr03] GRÜNFELDER, Stephan: Guter Code braucht Ordnung : Teil 3: Fehlervermeidung bei der
Erstellung von C-Programmen.

In: Elektronik (2002), Nr. 14, S. 66-71

The Style and Coding Standard used in the Automated Testing - Page 57 / 64



11  Testcase Documentation in Test Scripts

11.1  Description
Documentation for the automated test scripts is created using a separate tool that is currently not
open sourced.

The documentation is put into a database and is also used for the status page feature. This feature
allows you to click on an error and view the documentation for the testcase in which the error
occurred. You can also insert the number of known errors and warnings in the header of each file.
You can then change the state of a test result if you know that a certain bug will not be fixed for the
next release.

Documentation can only be inserted in testcase, sub,and function routines. Any documentation that
is inserted outside of these routines cannot be parsed by ttDocs.exe.

If you want include documentation for a test in the database, you need to use the same standards that
were created for *.bas- and *.inc files.

Page 58 / 64 - Testcase Documentation in Test Scripts



11.2  The *.bas files
Each *.bas file requires a header, for example:

(... cut ...)
'*  The Initial Developer of the Original Code is: Sun Microsystems, Inc.
'*
'*  Copyright: 2000 by Sun Microsystems, Inc.
'*
'*  All Rights Reserved.
'*
'*  Contributor(s): _______________________________________
'*
'*
'/*******************************************************************
'*
'* owner : owner@foo.bar
'*
'* short description : only a short description for this test
'*
'\*******************************************************************

Underneath the SISL/LGPL header in your file, use a forward slash (/) to start the documentation
header. Include the owner of this test and a short description (max. one line) of the test in the header.
End the header  with a backward slash (\).

You only need to document the sub main routine in the *.bas-file as this file does not contain any
other testcases, functions, or sub routines. In the sub main routine, include all the *.inc-files that you
want to use for the test. Do not use a single quote (') at the beginning of a file name to exclude the
file from the documentation as this also excludes the file from the test. Thus, if you want to have
complete documentation, only use the single quote on calls for the testcases in this routine.

Example:

sub main
use "framework\options\inc\opt_tool.inc"
use "framework\options\inc\opt_so_1.inc"
use "framework\options\inc\opt_so_2.inc"
use "framework\options\inc\opt_so_3.inc"
use "framework\options\inc\opt_lan1.inc"
call hStatusIn ("framework", "f_opt.bas",
"Test all general settings (tools/options)" )
call opt_so_1
call opt_so_2
' call opt_so_3
call opt_lan1
call hStatusOut
end sub

All files that are included with 'use ...'
can now be parsed by ttDocs. 
You do not need to include global inc-
files. Only include the files that are
required for the test.

The test runs opt_so_1, opt_so_2, and
opt_lan1, but skips over the call  to
opt_so_3 because of the single quote.
However as this is only a call and not
an include, the documentation for
opt_so_3  remains available. 

To determine the dependence between a test (*.bas file) and the tested area in the application, you
need to use some of the following parameters when you call the hStatusIn routine:

call hStatusIn ('test area', 'name of the bas file', 'short description of the
test')

where test area is: Base, Calc, Chart, Draw, Framework, Impress, Math, Setup, Writer or XML.

The documentation only becomes available after the *.bas file determines the dependence between a
test and the tested area (that is, hStatusOut returns the information) and inserts the information in
the database

Testcase Documentation in Test Scripts - Page 59 / 64



11.3  The *.inc-files
Each *.inc files requires a two-part header. The first part of the header is the same as the header for a
*.bas file, except that it ends with a forward slash (/) instead of a backslash (\). The second part of the
header lists the  testcases, functions, and sub routines that you want document. The following is an
example of a header for a *.inc file:

