
Development

Portlet Tutorial

Note: This tutorial applies to the Jetspeed 1.4b3 release. The tutorial covers how to:

Portlet Tutorial

Getting Started: Installation and Building
Downloading Jetspeed
Developing Without Source
Development Cycle: Deployment to the Jetspeed Portlet Container
Building the Examples

Planning for Your Portal Site
The Jetspeed Portlet API
Restarting the Tutorials
Tutorial 1 – Tailoring the Portal Web Design

1.1 Change the Portal Logo
1.2 Modify the Top Navigation
1.3 Remove the Left Navigation
1.4 Replace the Bottom Navigation
1.5 Change the Web Page Title
1.6 Change the Skin and Cascading Style Sheet
1.7 Deploy

Tutorial 2 - Localisation
2.1 Java Resource Bundles
2.2 Modules and Bundles
2.3 Localisation of PSML Resources
2.4 Deploy

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (1 of 140) [20.12.2002 11:20:25]

Development

Tutorial 3 – Site Map
3.1 The Anonymous User’s Resource
3.2 Navigational PSML Components
3.3 PSML References
3.4 An Authenticated User’s Resource
3.5 Layout PSML Components for Portlets
3.6 Customizing Menus with the Customizer
3.7 Customizing Panes with the Customizer
3.8 Deploy

Tutorial 4 – Site Security
4.1 Jetspeed Security Concepts
4.2 Managing Users and Roles
4.3 Security Features
4.4 Using the Customizer to Secure Portal Resources
4.5 The Security Example Portlet
4.6 Deploy

Tutorial 5 – Portlet 101
5.1 Hello World Portlet
5.2 Adding A Portlet to the Registry
5.3 Adding A Portlet to a Page
5.4 Hello User Portlet
5.5 Deploy

Tutorial 6 - The Portlet Interface
6.1 Media Types
6.2 Portlet Life Cycle
6.3 Init Parameters, Attributes and Titles

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (2 of 140) [20.12.2002 11:20:25]

Development

6.4 Portlet Modes
6.5 Deploy

Tutorial 7 – Velocity Portlet
7.1 Introduction to Velocity
7.2 Velocity Portlets in the Registry
7.3 The Velocity Template
7.4 Template Resolution
7.5 Velocity Actions and the Context
7.6 Portlet Customization and Parameter Styles
7.7 Action Events
7.8 Deploy

Tutorial 8 – JSP Portlet
8.1 Introduction to JSP
8.2 JSP Portlets in the Registry
8.3 The JSP Template
8.4 Template Resolution
8.5 JSP Actions
8.6 Portlet Customization and Parameter Styles
8.7 JSP Events
8.8 Deploy

Tutorial 9 – DatabaseBrowser Portlet
9.1 Configuration in the Registry
9.2 Linking to Actions
9.3 Implementing the Action Events
9.4 Advanced Parameters
9.5 Deploy

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (3 of 140) [20.12.2002 11:20:25]

Development

Tutorial 10 – XSLT Portlet
9.1 Configuration in the Registry
9.2 The Transform
10.3 Deploy

Tutorial 11 – RSS Portlet
Tutorial 12 – Parameter Styles

12.1 Parameter styles architecture
Future Possible Tutorials
Appendix A - How Property Merging Works in the Tutorial

Removing Properties
Appendix B - Turbine and ECS

Getting Started: Installation and Building

Before we get started, we have a few pre-requisite installations:

1. Install a java compiler (1.3 or greater)
2. Install Ant (1.4 or greater)
3. Install Catalina (4.1.12 or higher)
4. Install Jetspeed (1.4b3 release or higher)
5. Build Jetspeed WAR file (ant war) **
6. Download the Tutorial Examples

** optional – if you want to work in the default build mode, with source code. You can also work without source by downloading the WAR file only.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (4 of 140) [20.12.2002 11:20:25]

http://java.sun.com/j2se/1.4/
http://jakarta.apache.org/ant/
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/index.html
http://jakarta.apache.org/builds/jakarta-jetspeed/release/
http://jakarta.apache.org/jetspeed/site/install.html
http://www.bluesunrise.com/jetspeed-docs/jportal.jar

Development

Downloading Jetspeed

You can get Jetspeed from the Jakarta CVS, or from the Apache website.

To checkout from the CVS head, follow the instructions here:

http://jakarta.apache.org/jetspeed/site/install.html

and then build the war target (ant war).

To download from the Apache website, go here:

http://jakarta.apache.org/builds/jakarta-jetspeed/release/v1.4b3/

If you want to work with the source code, download jetspeed-1.4b3-release-src.zip
Unzip it and build the war target (ant war).

Developing Without Source

You can also download the release WAR files, but this will limit your development environment, since you won’t have the
source code to Jetspeed.

jetspeed-1.4b3-release-war.zip
jetspeed-1.4b3-release-fullwar.zip

If you choose to develop without source, you will need to modify the settings in your build.properties as described here.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (5 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/install.html
http://jakarta.apache.org/builds/jakarta-jetspeed/release/v1.4b1/
http://jakarta.apache.org/builds/jakarta-jetspeed/release/v1.4b1/jetspeed-1.4b1-release-src.zip
http://jakarta.apache.org/builds/jakarta-jetspeed/release/v1.4b1/jetspeed-1.4b1-release-src.zip
http://jakarta.apache.org/builds/jakarta-jetspeed/release/v1.4b1/jetspeed-1.4b1-release-src.zip

Development

All of the examples in this document are available for download at

 http://www.bluesunrise.com/jetspeed-docs/jportal.jar

Download this jar file, and expand it to a directory on your file system with the command:

 jar –xf jportal.jar

Development Cycle: Deployment to the Jetspeed Portlet Container

During development of the examples, we will often deploy our portlets into a Jetspeed web application – a portlet
container. This is accomplished with the several ant targets provided with the tutorial:

ant tutorial-n

Configure the distribution to match the given tutorial, where n is the number of the tutorial from this document.

ant war

Creates the war file which you can manually copy to your application server. This war file is a combination of the Jetspeed
distribution with you’re the example code. The war file combines the Jetspeed container with the example portlets and
their configuration. The war file is written to jportal/dist/jportal.war.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (6 of 140) [20.12.2002 11:20:25]

http://www.bluesunrise.com/jetspeed-docs/jportal.jar

Development

ant deploy

Dependent on the war target. After building the war file, it automatically deploys the war file into the application server of
your choice. For this tutorial, Jakarta Catalina is required. NOTE: you should shutdown Catalina before invoking this
target.

ant hotdeploy

A quicker version of deploy. Only deploys classes and configuration files that are newer than the files in the deployed web
application. Requires that deploy target is ran once, since it will not expand the entire application to the web application
directory. This target is used most often in the everyday development routine.

Jetspeed 2.0 will support the Java Standard Portlet API, which defines a standard deployment descriptor and portlet
archive for deploying portlets to portlet containers. Version 1.x of Jetspeed does not support the standard, thus a custom
deployment procedure is necessary.

Building the Examples

The tutorial requires Ant (http://jakarta.apache.org/ant/)
You will need Antto build all the examples. Please download and install Ant before continuing.

Here are the available target commands:

 all Clean build and dist, then compile
 clean Delete old build and dist directories
 compile Compile Java sources
 deploy Deploy application to servlet container
 dist Create binary distribution

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (7 of 140) [20.12.2002 11:20:25]

http://www.jcp.org/en/jsr/overview
http://jakarta.apache.org/ant/

Development

 hotdeploy Hot Deploy application to portlet container
 javadoc Create Javadoc API documentation
 om Generate Object Model sources
 war Create merged war
 tutorial-0 Resets the web application.
 tutorial-n Configure the distribution for the nth tutorial examples.
 tutorial-all Configurations the distribution to include all tutorials.

Depending on where Jetspeed and Tomcat are installed, you may need to edit a few of the properties in the
build.properties. The first set of properties are for developing with the source code. The second set are for developing
without the source code, using a WAR file that was downloaded, in this example, to a directory /apache/Jetspeed-
1.4b3-release-war/Jetspeed-1.4b3.

#
typical settings with source
#
jetspeed_home=/apache/jakarta-jetspeed
catalina_home=/apache/catalina
portlet_app_name=jportal
company=com.bluesunrise.jportal
jetspeed_jar=/bin/jetspeed-1.4b3-dev.jar
jetspeed_war=/bin/jetspeed.war
jetspeed_lib=/lib
jetspeed_conf=/webapp/WEB-INF/conf/
#
typical settings without source
#
jetspeed_home=/apache/jetspeed-1.4b3-release-war/jetspeed-1.4b3
catalina_home=/apache/catalina
portlet_app_name=jportal
company=com.bluesunrise.jportal
jetspeed_jar=/WEB-INF/lib/jetspeed-1.4b3-dev.jar
jetspeed_war=/jetspeed.war
jetspeed_lib=/WEB-INF/lib

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (8 of 140) [20.12.2002 11:20:25]

Development

jetspeed_conf=/WEB-INF/conf/

To build the examples for a specific tutorial example, type:

 ant tutorial-n (where n = the number of the tutorial)
 ant deploy (first time, and then)
 ant hotdeploy

These commands build and deploy the examples to your Catalina distribution as a web application. NOTE: this process
will also work with Tomcat.

The tutorials must be run in order. If you want to deploy tutorial-5, you must first run tutorial-1 thru tutorial-4.

If you’d like to skip ahead and see the result of all the tutorials, then run:

 ant tutorial-all
 ant deploy

That’s it. You are now ready to start up the JPortal web application. Start up Catalina and point a browser at:

 http://localhost:8080/jportal/portal

You will see the Home Page for JPortal. To see JPortal customized for a user, logon to the system as:

 Username = turbine
 Password = turbine

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (9 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

NOTE: you should shutdown Catalina before invoking the deploy target.

Planning for Your Portal Site

No matter what portal or web development tool you're using, you should always first spend some time on the specification
of your portal. You should not even start looking at the technology before answering questions like:

● How many users?
● Is there already an existing authentication database for these users, do I want to use it?
● How many languages?
● How many media types do I want to support?
● How many and which segments/target groups do I have to serve
● What content do I want to publish?
● How can I get access to this content (disk, db, syndication, etc...)?
● Who is going to update the site content and with what editorial process?
● What applications do I need to connect to?
● Are they already using a single authentication db?
● How do I bridge to these apps (servlet, http, SOAP, CORBA, etc...)?
● For each user target group, what application/content do they need to access?
● Can they personalize their portal view?
● What access rights should they have?
● What will be your portal navigation?
● Do you plan to set up different thematic portal views or a single integrated workspace?

Once you have written down your answers on these points, you should
have a much better view on:

- What kind of software tools and features you'll need.
- What kind of skills you'll require.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (10 of 140) [20.12.2002 11:20:25]

Development

- An estimate of the amount of work required to setup your portal.
- What budget you'll need to complete your portal transition.
- Where to start

Setting up and running a portal is typically a lot of work, mainly
in terms of technical integration, process engineering and project
management. Open source software does not magically cancel these, just ensure that your budget can
be spent of these items rather than
being split between software licenses and integration.

Jumping directly from a static website to a portal-driven system
without any defined specification and expected benefits is a recipe
for frustration, lost time, lost money and a very slow website...

The Jetspeed Portlet API

The Jetspeed Portal API is a set of interfaces describing how a portlet interacts with a portlet container. There is a soon to
be released Java Standard Portlet API. Jetspeed 2.0 will support that standard.

Every portlet has to implement the Portlet interface

org.apache.jetspeed.portal.Portlet

either directly, or by extending a class that in turn implements the Portlet interface. Review the Portlet interface at the link
above. This tutorial will cover how to implement most methods on the interface.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (11 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/Portlet.html

Development

It is usually recommended to extend one of the higher level foundation portlet classes, such as the CustomizerVelocity
portlet or DatabaseBrowserPortlet portlet.

The AbstractPortlet and AbstractInstancePortlet classes provide an abstract portlet implementation of the Portlet
interface with the most common functionality, leaving only a few methods to be implemented by you.

Restarting the Tutorials

If you’d like to clean up the JPortal Tutorial examples and reset to a default Jetspeed deployment, type:

 ant clean
 ant deploy

This ant target removes all classes and configuration files from the deployment, leaving you with a web application that is
exactly the same as the Jetspeed web application. No changes are made to the Jetspeed distribution. When you point your
browser at http://localhost:8080/jportal/portal, you will see the default Jetspeed portal.

This target is useful if you want to restart the tutorials from the beginning.

Tutorial 1 – Tailoring the Portal Web Design

Tutorial 1 shows you how to tailor the web design of the JPortal portal. This is accomplished by overriding and merging
the Jetspeed portal configuration property files.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (12 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html
http://jakarta.apache.org/jetspeed/site/portlet_config_DBBrowser.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractInstancePortlet.html
http://localhost:8080/jportal/portal

Development

In this tutorial, we will:

1. Change the Portal Logo
2. Modify the Top Navigation
3. Remove the Left Navigation
4. Replace the Bottom Navigation
5. Change the Web Page Title
6. Change the Skin, CSS
7. How Property Merging Works in the Tutorial
8. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-1

Recommend bringing up these configuration files in your editor:

1. webapp/WEB-INF/conf/JPortalJetspeed.properties
2. webapp/WEB-INF/conf/jportal-skins.xreg
3. webapp/WEB-INF/conf/templates/vm/navigations/html/bottom-jportal.vm
4. webapp/css/jportal.css

since we will reference them in tutorial 1.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (13 of 140) [20.12.2002 11:20:25]

Development

1.1 Change the Portal Logo

Looking at JPortalJetspeed.properties:

topnav.logo.file=images/jportal.gif

The topnav.logo.file property points to the new image that we want to display on the JPortal site. Note that all
properties relating to files are specified relative to the web application root. The images directory can be found directly
under the web application root.

You could also use a logo that exists on another server with the topnav.logo.url property. The topnav.logo.file and
topnav.logo.url properties are mutually exclusive, you should one or the other.

Of course you don’t have to use any logo. You’re top navigation could be customized to use a completely different layout.

1.2 Modify the Top Navigation

Navigations are carried over from the Turbine-2 classic web application design. A website generally has a top and bottom
navigation scheme. This is generally defined as the header and footer of the website. Jetspeed allows three navigations:
top, bottom, and left. For JPortal, we override navigation properties in JPortalJetspeed.properties. Here are the top
navigation settings:

topnav.enable=true
topnav.vm=top.vm
topnav.logo.url=
topnav.logo.file=images/jportal.gif

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (14 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/turbine/turbine-2/fsd.html#navigation

Development

topnav.user_login.enable=true

topnav.user_creation.enable=false

topnav.enable turns on or off the top navigation. Try turning it off. You won’t see the logo or login edit fields.

We’ve already described topnav.logo.file and topnav.logo.url in the previous section.

topnav.user_login.enable turns on or off the single-sign-on edit fields for entering a username and password.

topnav.user_creation.enable turns on or off the link to the Enter New User portlet. We will modify the default
setting and set it to false.

topnav.vm is the most powerful setting. You can use your own JSP or Velocity template here to completely customize
your top navigation.

1.3 Remove the Left Navigation

Next we show how to remove the left navigation.

leftnav.enable=false

leftnav.vm=left.vm
leftnav.width=10%

leftnav.enable turns on or off the left navigation. The JPortal tutorial site doesn’t require a left navigation, so we turn it
off.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (15 of 140) [20.12.2002 11:20:25]

Development

leftnav.vm You can use your own JSP or Velocity template here to customize your left navigation.

lefnav.width specifies the percentage of the page width to be covered by the left navigation.

1.4 Replace the Bottom Navigation

Next we show how to replace the bottom navigation.

bottomnav.enable=true
bottomnav.vm=bottom-jportal.vm

bottomnav.enable turns on or off the bottom navigation.
bottomnav.vm You can use your own JSP or Velocity template here to completely customize your bottom navigation.
That is exactly what we do here using a Velocity template tailored specifically for the JPortal tutorial.

<hr/>
<table width="100%">
 <tr>
 <td align="left">
 <small>
 JPortal Tutorial for Jetspeed - Version 1.4b3

 </small>
 </td>
 #if ($config.getString("mail.support"))
 <td align="center">
 Support and Additional Information
 </td>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (16 of 140) [20.12.2002 11:20:25]

Development

 #end
 <td align="right">

 </td>
 </tr>
</table>

1.5 Change the Web Page Title

The web page title (in the browser title-bar) can have a text string prefix added:

portalpage.title_prefix=JPortal Tutorial:

1.6 Change the Skin and Cascading Style Sheet

Skins are used to define color, font, and borders for various components in Jetspeed. The skin definitions is referenced in
portal resources such as controls, controllers, portlets and templates to create a centralized design theme. Review the
registry fragment called jportal-skins.xreg, where we define a new skin to match our really gaudy colour theme for
the Jportal site.

