
Getting Started Guide

Chapter 13
 Getting Started with 

Macros
Using the Macro Recorder



Copyright
This document is Copyright © 2007–2008 by its contributors as listed 
in the section titled Authors. You may distribute it and/or modify it 
under the terms of either the GNU General Public License, version 3 or 
later, or the Creative Commons Attribution License, version 3.0 or 
later.

All trademarks within this guide belong to their legitimate owners.

Authors
Andrew Pitonyak
Jean Hollis Weber

Feedback
Maintainer: Andrew Pitonyak
Please direct any comments or suggestions about this document to: 
authors@user-faq.openoffice.org

Publication date and software version
Published 21 August 2008. Based on OpenOffice.org 3.0.

You can download
 an editable version of this document from

 http://oooauthors.org/en/authors/userguide3/published/

http://oooauthors.org/en/authors/userguide3/published/
mailto:authors@user-faq.openoffice.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html


Contents
Your first macro.....................................................................................5

Creating a simple macro.....................................................................5

Running the macro.............................................................................6

Viewing and editing the macro...........................................................7

Comments start with REM...............................................................8

Defining subroutines with SUB........................................................8

Defining variables using DIM..........................................................9

Pulling the macro together..............................................................9

Creating a macro.................................................................................10

A complicated example.....................................................................10

Running the macro quickly...............................................................14

Sometimes the macro recorder fails....................................................14

The dispatch framework...................................................................14

How the macro recorder uses the dispatch framework....................15

Other options....................................................................................15

Macro organization..............................................................................16

Where are macros stored?................................................................18

Importing macros..............................................................................19

Downloading macros to import.........................................................21

How to run a macro.............................................................................21

Toolbar..............................................................................................24

Menu item.........................................................................................24

Keyboard shortcuts...........................................................................24

Event.................................................................................................24

Extensions............................................................................................26

Writing macros without the recorder...................................................27

Finding more information....................................................................28

Included material..............................................................................28

Online resources...............................................................................28

Published material............................................................................29

Getting Started with Macros 3



4 Getting Started with Macros



Your first macro
A macro is a saved sequence of commands or keystrokes that are 
stored for later use. An example of a simple macro is one that “types” 
your address. The OpenOffice.org macro language is very flexible, 
allowing automation of both simple and complex tasks. Macros are 
especially useful to repeat a task the same way over and over again.

OpenOffice.org macros are usually written in a language called 
StarBasic, or just abbreviated Basic. Although you can learn Basic and 
write macros, there is a steep learning curve to writing macros from 
scratch. The usual method for a beginner is to use the built-in macro 
recorder, which records your keystrokes and saves them for use.

Most tasks in OpenOffice.org are accomplished by “dispatching a 
command” (sending a command), which is intercepted and used. The 
macro recorder works by recording the commands that are dispatched 
(see “The dispatch framework” on page 14).

Creating a simple macro
Imagine repeatedly entering simple information. Although you can 
store the information in the clipboard, if you use the clipboard for 
something else, the contents are changed. Storing the contents as a 
macro is a simple solution. (In some simple cases, including the 
example used here, a better solution is to use AutoText.)

1) Use Tools > Macros > Record Macro to start recording a 
macro.
A small window is displayed so you know that 
OpenOffice.org is recording.

2) Type the desired information or perform an appropriate series of 
operations. In this case, I typed my name, Andrew Pitonyak.

3) Click the Stop Recording button to stop recording, save the 
macro, and display the OpenOffice.org Basic Macros dialog (see 
Figure 1).

4) Be certain to open the library container named My Macros. Find 
the library named Standard under My Macros. Be warned, every 
library container has a library named Standard. Select the 
Standard library and click New Module to create a new module 
to contain the macro.

Your first macro 5



Figure 1: OOo Macro Organizer dialog, DBInspection library selected

5) The default module name is Module1; choose a better name. 
Although it is still not descriptive, I used Recorded. Type a 
descriptive name and click OK to create the module. The 
OpenOffice.org Basic Macros dialog is displayed again, showing 
the new module.

Figure 2: Give your module a meaningful name

6) Highlight the newly created module. In the upper left corner, type 
the macro name to use, such as “EnterMyname”, and then click 
Save to save the macro.

If you followed all of the steps, the Standard library now contains a 
module named Recorded, which contains the EnterMyName macro, as 
shown in Figure 3. When OOo creates a new module, it automatically 
adds the macro named Main; as seen in Figure 3.