(... cut ...)
'*  The Initial Developer of the Original Code is: Sun Microsystems, Inc.
'*
'*  Copyright: 2000 by Sun Microsystems, Inc.
'*
'*  All Rights Reserved.
'*
'*  Contributor(s): _______________________________________
'*
'*
'/*******************************************************************
'*
'* owner : owner@foo.bar 
'*
'* short description : short description for this inc file
'*
'********************************************************************
' **
' #1 the_first_testcase  'wrn=1|err=0 ' you can insert here a short
description
' #1 the_second_testcase 
' #0 the_third_testcase
' #1 a_sub_routine 
' **
'\*******************************************************************

Underneath the SISL/LGPL header in your file, use a forward slash (/) to start the first part of the
documentation header. Include the owner of this test and a short description (max. one line) of the
test in the header. End the first part of the header  with a forward slash (/).

In the second part of the header, list the routines that you want to document. Add #1 in front of a
routine name to enable the documentation for the routine in ttDocs.exe and #0 to disable the
documentation for the routine. End the header with a backslash (\). Do not use tabs in the header. If
you want to include a tab, use spaces instead.

If you want, you can insert the numbers for errors and warnings of each testcase in the header so that
the numbers can be used in the status-page feature (result pages for all test states). If you know that a
testcase produces a warning for a bug that has not been fixed in some versions, use 'wrn=Nr, where
Nr is the number of the warning. Similarly, use err=Nr  for known errors that you want to ignore.
The testcase is then displayed in green on the status page, although the warning occurred. Use a pipe
(|) separator between 'wrn=.. and err=... 

11.4  Standards for Testcase Documentation
Start a documentation line with a single quote and three forward slashes ('///) to identify the line for
the documentation parser (ttDocs). If you want, you can end the line with three forward slashes, but
this is not required. Only documentation lines that are included in testcases, functions, and sub-
routines can be parsed by ttDocs.

When you use '/// for documentation strings, the result is a numeration in HTML. If you do not want
this to result in a hard-coded line break, use '///+. 

Page 60 / 64 - Testcase Documentation in Test Scripts



Example:

Documentation in script file Result on HTML-Documentation

'/// This is the 1. line of
text
[...]
'/// This is the 2. line 

• This is the 1. line of text

• This is the 2. line

'/// This is the 1. line of
text
[...]
'///+ This is the 2. line 

• This is the 1. line of text
This is the 2. line

You can use HTML tags to structures your documentation. Anything enclosed by < and > is
interpreted as an HTML tag. To insert the < and > characters into the documentation, use &lt for <
and &gt for >. For further tips, see http://selfhtml.teamone.de/selfhtml.htm (in German) or any other
page which describes HTML entities. To insert a single backslash in the documentation output, you
need to write two backslashes in the documentation source.

Testcase Documentation in Test Scripts - Page 61 / 64



12  Configuration file entries

The configuration file (UNIX: .testtoolrc, Win32: testtool.ini) contains several sections.
The section name is surounded by '[', ']' and contains several entries like: EntryName=Value.

12.1  GUI Platform
Current= depends on the Platform.

UNIX Win32

Subsystem Current Subsystem Current

Solaris SPARC 01 Win 95 100

Solaris x86 02 Win 98 395

Linux 03 Win NT 3 351

Win NT 4 400

Win SE 410

Win ME 490

Win 2000 500

Win XP 501

Page 62 / 64 - Configuration file entries



13  Alphabetical Index
-enableautomation 10
/Host 13
/Port 13
/run 13
/Startprogram 13
.bas 16
.bas files 59
.GetRT 49
.inc-files 59p.
.res 12
.sid 12, 19
.testtoolrc 7pp., 13
.UseMenu 20
.win 12, 19
.win 24
[SV] 14
all.sid 23
application module

15
assertions 14
autopilots 17
bas 10
bas-file 12p.
base state 13
BaseDir 9
BASIC 11, 26
break point 10
Browsebox 43
build number 26
build process 50
Cancel 10, 21
catch 27
catch-part 27
Characters 48
Check 41
Click 41
Close 21
command line 13
command line parameter