<?xml version="1.0" encoding="UTF-8"?>
<registry>
 <skin-entry name="jportal-skin" hidden="false">
 <property name="text-color" value="#ffffff" hidden="false"/>
 <property name="background-color" value="#ffffff" hidden="false"/>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (17 of 140) [20.12.2002 11:20:25]

Development

 <property name="title-text-color" value="#000000" hidden="false"/>
 <property name="title-background-color" value="#ceff63"
 hidden="false"/>
 <property name="title-style-class" value="TitleStyleClass"
 hidden="false"/>
 <property name="highlight-text-color" value="#ffffff"
 hidden="false"/>
 <property name="highlight-background-color" value="#6331ff"
 hidden="false"/>
 </skin-entry>
</registry>

Then in the JPortalJetspeed.properties, the default skin for the portal site is defined:

services.PortalToolkit.default.skin=jportal-skin

The default skin is applied to the portal whenever a specific skin is not declared for a resource. The default skin facilitates
quickly creating a site look and feel with minimal effort.

See the Jetspeed Skin documentation for all available skin parameters.

Skins are used in combination with Cascading Style Sheets. CSS is a simple mechanism for adding style (e.g. fonts,
colors, spacing) to Web documents, defined as a standard by the World Wide Web Consortium (W3C).

In the JPortalJetspeed.properties, the portal site stylesheet is defined:

site.stylesheet=css/jportal.css

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (18 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/config_skin.html
http://www.w3.org/Style/CSS/
http://www.w3.org/

Development

Looking at the cascading style sheet for the JPortal site, we see that the Jetspeed style sheet, default.css, is included into
this style sheet with the import at-rule:

@import “default.css”;

A:link {
 text-decoration : none;
 color : #333366;
 }

A:visited {
 text-decoration : none;
 color : #666699;
}

A:hover {
 color : #CC3300;
}

A.index:link {
 font-size : 11px;
 color : #333366;
}
A.index:visited {
 font-size : 11px;
 color : #333366;
}

A.index:hover {
 color : #CC3300;
}

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (19 of 140) [20.12.2002 11:20:25]

Development

We then go on to define several example styles overriding the settings in default.css. Styles declared in the style sheet can
also be referenced in a skin, as we do in our skin registry:

 <property name="title-style-class" value="TitleStyleClass"
 hidden="false"/>

1.7 Deploy

To deploy the system type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the new web design for the JPortal site. The portlets inside are still the same as the default Jetspeed
deployment.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (20 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

Tutorial 2 - Localisation

When completing the last tutorial, you may have noticed the text right at the top of the screen “Welcome to Jetspeed”. The
text comes from a Java localised resource file. This tutorial will show you how to create your own localised resources to
easily support multiple languages without hard-coding messages in your Java source code.

In this tutorial, we will:

1. Edit the resource files and change the Welcome string in two languages
2. Review how Jetspeed finds PSML resources by language and country code
3. Localisation of PSML Resources
4. Deploy

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (21 of 140) [20.12.2002 11:20:25]

Development

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-2

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/JPortalTurbine.properties
2. src/java/com/bluesunrise/jportal/modules/localization/JportalLocalization_en.properties
3. src/java/com/bluesunrise/jportal/modules/localization/JportalLocalization_fr.properties
4. webapp/WEB-INF/templates/vm/navigations/html/bottom-jportal.vm
5. webapp/WEB-INF/conf/JPortalJetspeed.properties

since we will reference them in tutorial 2.

2.1 Java Resource Bundles

It is recommended that you use resource bundles for all of strings that will be displayed to the end user. This is called
‘localising’ your application.

The tutorial comes with two sample resource files in English and French. Let’s look at the English version:

TOP_TITLE=Welcome to JPortal, the Jetspeed Tutorial

CONTACT_US=Contact Us

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (22 of 140) [20.12.2002 11:20:25]

Development

The first string, TOP_TITLE, replaces a resource string already defined in Jetspeed. The second string, CONTACT_US is
a new string that is referenced in the bottom-jportal.vm file.

Referencing localised strings in Velocity templates is accomplished with the localisation global tool, with a rather odd
name of $l10n. It stands for the word ’localisation’, where the 10 middle letters are cleverly (sic) represented by the
number 10.

Any string in the resource bundle can be referenced as shown below:

 <td align="center">
 <h2>$l10n.TOP_TITLE</h2>
 </td>

In this tutorial, we will change the bottom navigation defined in the last tutorial, to use a localised string:

 <td align="center">
 $l10n.CONTACT_US
 </td>

In the JPortalJetspeed.properties, setup your email support account:

mail.support=support@bluesunrise.com

2.2 Modules and Bundles
http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (23 of 140) [20.12.2002 11:20:25]

Development

Turbine has a concept called modules, which is a special class loader path. Multiple module class paths can be configured
by simply adding a path to the root directory of your modules. Take a look at the JPortalTurbine.properties:

module.packages=com.bluesunrise.jportal.modules

Modules is made up of different kinds of modules: actions, layouts, screens, navigations, pages, and localisations. Jetspeed
uses the module path to find the resource bundles.

Resource bundles and the default language are also specified in the JPortalTurbine.properties. Notice that the JPortal
resource bundle is listed first, overriding the Jetspeed resource bundle.

locale.default.bundles=
 com.bluesunrise.jportal.modules.localization.JPortalLocalization,
 org.apache.jetspeed.modules.localization.JetspeedLocalization

locale.default.language=en
locale.default.country=US

2.3 Localisation of PSML Resources

PSML resources may also be optionally localised. PSML Resources are localized by placing them in sub-directories based
on language and country code abbreviations. The language-code sub-directory contains one or more country-code
subdirectories.

The language-code directory name is specified with an ISO-639 standard two-character language abbreviation. The

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (24 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/turbine/turbine-2/fsd.html

Development

country-code subdirectory is optional, and is specified with an IS0-3166 standard two-character country code abbreviation.

An example:

user
 |-- david
 |-- html
 |-- fr // french language
 |-- FR // France country-code
 |-- BE // Belgium country-code

NOTE: The country codes must be in upper-case

For a given locale of fr_FR, the search order for the default accounting resource would be:

groups/accounting/html/fr/FR/default.psml
groups/accounting/html/fr/default.psml
groups/accounting/html/default.psml
groups/accounting/default.psml

The Jetspeed profiler looks at the "Content Language" HTML header for locale specific settings. If there are multiple
settings, all settings will be searched until the first resource is found. (This is currently not supported)

For a complete list of ISO-639 standard language abbreviations, see:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

For a complete list of ISO-3166 standard country code abbreviations, see:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (25 of 140) [20.12.2002 11:20:25]

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Development

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

In the JPortalJetspeed.properties, you can enable or disable the usage of language and country codes during PSML
resource resolution with the following settings. In the tutorial we choose to turn off both language and country code
fallback.

Consider the language as part of the fallback?
services.Profiler.fallback.language=false

Consider the country code as part of the fallback?
services.Profiler.fallback.country=false

2.4 Deploy

To deploy the system type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the new localised title. The portlets inside are still the same as the default Jetspeed deployment.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (26 of 140) [20.12.2002 11:20:25]

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://localhost:8080/jportal/portal

Development

Tutorial 3 – Site Map

The next step is for us to layout the portal site map. We do this using a specialized portal XML-derivative called PSML
(Portlet Structure Mark-up Language).

When designing your portal, you should consider how users will navigate around your site. In our example portal, we will
allow for anonymous users to access the site, and also for authenticated users to access areas of the site where they are
authorized (more on Site Security in the next tutorial).

In this tutorial, we will:

1. Create the anonymous PSML resource with a Tab control
2. Learn about PSML navigational components
3. PSML References
4. Create an authenticated user’s PSML resource with a Menu control
5. Learn about PSML layout components for portlets
6. Customize Menus with the Customizer
7. Customizing Panes with the Customizer
8. Deploy

Let’s get started. From the JPortal distribution root directory, type:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (27 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/psml.html

Development

 ant tutorial-3

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/psml/user/anon/html/default.psml
2. webapp/WEB-INF/psml/user/turbine/html/default.psml

since we will reference them in tutorial 3.

3.1 The Anonymous User’s Resource

Anonymous users are users who have not been authenticated. The anonymous user interface is the default user interface
displayed to users who have not yet signed on.

Some sites do not allow anonymous users to see anything on the site. Perhaps you only want to display a single portlet, or
perhaps a portlet with static company information, a Signup portlet, and a Returning-User logon portlet. It all depends on
your requirements.

The requirements for JPortal are very simple: it’s a tutorial. We want to show all the tutorial portlets to everyone. We also
want to show off some of the portlets that come with Jetspeed out of the box. It would be confusing to put all the portlets
on one page all at once, so let’s group together the portlets based on categories such as ‘Basic tutorials’, ‘Advanced
tutorials’, ‘Jetspeed portlets’, and ‘Referenced portlets’. It would be nice to group these four categories into a manageable
user interface components. Here are our four menu choices:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (28 of 140) [20.12.2002 11:20:25]

Development

● Basic Tutorials
● Advanced Tutorials
● Jetspeed Portlets
● Referenced Portlets

3.2 Navigational PSML Components

Jetspeed provides layout components for defining the layout of a portal page. In this tutorial we will concentrate on
components used to create navigational menus. Components are defined by editing the PSML file with a text editor, or
using the Jetspeed Customizer, which makes portal layout much easier.

Before seeing how easy it is with the customizer, look at the PSML file for the anonymous user.

<?xml version="1.0" encoding="iso-8859-1"?>
<portlets id="100" xmlns="http://xml.apache.org/jetspeed/2000/psml">

 <metainfo>
 <title>Welcome Page</title>
 </metainfo>
 <control name="TabControl"/>
 <controller name="CardPortletController"/>

 <portlets id="101">
 <metainfo>
 <title>Basic Tutorials</title>
 </metainfo>
 </portlets>

 <portlets id="102">
 <metainfo>
 <title>Advanced Tutorials</title>
 </metainfo>
 </portlets>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (29 of 140) [20.12.2002 11:20:25]

Development

 <portlets id="103">
 <metainfo>
 <title>Jetspeed Portlets</title>
 </metainfo>
 </portlets>

 <portlets id="104">
 <controller name="OneColumn"/>

 <metainfo>
 <title>Referenced Portlets</title>
 </metainfo>
 <reference path="group/apache/media-type/html/page/default"/>
 <reference path="group/Jetspeed/media-type/html/page/default"/>
 </portlets>

</portlets>

There are several types of elements in the layout of a PSML file. Here are the common navigational components:

<portlets> defines a pane
<controller> defines the type of layout. Must be a card controller for menus
<control> defines the type of menu . Must be used with a card controller

For each menu option, we specify a pane. Panes hold collections of portlets. The portlets on a pane have their own layout.
We will discuss that in the next section. A pane is specified like this:

 <portlets id="101">
 <metainfo>
 <title>Basic Tutorials</title>
 </metainfo>
 </portlets>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (30 of 140) [20.12.2002 11:20:25]

Development

The <title> tag is used as the menu option text.

Panes are a special kind of a controller. There is one important difference between a pane (PanedPortletController)
and other controllers: the pane does not render all of its managed portlets at the same time. That is why it needs to be used
with a menu control, allowing us to navigate to the appropriate pane while hiding the other panes.

Controls are decorators around a pane or portlet. In the case of a pane, it is always used in combination with a portlet
controller. There are two types of controls for panes:

1. TabControl – puts menu options across the top of the page
2. MenuControl – puts menu options on the left-side of the page

 <control name="TabControl"/>
 <controller name="CardPortletController"/>

Controls are sometimes used in combination with controllers. Controllers define the layout of a pane, such as the number
of columns and rows. When defining menus, you must select the CardPortletController, which enables collections of
portlets to occupy the same page, and is used in combination with the a TabControl or MenuControl to create menu
components. These collections of portlets are called panes.

Each of the four menu options correspond to a pane. A pane is configured in PSML using the <portlets> tag. The
<metainfo> tag defines the title of the pane which is displayed in the menu.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (31 of 140) [20.12.2002 11:20:25]

Development

3.3 PSML References

For this is example, 3 of the panes are empty. The fourth pane contains PSML References.

PSML References are used to include an entire PSML resource into another PSML resource. This is useful for defining
groups of markup once, and then sharing that markup in one or more PSML resources. The reference path is called a
PSML resource locator. In our example, we reference two shared group resources as the content of the fourth pane.

 <portlets id="104">
 <controller name="OneColumn"/>

 <metainfo>
 <title>Referenced Portlets</title>
 </metainfo>
 <reference path="group/apache/media-type/html/page/default"/>
 <reference path="group/Jetspeed/media-type/html/page/default"/>
 </portlets>

These two PSML resources are included with the Jetspeed distribution. In the first case, the locator specifies that it is a
group resource, for the media type HTML, and the name of the resource page is default. Shared PSML resources are
useful for defining common layout definitions that can be used by all users of the system.

3.4 An Authenticated User’s Resource

When a user logs on, the portal displays content customized specific to the user.

Logon as username turbine, with the password = turbine. You will see basically the same panes as defined for the
anonymous user. However, this time we use a menu that is displayed on the left-side of the page.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (32 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/psml.html#PSML%20Locator

Development

 <control name="MenuControl"/>
 <controller name="CardPortletController"/>

3.5 Layout PSML Components for Portlets

We saw how menus and panes define the navigational layout of a site. Here we will look at how to layout portlets on a
particular pane. A pane is the container for portlets. Inside this container we have the choice of laying out portlets in a
number of designs. This is accomplished using portlet controllers. In Tutorial 3, we only define portlets in the third
pane ”Jetspeed Portlets”.

There are a fair number of controllers available for portlets:

1. One Column – all portlets flow down a single column on the pane
2. Single Row – all portlets flow across the pane in a single row
3. Three Column - The portlets flow down 3 columns, given column width percentages:

a. 25/50/25
b. 33/33/33

4. Two Column – The portlets flow down 2 columns, given column width percentages:
a. 50/50
b. 25/75
c. 75/25

Let’s look at the pane definition for the Turbine default resource. Here we define four portlets to occupy this pane using a
TwoColumns controller:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (33 of 140) [20.12.2002 11:20:25]

Development

 <portlets id="103">
 <metainfo>
 <title>Jetspeed Portlets</title>
 </metainfo>

 <controller name="TwoColumns"/>

 <entry parent="BBCFrontPage">
 <layout>
 <property name="column" value="0"/>
 <property name="row" value="0"/>
 </layout>
 </entry>

 <entry parent="WeatherPortlet">
 <layout>
 <property name="column" value="0"/>
 <property name="row" value="1"/>
 </layout>
 <parameter name="weather_city_info" value="US/AZ/Phoenix"/>
 <parameter name="weather_style" value="infobox"/>
 </entry>

 <entry parent="StockQuote">
 <layout>
 <property name="column" value="1"/>
 <property name="row" value="0"/>
 </layout>
 </entry>
 <entry parent="DatabaseBrowserTest">
 <layout>
 <property name="column" value="1"/>
 <property name="row" value="1"/>
 </layout>
 <parameter name="sql" value="select * from coffees"/>
 <parameter name="windowSize" value="10"/>
 </entry>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (34 of 140) [20.12.2002 11:20:25]

Development

 </portlets>

Notice that you can specify the location of the portlet using the <layout> element and the column and row properties. This
is a task that is normally better handled by the customizer:

 <layout>
 <property name="column" value="1"/>
 <property name="row" value="0"/>
 </layout>

If its not already obvious, the <entry> element is used to reference a portlet. We will have a closer look at the entry tag in
tutorial 5.

There are controls that can be applied to portlet entries as decorators. When applied to a portlet entry, controls define the
window around the portlet. Here are some typical controls:

1. Boxed Title Control – draws a box around the portlet, adds a title bar and action icons.
2. Clear Portlet Control – draws no decorators
3. Simple Titled Control – adds a title bar and action icons, but no box

Finally there are default settings for controls, controllers and skins which are defined in the
JPortalJetspeed.properties.

services.PortalToolkit.default.control=TitlePortletControl
services.PortalToolkit.default.controller=OneColumn
services.PortalToolkit.default.skin=orange-grey

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (35 of 140) [20.12.2002 11:20:25]

Development

Portlet entries which do not have a control specified will use the default control. In the default Jetspeed deployment, this is
the control described as #3 above, the Simple Title Control.