Running the macro
Use Tools > Macros > Run Macro to open the Macro Selector dialog 
(see Figure 3). Select the newly created macro and click Run.

6 Getting Started with Macros



Figure 3: Select your macro and click Run

There are other methods to run a macro. For example, use Tools > 
Macros > Organize Macros > OpenOffice.org Basic to open the 
macro organizer, which contains a Run button as well. The author, an 
avid macro writer, prefers the macro organizer because the dialog 
usually opens faster, but the selection process may be slightly slower.

Viewing and editing the macro
You can view and edit the macro that was just created. Use Tools > 
Macros > Organize Macros > OpenOffice.org Basic to open the 
OpenOffice.org Basic Macros dialog (see Figure 3). Select the new 
macro and click Edit to open the macro in the Basic IDE (Integrated 
Development Environment).

Listing 1: Generated “EnterMyname” macro.
REM  *****  BASIC  *****
Sub Main

End Sub

sub EnterMyName
rem -------------------------------------------------------------
rem define variables
dim document   as object
dim dispatcher as object
rem -------------------------------------------------------------
rem get access to the document
document   = ThisComponent.CurrentController.Frame

Your first macro 7



dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem -------------------------------------------------------------
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Text"
args1(0).Value = "Andrew Pitonyak"

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args1())
end sub

The macro in Listing 1 is not as complicated as it first appears. 
Learning a few things helps significantly in understanding the 
generated macros. The discussion starts with features near the top of 
the macro listing and describes them. If you like to avoid details, then 
simply change the text “Andrew Pitonyak” to what you want to insert at 
the current cursor position.

Comments start with REM
The keyword REM, short for remark, starts a macro comment. All text 
after REM (on the same line) is ignored. As a short cut, the single 
quote character can also be used to start a comment.

Tip

StarBasic is not case-sensitive for keywords, so REM, Rem, 
and rem all start a comment. If you use symbolic constants 
defined by the API, it is safer to assume that the names are 
case-sensitive—symbolic constants are an advanced topic not 
usually needed by people that use the macro recorder.

Defining subroutines with SUB
Individual macros are stored in subroutines defined with the keyword 
SUB. The end of a subroutine is indicated by the words END SUB. The 
code starts by defining the subroutine named Main, which is empty 
and does nothing. The next subroutine, EnterMyName, contains the 
generated code.

Tip
OpenOffice.org creates an empty subroutine named Main 
when it creates a module.

There are advanced topics that are beyond the scope of this document, 
but knowing about them might be of interest:

• You can write a macro so that values can be passed to the 
subroutine. The values are called arguments. Recorded macros do 
not accept arguments.

8 Getting Started with Macros



• Another kind of subroutine is called a function. A function is a 
subroutine that returns a value. The keyword FUNCTION is used 
rather than SUB to define a function. Generated macros are 
always of type SUB.

Defining variables using DIM
You can write information on a piece of paper so that you can look at it 
later. A variable, like a piece of paper, contains information that can be 
changed and read. The DIM statement is similar to setting aside a 
piece of paper to be used to store a message or note.

The EnterMyName macro defines the variables document and 
dispatcher as type object. Other common variable types include string, 
integer, and date. A third variable, named args1, is an array of 
property values. A variable of type array allows a single variable to 
contain multiple values, similar to storing multiple pages in a single 
book. Values in an array are usually numbered starting from zero. The 
number in the parentheses indicates the highest usable number to 
access a storage location. In this example, there is only one value, and 
it is numbered zero.

Pulling the macro together
The following details are very complete; it is not important to 
understand all of the details. The first line defines the start of the 
macro.

sub EnterMyName

Declare two variables:

dim document   as object
dim dispatcher as object

ThisComponent refers to the current document.

The CurrentController property of a document refers to a service that 
“controls” the document. For example, when you type, it is the current 
controller that notices. The current controller then dispatches the 
changes to the document’s frame.

The Frame property of a controller returns a main frame for a 
document. Therefore, the variable named document refers to a 
document’s frame, which receives dispatched commands.

document = ThisComponent.CurrentController.Frame

Most tasks in OpenOffice.org are accomplished by dispatching a 
command. OOo version 2.0 introduced the dispatch helper service, 
which does most of the work to use dispatches in macros. The method 

Your first macro 9



CreateUnoService accepts the name of a service and it tries to create 
an instance of that service. On completion, the dispatcher variable 
contains a reference to a DispatchHelper.

dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

Declare an array of properties. Each property has a name and a value. 
In other words, it is a name/value pair. The created array has one 
property at index zero.

dim args1(0) as new com.sun.star.beans.PropertyValue

Give the property the name “Text” and the value “Andrew Pitonyak”, 
which is the text that is inserted when the macro is run.

args1(0).Name = "Text"
args1(0).Value = "Andrew Pitonyak"

This is where the magic happens. The dispatch helper sends a dispatch 
to the document’s frame (stored in the variable named document) with 
the command .uno:InsertText. The next two arguments, frame name 
and search flags, are beyond the scope of this document. The last 
argument is the array of property values to be used while executing 
the command InsertText.