10
context menu 39
controls 18p.
CTL 50
CurrentProfile 9
Cursor Keys 48
CVS 17
dbgsv 14
dbgsv.ini 14
dbgsv.log 14
dbgsvlog 14
debug 14
debug-settings 14

declaration 22, 26
Declaration 18
declaration 21
Declare 23p.
declare.bas 17, 49
dialogs 18p.
Display ID 21
DisplayHid 24, 32
DisplayHID 21
Document Object Model

45
DOM 45
e_all.sid 23
Editor 11
EnableQAErrors 33
endcase 27, 31
endcatch 27
environment information

26
ErrorLog 32
errors 12
ExceptLog 32
exit a testcase 27, 55
exports test 16
FAT 26
function 28
Function Keys 48
functionality test 16
g_variabl.inc 26
gApplication 26
general module 15
GetClipboardText 32
GetItemCount 36, 38, 43
GetItemText 36, 38,

42p.
GetPage 42
GetRT 49
GetSelCount 38
GetSelIndex 38
GetSystemLanguage

34
GetText 38, 40p.
GetUseFiles 26
global 15, 17
global variables 26
goto endsub 27, 55
GPF 32, 39
GUI Platform 62
header 26, 59p.
HELP_DEBUG 20, 23
HelpID 7, 17, 19, 21, 25
hid 17

HID directory 8
hid.lst 17, 22, 25
HIDDir 9
home directory 7p.
hostname 13
hStatusIn 59
hStatusOut 59
inc 16
include files 15
input 16p.
installation path 26
installation type 26
Interrupt 10
IsChecked 44
ISO-Code 50
IsTriState 44
level1 16
level2 16
libraries 15
ListBox 21
LoadIncludeFiles 26, 31
loadsave 16
localhost 13
Log Base directory 12
LogBaseDir 9
longname 22p., 25
longname 20
longnames 19, 25
Macro-URL 19
master.inc 26
menu item 20
menu items 18p.
menu.inc 39
MenuGetItemCommand

20
MenuGetItemId 20
MenuGetItemText 20
non-product 14
OK 21
OLE-object 17
OpenContextMenu

39
OpenMenu 39
options 16
options-dialog 17
OSL-assertions 14
owner 59p.
print 20
PrintLog 32
profile directory 7p.
QAErrorLog 12, 33
qatesttool 17

Quickstarter 23
recover routine 43
ResetApplication 33
Resource test 16
resource type 22
Resource Type 49
resource type number

21
resource-test 17
result file 12, 26
SAX interface 45
SAXGetElementName

46
SAXGetElementPath

46
SAXReadFile 45
SAXRelease 45
SAXSeekElement 46
script language 26
services.rdb 8
SetClipboard 33
SetControlType 43
SetPage 42
SetText 36, 38
sid 17
Single stepping 10
SlotID 7, 17, 19, 21, 23, 25
Slots 21
Special Keys 48
special library 9
special module 16
StarBasic 7, 11, 26
start routine 26
start scripts 15
start up routines 12
sub 28
sub main 26, 59
syntax highlighting

11
system 17
system language 26
Tabulators 53
TCP/IP-Interface 7
Tel.-Code 50
test scripts 15
testcase 27, 31
testexit-routine 27
TestTool Environment

15, 17
TestTool Library 9
testtool.exe 7
testtool.ini 7pp., 13

Alphabetical Index - Page 63 / 64



title of the dialog (or control) 
21

tools 16p.
TreeListbox 43
try 27
try-part 27

typekeys 47
TypeKeys 37p.
unique name 25
UniqueID 7, 19, 25
UNO 19
UNO-Slot 19

update 16p.
UseMenu 40
VisualBasic 7, 26
warnings 12
WarnLog 33
win 17

win.ini 14
window.GetRT 49
windows 19
wrn=Nr 60
XML parser 45
xterm 20

Page 64 / 64 - Alphabetical Index