3.6 Customizing Menus with the Customizer

The customizer is a lot easier to use. Let’s look at a screen shot of the customizer. Here we customizing the Turbine user
page. You can see the four menu options listed.

When customizing menus, you can add panes to the menu.

Clicking the add pane button adds another menu option. The layout has MenuPane selected, which could be switched to
TabPane (combination of TabControl + CardPortletController). With the Customizer, menu options can be moved up or
down, added and deleted.

Once the menus and panes are defined, you can then move on to placing portlets on the panes by clicking on the specific
menu option, which will then bring up a pane customizer for placing portlets. But first, let’s have a look at site security.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (36 of 140) [20.12.2002 11:20:25]

Development

3.7 Customizing Panes with the Customizer

When customizing panes, you manipulate the layout of portlets (or references) on the pane.

Here is a screen shot of the Jetspeed Portlets pane from the Turbine user page, containing four portlets:

And here is the customizer for that pane:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (37 of 140) [20.12.2002 11:20:25]

Development

Clicking the add portlet button allows you to select a portlet from the Portlet Browser.(we will cover the Portlet browser in
tutorial 5). The layout can be one of the controllers described above (Single Column, Single Row, Two Column, Three
Column).

The position of portlet entries can be moved up or down. Portlets may also be deleted from the pane. The pane may have a
different skin assigned to it. You can change the control associated with each portlet entry.

3.8 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (38 of 140) [20.12.2002 11:20:25]

Development

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the new site menus for the anonymous user:

Tutorial 4 – Site Security

Securing portal resources is a very important part of defining your portal site. You do not want non-authorized users
accessing critical resources. Jetspeed has a declarative security registry for doing so. This section will cover:

1. Jetspeed Security Concepts
2. Managing Users and Roles
3. Security Features
4. Using the Customizer to Secure Portal Resources
5. The Security Example Portlet
6. Deploy

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (39 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-4

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/jportal-security.xreg
2. webapp/WEB-INF/templates/vm/portlets/html/simple-security.vm
3. webapp/WEB-INF/psml/user/anon/html/default.psml
4. webapp/WEB-INF/psml/user/turbine/html/default.psml
5. webapp/WEB-INF/conf/t4-portlets.xreg

6. webapp/WEB-INF/conf/JPortalJetspeed.properties

since we will reference them in tutorial 4.

4.1 Jetspeed Security Concepts

The Jetspeed Security services are defined at the Jetspeed web site: here. It is recommended that you review the concepts
there before getting started. The purpose of portal security is to authenticate users of the portal, and to authorize access by
those users to portal resources. All security in Jetspeed is defined through pluggable services. Jetspeed provides a default
security policy and services. The default security service has a user database along with a security constraint registry. First
let’s review the security database and the object model.

Jetspeed Security Objects:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (40 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/security.html

Development

Interface Description
JetspeedUser Defines the minimal attributes of a user in the portal system.
Role Defines the minimal attributes of a role in the portal system.
Group Defines the minimal attributes of a group in the portal system.
Permission Defines the minimal attributes of a permission in the portal system.

The default Jetspeed deployment comes with a populated sample database of users, roles, groups and permissions. This
database is conveniently distributed with the webapp to simplify the first time experience. The database is Hypersonic
SQL. For production systems, it is recommended to switch to a more robust database.

The default Security service uses Jakarta Torque to manage object-relational mapping of objects to and from relational
tables. This default service can be configured to work with your own database. With version 1.4b3, there is now a LDAP
Security service.

4.2 Managing Users and Roles

Jetspeed provides several administrative portlets to manage users, groups, roles and permissions. To see them, logon with
the username/password admin/jetspeed. Click on the Security menu item, and should see something like this:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (41 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/om/security/JetspeedUser.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/om/security/Role.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/om/security/Group.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/om/security/Permission.html
http://jakarta.apache.org/turbine/torque/

Development

The User Browser allows you to add/edit/delete users, and associate relationships between users-groups and user-roles.
The other browsers provide add/edit/delete maintenance for roles, groups and permissions.

The user/group association isn’t used specifically by the default security system. User/role associations are used
throughout the system to perform role-based security checks. A security constraint in Jetspeed is defined between a role
and a resource for a given action (permission). In this example from a security registry, we are declaring a role-based
declarative security constraint called requires-accountManager:

 <security-entry name="requires-accountManager">
 <meta-info>
 <title>Account Manager</title>
 <description>Grant full access to Account Manager Role, read
 access to Support Role.</description>
 </meta-info>
 <access action="*">
 <allow-if role="accountManager"/>
 <allow-if role="admin"/>
 </access>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (42 of 140) [20.12.2002 11:20:25]

Development

 <access action="view">
 <allow-if role="guest"/>
 </access>
 </security-entry>

We are granting full access to users with the role accountManager or admin for all actions(permissions), but only granting
view access to users with the role guest. All other users are denied access to the resource protected by this constraint.

We will look at how to associate a security registry entry with a portal resource in the section after next.

4.3 Security Features

Jetspeed has a number of configurable security settings. You can find most of these in the
JetspeedSecurity.properties file. We will cover the ones that will probably be most used in a standard portal
configuration.

Programmatic Security

Jetspeed can perform programmatic cascade deletes when deleting security objects. For example, when a user is deleted,
all role and group associations will be automatically deleted with that user. This setting should be set to true for your
database if it doesn’t support cascading deletes. You would want to set this to true for the Hypersonic database.

services.JetspeedSecurity.programmatic.cascade.delete=false

Secure Passwords

Make the password checking secure. When enabled, passwords are transformed by a one-way function into a sequence of
bytes that is base64 encoded. When a user logs in, the entered password is transformed the same way and then compared
with stored the value. The algorithm property let’s you choose what digest algorithm will be used for encrypting

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (43 of 140) [20.12.2002 11:20:25]

Development

passwords. Check documentation of your JRE for available algorithms.

services.JetspeedSecurity.secure.passwords=false
services.JetspeedSecurity.secure.passwords.algorithm=SHA

New User Roles

When a new user is created, one or more roles can be assigned to that user. Multiple Role must be comma separated.

services.JetspeedSecurity.newuser.roles=user

Default Permissions

When a security resource has no permissions defined, these are the default permissions(actions) that are applied to the
security check. The following permissions are defined in the default Jetspeed installation: view, customize, minimize,
maximize, close, info, detach. Specifying * denotes all permissions. The default settings can differ can be set for both
anonymous access and authenticated (logged in) access.

services.JetspeedSecurity.permission.default.anonymous=view
services.JetspeedSecurity.permission.default.loggedin=*

Case Insensitive Usernames and Passwords

These options configure the logon username and password to be case sensitive or insensitive. When enabled, the
logon.casesensitive.upper property controls whether the username and password are converted to upper or lower case
before passing them on to the database.

services.JetspeedSecurity.caseinsensitive.username=false
services.JetspeedSecurity.caseinsensitive.password=false
services.JetspeedSecurity.caseinsensitive.upper=true

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (44 of 140) [20.12.2002 11:20:25]

Development

Auto-Account Disable

The Auto-Account-Disable Feature combines with the Logon-Strike-Count feature to disable accounts that may be under
hacker attack. The strike count is over the strike interval. In the example below, 3 failed logons over five minutes would
result in the account being disabled.

services.JetspeedSecurity.logon.auto.disable=false
services.JetspeedSecurity.logon.strike.count=3
services.JetspeedSecurity.logon.strike.interval=300
services.JetspeedSecurity.logon.strike.max=10

Password Expiration

Number of days until password expires. To disable this feature, set it to 0.

services.JetspeedSecurity.password.expiration.period=0

Anonymous User Account

The anonymous user is actually stored in the database. The username is configurable.

services.JetspeedSecurity.user.anonymous=anon

Disabling the Portlet Action Buttons

Portlets are decorated with window controls (portlet action buttons). Some of these (the default) controls display action
buttons. These action buttons can be enabled or disabled for all authenticated users, or for the anonymous user.

services.JetspeedSecurity.actions.anon.disable=true

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (45 of 140) [20.12.2002 11:20:25]

Development

services.JetspeedSecurity.action.allusers.disable=false

4.4 Using the Customizer to Secure Portal Resources

The customizer can be used to secure access to:

1. Portlet Entries(instances), using the Portlet Customizer
2. Portlet Pages, Panes, or Sets

The Customizer allows for the editing of the security constraint for any portlet page, pane or set. However, the currently
logged on user must have the admin role in order to see this dropdown:

The default Portlet Customizer supports the editing of security constraints on any portlet entry(instance):

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (46 of 140) [20.12.2002 11:20:25]

Development

Portlets can also have security references set, but only the Security ID drop-down widget is only displayed if the current
user has the admin role. See more details about the default Portlet Customizer in here.

Security refs may also be added directly to the PSML file with a text editor:

 <portlet-entry name="GroupForm" hidden="false" type="ref"
 parent="CustomizerVelocity" application="false">
 <security-ref parent="admin-only"/>

4.5 The Security Example Portlet

Tutorial 4 comes with one portlet, the Security Example portlet.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (47 of 140) [20.12.2002 11:20:25]

Development

This portlet allows for you to click on four different portal links. These links were created with the $jslink tool, which is
used in templates to generate links to portal resources.

Link Name Link to Resource Works with Anon Works with

Authenticated User
(Turbine)

Page Requires
Admin Role

$jslink.setUser('admin')

link to default admin user page

NO NO

Page Requires User
Role

$jslink.setGroup('apache','news')

link to apache group, news page

NO YES

Page Requires No
Role

$jslink.setGroup('apache')

link to default apache group page

YES YES

Pane Requires User
Role

$jslink.getLink($jslink.USER,
'anon','default',
$jslink.PANE_ID,'105')

link to anonymous user default
page, pane id = 105

NO YES

When you test it out, you will see that there is a fifth pane on the anonymous page, but you cannot see it when you are
logged on as the anonymous user. However, when you logon as the Turbine user, and click on the “Pane Requires User

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (48 of 140) [20.12.2002 11:20:25]

Development

Role”, then the pane does show up, since the Turbine user does have the User role.

The pane in the anonymous page has a security constraint:

 <portlets id="105">
 <security-ref parent="user-only"/>
 <metainfo>
 <title>Secured</title>
 </metainfo>
 <entry parent="HelloVelocity"/>
 </portlets>

4.6 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the security example portlet in the default pane:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (49 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

Tutorial 5 – Portlet 101

Tutorial 5 guides you through the creation of a portlet, starting with a simple examples and then introduces you to the
fundamental concepts of portlet development.. This section covers:

1. HelloWorld Portlet
2. Adding A Portlet to the Registry
3. Adding A Portlet to a Page
4. HelloUser Portlet
5. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-5

Recommend bringing up these files in your editor:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (50 of 140) [20.12.2002 11:20:25]

Development

1. webapp/WEB-INF/conf/t5-portlets.xreg
2. webapp/WEB-INF/psml/user/anon/default.psml
3. webapp/WEB-INF/psml/user/turbine/default.psml
4. src/java/com/bluesunrise/jportal/portal/portlets/

 HelloWorldPortlet.java
5. src/java/com/bluesunrise/jportal/portal/portlets/HelloUserPortlet.java
6. webapp/WEB-INF/conf/JPortalJetspeed.properties

since we will reference them in tutorial 5.

5.1 Hello World Portlet

To start with, the very first portlet is the simplest, the obligatory “Hello World”, it extends AbstractInstancePortlet.
All the code necessary is shown below:

package com.bluesunrise.jportal.portal.portlets;

import org.apache.jetspeed.portal.portlets.AbstractInstancePortlet;
import org.apache.turbine.util.RunData;
import org.apache.ecs.ConcreteElement;
import org.apache.ecs.StringElement;

public class HelloWorldPortlet extends AbstractInstancePortlet
{
 public ConcreteElement getContent (RunData runData)
 {
 return (new StringElement ("Hello World! #" + getID()));
 }
}

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (51 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractInstancePortlet.html

Development

When you have compiled this portlet and configured it into the portlet registry, the user can choose the portlet from the list
of available portlets when customizing their home page. As you can see, the most important method to override is the
getContent() method, which provides the content of your portlet to the response payload. We will cover this method in
detail in the section on the Portlet interface.

In future chapters we will discover better methods for generating your content, using the set of MVC portlets provided
with the Jetspeed distribution. See tutorials 7 onwards for examples these abstractions where it is not necessary to override
the getContent method. For the purpose of learning the very basics of portlet operations, tutorials 5 and 6 will demonstrate
how the getContent method works without any MVC abstraction.

5.2 Adding A Portlet to the Registry

In order for Jetspeed to know about your portlet class, two things must happen:

1. Put your class in the classpath.
2. Add a reference to your portlet to Jetspeed’s Portlet Registry.

The Jetspeed Portlet Registry contains the definitions of all portlets known to Jetspeed.

We’ve already completed both steps for you when you built and deployed the examples for tutorial 5. The example class
files are copied to the Jetspeed web application’s class directory. This is normally where classes specific to your web
application are placed (under /WEB-INF/classes).

Secondly, a registry fragment file was created and deployed. See the source:

webapp/WEB-INF/conf/t5-portlets.xreg

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (52 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/registry.xml
http://jakarta.apache.org/jetspeed/site/registry_xml.html

Development

Registry fragments contain portlet definitions. Any file in the /WEB-INF/conf directory that has the xreg extension is
included in the Jetspeed Registry. Here is what a registry entry looks like for our example:

<?xml version="1.0" encoding="UTF-8"?>
<registry>
 <portlet-entry name="HelloWorld" hidden="false" type="instance" application="false">
 <meta-info>
 <title>HelloWorld</title>
 <description>Portlet How To Example 1 – Hello World</description>
 </meta-info>
 <classname>com.bluesunrise.portal.portlets.HelloWorldPortlet</classname>
 <media-type ref="html"/>
 </portlet-entry>
</registry>

We won’t cover all the registry syntax here, but it’s important to give it a name, enter the class name correctly, and limit
the <media-type> entry to only the media types that you will support. In our example, we only support HTML.

5.3 Adding A Portlet to a Page

After successfully deploying the examples to Jetspeed, you can then customize your page. The Anonymous User and the
Turbine User already include the Hello World portlets. Let’s go ahead and add a second Hello World portlet and see what
happens. Start-up Jetspeed, and logon with the username/password of

 Username = turbine
 Password = turbine

Click on the ‘Pencil Icon’ in the Title Bar (right below the menu). This will start the Jetspeed Customizer.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (53 of 140) [20.12.2002 11:20:25]

Development

Click the “Basic Tutorials” menu option. From the Pane Customizer, click the “Add Portlet” button.

You should see a screen like below. Select “HelloWorld” and then press the “Apply” button.

Then from the next screen, press “Save and Apply” and “Apply” again.
Finally, you should return to the newly customized screen and see the output of your portlet:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (54 of 140) [20.12.2002 11:20:25]

Development

So what are those funny numbers after Hello World? They are the portlet instance ids, which are automatically assigned to
the portlet. This id uniquely identifies your portlet instance in the entire portal site. Portlet Instances, are instances of the
your portlet on a PSML page. The two different instances use the same Java class instance, which saves memory, however
they use different parameters and state, which is important when you have two or more instances of the same portlet on a
page.

5.4 Hello User Portlet

The next step in your portlet example is to make the world more specific. That is, instead of writing out a static string, the
greeting is personalized according to the user settings.

package com.bluesunrise.portal.portlets;

import org.apache.jetspeed.portal.portlets.AbstractInstancePortlet;
import org.apache.turbine.util.RunData;
import org.apache.turbine.om.security.User;
import org.apache.ecs.ConcreteElement;
import org.apache.ecs.StringElement;

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (55 of 140) [20.12.2002 11:20:25]

Development

public class HelloUserPortlet extends AbstractInstancePortlet
{
 public ConcreteElement getContent(RunData runData)
 {
 StringBuffer text =new StringBuffer();

 text.append("Hello ");

 String name = runData.getUser().getFirstName();

 if (name ==null)
 name =" Anonymous";

 text.append (name);
 text.append ("!");
 return (new StringElement(text.toString()));
 }
}

With this example, you will be using the classes inherited from another Apache project: Turbine. Turbine is a web
application framework based on the Java Servlet API. Jetspeed was written with Turbine as its framework, and also upon
the Java Servlet API. Let’s take a closer look at the interfaces supplied by Turbine: RunData and User.