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args1())

Finally, the end of the subroutine.

end sub

Creating a macro
I usually ask two questions before recording a macro:

1) Can the task be written as a simple set of commands?
2) Can the steps be arranged such that the last command leaves the 

cursor ready for the next command?

A complicated example
I frequently copy rows and columns of data from a web site and format 
them as a table in a text document. First, I copy the table from the web 
site to the clipboard. To avoid strange formatting and fonts, I paste the 
text into a Writer document as unformatted text. I reformat the text 
with tabs between columns so that I can use Table > Convert > Text 
to Table to convert to a table.

I inspect the text to see if I can record a macro to format the text 
(remember the two questions that I ask). As an example, I copied the 
FontWeight constants group from the OpenOffice.org web site. The 

10 Getting Started with Macros



first column indicates the constant name. Each name is followed by a 
space and a tab.

DONTKNOW The font weight is not specified/known.

THIN specifies a 50% font weight.

ULTRALIGHT specifies a 60% font weight.

LIGHT specifies a 75% font weight.

SEMILIGHT specifies a 90% font weight.

NORMAL specifies a normal font weight.

SEMIBOLD specifies a 110% font weight.

BOLD specifies a 150% font weight.

ULTRABOLD specifies a 175% font weight.

BLACK specifies a 200% font weight.

I want the first column to contain the numeric value, the second 
column the name, and the third column the description. The desired 
work is easily accomplished for every row except for DONTKNOW and 
NORMAL, which do not contain a numeric value—but I know that the 
values are 0 and 100, so I will enter those manually.

The data can be cleaned in multiple ways—all of them easy. The first 
example uses keystrokes that assume the cursor is at the start of the 
line with the text THIN.

1) Use Tools > Macros > Record Macro to start recording.
2) Press Ctrl+Right Arrow to move the cursor to the start of 

“specifies”.
3) Press Backspace twice to remove the tab and the space.
4) Press Tab to add the tab without the space after the constant 

name.
5) Press Delete to delete the lower case s and then press S to add an 

upper case S.
6) Press Ctrl+Right Arrow twice to move the cursor to the start of 

the number.
7) Press Ctrl+Shift+Right Arrow to select and move the cursor 

before the % sign.
8) Press Ctrl+C to copy the selected text to the clipboard.
9) Press End to move the cursor to the end of the line.

Creating a macro 11



10) Press Backspace twice to remove the two trailing spaces.
11) Press Home to move the cursor to the start of the line.
12) Press Ctrl+V to paste the selected number to the start of the line.
13) Pasting the value also pasted an extra space, so press Backspace 

to remove the extra space.
14) Press Tab to insert a tab between the number and the name.
15) Press Home to move to the start of the line.
16) Press down arrow to move to the next line.
17) Stop recording the macro and save the macro.

It takes much longer to read and write the steps than to record the 
macro. Work slowly and think about the steps as you do them. With 
practice this becomes second nature.

The generated macro has been modified to contain the step number in 
the comments to match the code to the step above.

Listing 2: Copy the numeric value to the start of the column.

sub CopyNumToCol1
rem -------------------------------------------------------------
rem define variables
dim document   as object
dim dispatcher as object
rem -------------------------------------------------------------
rem get access to the document
document   = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem (2) Press Ctrl+Right Arrow to move the cursor to the start of “specifies”.
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem (3) Press Backspace twice to remove the tab and the space.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem -------------------------------------------------------------
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (4) Press Tab to add the tab without the space after the constant name.
dim args4(0) as new com.sun.star.beans.PropertyValue
args4(0).Name = "Text"
args4(0).Value = CHR$(9)

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args4())

rem (5) Press Delete to delete the lower case s ....
dispatcher.executeDispatch(document, ".uno:Delete", "", 0, Array())

rem (5) ... and then press S to add an upper case S.
dim args6(0) as new com.sun.star.beans.PropertyValue
args6(0).Name = "Text"
args6(0).Value = "S"