The RunData interface provides you with access to the servlets request state and other session-context information.
Examples are security (access control), Turbine actions, cookies, servlet parameters (parsed), and the current user, to name
a few. The current user is accessible via the getUser() or getJetspeedUser() methods as shown in the example above.

With the User object, you can then access typical user information, and also store temporary values for your session
(getTemp(), setTemp()). Here’s as summary of the standard user information provided:

User Property/Methods Description

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (56 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/turbine
http://www.bluesunrise.com/jetspeed-docs/turbine-2001-1124-javadocs/org/apache/turbine/util/RunData.html
http://www.bluesunrise.com/jetspeed-docs/turbine-2001-1124-javadocs/org/apache/turbine/om/security/User.html

Development

AccessCounter Keep track of how many times the user has accessed the
portal

Confirmed Returns the confirmation value used during automatic
account sign up.

CreateDate The creation date of this account.
Email The email address of the user.
FirstName The first name of the user.
LastAccessDate The last access time stamp for the user.
LastLogin The last login time stamp for the user.
LastName The last name of the user.
Password The password of the user.
Perm Jetspeed stores a hash table of name/value pairs in a

binary column in the database.
Temp A temporary hash table of values for the user stored in

the session. These values go away after user logs off or
after the session times out.

UserName The user name (primary credential) of the user.
hasLoggedIn Indicates if the user is currently logged on.
incrementAccessCounterIncrement the user’s access counter.
isConfirmed Indicates if this user has yet been confirmed.
removeTemp Remove a name/value pair from the temporary hash

table.

Jetspeed User
Property

Description

Disabled An account can be disabled with this property

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (57 of 140) [20.12.2002 11:20:25]

Development

UserId The user id
isNew Boolean indicating if the user has been stored yet

Remember that the set methods of the properties may not store the changes to the database immediately. There is a setting
in the JPortalJetspeed.properties file that must be set to true to automatically save all modifications to the user on
logout.

automatically save user state on logout
automatic.logout.save = false

Otherwise, you will need to explicitly save the user with the User Management service. Here is an example of disabling
the current user.

JetspeedUser user = user = rundata.getJetspeedUser();
user.setDisabled(true);
JetspeedUserManagement.saveUser(user);

Jetspeed actually extends the RunData interface as JetspeedRunData. You can safely cast RunData to JetspeedRunData
from anywhere within Jetspeed. The extended class gives you access to some important Jetspeed request state such as the
Profile the Capability Map.

To summarize, you can always get the current user from the RunData. RunData is used all over Jetspeed as a common
mechanism for passing request information.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (58 of 140) [20.12.2002 11:20:25]

http://www.bluesunrise.com/jetspeed-docs/javadocs-1.3a2/org/apache/jetspeed/services/rundata/JetspeedRunData.html
http://www.bluesunrise.com/jetspeed-docs/javadocs-1.3a2/org/apache/jetspeed/om/profile/Profile.html
http://www.bluesunrise.com/jetspeed-docs/javadocs-1.3a2/org/apache/jetspeed/capability/CapabilityMap.html

Development

5.5 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the new Hello portlets in the default pane:

Tutorial 6 - The Portlet Interface

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (59 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

Tutorial 6 introduces the Portlet interface. This section covers:

1. Media Types
2. Portlet Life Cycle
3. Init Parameters, Attributes and Titles
4. Portlet Modes
5. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-6

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t6-portlets.xreg
2. webapp/WEB-INF/psml/user/anon/html/default.psml
3. webapp/WEB-INF/psml/user/turbine/html/default.psml
4. src/java/com/bluesunrise/jportal/portal/portlets/HelloPortletInterface.java
5. webapp/WEB-INF/conf/JPortalJetspeed.properties

since we will reference them in tutorial 6.

Portlets generate content fragments (from the getContent() method) that are aggregated together in a portal page as
shown below. Jetspeed takes the content generated by each portlet, and includes it in a portlet window. The location on the
page for the portlet window is controlled by the administrator or user when customizing a portlet page. The Portlet
interface is the contract between the portlet developer and Jetspeed defining how a portlet behaves and interacts with the

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (60 of 140) [20.12.2002 11:20:25]

Development

Jetspeed environment.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (61 of 140) [20.12.2002 11:20:25]

Development

6.1 Media Types

The content generated is dependent on the media type supported by the browser. Browsers (devices) supply request
parameters describing the capabilities of device. For instance, a web browser would provide in its request parameters a
description of which MIME types and languages it supports. Jetspeed packages this all up in a request object call
JetspeedRunData. You can check the request for the media type by getting the CapabilityMap associated with the
request (rundata.getCapabilityMap) and the checking the media type against the supported media types for your
portlet.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (62 of 140) [20.12.2002 11:20:25]

http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/services/rundata/JetspeedRunData.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/capability/CapabilityMap.html

Development

Let’s take a look at how the HelloPortletInterface portlet checks the media type during content fragment generation:

 public ConcreteElement getContent(RunData rundata)
 {
 JetspeedRunData jrun = (JetspeedRunData) rundata;

 CapabilityMap map = jrun.getCapability();

 StringBuffer text = new StringBuffer();
 String mimeType = map.getPreferredType().toString();

 if (this.supportsType(map.getPreferredType()))
 {
 text.append("Supports preferred MimeType: " + mimeType);
 }
 else
 {
 text.append("Doesn't support preferred MimeType: "
 + mimeType);
 }
…

Every portlet has the supportsType method for checking a browser device’s MIME type. The Media Types are looked
up from the portlet definition in the registry. Looking at the registry entry for HelloPortletInterface, we see the
supported media types are directly in the registry definition:

 <portlet-entry name="HelloPortletInterface"
 hidden="false" type="instance" application="false">
 <meta-info>
 <title>Hello Portlet Interface</title>
 <description>JPortal Tutorial - Hello Portlet Interface
 </description>
 </meta-info>
 <classname>com.bluesunrise.jportal.portal.portlets.HelloPortletInterface

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (63 of 140) [20.12.2002 11:20:25]

Development

</classname>
 <parameter name="version" value="1.4b3" hidden="false"/>
 <media-type ref="html"/>
 <media-type ref="wml"/>
 <category>tutorial</category>
 <category>portlet</category>
 </portlet-entry>

There can be multiple <media-type> entries per portlet.
Media types are defined in the Media Type Registry. Four media types are currently supported in the registry:

● HTML
● WML
● XML
● VXML

 <media-type-entry name="html">
 <mime-type>text/html</mime-type>
 <character-set>UTF-8</character-set>
 <meta-info>
 <title>HTML</title>
 <description>Rich HTML for HTML 4.0 compliants browsers
 </description>
 </meta-info>
 </media-type-entry>

Also note that the getContent method returns a class called ConcreteElement.

import org.apache.ecs.ConcreteElement;
import org.apache.ecs.StringElement;

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (64 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/client-media.html

Development

Unfortunately, Jetspeed is coupled to the Element Construction Set, a Java-based HTML mark-up generator. As you will
see in the tutorials 7 and onwards, you shouldn’t have to work much with ECS or the low level methods of the Portlet
interface. Jetspeed provides a better way of getting content using templating engines such as Velocity or JSP, along with
RSS and XSLT ready-written portlets that you can extend.

For more information on RunData class and ECS elements , see Appendix B – Turbine and ECS.

6.2 Portlet Life Cycle

All portlets can be automatically created when Jetspeed first starts up. The default and recommended behaviour is not to
create the portlets until they are accessed on a PSML page. Once a page where a portlet exists is requested, then at this
point, the portlet is created and added to the portlet cache.

Jetspeed can automatically create/instantiate all your Portlets
and place them in the cache when Jetspeed starts up.
autocreate.portlets=false

At the time of portlet creation, a portlet’s init() method is called. The init method is only called once, during the portlet
creation phase. The lifetime of a portlet is controlled by how long a portlet stays in the cache. When a portlet is removed
from the cache, the portlet is effectively removed from memory (left to the garbage collector) and is no longer accessible.
If a portlet is removed from the cache, and then requested again, the portlet will have its init method called again, since a
new instance is created of the portlet. Both the system administrator and programmer can control the lifetime of a portlet
by controlling how long it lives in the cache.

A portlet is managed through a not so well defined life cycle that defines how it is initialized, how it handles requests for
content, and how long it lives based on caching behaviour described later in this section. Thus you could consider there to
be 3 phases in the life cycle of a portlet:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (65 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/Portlet.html#init()

Development

1. Init
2. Render
3. Destroy

Jetspeed does support another phase in between phase 1 and 2. It is called the processAction phase. Unfortunately, the
processAction phase does not manifest itself directly in the portlet interface. Instead, actions must be handled in action
classes. Action classes are inherited from Turbine, and they bleed through into the design of Jetspeed, coupling the
Jetspeed architecture to Turbine’s in a very bad way. Velocity portlets attempt to rectify this design flaw, but the bottom
line is that is still a kludge and the action processing phase is not a part of the portlet interface, but must be handled on
another action interface. We will cover actions in more depth in the section on Velocity Portlets.

To match the phases with interface methods, we have:

Phase Method
Init init
ProcessAction Turbine Actions
Render getContent
Destroy --none--

During the init phase, it is recommended that you do any one-time initialisation of the portlet. Usually this involves the
initialisation of costly resources such as database connections or other costly activities. The render phase is called per
request. Every time a portlet’s content is requested, the getContent method is called.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (66 of 140) [20.12.2002 11:20:25]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_7_%E2%80%93

Development

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (67 of 140) [20.12.2002 11:20:25]

Development

The destroy phase is dependent on the life time definition of the portlet. Unfortunately, your portlet is never notified when
the destroy phase occurs. You can control the life time of your portlet. If your portlet inherits from AbstractPortlet, then
the lifetime of your portlet is controlled by how long it lives in the cache, and by how many instances of the portlet there
are in the cache.

First let’s look at how long your portlet will live in the cache. By default, this is controlled by a global portal setting for all
portlets:

TimeToLive.default =
number of milliseconds an unused portlet will remain in cache.
Default 2700000 which is 45 minutes (45 * 60 * 1000)
services.PortletCache.TimeToLive.default=2700000

The default setting is 45 minutes. After a portlet has been in the cache for 45 minutes, it will be reloaded. This means the
init method is called again. Since there is no destroy method, your portlet doesn’t know when it is getting destroyed.

If your portlet inherits from AbstractPortlet or AbstractInstancePortlet, then your portlet is cacheable, but it will not be
evicted from the cache, since the base implementation AbstractPortlet never allows for your portlet to expire.

public Expire getExpire()
{
try
{
 return ExpireFactory.getExpire(this,
 ExpireFactory.NO_EXPIRE);
 } catch (JetspeedException e) {

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (68 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractInstancePortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html

Development

 Log.error(e);
 return null;
 }
 }
}

Some portlets will expire, such as the FileWatchPortlet and NewRSSPortlet which uses the cache to control refreshing of
its content.

Whenever Jetspeed goes through the initialisation phase for a portlet, it will first check to see if the portlet already exists in
the cache. It does this by looking up the portlet using a unique cache handle. The cache handle method can be used to
control the number of instances of the same portlet in the cache. AbstractPortlet has a method getHandle. For the base
class, a rather odd algorithm is used to determine whether a new portlet instance should be created:

1. the URL parameter, but only if the cachedOnURL attribute is set to true
2. all other parameters, both their names and values

The algorithm takes all of these strings and combines them to make a unique string. Thus the creation of multiple
instances of possibly the same portlet is controlled by the uniqueness of the portlets parameters. This seems like a rather
odd solution, but works perfectly fine if all of your portlets are RSS feeds, as Jetspeed was once designed but has since
evolved into much more. In the example below of an RSS portlet, the key would be combined to create:
http://www.mozilla.org/news.rdf|itemdisplayed-10. This isn’t really very useful, since the items displayed shouldn’t
have any affect on the number of instances created of a portlet. Basing the cache on the URL makes a little more sense,
since we control the number of portlets to be equal to the number of feeds in the system.

 <portlet-entry name="Mozilla" hidden="false"
 type="ref" parent="RSS" application="false">
 <meta-info>
 <title>Mozilla</title>
 </meta-info>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (69 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/FileWatchPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/NewRSSPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html#getHandle()
http://www.mozilla.org/news.rdf%7Citemdisplayed-10

Development

 <classname>org.apache.jetspeed.portal.portlets.NewRSSPortlet
 </classname>
 <parameter name="itemdisplayed" value="10" hidden="false"
 cachedOnName="true" cachedOnValue="true"/>
 <url cachedOnURL="true">http://www.mozilla.org/news.rdf</url>
 <category group="Jetspeed">news.software.opensource</category>
 </portlet-entry>

The AbstractInstancePortlet has a different algorithm to create the uniqueness of a portlet:

 StringBuffer handle = new StringBuffer(256);
 handle.append(pc.getPageId());
 handle.append('/');
 handle.append(pc.getPortletId());

 return handle.toString();

New portlets are created for every portlet instance. A portlet instance is defined as each instance of a portlet referenced in
a PSML file. Thus for each portlet defined on a PSML page, a new Java instance of the portlet is created and put in the
cache with a unique handle of: PSML-PAGE-ID + PORTLET-ID. The important gain with this approach is that you can
now have the same portlet twice on the page, and those two portlets will have their own private parameters.

This approach will have scalability issues. Think about the case where each user has his own page. Since we are creating
new portlets for every user in the system with her own page, if there are thousands of simultaneous users, we have the
same portlet instantiated thousands of time. It’s a waste of memory. This approach was necessary in order to rectify a bug
in Jetspeed’s design: it shares all instance parameters across all instances. If you find this approach to be unsatisfactory,
just override the getHandle method for your portlet and have its uniqueness based on the name of your portlet as shown in
the commented out method in the tutorial example (its commented out in order for the tutorial example in 6.3 to work
properly with multiple instances of the same portlet):

 public static Object getHandle(Object config)
 {

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (70 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractInstancePortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/AbstractPortlet.html#getHandle()

Development

 PortletConfig pc = null;

 if (!(config instanceof PortletConfig))
 {
 return null;
 }
 return pc.getName();
 }

6.3 Init Parameters, Attributes and Titles

The Portlet interface allows for you to set two different types of configuration variables for your portlet and its instances.
Init Parameters are defined in the registry. Attributes are defined in a PSML file. Init Parameters are associated with all
portlets of a given class and are read-only. Attributes are associated with only one instance of a portlet class on a given
PSML page, and can be modified and persisted. Given our example portlet, we have the Init Parameter named ‘version’,
which is set to the value ‘1.4b3’. We also have two instances of the same portlet on our page. Each of these portlets
instances have the same parameter defined on the same PSML page, called ‘city’ with the value of ‘Tokyo’ and ‘Sidney’.

Here is the Init Parameter defined in the registry. Init Parameters can be hidden. This means they will not be displayed in
certain areas of the application such as portlet customization:

 <parameter name="version" value="1.4b3" hidden="false"/>

And the attributes for each portlet instance:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (71 of 140) [20.12.2002 11:20:25]

Development

 <entry parent="HelloPortletInterface">
 <parameter name='city' value='Tokyo'/>
 </entry>
 <entry parent="HelloPortletInterface">
 <parameter name='city' value='Sidney'/>
 </entry>

The portlet interface supports working with portlet instances directly using the methods:

getID() – returns the unique Portlet instance id
getInstance() – returns the instance associated with this portlet.
getAttribute() – returns a persistent attribute from page storage
setAttribute() – stores an attribute to a persistent page

For accessing read-only Init Parameters, you must first get the PortletConfig object for a portlet, and from there you can
get the Init Parameters. From the getContent method:

 text.append("Portlet id = " + this.getID());
 text.append("
");
 text.append("Init Parameter (version): " +
 pc.getInitParameter("version", "NOT FOUND!");
 text.append("
");
 text.append("Page Attribute (city): "
 + this.getAttribute("city", "NOT FOUND!", rundata);

The Jetspeed Portlet customizer only displays Init Parameters in the edit window. Thus the “city” attribute described
above will not show up in the customizer, since it doesn’t have an Init Parameter associated with it. The portlet customizer
associates Attributes with Init Parameters, and allows you to edit the parameter, but when it is saved, it is saved as an

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (72 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/PortletConfig.html

Development

attribute to the current page, and is not saved to the common registry entry.

Let’s try customizing the first Hello Portlet Interface portlet:

Press update and we see:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (73 of 140) [20.12.2002 11:20:25]

Development

If you want to use the default customizer, it is recommended that all of your parameters be defined in the portlet registry
when you deploy your portlets. Also notice that the title was changed. Titles are maintained with the Portlet interface
methods getTitle and setTitle.