12 Getting Started with Macros



dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args6())

rem (6) Press Ctrl+Right Arrow twice to move the cursor to the number.
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem -------------------------------------------------------------
dispatcher.executeDispatch(document, ".uno:GoToNextWord", "", 0, Array())

rem (7) Press Ctrl+Shift+Right Arrow to select the number.
dispatcher.executeDispatch(document, ".uno:WordRightSel", "", 0, Array())

rem (8) Press Ctrl+C to copy the selected text to the clipboard.
dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())

rem (9) Press End to move the cursor to the end of the line.
dispatcher.executeDispatch(document, ".uno:GoToEndOfLine", "", 0, Array())

rem (10) Press Backspace twice to remove the two trailing spaces.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem -------------------------------------------------------------
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (11) Press Home to move the cursor to the start of the line.
dispatcher.executeDispatch(document, ".uno:GoToStartOfLine", "", 0, Array())

rem (12) Press Ctrl+V to paste the selected number to the start of the line.
dispatcher.executeDispatch(document, ".uno:Paste", "", 0, Array())

rem (13) Press Backspace to remove the extra space.
dispatcher.executeDispatch(document, ".uno:SwBackspace", "", 0, Array())

rem (14) Press Tab to insert a tab between the number and the name.
dim args17(0) as new com.sun.star.beans.PropertyValue
args17(0).Name = "Text"
args17(0).Value = CHR$(9)

dispatcher.executeDispatch(document, ".uno:InsertText", "", 0, args17())

rem (15) Press Home to move to the start of the line.
dispatcher.executeDispatch(document, ".uno:GoToStartOfLine", "", 0, Array())

rem (16) Press down arrow to move to the next line.
dim args19(1) as new com.sun.star.beans.PropertyValue
args19(0).Name = "Count"
args19(0).Value = 1
args19(1).Name = "Select"
args19(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0, args19())
end sub

Creating a macro 13



Cursor movements are used for all operations (as opposed to 
searching). If run on the DONTKNOW line, the word weight is moved 
to the front of the line, and the first “The” is changed to “She”. This is 
not perfect, but I should not have run the macro on the lines that did 
not have the proper format; I need to do these manually.

Running the macro quickly
It is tedious to repeatedly run the macro using Tools > Macros > Run 
Macro (see Figure 3). The macro can be run from the IDE. Use Tools 
> Macros > Organize Macros > OpenOffice.org Basic to open the 
Basic Macro dialog. Select your macro and click Edit to open the 
macro in the IDE.

The IDE has a Run Basic icon in the toolbar that runs the first macro 
in the IDE. Unless you change the first macro, it is the empty macro 
named Main. Modify Main so that it reads as shown in Listing 3.

Listing 3: Modify Main to call CopyNumToCol1.
Sub Main
  CopyNumToCol1
End Sub

Now, you can run CopyNumToCol1 by repeatedly clicking the Run 
Basic icon in the toolbar of the IDE. This is very fast and easy, 
especially for temporary macros that will be used a few times and then 
discarded.

Sometimes the macro recorder fails
Understanding the OpenOffice.org internals helps to understand how 
and why the macro recorder frequently fails. The primary offender is 
related to the dispatch framework and its relationship to the macro 
recorder.

The dispatch framework
The purpose of the dispatch framework is to provide a uniform access 
to components (documents) for commands that usually correspond to 
menu items. I can use File > Save from the menu, the shortcut keys 
Ctrl+S, or click on the Save toolbar icon. All of these commands are 
translated into the same “dispatch command”, which is sent to the 
current document.

14 Getting Started with Macros



The dispatch framework can also be used to send “commands” back to 
the UI (User Interface). For example, after saving the document, the 
File Save command is disabled. As soon as the document has been 
changed, the File Save command is enabled.

If we see a dispatch command, it is text such as .uno:InsertObject or 
.uno:GoToStartOfLine. The command is sent to the document’s frame, 
and the frame passes on the command until an object is found that can 
handle the command.

How the macro recorder uses the dispatch 
framework
The macro recorder records the generated dispatches. The recorder is 
relatively simple to implement and the same commands that are issued 
are recorded for later use. The problem is that not all dispatched 
commands are complete. For example, inserting an object generates 
the following code:
dispatcher.executeDispatch(document, ".uno:InsertObject", "", 0, Array())

It is not possible to specify what kind of object to create or insert. If an 
object is inserted from a file, you cannot specify which file to insert.

I recorded a macro and used Tools > Options to open and modify 
configuration items. The generated macro does not record any 
configuration changes; in fact, the generated code is commented so it 
will not even be run.

rem dispatcher.executeDispatch(document,
    ".uno:OptionsTreeDialog", "", 0, Array())

If a dialog is opened, the command to open the dialog is likely to be 
generated. Any work done inside the dialog is not usually recorded. 
Examples include macro organization dialogs, inserting special 
characters, and similar types of dialogs. Other possible problems using 
the macro recorder include things such as inserting a formula, setting 
user data, setting filters in Calc, actions in database forms, and 
exporting a document to an encrypted PDF file. You never know for 
certain what will work unless you try it, however. The actions from the 
search dialog are properly captured, for example.

Other options
When the macro recorder is not able to solve a specific problem, the 
usual solution is to write code using the OpenOffice.org objects. 
Unfortunately, there is a steep learning curve for the OOo objects. It is 
usually best to start with simple examples and then branch out slowly 

Sometimes the macro recorder fails 15



as you learn more. Learning to read generated macros is a good place 
to start.

If you record Calc macros, and the recorder can correctly generate a 
macro, there is an add-in created by Paolo Mantovani, which converts 
Calc macros when they are recorded. The final code manipulates 
OpenOffice.org objects rather than generating dispatches. This can be 
very useful for learning the object model.

You can download the macro recorder from Paolo’s web site directly or 
from the OOo Macros web site. You should check both places to see 
which contains the latest version.

http://www.paolo-mantovani.org/downloads/ DispatchToApiRecorder/ 

http://www.ooomacros.org/user.php 

Macro organization
In OpenOffice.org, macros are grouped in modules, modules are 
grouped in libraries, and libraries are grouped in library containers. A 
library is usually used as a major grouping for either an entire 
category of macros, or for an entire application. Modules usually split 
functionality, such as user interaction and calculations. Individual 
macros are subroutines and functions.

Figure 4: Macro Library hierarchy

A computer scientist would use Figure 5 to precisely describe the 
situation. The text “1..*” means one or more, and “0..*” means zero or 
more. The black triangle means composed of or contains. 

16 Getting Started with Macros

http://www.ooomacros.org/user.php
http://www.paolo-mantovani.org/downloads/DispatchToApiRecorder/


• A library container contains one or more libraries, and each 
library is contained in one library container.

• A library contains zero or more modules, and each module is 
contained in one library.

• A module contains zero or more macros, and each macro is 
contained in one module.

Figure 5: Macro Library hierarchy

Use Tools > Macros > Organize Macros > OpenOffice.org Basic 
to open the OpenOffice.org Basic Macros dialog (see Figure 6). All 
available library containers are shown in the Macro from list. Every 
document is a library container, capable of containing multiple 
libraries. The application itself acts as two library containers, one 
container for macros distributed with OpenOffice.org called 
OpenOffice.org Macros, and one container for personal macros called 
My Macros. As shown in Figure 6, only two documents are currently 
open.

Figure 6: Library containers are shown on the left

The OpenOffice.org Macros are stored with the application runtime 
code, which may not be editable to you unless you are an 
administrator. This is just as well since these macros should not be 
changed and you should not store your own macros in the OOo 
container.

Unless your macros are applicable to a single document, and only to a 
single document, your macros will probably be stored in the My 

Macro organization 17



Macros container. The My Macros container is stored in your user area 
or home directory.

If a macro is contained in a document, then a recorded macro will 
attempt to work on that document; primarily because it uses 
“ThisComponent” for its actions.

Every library container contains a library named Standard. It is better 
to create your own libraries with meaningful names than to use the 
Standard library. Not only are meaningful names easier to manage, but 
they can also be imported into other library containers whereas the 
Standard library cannot.

Caution OpenOffice.org allows you to import libraries into a library 
container, but it will not allow you to overwrite the library 
named Standard. Therefore, if you store your macros in the 
Standard library, you cannot import them into another 
library container.

Just as it makes good sense to give your libraries meaningful names, it 
is prudent to use meaningful names for your modules. By default, 
OpenOffice.org uses names such as Module1. Feel free to use your own 
meaningful name.

As you create your macros, you must decide where to store them. 
Storing a macro in a document is useful if the document will be shared 
and you want the macro to be included with the document. Macros 
stored in the application library container named My Macros, however, 
are globally available to all documents.