6.4 Portlet Modes

There are several portlet modes that Jetspeed supports:

1. View
2. Customize (Edit)
3. Print-Friendly

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (74 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/Portlet.html#getTitle()
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/Portlet.html#setTitle(java.lang.String)

Development

4. Info
5. Minimize
6. Maximize

View mode is just the normal mode of operation. A request to display a portal page is considered the default or view
mode. The getContent method will be called on the portlet.

Customize mode is an important mode of operation. The Portlet interface method providesCustomization can be
overridden if you want to provide your own portlet customizer. Otherwise, Jetspeed provides a default customizer when
you go into edit mode. If you are providing your own customization, you will need to check for the current mode of the
request in your getContent method. Velocity portlets provide a more elegant way of handling customization covered in the
next section.

Maximize Mode displays the selected portlet on the entire page. All other portlets are not displayed. Print-Friendly is the
same as View Mode, but the portal engine does not display any controls around your portlet. The other modes: Info, Close
and Minimize do not make calls directly to your portlet. Unfortunately, your portlet is not notified of this event, but must
check the request parameters to detect if it is being minimized. Info mode simply displays some runtime information
about your portlet in a maximized view. The content generated for the portlet is controlled by Jetspeed. Minimizing a
portlet will only show the control of the portlet, but not the content. There is also the Close action, which removes the
portlet from the page. All six of these mode actions and the close action can be displayed on the control of a portlet:

In order from right to left we have: Customize, Print-Friendly, Info, Close, Minimize and Maximize.

By checking JetspeedRunData.getMode, you can determine the mode of the current request:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (75 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/services/rundata/JetspeedRunData.html#getMode()

Development

 switch (jrun.getMode())
 {
 case JetspeedRunData.NORMAL:
 text.append("MODE = VIEW");
 break;
 case JetspeedRunData.CUSTOMIZE:
 text.append("MODE = CUSTOMIZE");
 break;
 case JetspeedRunData.MAXIMIZE:
 text.append("MODE = MINIMIZE");
 break;
 default:
 text.append("MODE = UNKNOWN");
 break;
 }

6.5 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (76 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

You should see the new Hello Portlet Interface portlets in the default pane:

Tutorial 7 – Velocity Portlet

Tutorial 7 introduces the Velocity Portlet. This section covers:

1. Introduction to Velocity
2. Velocity Portlets in the Registry

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (77 of 140) [20.12.2002 11:20:25]

Development

3. The Velocity Template
4. Template Resolution
5. Velocity Actions and the Context
6. Portlet Customization and Parameter Styles
7. Action Events
8. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-7

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t7-portlets.xreg
2. webapp/WEB-INF/psml/user/anon/html/default.psml
3. webapp/WEB-INF/psml/user/turbine/html/default.psml
4. src/java/com/bluesunrise/jportal/modules/actions/portlets/ TutorialStockQuoteAction1.java
5. src/java/com/bluesunrise/jportal/modules/actions/portlets/ TutorialStockQuoteAction2.java
6. src/java/com/bluesunrise/jportal/modules/actions/portlets/

 CobiJonesPortletAction.java
7. webapp/WEB-INF/templates/vm/portlet/html/stock-quote1.vm
8. webapp/WEB-INF/templates/vm/portlet/html/stock-quote2.vm
9. webapp/WEB-INF/templates/vm/portlet/html/cobi-jones-form.vm

10. webapp/WEB-INF/conf/JPortalTurbine.properties

since we will reference them in tutorial 7.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (78 of 140) [20.12.2002 11:20:25]

Development

7.1 Introduction to Velocity

Velocity is a Java-based template engine. It permits web page designers to reference methods defined in Java code. Web
designers can work in parallel with Java programmers to develop web sites according to the Model-View-Controller
(MVC) model, meaning that web page designers can focus solely on creating a well-designed site, and programmers can
focus solely on writing top-notch code. Velocity separates Java code from the web pages, making the web site more
maintainable over the long run and providing a viable alternative to Java Server Pages (JSP) or PHP.

Jetspeed has a Velocity templating service built directly into the Jetspeed engine. Many of the controls and controllers are
Velocity-driven to create the layout of the portal. You can also base your portlets on Velocity. This means that your
portlets will also follow the MVC design pattern, separating content from code.

The examples in tutorials 5 and 6 were useful for you to learn the Portlet interface. However, overriding the getContent
method of the portlet interface is not good practice. We recommend abstracting the content generation phase by basing
your portlets on one of the MVC-based portlets provided in the Jetspeed distribution; such as JSPPortlet, XSLTPortlet,
RSSPortlet, HTMLPortlet or of course the VelocityPortlet.

A Velocity portlet is made up of the typical MVC components:

MVC Component Velocity Component
Model Java Objects put in the context
View Template
Controller Your Velocity Action

The controller is your Velocity Action class. The base VelocityPortlet class should rarely have to be modified. Your view
is a Velocity template, which will generate the content of your portlet by pulling out dynamic model information from the

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (79 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/velocity/user-guide.html#What%20is%20Velocity?
http://java.sun.com/products/jsp/
http://www.php.net/
http://jakarta.apache.org/jetspeed/site/portlet_config_JSP.html
http://jakarta.apache.org/jetspeed/site/portlet_config_XSL.html
http://jakarta.apache.org/jetspeed/site/portlet_config_RSS.html
http://jakarta.apache.org/jetspeed/site/portlet_config_HTML.html
http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html
http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html

Development

Velocity context. The getContent method of the VelocityPortlet should never be edited. All content is generated by the
template, as designed in our MVC design pattern.

The Life Cycle phases of a portlet are also enhanced with the Velocity portlet.

Phase Method
Init init
ProcessAction Velocity Action and Action Events
Render Template is called by Velocity Portlet
Destroy --none--

Velocity portlets are really about dynamic content. If you have static content, there is no real benefit to using a Velocity
portlet; take a look at one of the static content generation portlets such as the HTMLPortlet instead. The basic function of
Velocity is really very simple, it substitutes live Java objects into a Velocity template. There is an online tutorial with great
examples here.

Let’s look at simple introductory example, but we recommend visiting the Velocity site and investing some time in their
well-written tutorials.

<HTML>
<BODY>
Hello $customer.Name!

Here is a list of your current subscriptions:

<table>
#foreach($subscription in $subscriptions)
 #if ($customer.isSubscribed($subscription))
 <tr>
 <td>
 $subscription.Name

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (80 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html
http://jakarta.apache.org/jetspeed/site/portlet_config_HTML.html
http://jakarta.apache.org/velocity/user-guide.html#What%20is%20Velocity?

Development

 </td>
 </tr>
 #end
#end
</table>

This example is not included with the examples source code distribution.

The above is an example Velocity template that displays all subscriptions for a given customer. There are two dynamic
model objects that we are working with: the customer and subscriptions. Velocity uses a very simple syntax for model
variables, simply prefix the variable with a $ sign. The designer can then access all public methods and accessors of that
Java object. Velocity uses Java reflection to find the methods. Thus in our example above, the customer object has a getter
and setter for the Name attribute. You don’t need to specify the get prefix, Velocity will figure it out.

Velocity provides a small set of directives for logic control. Most commonly used are #if and #foreach. #foreach will
iterate over any Java 2 collection or array. The #if statement above calls a public method to check if the customer is
subscribed to a subscription. Finally, the subscription name is displayed in a table column by getting the Name attribute.

So where did these two variables ($customer, $subscriptions) come from?

They came from your action class. We will look into how to program an action class in more detail later in this section.
Right now it’s important to understand that your action class puts your model objects into a Velocity construct called the
‘context’. The context is where all variables are made accessible to a template. The context is the common liaison between
your model and view. Here is how the Java code would put an object into the context:

Customer customer = CustomerPeer.retrieveByPK(primaryKey);
context.put(“customer”, customer);

List subscriptions = SubscriptionPeer.doSelect(criteria);
context.put(“subscriptions”, subscriptions);

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (81 of 140) [20.12.2002 11:20:25]

Development

This example is not included with the examples source code distribution.

There is another tutorial on Velocity at Java World. Now that we have a basic understanding of the Velocity context and
templates, let’s get back to the Velocity Portlet. The MVC components are all configured in the portlet registry.

7.2 Velocity Portlets in the Registry

Velocity Portlets are defined like any other portlet: in the portlet registry. In tutorial 7 we define two new portlets:

<portlet-entry name="TutorialStockQuote1" hidden="false" type="ref"
 parent="Velocity" application="false">
…
 <parameter name="template" hidden=”true”
 value="tutorial-stock-quote1"/>
 <parameter name="action" hidden=”true”
 value="portlets.TutorialStockQuoteAction1" />
…
 </portlet-entry>

 <portlet-entry name="TutorialStockQuote2" hidden="false" type="ref"
 parent="Velocity" application="false">
…
 <parameter name="template" hidden=”true”
 value="tutorial-stock-quote2" />
 <parameter name="action" hidden=”true”
 value="portlets.TutorialStockQuoteAction2" />
…
 </portlet-entry>

When defining a Velocity portlet, there are two required parameters: the template and the action. The template defines the
Velocity template which will generate the portlet content. It is your MVC View component. The action is the controller,
and it has several responsibilities including handling action events and populating the context. The templates should be

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (82 of 140) [20.12.2002 11:20:25]

http://www.javaworld.com/javaworld/jw-12-2001/jw-1228-velocity-p2.html

Development

placed in the portlets subdirectory of one of your Velocity template paths. The action is placed in the module path,
conventionally under the portlets directory of the root actions directory.

Also note that a Velocity portlet can derive from one of two Velocity portlets: Velocity or CustomizerVelocity. The only
difference being that the Velocity portlet uses the default Jetspeed portlet customizer, where as the CustomizerVelocity
portlet is expected to provide its own customization. Look at the Weather Portlet as an example of a CustomizerVelocity
portlet providing its own customization.

 <portlet-entry name="TutorialStockQuote1" hidden="false" type="ref"
 parent="Velocity" application="false">

…

 <portlet-entry name="WeatherPortlet" hidden="false" type="ref"
 parent="CustomizerVelocity" application="false" >

7.3 The Velocity Template

Let’s have a look at the Velocity template for our first example: tutorial-stock-quote1.vm It’s a very simple example
of displaying live stock quotes from a web service. The stock quotes are returned in a collection of quote records, called
$quotes. Also, the column headers are in a collection of strings called $columns.

<table>
 <tr>
 <td>
 <table border="true" cellspacing="1" cellpadding="3">
 <tr>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (83 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/VelocityPortlet.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/portlets/CustomizerVelocityPortlet.html

Development

 #foreach ($column in $columns)
 #headerCell ($column)
 #end
 </tr>

 #foreach ($quote in $quotes)
 <tr>
 #entryCell ($quote.Symbol)
 #entryCell ($quote.Price)
 #entryCell ($quote.Change)
 #entryCell ($quote.Volume)
 </tr>
 #end
 </table>
 </td>
 </tr>
</table>

Accessors get the attributes: symbol, price, change and volume. Also notice that there are some macros: #headerCell and
#entryCell. The macros are defined in a common Velocimacro file that is shared across Jetspeed. Velocimacro are great
for defining little snippets of templates that can be included into other templates.

services.VelocityService.velocimacro.library = GlobalMacros.vm

The macros in question are defined in the GlobalMacros.vm file. A macro definition takes parameters. Macros can
include macros:

#macro (formCell $label $name $value)
 #formLabel("$label")
 #formTextField("$name" "$value")

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (84 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/velocity/user-guide.html#Velocimacros
http://jakarta.apache.org/velocity/user-guide.html#Velocimacros

Development

#end

Similarly, common snippets can simple be parsed into the template directly:

 #parse ("/portlets/html/tree-row-browser.vm")

7.4 Template Resolution

Where should templates be placed in the web application? By convention, Jetspeed looks for Velocity Portlet templates in
the Jetspeed deployment under /WEB-INF/templates/vm/portlets/html (for HTML portlets). Similarly, WML portlets
would be found under /WEB-INF/templates/vm/portlets/wml. The resolution of portlet templates is based on several
configuration files and a resolution algorithm.

The TurbineResources.properties is where the first part of the configuration goes:

services.VelocityService.file.resource.loader.path =
 /WEB-INF/templates/vm, /WEB-INF/mytemplates/vm

You can specify multiple paths by comma-separating the paths. Secondly, the JetspeedResources.properties must be
updated with the same path, but to root directory containing all templates (both JSP and VM).The list may also be comma-
separated.

services.TemplateLocator.templateRoot=

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (85 of 140) [20.12.2002 11:20:25]

Development

 /WEB-INF/templates,/WEB-INF/mytemplates

The template resolution algorithm finds the template. The resolver is a service and is pluggable. The default service has a
resolution algorithm much like how the Profiler service resolves PSML resources.

Templates resources may be optionally localised. Templates are localized by placing them in sub-directories based on
language and country code abbreviations. The language-code sub-directory contains one or more country-code
subdirectories.

The language-code directory name is specified with an ISO-639 standard two-character language abbreviation. The
country-code subdirectory is optional, and is specified with an IS0-3166 standard two-character country code abbreviation.

An example:

 vm
 |-- portlets
 |-- html
 |-- fr // french language
 |-- FR // France country-code
 |-- BE // Belgium country-code

NOTE: The country codes must be in upper-case

For a given locale of fr_FR, and an HTML request, the search order for a template named grenouille.vm would be:

vm/portlets/html/fr/FR/grenouille.vm
vm/portlets/html/fr/grenouille.vm
vm/portlets/html/grenouille.vm
vm/portlets/grenouille.vm

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (86 of 140) [20.12.2002 11:20:25]

Development

The template locator looks at the "Content Language" HTML header for locale specific settings. If there are multiple
settings, all settings will be searched until the first resource is found. (This is currently not supported)

For a complete list of ISO-639 standard language abbreviations, see:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

For a complete list of ISO-3166 standard country code abbreviations, see:

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

7.5 Velocity Actions and the Context

Velocity Actions are Java classes, they are where you put your controlling logic for your code. Here you will do any
backend processing necessary to retrieve or store dynamic information, and then populate the Velocity context with your
model so that the template may display the dynamic content.

First, let’s look at the code for the TutorialStockQuoteAction1. This portlet retrieves stock quotes from a web service.
There is only one method in this Velocity action, the buildNormalContext method. The StockQuoteService comes with the
Jetspeed deployment. It returns an array of StockQuote objects when you ask for a quote on a array of stock symbols.

public class TutorialStockQuoteAction1 extends VelocityPortletAction
{
 private static final String SYMBOLS = "symbols";

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (87 of 140) [20.12.2002 11:20:25]

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/VelocityPortletAction.html#buildNormalContext(org.apache.jetspeed.p
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/webservices/finance/stockmarket/StockQuoteService.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/webservices/finance/stockmarket/StockQuote.html

Development

 private static final String COLUMNS = "columns";
 private static final String QUOTES = "quotes";
 private static final String[] ALL_COLUMNS =
 {"Symbol","Price","Change","Volume"};

protected void buildNormalContext(VelocityPortlet portlet,
 Context context,
 RunData rundata)
 {
 try
 {
 // Get reference to stock quote web service
 StockQuoteService service = (StockQuoteService)
 TurbineServices.getInstance().
 getService(StockQuoteService.SERVICE_NAME);

 // Retrieve portlet parameters
 String symbols = PortletConfigState.getParameter(portlet,
 rundata, SYMBOLS, "IBM,MSFT,ORCL,SUNW");

 // Request stock quote(s) from the stock quote web service
 String[] symbolArray = StringUtils.stringToArray(
 symbols, ",");
 StockQuote[] quotes = service.fullQuotes(symbolArray);

 // Place appropriate objects in Velocity context
 context.put(QUOTES, quotes);
 context.put(COLUMNS, ALL_COLUMNS);
 }
 catch (Exception e)
 {
 Log.error(e);
 }
 }

The array of stock quotes is put in the context and is made available to the template. The template can then pull out the

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (88 of 140) [20.12.2002 11:20:25]

Development

stock records that it needs, iterating over the array of stock quotes:

 #foreach ($quote in $quotes)
 <tr>
 #entryCell ($quote.Symbol)
 #entryCell ($quote.Price)
 #entryCell ($quote.Change)
 #entryCell ($quote.Volume)
 </tr>
 #end

 Let’s take a closer look at the VelocityPortletAction class, and see how the processAction phase is nicely handled for you
by inheriting from this class. There are three important methods than you can implement in your velocity action.
Remember from section 6.2 on the Portlet Life Cycle, the processAction phase occurs before the render phase. So the
following methods will be called before the template is processed, allowing for you to cleanly populate the Velocity
context first, depending on the portlet mode.

Method Portlet Mode
buildNormalContext View
buildConfigureContext Customize (Edit)
buildMaximizedContent Maximize

Using this approach you can easily customize your portlet to generate different content depending on the mode of the
request. Often, the maximize content is the same as the normal context. In the default implementation of
buildConfigureContext, the normal context is called. You can override this method to specially handle maximize mode.
The buildConfigureContext is available if you want to provide your own customization as we will do further on in this
chapter. To go with the default portal customizer provided by Jetspeed, just don’t override this method.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (89 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/VelocityPortletAction.html

Development

7.6 Portlet Customization and Parameter Styles

The next portlet example illustrates editing your portlet parameters using the default Portlet Customizer. The first portlet
titled “Tutorial Stock Portfolio” in this tutorial uses the default customizer. The second portlet titled “Tutorial Stock
Portfolio with parameter styles“ illustrates how to enhance the parameter edit fields in the default Portlet Customizer.

To see these examples working, you will need to login as the turbine/turbine user. First let’s look again at the first portlet
that doesn’t have any parameter styles so that we can see the customizer before and after.

The Default Portlet Customizer

You can customize a portlet by clicking a portlet’s customize action button. With the default deployment, portlets
cannot be customized for the anonymous user. Since the anonymous user PSML resource is shared, this is probably a good
idea. But for that odd case where you need anonymous customization of portlets, it is possible. Modify the
JetspeedSecurity.properties file:

services.JetspeedSecurity.actions.anon.disable=false

For now just logon as turbine/turbine. Click on the customize action button for the first portlet titled “Tutorial Stock
Portfolio”. You will see the Default Portlet Customizer. This customizer will display all of the non-hidden portlet-entry
parameters:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (90 of 140) [20.12.2002 11:20:25]

Development

The Title and Skin parameters are always customizable. Remember from Tutorial 6, all parameters that are edited are not
stored back to the registry. The edited parameters are stored to the PSML resource for the current logged on user. Thus if
we change the title of this portlet, it will only change for the user “turbine” and only for this one particular instance of this
portlet on this page. Likewise for all other parameters. If you are logged on as a user with the admin role, you can also
change the security constraint for this portlet instance. Only when logged on as a user with the admin role, a third drop-
down list of security constraints is displayed. See Tutorial 4 for details.

The third parameter shown above, “Symbols”, is a parameter that we defined for this portlet. It is the list of stock symbols
for the portlet instance.

<parameter name="symbols" value="MSFT,IBM,ORCL,SUNW" type=""
 hidden="false" cachedOnName="true" cachedOnValue="true">
 <meta-info>
 <title>Symbols</title>
 <description>List of comma-separated stock symbols<
 /description>
 </meta-info>
</parameter>

The read-only meta-info parameters title and description are listed in the portlet customizer from the registry entry above.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (91 of 140) [20.12.2002 11:20:25]

Development

The value of the parameter obviously comes from the value attribute. Now let’s see how we can enhance parameter
customization using Parameter Styles.

The Default Portlet Customizer with Parameter Styles

Parameter styles are custom widgets which allow you to present portlet parameter using something other than the default
input text box control. These widgets can be as simple as text area control or as complex as a pop up calendar control.

The second portlet titled “Tutorial Stock Portfolio with parameter styles“ illustrates how to enhance the parameter edit
fields in the default Portlet Customizer. Its action class is TutorialStockQuoteAction2. This portlet also retrieves stock
quotes from a web service, just like the first example. The only difference is that we will show you how to use Parameter
Styles to make your portlet’s customization more dynamic.

Logon as turbine/turbine. Click on the customize action button for the second portlet titled “Tutorial Stock Portfolio
with parameter styles”. You will see the Default Portlet Customizer with two custom widgets:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (92 of 140) [20.12.2002 11:20:25]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_12_%E2%80%93
http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_12_%E2%80%93

Development

The “Symbols” parameter has a TextArea parameter style, and a new parameter “Columns” has a CheckBoxGroup style.
The columns parameter lets us customize which columns are displayed in view mode. If you don’t want to see all stock
quote columns, just uncheck the column.

Looking at the registry entry, we have created several parameter styles. First there is the Symbols widget, it has a
TextArea style:

<parameter name="symbols" value="MSFT,IBM,ORCL,SUNW" type="style"
 hidden="false" cachedOnName="true" cachedOnValue="true">
 <meta-info>
 <title>Symbols</title>
 <description>List of comma-separated stock symbols</description>
 </meta-info>
</parameter>
<parameter name="symbols.style" value="TextArea" hidden="true"
 cachedOnName="true" cachedOnValue="true"/>

The default value for all portlet instances is provided in the value attribute of the symbols parameter. Again, when a user

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (93 of 140) [20.12.2002 11:20:25]

Development

customizes this portlet, its values are not stored back to the registry but to the PSML resource for the particular portlet
instance. The meta-info title and description are displayed by the customizer. The symbols parameter is linked to the
symbols.style by name, and the parameter style TextArea is selected there.

The next parameter is the columns parameter, which allows you to choose which columns will be displayed in the
portlet’s view mode.

<parameter name="columns" value="Symbols,Price,Change,Volume" type="style"
 hidden="false" cachedOnName="true" cachedOnValue="true">
 <meta-info>
 <title>Columns</title>
 <description>Columns to display</description>
 </meta-info>
</parameter>
<parameter name="columns.style.items" value="Symbol,Price,Change,Volume"
 hidden="true" cachedOnName="true" cachedOnValue="true"/>
<parameter name="columns.style.layout" value="$eastwest" hidden="true"
 cachedOnName="true" cachedOnValue="true"/>
<parameter name="columns.style" value="CheckBoxGroup" hidden="true"
 cachedOnName="true" cachedOnValue="true"/>

The column headers strings are defined in the value attribute for the parameter style. The style is set to be a
CheckBoxGroup. The layout of the check boxes is controlled by the layout style, which automatically aligns the check
boxes vertically or horizontally using the keywords: $eastwest or $northsouth. The names of the check box items are
defined in the columns.style.items parameter.

The action class is responsible for displaying the content in view mode. The action class for our portlet only handles
normal (view mode) processing. It let’s the base class handle default processing for maximize and customize modes.

protected void buildNormalContext(VelocityPortlet portlet,

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (94 of 140) [20.12.2002 11:20:25]

Development

 Context context,
 RunData rundata)
 {
 try
 {
 // Get reference to stock quote web service
 StockQuoteService service = (StockQuoteService)
 TurbineServices.getInstance().
 getService(StockQuoteService.SERVICE_NAME);

 // Retrieve portlet parameters
 String symbols = PortletConfigState.getParameter(portlet,
 rundata, SYMBOLS, "IBM,MSFT,ORCL,SUNW");
 String columns = PortletConfigState.getParameter(portlet,
 rundata, COLUMNS,

 StringUtils.arrayToString(ALL_COLUMNS, ","));
 String[] selectedColumnsArray =
 StringUtils.stringToArray(columns, ",");

 // Request stock quote(s) from the stock quote web service
 String[] symbolArray = StringUtils.stringToArray(symbols,",");
 StockQuote[] quotes = service.fullQuotes(symbolArray);

 // Place appropriate objects in Velocity context
 context.put(QUOTES, quotes);
 context.put(SELECTED_COLUMNS, selectedColumnsArray);
 context.put(COLUMNS, columns);
…

Three objects are put into the Velocity context: $quotes, $columns, and $selected-columns. These objects are then used to
generate the content of the portlet in view and maximize modes. Two changes are made in the second example. First only
the selected headers from the customizer are displayed:

 #foreach ($column in $selected-columns)
 #headerCell ($column)

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (95 of 140) [20.12.2002 11:20:25]

Development

 #end

Secondly, only the selected column-values are displayed:

#foreach ($quote in $quotes)
<tr>
#if ($columns.indexOf("Symbol") >= 0) #entryCell ($quote.Symbol) #end
#if ($columns.indexOf("Price") >= 0) #entryCell ($quote.Price) #end
#if ($columns.indexOf("Change") >= 0) #entryCell ($quote.Change) #end
#if ($columns.indexOf("Volume") >= 0) #entryCell ($quote.Volume) #end
</tr>
#end

7.7 Action Events

Action events allow you tie events that occur on the user interface, such as a form being submitted, or a button clicked, to
post back to a specific event handler on a VelocityPortletAction class. We will look at a third Velocity portlet that
demonstrates action events to perform user actions. This portlet is a simple data entry form with 5 input fields. The data is
stored in the session for the current user, but does not persist past the lifetime of the session.

<portlet-entry name="CobiJonesPortlet" hidden="false" type="ref"
 parent="Velocity" application="false">
 <meta-info>
 <title>The Cobi Jones Portlet</title>
 <description>Tutorial showing an Action Event Executing, dedicated
 to the man Cobi</description>
 </meta-info>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (96 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/VelocityPortletAction.html

Development

 <parameter name="template" value="cobi-jones-form" hidden="true"/>
 <parameter name="action" value="portlets.CobiJonesPortletAction"
 hidden="true" />
 <media-type ref="html"/>
 <category group="Jetspeed">tutorial</category>
</portlet-entry>

And here is what the portlet looks like when running:

When you press “Save Cobi”, the values on the form are passed to the Turbine (the MVC controller servlet), from where
you can get the values of the input fields into your Java action class. Let’s look at our action event:

public void doUpdate(RunData rundata, Context context) throws Exception
{
 Player player = (Player)rundata.getUser().getTemp(PLAYER);
 if (null == player)
 {
 player = createNewPlayer();
 rundata.getUser().setTemp(PLAYER, player);
 }

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (97 of 140) [20.12.2002 11:20:25]

Development

 String cobi = rundata.getParameters().getString(INPUT_FIRST_NAME);
 String jones = rundata.getParameters().getString(INPUT_LAST_NAME);
 if (!cobi.equalsIgnoreCase("Cobi") ||
 !jones.equalsIgnoreCase("Jones"))
 {
 rundata.getRequest().setAttribute(COBI_ERROR,
 "Hey now, you cant substitute Cobi with "
 + cobi + " " + jones + "!");
 }
 player.setFirstName(cobi);
 player.setLastName(jones);
 player.setPosition(rundata.getParameters().getString(INPUT_POSITION));
 player.setCaps(rundata.getParameters().getInt(INPUT_CAPS));
 player.setActive(rundata.getParameters().getBoolean(INPUT_ACTIVE));

 rundata.getUser().setTemp(PLAYER, player);
}

This code above is from the CobiJonesPortletAction. This is the action event. As we found out in previous section,
Velocity action have three standard methods: BuildNormalContext, BuildConfigureContext, and
BuildMaximizedContext. In addition, you can zero or more action events. Action events are how your portlet code reacts
to user interface interactions. In our example, we have a simple data entry form. The “Save Cobi” button is a submit
button which posts the contents of the HTML form back to the portlet.
We can get the contents of the form from the rundata parameter passed into our action event. Jetspeed puts all the form
parameters into a parameter parser object. You can get strings and other data types and then set the values into the portlet
session.

 String cobi = rundata.getParameters().getString(INPUT_FIRST_NAME);
…
 player.setActive(rundata.getParameters().getBoolean(INPUT_ACTIVE));

In this simple example state is kept in the servlet session. In future examples we can store the values to the database.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (98 of 140) [20.12.2002 11:20:25]

Development

Jetspeed provides methods to get and set objects into the session:

 rundata.getUser().setTemp(PLAYER, player);
..
 Player player = (Player)rundata.getUser().getTemp(PLAYER);

Let’s look at how to setup form posting from the Velocity template (cobi-jones-form.vm):

<form method="post"
 action="$jslink.setAction("portlets.CobiJonesPortletAction")">
…
 <input type="submit" name="eventSubmit_doUpdate" value="Save Cobi"/>

First, the form must link back to the current portal page. The $jslink tool handles this. Next the action must be specified.
We specify the action to be our portlet’s action with the setAction parameter on the action attribute of the form element.
The submit input requires a convention for finding the correct event on the specified action: you must prefix the name
attribute of the action with the string “eventSubmit_” and then enter the name of the action event method. In this case, it
is “eventSubmit_doUpdate”.

The input fields are specified using standard Jetspeed data entry macros defined in

 <tr>
 #formCell ("First Name" "firstname" $player.FirstName)
 </tr>
 <tr>
 #formCell ("Last Name" "lastname" $player.LastName)
 </tr>
 <tr>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (99 of 140) [20.12.2002 11:20:25]

Development

 #formCell ("Position" "position" $player.Position)
 </tr>
 <tr>
 #formCell ("Caps" "caps" $player.Caps)
 </tr>
 <tr>
 #formCheckBox2 ("Active" "active" $player.Active)
 </tr>

The first parameter to #formCell is the input caption, the second is the input’s name attribute, and the third is the player
object from the Velocity context. Ensure that the input’s name attribute is the same as in your Java action event:

 #formCell ("Position" "position" $player.Position)

 public static final String INPUT_POSITION = "position";

 player.setPosition(rundata.getParameters().getString(INPUT_POSITION));

Finally, the doUpdate action event shows how to do some basic exception handling by passing an exception string from
the action event to the BuildNormalContext method.

 if (!cobi.equalsIgnoreCase("Cobi") ||
 !jones.equalsIgnoreCase("Jones"))
 {
 rundata.getRequest().setAttribute(COBI_ERROR,
 "Hey now, you cant substitute Cobi with "
 + cobi + " " + jones + "!");
 }

We set the error message text into a servlet request attribute (from the Servlet API), and then later on in the pipeline, in the

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (100 of 140) [20.12.2002 11:20:25]

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#setAttribute(java.lang.String,%20java.la

Development

BuildNormalContext method, we check for existence of the error message text and display an error message in case an
exception occurred in the action event.

// make sure they don't sub Cobi!
String cobiError = (String)rundata.getRequest().getAttribute(COBI_ERROR);
if (null != cobiError)
{
 context.put(COBI_ERROR, cobiError);
}

This error message is then retrieved from the context in the template:

 #if ($cobierror)
 <tr>
 <td colspan="2">
 <table bgcolor="red">
 <tr>
 <td>
 $cobierror
 </td>
 </tr>
 </table>
 </td>
 </tr>
 #end

7.8 Deploy

To deploy the system, type:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (101 of 140) [20.12.2002 11:20:25]

Development

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

You should see the new Velocity portlets in the default pane:

Tutorial 8 – JSP Portlet

Tutorial 8 introduces the JSP Portlet. This section covers:

1. Introduction to JSP
2. JSP Portlets in the Registry
3. The JSP Template
4. Template Resolution
5. JSP Actions
6. Portlet Customization and Parameter Styles
7. JSP Actions
8. Deploy

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (102 of 140) [20.12.2002 11:20:25]

http://localhost:8080/jportal/portal

Development

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-8

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t8-portlets.xreg
2. src/java/com/bluesunrise/jportal/modules/actions/portlets/ TutorialStockQuoteAction8.java
3. webapp/WEB-INF/templates/jsp/portlet/html/TutorialStockQuote8.jsp

since we will reference them in tutorial 8.

8.1 Introduction to JSP

JSP (Java Server Pages) is a technology based on the Java language and enables the development of dynamic web sites.
JSP was developed by Sun Microsystems to allow server side development. JSP files are HTML files with special Tags
containing Java source code that provide the dynamic content. JSP is easy to learn and allows developers to quickly
produce web sites and applications in an open and standard way. JSP offers a robust platform for web development.
Main reasons to use JSP:

1. Multi platform
2. Component reuse by using JavaBeans and EJB.
3. Separation of content from code.

You can take one JSP file and move it to another platform, web server or JSP Servlet engine.
Jetspeed has a JSP templating service built directly into the Jetspeed engine. Similar to Velocity, you can base your

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (103 of 140) [20.12.2002 11:20:25]

http://java.sun.com/products/jsp/

Development

portlets on JSP. This means that your portlets will also follow the MVC design pattern, separating content from code.
The examples in Tutorial 5 and Tutorial 6 were useful for you to learn the Portlet interface. However, overriding the
getContent method of the portlet interface is not good practice. We recommend abstracting the content generation phase
by basing your portlets on one of the MVC-based portlets provided in the Jetspeed distribution; such as VelocityPortlet,
JSPPortlet, XSLTPortlet, RSSPortlet or HTMLPortlet.