Macros are not available until the library that contains them is loaded. 
The Standard library and Template library, however, are automatically 
loaded. A loaded library is displayed differently from a library that is 
not loaded. To load the library and the modules it contains, double-
click on the library.

Where are macros stored?
OpenOffice.org stores user-specific data in a directory under the user’s 
home directory. For example, on Windows, this is C:\Documents and 
Settings\<name>\Application Data. User macros are stored in 
OpenOffice.org2\user\basic. Each library is stored in its own directory 
off the basic directory.

It is not important to understand where macros are stored for casual 
use. If you know where they are stored, however, you can create a 
backup, share your macros, or inspect them if there is an error. For 

18 Getting Started with Macros



example, on one or more of my OpenOffice.org upgrades, all of my 
macros disappeared. Although the macros were still on disk, the 
macros were not copied to the new directories. The solution was to 
import the macros into the new installation.

Use Tools > Macros > Organize Dialogs to open the OpenOffice.org 
Macros organizer dialog. Another common way to open this dialog is to 
use Tools > Macros > Organize Macros > OpenOffice.org Basic 
to open the OpenOffice.org Macros dialog and then click the 
Organizer button (see Figure 7).

Figure 7: The macro organizer dialog

Importing macros
The OpenOffice.org Macro Organizer dialog provides functionality to 
create, delete, and rename libraries, modules, and dialogs. Select the 
library container to use and then click the Import button to import 
macro libraries (see Figure 8).

Tip You cannot import the library named Standard.

Tip

On Linux, the OpenOffice.org-specific files are stored in a 
directory whose name begins with a period. Directories and 
files with names beginning with a period are not shown in a 
normal selection dialog. To open the directory, I navigated to 
the parent directory, entered the name .openoffice.org2.0, and 
then clicked Open. This opened the directory, which was not 
initially shown.

Macro organization 19



Figure 8: Select a macro library to import

Navigate to the directory containing the library to import. There are 
usually two files from which to choose, dialog.xlb and script.xlb. It does 
not matter which of these two files you select; both will be imported. 
Select a file and click Open to continue (see Figure 9).

Figure 9: Choose library import options

If the library already exists, it will not be replaced unless Replace 
existing libraries is checked. If Insert as reference is checked, the 
library is referenced in its current location, but you cannot edit the 
library. If Insert as reference is not checked, however, the library is 
copied to the user’s macro directory.

Macros can be stored in libraries inside OpenOffice.org documents. 
Select a document rather than a directory on disk (as shown in Figure
8) to import libraries contained in a document.

20 Getting Started with Macros



Downloading macros to import
Macros are available for download. Some macros are contained in 
documents, some as regular files that you must select and import, and 
some as macro text that should be copied and pasted into the Basic 
IDE; use Tools > Macros > Organize Macros > OpenOffice.org 
Basic to open the OpenOffice.org Macros dialog, choose the macro to 
edit, and then click Edit to open the macro in the Basic IDE.

Some macros are available as free downloads on the Internet (see 
Table 1).

Table 1. Places to find macro examples.
Location Description

http://www.ooomacros.org/ Excellent collection of packaged 
macros.

http://www.pitonyak.org/oo.php Reference materials regarding macros.

http://www.pitonyak.org/database/ Reference materials regarding 
database macros.

http://development.openoffice.org/ Lots of links to everything.

http://www.oooforum.org/ Many examples and help.

How to run a macro
A typical method to run a macro is as follows:

1) Use Tools > Macros > Run Macro to open the Macro Selector 
dialog (see Figure 10).

2) Select the library and module in the Library list (left hand side).
3) Select the macro in the Macro name list (right hand side).
4) Click Run to run the macro.

How to run a macro 21

http://www.oooforum.org/
http://development.openoffice.org/
http://www.pitonyak.org/database/
http://www.pitonyak.org/oo.php
http://www.ooomacros.org/


Figure 10: Use the Macro Selector dialog to run macros

Although you can use Tools > Macros > Run Macro to run all 
macros, this is not efficient for frequently run macros. A more common 
technique is to assign a macro to a toolbar button, menu item, 
keyboard shortcut, or a button embedded in a document. While 
choosing a method, it is also good to ask questions such as:

• Should the macro be available for only one document, or globally 
for all documents?

• Does the macro pertain to a specific document type, such as a 
Calc document?

• How frequently will the macro be used?

The answers will determine where to store the macro and how to make 
it available. For example, you will probably not add a rarely used 
macro to a toolbar. To help determine your choices, see Table 2.

Table 2. Methods for starting a macro.

Type OpenOffice.org Document Type Document

Toolbar No Yes Yes

Menu No Yes Yes

Shortcut Yes Yes No

Event Yes No Yes

22 Getting Started with Macros



To add a menu item, keyboard shortcut, or toolbar icon that calls a 
macro, use the Customize dialog (see Figure 12). Open this dialog in 
either of these ways:

• Choose Tools > Customize from the main menu bar.

• Each toolbar has an icon  that opens a menu; choose the 
Customize Toolbar option.

Tip
Complete coverage of the Customize dialog is beyond the 
scope of this document. Click the Help button to access the 
help pages included with OpenOffice.org.

The Customize dialog contains tabs to configure menus, keyboard 
bindings, toolbars, and events.

Figure 11: OpenOffice.org Customize dialog

How to run a macro 23



Toolbar
Macros can be added to toolbars. For more about modifying toolbars, 
see Chapter 14 (Customizing OpenOffice.org).

Menu item
Use Tools > Customize to open the Customize dialog, and select the 
Menus tab. You can modify an existing menu, or create new menus that 
call macros. For more about modifying menus, see Chapter 14.

Keyboard shortcuts
Use Tools > Customize to open the Customize dialog, and select the 
Keyboard tab. Assigning keyboard shortcuts is discussed in Chapter 14.

Event
In OpenOffice.org, when something happens, we say that an event 
occurred. For example, a document was opened, a key was pressed, or 
the mouse moved. OpenOffice.org allows events to cause a macro to be 
called; the macro is then called an event handler. Full coverage of 
event handlers is well beyond the scope of this document, but a little 
knowledge can accomplish much.

Caution

Be careful when you configure an event handler. For 
example, assume that you write an event handler that is 
called every time that a key is pressed, but you make a 
mistake so the event is not properly handled. One possible 
result is that your event handler will consume all key 
presses, forcing you to forcibly terminate OpenOffice.org.

Use Tools > Customize to open the Customize dialog, and select the 
Events tab (see Figure 12). The events in the Customize dialog are 
related to the entire application and specific documents. Use the Save 
In box to choose OpenOffice.org, or a specific document.

24 Getting Started with Macros



Figure 12: Assign macro to an application level event

A common use is to assign the Open Document event to call a specific 
macro. The macro then performs certain setup tasks for the document. 
Select the desired event and click the Macro button to open the Macro 
Selector dialog (see Figure 13).

Select the desired macro and click OK to assign the macro to the 
event. The Events tab shows that the event has been assigned to a 
macro (see Figure 14). When the document opens, the PrintHello 
macro is run.

Many objects in a document can be set to call macros when events 
occur. The most common usage is to add a control, such as a button, 
into a document. Even double-clicking on a graphic opens a dialog with 
a Macros tab that allows you to assign a macro to an event.

How to run a macro 25



Figure 13: Assign macro to the document open event

Figure 14: PrintHello is assigned to the Open Document event

Extensions
An extension is a package that can be installed into OpenOffice.org to 
add new functionality. Extensions can be written in almost any 
programming language and may be simple or sophisticated. Extensions 
can be grouped into types:

• Calc Add-Ins, which provide new functionality for Calc, including 
new functions that act like normal built-in functions

• New components and functionality, which normally include some 
level of UI integration such as new menus or toolbars

• Data pilots that are used directly in Calc
• Chart Add-Ins with new chart types
• Linguistic components such as spell checkers
• Document templates and images

26 Getting Started with Macros



Although individual extensions can be found in different places, there 
is an extension repository at: http://extensions.services.openoffice.org/.

For more about obtaining and installing extensions, see Chapter 14 
(Customizing OpenOffice.org).

Writing macros without the recorder
The examples covered in this chapter are created using the macro 
recorder and the dispatcher. You can also write macros that directly 
access the objects that comprise OpenOffice.org. In other words, you 
can directly manipulate a document.

Directly manipulating OOo’s internal objects is an advanced topic that 
is beyond the scope of this chapter. A simple example, however, 
demonstrates how this works.

Listing 4: Append the text “Hello” to the current document.