A JSP portlet is made up of the typical MVC components:

MVC Component JSP Component
Model Java Objects put in as request

attributes
View Template
Controller Your JSP Action

The controller is your JSP Action class. The base JspPortlet class should rarely have to be modified. Your view is a JSP
template, which will generate the content of your portlet by pulling out dynamic model information from the request
attributes. In addition to the standard JSP variables (request, response, session, etc), the following variables are available
in the model:

Variable Type Description
rundata RunData Reference to request run data object
js_peid String Portlet unique identifier
link JspLink Instance of JspLink object
portlet Portlet Reference to this portlet object

These can be retrieved from request attributes as in the example below:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (104 of 140) [20.12.2002 11:20:25]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_5_%E2%80%93
http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html
http://jakarta.apache.org/jetspeed/site/portlet_config_JSP.html
http://jakarta.apache.org/jetspeed/site/portlet_config_XSL.html
http://jakarta.apache.org/jetspeed/site/portlet_config_RSS.html
http://jakarta.apache.org/jetspeed/site/portlet_config_HTML.html
http://jakarta.apache.org/jetspeed/site/portlet_config_JSP.html
http://www.bluesunrise.com/jetspeed-docs/turbine-2001-1124-javadocs/org/apache/turbine/util/RunData.html
http://www.bluesunrise.com/jetspeed-docs/turbine-2001-1124-javadocs/org/apache/turbine/services/jsp/util/JspLink.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/portal/Portlet.html

Development

String jspeid = (String) request.getAttribute("js_peid");

Also, your JSP template can make use of any of the available tags from the Jetspeed tag library. See
JSP1_1andJetspeedTagLibrary portlet for comprehensive list of examples.

The getContent method of the JspPortlet should never be edited. All content is generated by the template, as designed in
our MVC design pattern.

The Life Cycle phases of a portlet are also enhanced with the JSP portlet.

Phase Method
Init Init
ProcessAction JSP Portlet Action and Action Events
Render Template is called by JSP Portlet
Destroy --none--

JSP portlets are really about dynamic content. If you have static content, there is no real benefit to using a JSP portlet; take
a look at one of the static content generation portlets such as the HTMLPortlet instead. The basic function of JSP is really
very simple, it substitutes live Java objects into a JSP template. There is an online tutorial with great examples here.

8.2 JSP Portlets in the Registry

JSP Portlets are defined like any other portlet: in the portlet registry. In tutorial 8 we define one new portlet:

<portlet-entry name="TutorialStockQuote8" hidden="false" type="ref"
 parent="JSP" application="false">
…

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (105 of 140) [20.12.2002 11:20:25]

http://jakarta.apache.org/jetspeed/site/portlet_config_JSP.html
http://jakarta.apache.org/jetspeed/site/portlet_config_HTML.html
http://www.visualbuilder.com/jsp/tutorial/default.asp

Development

 <parameter name="template" hidden=”true”
 value="TutorialStockQuote8.jsp"/>
 <parameter name="action" hidden=”true”
 value="portlets.TutorialStockQuoteAction8" />
…
 </portlet-entry>

When defining a JSP portlet, there are two required parameters: the template and the action. The template defines the JSP
template which will generate the portlet content. It is your MVC View component. The action is the controller, and it has
several responsibilities including handling action events and populating the request attributes. The templates should be
placed in the portlets subdirectory of one of your JSP template paths. The action is placed in the module path,
conventionally under the portlets directory of the root actions directory.

8.3 The JSP Template

Let’s have a look at the JSP template from our example: TutorialStockQuote8.jsp It’s a very simple example of
displaying live stock quotes from a web service. The stock quotes are returned in a collection of quote records and stored
in request attribute called “quotes”. Also, the column headers are in a collection of strings and stored in a request attribute
called “columns”.

<%@ taglib uri='/WEB-INF/templates/jsp/tld/template.tld' prefix='jetspeed' %>

<%@ page import = "org.apache.turbine.util.Log" %>
<%@ page import = "org.apache.jetspeed.webservices.finance.stockmarket.StockQuote" %>

<%
try{
 StockQuote[] quotes = (StockQuote[]) request.getAttribute("quotes");
 String[] columns = (String[]) request.getAttribute("columns");
 String jspeid = (String) request.getAttribute("js_peid");
%>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (106 of 140) [20.12.2002 11:20:25]

Development

<FORM METHOD="POST">
 <INPUT TYPE="hidden" NAME="js_peid" VALUE="<%=jspeid%>">
 Enter symbol(s) separated with commas: <input name="symbols" type="TEXT"><INPUT TYPE="SUBMIT"
NAME="refresh" VALUE="Get Quotes">
</FORM>
<table>
 <tr>
 <td>
 <table border="true" cellspacing="1" cellpadding="3">
 <tr>
 <%for (int i = 0; columns != null && i < columns.length; i++) {%>
 <TH><%=columns[i]%></TH>
 <%}%>
 </tr>

 <%for (int j = 0; quotes != null && j < quotes.length; j++) {%>
 <tr>
 <TD><%=quotes[j].getSymbol()%></TD>
 <TD><%=quotes[j].getPrice()%></TD>
 <TD><%=quotes[j].getChange()%></TD>
 <TD><%=quotes[j].getVolume()%></TD>
 </tr>
 <%}%>
 </table>
 </td>
 </tr>
</table>
<%} catch (Exception e) {
 Log.error(e);
 return;
}%>

Also, you will note that one additional request attribute is retrieved: jspeid. The value of this attribute is used to define a
hidden field “js_peid” which uniquely identifies this portlet when its form is submitted via the “refresh” button:

<INPUT TYPE="hidden" NAME="js_peid" VALUE="<%=jspeid%>">

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (107 of 140) [20.12.2002 11:20:25]

Development

Adding the above field in your template assures that when multiple instances of the portlet are used on the same pane, the
refresh will only apply to particular portlet instance. This concept applies to Velocity portlets as well.

8.4 Template Resolution

Where should templates be placed in the web application? By convention, Jetspeed looks for JSP Portlet templates in the
Jetspeed deployment under /WEB-INF/templates/jsp/portlets/html (for HTML portlets). Similarly, WML portlets
would be found under /WEB-INF/templates/jsp/portlets/wml. The resolution of portlet templates is based on several
configuration files and a resolution algorithm.

The TurbineResources.properties is where the first part of the configuration goes:

services.JspService.templates = /WEB-INF/templates/jsp, /WEB-INF/mytemplates/jsp

You can specify multiple paths by comma-separating the paths. Secondly, the JetspeedResources.properties must be
updated with the same path, but to root directory containing all templates (both JSP and VM).The list may also be comma-
separated.

services.TemplateLocator.templateRoot=
 /WEB-INF/templates,/WEB-INF/mytemplates

The template resolution algorithm finds the template. The resolver is a service and is pluggable. The default service has a
resolution algorithm much like how the Profiler service resolves PSML resources.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (108 of 140) [20.12.2002 11:20:25]

Development

Templates resources may be optionally localised. Templates are localized by placing them in sub-directories based on
language and country code abbreviations. The language-code sub-directory contains one or more country-code
subdirectories.

The language-code directory name is specified with an ISO-639 standard two-character language abbreviation. The
country-code subdirectory is optional, and is specified with an IS0-3166 standard two-character country code abbreviation.

An example:

 jsp
 |-- portlets
 |-- html
 |-- fr // french language
 |-- FR // France country-code
 |-- BE // Belgium country-code

NOTE: The country codes must be in upper-case

For a given locale of fr_FR, and an HTML request, the search order for a template named grenouille.jsp would be:

jsp/portlets/html/fr/FR/grenouille.jsp
jsp/portlets/html/fr/grenouille.jsp
jsp/portlets/html/grenouille.jsp
jsp/portlets/grenouille.jsp

The template locator looks at the "Content Language" HTML header for locale specific settings. If there are multiple
settings, all settings will be searched until the first resource is found. (This is currently not supported)

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (109 of 140) [20.12.2002 11:20:25]

Development

For a complete list of ISO-639 standard language abbreviations, see:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

For a complete list of ISO-3166 standard country code abbreviations, see:

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

8.5 JSP Portlet Actions

JSP Portlet Actions are Java classes, they are where you put your controlling logic for your code. Here you will do any
backend processing necessary to retrieve or store dynamic information, and then populate the JSP request attributes with
your model so that the template may display the dynamic content.

First, let’s look at the code for the TutorialStockQuoteAction8. This portlet retrieves stock quotes from a web service.
There is only one method in this JSP portlet action, the buildNormalContext method. The StockQuoteService comes with
the Jetspeed deployment. It returns an array of StockQuote objects when you ask for a quote on a array of stock symbols.

public class TutorialStockQuoteAction8 extends JspPortletAction
{
 private static final String SYMBOLS = "symbols";
 private static final String COLUMNS = "columns";
 private static final String QUOTES = "quotes";
 private static final String[] ALL_COLUMNS = {"Symbol","Price","Change","Volume"};

 /**
 * Build the normal state content for this portlet.
 *
 * @param portlet The jsp-based portlet that is being built.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (110 of 140) [20.12.2002 11:20:26]

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/JspPortletAction.html#buildNormalContext(org.apache.jetspeed.p
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/webservices/finance/stockmarket/StockQuoteService.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/webservices/finance/stockmarket/StockQuote.html

Development

 * @param rundata The turbine rundata context for this request.
 */
 protected void buildNormalContext(Portlet portlet,
 RunData rundata)
 {
 try
 {
 // Get reference to stock quote web service
 StockQuoteService service = (StockQuoteService) TurbineServices.getInstance().
 getService(StockQuoteService.SERVICE_NAME);

 // Retrieve portlet parameters
 String symbols = (String) PortletSessionState.getAttributeWithFallback(portlet, rundata,
SYMBOLS);

 // Request stock quote(s) from the stock quote web service
 String[] symbolArray = StringUtils.stringToArray(symbols, ",");
 StockQuote[] quotes = service.fullQuotes(symbolArray);

 // Place appropriate objects in jsp context
 rundata.getRequest().setAttribute(QUOTES, quotes);
 rundata.getRequest().setAttribute(COLUMNS, ALL_COLUMNS);
 }
 catch (Exception e)
 {
 Log.error(e);
 }
 }
}

The above example is very similar to the one used in Tutorial 7 with the exception that it allows the user to temporarily
specify stock quote symbols without having to customize. Note that the symbols are retrieved by the portlet action as
follows:

String symbols = (String) PortletSessionState.getAttributeWithFallback(portlet, rundata, SYMBOLS);

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (111 of 140) [20.12.2002 11:20:26]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_7_%E2%80%93

Development

The above method call retrieves value of the symbols parameter using the following algorithm:

1. If the parameter is present in the request, get it from there and store it in the session, otherwise
2. If the parameter is present in the session, get it from the session, otherwise,
3. If the parameter is present in portlet instance attributes (values defined for the portlet in user psml), get it from there,

otherwise,
4. Get if from the portlet configuration (values defined for the portlet in registry)

So when the user “overrides” the stock symbols using the input field provided within the body of the portlet, the portlet
will temporarily display stock quotes for those symbols until:

1. The user logs of and logs back in
2. The user clicks the “Get Quotes” button with empty input field
3. The user customizes the portlet

Now, let’s take a closer look at the JspPortletAction class, and see how the processAction phase is nicely handled for you
by inheriting from this class. There are three important methods than you can implement in your velocity action.
Remember from section 6.2 on the Portlet Life Cycle, the processAction phase occurs before the render phase. So the
following methods will be called before the template is processed, allowing for you to cleanly populate the JSP request
attributes first, depending on the portlet mode.

Method Portlet Mode
BuildNormalContext View
buildConfigureContext Customize (Edit)
buildMaximizedContent Maximize

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (112 of 140) [20.12.2002 11:20:26]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/JspPortletAction.html

Development

Using this approach you can easily customize your portlet to generate different content depending on the mode of the
request. Often, the maximize content is the same as the normal context. In the default implementation of
buildConfigureContext, the normal context is called. You can override this method to specially handle maximize mode.
The buildConfigureContext is available if you want to provide your own customization as we will do further on in this
chapter. To go with the default portal customizer provided by Jetspeed, just don’t override this method.

8.6 Portlet Customization and Parameter Styles

Please review the following section in Tutorial 7 on the process of portlet customization and usage of parameter styles.
You will find that Velocity and JSP Portlets work identically in that respect. You will also find additional information
about parameter styles in Tutorial 12.

8.7 JSP Events

Action events allow you tie events that occur on the user interface, such as a form being submitted, or a button clicked, to
post back to a specific event handler on a JspPortletAction class.

Although our example uses a single action event (“refresh”), it is possible to use multiple events per portlet. In short,
declaring an action event involves:

1. Specifying the name of your JspPortletAction as using a hidden input field called “action”,
2. Defining a submit button named with the following convention: “eventSubmit_{action-name}”,
3. Declaring an event handler in your JspPortletAction called {action-name}.

For example:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (113 of 140) [20.12.2002 11:20:26]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_7_%E2%80%93
http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_12_%E2%80%93
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/JspPortletAction.html

Development

<form method="post"
 action="<jetspeed:dynamicUri/>">
 <input type="hidden" name="js_peid" value="<%=jspeid%>">
 <input type="hidden" name="action" value=" portlets.myJspPortletAction "/>
 <input type="submit" name="eventSubmit_doUpdate" value="Save"/>

public void doUpdate(RunData rundata, Portlet portlet) throws Exception
{
 // action logic goes here
}

You may refer to the following section in Tutorial 7 for an example of using action events.

8.8 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (114 of 140) [20.12.2002 11:20:26]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_7_%E2%80%93
http://localhost:8080/jportal/portal

Development

You should see the new JSP portlet in the default pane:

Tutorial 9 – DatabaseBrowser Portlet

Tutorial 9 introduces the Database Browser Portlet. This section covers:

1. Configuration in the Registry
2. Linking to Actions
3. Implementing the Action Events
4. Advanced Parameters
5. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-9

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t9-portlets.xreg
2. src/java/com/bluesunrise/jportal/modules/actions/portlets/

 TutorialCoffeesAction.java
3. src/java/com/bluesunrise/jportal/modules/actions/portlets/

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (115 of 140) [20.12.2002 11:20:26]

Development

 CoffeesBrowserAction.java
4. webapp/WEB-INF/psml/user/anon/html/default.psml
5. webapp/WEB-INF/psml/user/turbine/html/default.psml
6. webapp/WEB-INF/templates/vm/portlet/html/coffees-form.vm
7. webapp/WEB-INF/templates/vm/portlet/html/coffees-browser.vm **

** not actually used in demo, but you could extend this later on

since we will reference them in tutorial 9. The examples are found under the “Advanced Tutorials” menu selection.

9.1 Configuration in the Registry

The Database Browser Portlet uses an SQL statement and JDBC to create a database browser form inside of a portlet. The
browser runs off the Torque connection pools and data sources configured in your Torque.properties file. The standard
functionality of the browser doesn’t require any coding. The portlet is configured with parameters entered in the portlet
registry. The minimal parameters and attributes required are highlighted below:

<portlet-entry name="TutorialCoffeesBrowser" hidden="false" type="ref"

parent="DatabaseBrowserPortlet" application="false">
<meta-info>
 <title>Coffees Browser</title>
 <description>Browses Over the Coffees Table</description>
</meta-info>
<parameter name="sql" value="select * from coffees"
 hidden="false"/>
<parameter name="windowSize" value="15" hidden="false"/>

…

</portlet-entry>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (116 of 140) [20.12.2002 11:20:26]

Development

You must derive the portlet-entry from the DatabaseBrowserPortlet, which is deployed with the Jetspeed distribution.
This gives you all the base functionality. The sql parameter provides the query string. In our example, the string is not
hidden so it can be modified by the user. The windowSize parameter controls how many rows to display in the portlet.
That is all you need. The portlet generates the rest for you:

The database browser portlet is a standard Velocity Portlet, and it has an action, template, and customizer template
associated with it. This three parameters must be entered. You can select default values or implement your own. In our
example, we implement our own action but use the default template and customizer template. You may want to override
these to customize the layout of the browser. The default templates can be used as the basis for writing your own
templates.