Sub AppendHello
  Dim oDoc
  Dim sTextService$
  Dim oCurs
  
  REM ThisComponent refers to the currently active document.
  oDoc = ThisComponent

  REM Verify that this is a text document  
  sTextService = "com.sun.star.text.TextDocument"
  If NOT oDoc.supportsService(sTextService) Then
    MsgBox "This macro only works with a text document"
    Exit Sub
  End If
  
  REM Get the view cursor from the current controller.
  oCurs = oDoc.currentController.getViewCursor()
  
  REM Move the cursor to the end of the document
  oCurs.gotoEnd(False)
  
  REM Insert text "Hello" at the end of the document
  oCurs.Text.insertString(oCurs, "Hello", False)  
End Sub

Writing macros without the recorder 27

http://extensions.services.openoffice.org/


Finding more information
Numerous resources are available that provide help with writing 
macros. Use Help > OpenOffice.org Help to open the OOo help 
pages. The upper left corner of the OOo help system contains a drop-
down list that determines which help set is displayed. To view the help 
for Basic, the drop-down must display Help about OpenOffice.org 
Basic.

Included material
Many excellent macros are included with OOo. Use Tools > Macros > 
Organize Macros > OpenOffice.org Basic to open the Macro dialog. 
Expand the Tools library in the OpenOffice.org library container. 
Inspect the Debug module—some good examples include 
WritedbgInfo(document) and printdbgInfo(sheet).

Online resources
The following links and references contain information regarding 
macro programming:

http://www.openoffice.org (the main link)

http://codesnippets.services.openoffice.org/ (categorized examples)

http://user.services.openoffice.org/ (OOo forums, well supported)

http://www.oooforum.org (OOo forums, well supported)

http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html 
(official IDL reference, here you'll find almost every command with a 
description)

http://wiki.services.openoffice.org/wiki/Documentation/ 
DevGuide/OpenOffice.org_Developers_Guide (official documentation 
that contains a detailed explanation)

http://www.pitonyak.org/oo.php (Andrew Pitonyak’s macro page)

http://www.pitonyak.org/AndrewMacro.odt (numerous examples of 
working macros)

http://www.pitonyak.org/book/ (Andrew Pitonyak wrote a book on 
macros)

http://www.pitonyak.org/database/ (numerous macro examples using 
Base)

http://docs.sun.com/app/docs (Sun wrote a book on macro 
programming—very well written and laid out)

28 Getting Started with Macros

http://docs.sun.com/app/docs
http://www.pitonyak.org/database/
http://www.pitonyak.org/book/
http://www.pitonyak.org/AndrewMacro.odt
http://www.pitonyak.org/oo.php
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
http://www.oooforum.org/
http://user.services.openoffice.org/
http://codesnippets.services.openoffice.org/
http://www.openoffice.org/


http://documentation.openoffice.org (contains content related to 
macros)

http://ooextras.sourceforge.net/ (examples)

http://sourceforge.net/project/showfiles.php?group_id=43716 
(examples)

http://homepages.paradise.net.nz/hillview/OOo/ (numerous excellent 
macros, including reveal codes macros, key macros, and information 
on converting from MS Office)

Published material
The following published sources contain macro examples. The most 
obvious example is the documentation from Sun. Start from Sun’s 
documentation site http://docs.sun.com/app/docs and search for 
StarOffice documentation.

Andrew Pitonyak wrote a book called OpenOffice.org Macros 
Explained. Two chapters are available as direct downloads from the 
publisher. See http://www.pitonyak.org/book/.

Dr. Mark Alexander Bain wrote Learn OpenOffice.org Spreadsheet 
Macro Programming (see http://www.packtpub.com/openoffice-
ooobasic-calc-automation/book).

Finding more information 29

http://www.packtpub.com/openoffice-ooobasic-calc-automation/book
http://www.packtpub.com/openoffice-ooobasic-calc-automation/book
http://www.pitonyak.org/book/
http://docs.sun.com/app/docs
http://homepages.paradise.net.nz/hillview/OOo/
http://sourceforge.net/project/showfiles.php?group_id=43716
http://ooextras.sourceforge.net/
http://documentation.openoffice.org/

	Your first macro
	Creating a simple macro
	Running the macro
	Viewing and editing the macro
	Comments start with REM
	Defining subroutines with SUB
	Defining variables using DIM
	Pulling the macro together


	Creating a macro
	A complicated example
	Running the macro quickly

	Sometimes the macro recorder fails
	The dispatch framework
	How the macro recorder uses the dispatch framework
	Other options

	Macro organization
	Where are macros stored?
	Importing macros
	Downloading macros to import

	How to run a macro
	Toolbar
	Menu item
	Keyboard shortcuts
	Event

	Extensions
	Writing macros without the recorder
	Finding more information
	Included material
	Online resources
	Published material