<parameter name="template" value=" database-browser-portlet"
 hidden="true"/>
<parameter name="customizeTemplate"
 value="database-browser-customize" hidden="true"/>
<parameter name="action" value="portlets.CoffeesBrowserAction"

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (117 of 140) [20.12.2002 11:20:26]

http://www.bluesunrise.com/jetspeed-docs/%23_Tutorial_7_%E2%80%93

Development

 hidden="true"/>

Our action class extends the default action class to provide the added functionality of refreshing the browser content by
passing a query parameter in the URL string. The base class handles everything else. Here we are overriding the standard
Velocity Portlet content generation method, buildNormalContext:

protected void buildNormalContext(VelocityPortlet portlet,
 Context context,
 RunData rundata)
 {
 String refresh =
 rundata.getParameters().getString(BROWSER_COMMAND);
 if (refresh != null && refresh.equals(BROWSER_REFRESH))
 {
 this.clearDatabaseBrowserIterator(portlet,rundata);
 }
 super.buildNormalContext(portlet, context, rundata);
 }

When we find the refresh command, the browser content is re-queried. By default, the browser will not refresh its content
unless explicitly invalidated.

Another useful method to overwrite is the getQueryString() method. The tutorial example does not do so, but here is an
example of how it could be done. This method provides you with a way to generate the query string dynamically. It is
called whenever the browser is invalidated, and needs to re-query the database in order to generate a new result set.

 public String getQueryString(RunData rundata, Context context)
 {
 String sql = null;
 try
 {
 sql = PortletConfigState.getConfigParameter(portlet,
 Constants.SQL_QUERY, null);

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (118 of 140) [20.12.2002 11:20:26]

http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/VelocityPortletAction.html
http://jakarta.apache.org/jetspeed/api/org/apache/jetspeed/modules/actions/portlets/browser/DatabaseBrowserAction.html#getQueryString(org.apache.turbine.util.R

Development

 SomeObject so = (SomeObject)
 SessionHelper.getSessionAttribute(rundata,
 Constants.SOME_OBJECT, null);
 if(so == null)
 {
 throw new Exception("Failed to get Object from session");
 }

 List parameters = new ArrayList();
 parameters.add(so.getName());
 parameters.add(so.getCity());
 super.setSQLParameters(parameters);

 }
 catch (Exception e)
 {
 Log.error(e);
 }
 return sql;
 }

Your SQL string in the registry would then need to have JDBC parameters:

<parameter name="sql"
 value="select name, city, state from people where name=? and city=?"
 hidden="false"/>

9.2 Linking to Actions

Database browsers can be used in combination with edit forms to create a complete database maintenance portlet
application. Links can be made to another pane on the current page, or to another page in the portal.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (119 of 140) [20.12.2002 11:20:26]

Development

A Database Browser portlet supports row links and table links. Row links are applied to a particular database row in the
browser. Table links are actions that do not apply to any particular row. Using the default template, the row links are
displayed at the end of each row as shown here we have two links: Edit, Delete.

The table links are displayed at the bottom of the portlet. Here we have one link: Add.

Links are configured in the registry. The row-link-ids parameter is a comma separated list of localised string ids. These
ids are looked up in the resource bundle, and displayed as hyperlinks. The row-link-types determine the type of link.
They are also comma separated. Valid values are:

1. pane
2. psml

The pane link will go to another pane in your current PSML resource. Here you can place an edit form for entering the
values of the selected record.

The row-link-types specifies the name of the resource. With a pane link type, it identifies the name of the pane. The
pane name can also be a portlet. When used with the psml link type, it specifies the name of a PSML resource.

<parameter name="row-link-ids" value="EDIT,DELETE" hidden="true"/>
<parameter name="row-link-types" value="pane,pane" hidden="true"/>
<parameter name="row-link-targets" value="CoffeesForm,CoffeesForm"

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (120 of 140) [20.12.2002 11:20:26]

Development

 hidden="true"/>
…

To add a new record to the database, the Add link is provided using table links. The table-link-ids parameter is a
comma separated list of localised string ids. These ids are looked up in the resource bundle, and displayed as hyperlinks.
The table-link-types determine the type of link. They are also comma separated. Valid values are:

3. pane
4. psml

The pane link will go to another pane in your current PSML resource. Here you can place an edit form for entering the
values of a new record.

The table-link-types specifies the name of the resource. With a pane link type, it identifies the name of the pane. The
pane name can also be a portlet. When used with the psml link type, it specifies the name of a PSML resource.

<parameter name="table-link-ids" value="ADD" hidden="true"/>
<parameter name="table-link-types" value="pane" hidden="true"/>
<parameter name="table-link-targets" value="CoffeesForm"
 hidden="true"/>

9.3 Implementing the Action Events

The action events link to a data entry form for entering Coffee records. The form supports Add, Edit and Delete modes.
Here we see edit mode:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (121 of 140) [20.12.2002 11:20:26]

Development

This portlet is also a Velocity Portlet. Like all Velocity portlets, it has a templates and an action.

<parameter name="template" value="coffees-form" hidden="true"/>
<parameter name="action" value="portlets.TutorialCoffeesAction" />

The form posts back to itself by default.

<form method="post" action="$jslink.setAction("portlets.TutorialCoffeesAction")">

An action event is connected to the button:

<input type="submit" name="eventSubmit_doUpdate" value="Save"/>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (122 of 140) [20.12.2002 11:20:26]

Development

Form values are entered with the standard Jetspeed data entry macros. See the tutorial on Action Events for more
information on programming data entry forms and with Velocity macros and input fields.

 <tr>
 #formCell ("Brand of Coffee" "coffeeName" $!coffee.CoffeeName)
 </tr>
 <tr>
 #formCell ("Supplier Id" "supplierId" $!coffee.SupplierId)
 </tr>
 <tr>
 #formCell ("Unit Price" "price" $!coffee.Price)
 </tr>
 <tr>
 #formCell ("Sales Tax" "sales" $!coffee.Sales)
 </tr>
 <tr>
 #formCell ("Total Price" "total" $!coffee.Total)
 </tr>

Finally we have an action event (TutorialCoffeesAction) that stores the row to the database.

public void doUpdate(RunData rundata, Context context) throws Exception
{
 Coffees coffee = null;
 Connection con = null;

 try
 {
 con = Torque.getConnection();

 coffee = (Coffees)rundata.getUser().getTemp(SESSION_COFFEE);

 if(coffee == null)
 {

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (123 of 140) [20.12.2002 11:20:26]

Development

 Log.error(NO_CURRENT_REC);
 rundata.setMessage(NO_CURRENT_REC);
 return;
 }

 rundata.getParameters().setProperties(coffee);

 validate(coffee);

 coffee.save(con);

 con.commit();

 returnToBrowser(rundata, true);

 }
 catch (Exception e)
 {
 Log.error("error in saving coffee: " + e);
 rundata.setMessage(e.toString());
 if (con != null)
 {
 con.rollback();
 }

 }
 finally
 {
 try
 {
 Torque.closeConnection(con);
 }
 catch (Exception e)
 {}
 }

 }

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (124 of 140) [20.12.2002 11:20:26]

Development

The update method is used by both Add and Update modes. Take note of the usage of Torque’s object-relational
programming model. The objects can store themselves. The Coffees objects were automatically generated for you as a task
in the tutorial’s ant build. First we get a connection:

 con = Torque.getConnection();

then get the object from the session, which was placed there when the link was clicked on from the database browser.

 coffee = (Coffees)rundata.getUser().getTemp(SESSION_COFFEE);

The parameter parser will automatically populate any bean, as long as the names of the inputs on the HTML form match
(case-insensitive) the names of the properties on the bean.

 rundata.getParameters().setProperties(coffee);

We then validate and save the input, finally committing it:

 validate(coffee);

 coffee.save(con);

 con.commit();

If there is an error, we store the error message for later retrieval from our template:

 rundata.setMessage(e.toString());

 #if ($data.Message)
 <tr>
 <td colspan="2">
 <table bgcolor="red">

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (125 of 140) [20.12.2002 11:20:26]

Development

 <tr>
 <td>
 $data.Message
 </td>
 </tr>
 </table>
 </td>
 </tr>
 #end

Finally, we redirect to the browser on success and invalidate the browser to refresh and pick up the modifications:

 JetspeedLink link = JetspeedLinkFactory.getInstance(rundata);
 DynamicURI duri = link.getPaneByName("TutorialCoffeesBrowser");
 if (refresh)
 {
 duri.addQueryData(CoffeesBrowserAction.BROWSER_COMMAND,
 CoffeesBrowserAction.BROWSER_REFRESH);
 }
 rundata.setRedirectURI(duri.toString());
 JetspeedLinkFactory.putInstance(link);

9.4 Advanced Parameters

Database Connection Pool

By default, the database browser portlet uses the default Torque data source and connection pool. To select another
connection pool, add the poolname parameter to your portlet’s registry entry:

<!-- to use an alternate torque pool, set this parameter -->

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (126 of 140) [20.12.2002 11:20:26]

Development

<parameter name="poolname" value="otherpool" hidden="true"/>

The name of the pool must match the name of the data source in the Torque.properties file. See the Torque
documentation for details on configuring data sources.

User Objects

There may be times when you need to attach additional information to each row in the browser. For example, you are
implementing a tree view over a joined database query, and you need to track whether a row is expanded or contracted to
show the detail lines. The state of each row can be attached to the row with User Objects. A user object can be any Java
class. The user object can also be accessed in your Velocity template

The class name of the user object is specified with the user-object-types parameter, a comma separated list of Java
class names. For each row in result set, a new class of this type is created and attached to the browser row.

<parameter name="user-object-types"
value="com.bluesunrise.jportal.modules.actions.portlets.ExampleBrowserItem" hidden="true"/>

<parameter name="user-object-names" value="userObject" hidden="true"/>

9.5 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (127 of 140) [20.12.2002 11:20:26]

http://jakarta.apache.org/turbine/torque/jdbc2pool-howto.html
http://jakarta.apache.org/turbine/torque/jdbc2pool-howto.html

Development

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

The Tutorial 9 examples are found under the “Advanced Tutorials” menu selection.

Tutorial 10 – XSLT Portlet

Tutorial 10 introduces the XSLT Portlet. This section covers:

1. Configuration in the Registry
2. The Transform
3. Deploy

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-10

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t7-portlets.xreg
2. webapp/WEB-INF/psml/user/anon/html/default.psml

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (128 of 140) [20.12.2002 11:20:26]

http://localhost:8080/jportal/portal

Development

3. webapp/WEB-INF/psml/user/turbine/html/default.psml

since we will reference them in tutorial 10

9.1 Configuration in the Registry

The XSLT Portlet …

9.2 The Transform

TODO: Write this.

10.3 Deploy

To deploy the system, type:

 ant deploy (or hotdeploy)

Use hotdeploy if you have already deployed the system once. This simply saves some time in packaging the JPortal
deployment. Next point your browser at:

http://localhost:8080/jportal/portal

.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (129 of 140) [20.12.2002 11:20:26]

http://localhost:8080/jportal/portal

Development

Tutorial 11 – RSS Portlet

TODO: write this

Tutorial 12 – Parameter Styles

Parameter styles are custom widgets which allow you to present portlet parameter using something other than the default
input text box control. These widgets can be as simple as text area control or as complex as a pop up calendar control. In
this tutorial, you will learn how to:

1. Write a simple parameter style
2. Modify the stock quote portlet from the VelocityPortlet tutorial to use parameter styles

Let’s get started. From the JPortal distribution root directory, type:

 ant tutorial-12

Recommend bringing up these files in your editor:

1. webapp/WEB-INF/conf/t12-portlets.xreg
2. webapp/WEB-INF/conf/templates/vm/parameters/html/InputWithHelp.vm
3. webapp/WEB-INF/conf/templates/vm/portlets/html/tutorial-stock-quote.vm
4. webapp/src/java/com/bluesunrise/jportal/modules/actions/portlets/TutorialStockQuoteAction.java

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (130 of 140) [20.12.2002 11:20:26]

Development

since we will refer to them in Tutorial 12.

12.1 Parameter styles architecture

Parameter styles have been implemented using the Turbine module mechanism. For those of you not familiar with
Turbine, modules are webapp resources (screens, actions, layouts, navigations, etc) which may be loaded dynamically
based on a predefined module search path.

A Portlet parameter is defined in a registry entry as having a custom presentation style by setting its type attribute to
"style" and then adding additional portlet parameters to define the style name and any style options. The additional
parameters are linked to a parameter via the parameter name.

Popup Calendar Date Style

In the example below, we have a widget named “date” whose style is “PopupCalendar”, and the style format string is
“mm/dd/yyyy”.

<parameter name="date" value="" type="style" hidden="false">
 <meta-info>
 <title>Date</title>
 <description>Date with popup calendar. Format pattern: mm/dd/yyyy
 </description>
 </meta-info>
</parameter>

<parameter name="date.style" value="PopupCalendar" hidden="true"/>
<parameter name="date.style.format" value="mm/dd/yyyy" hidden="true"/>

Date Style with Popup Calendar

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (131 of 140) [20.12.2002 11:20:26]

http://jakarta.apache.org/turbine/turbine-2/fsd.html
http://jakarta.apache.org/turbine/turbine-2/fsd.html

Development

Velocity Parameter Style

In the example below, we have a widget named “password” whose style is “VelocityParameterPresentationStyle”.
This is a very flexible parameter style, which allows you to reuse a velocity template to format the presentation of your
widget. Velocity Parameter Style templates should be placed in the Jetspeed deployment under /WEB-
INF/templates/vm/parameters/html (for HTML portlets). Similarly, WML portlets would be found under /WEB-
INF/templates/vm/parameters/wml. The resolution of portlet templates is based on several configuration files and a
resolution algorithm. See the section on Template Resolution for more details.

<parameter name="password" value="secret" type="style" hidden="false"/>
<parameter name="password.style"
 value="VelocityParameterPresentationStyle" hidden="true"/>
<parameter name="password.style.template" value="Password.vm"
 hidden="true"/>

Velocity Parameter Style

JSP Parameter Style

In the example below, we have a widget named “password” whose style is “JSPParameterPresentationStyle”. This is
a very flexible parameter style, which allows you to reuse a JSP template to format the presentation of your widget. JSP
Parameter Style templates should be placed in the Jetspeed deployment under /WEB-
INF/templates/jsp/parameters/html (for HTML portlets). Similarly, WML portlets would be found under /WEB-
INF/templates/jsp/parameters/wml. The resolution of portlet templates is based on several configuration files and a
resolution algorithm. See the section on Template Resolution for more details.

<parameter name="password" value="secret" type="style" hidden="false"/>
<parameter name="password.style" value="JspParameterPresentationStyle" hidden="true"/>
<parameter name="password.style.template" value="Password.jsp" hidden="true"/>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (132 of 140) [20.12.2002 11:20:26]

Development

JSP Parameter Style

InputWithHelp.vm
#set ($src = $parms.get("src")) ## Retrieve the "src" parameter from the $parms map
<input type="text" name="$name" value="$value" size="30" disabled>

<parameter name="about" value="About Bluesunrise Stock Quote Web Service" type="style" hidden="false"/>
<parameter name="about.style" value="VelocityParameterPresentationStyle" hidden="true"/>
<parameter name="about.style.template" value="InputWithHelp.vm" hidden="true"/>
<parameter name="about.style.src" value="images/info.gif" hidden="true"/>
<parameter name="about.style.javascript.onclick" value="alert('For additional info on the stock quote web
service contact info@bluesunrise')" hidden="true"/>

package com.bluesunrise.jportal.modules.actions.portlets;

// Turbine stuff
import org.apache.turbine.util.Log;
import org.apache.turbine.util.RunData;
import org.apache.turbine.services.TurbineServices;

// Velocity Stuff
import org.apache.velocity.context.Context;

// Jetspeed stuff
import org.apache.jetspeed.portal.portlets.VelocityPortlet;
import org.apache.jetspeed.webservices.finance.stockmarket.StockQuoteService;
import org.apache.jetspeed.webservices.finance.stockmarket.StockQuote;
import org.apache.jetspeed.util.PortletConfigState;
import org.apache.jetspeed.util.StringUtils;

/**
 * This action sets up the template context for retrieving stock quotes.
 *
 */

public class TutorialStockQuoteAction extends VelocityPortletAction

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (133 of 140) [20.12.2002 11:20:26]

Development

{
private static final String SYMBOLS = "symbols";
private static final String COLUMNS = "columns";
private static final String SORT = "sort";
private static final String QUOTES = "quotes";
private static final String[] ALL_COLUMNS = {"Symbol","Price","Change","Volume"};
private static final String SELECTED_COLUMNS = "selected-columns";1

/**
 * Build the normal state content for this portlet.
 *
 * @param portlet The velocity-based portlet that is being built.
 * @param context The velocity context for this request.
 * @param rundata The turbine rundata context for this request.
 */

protected void buildNormalContext(VelocityPortlet portlet, Context context, RunData rundata)
{
 try
 {
 // Get reference to stock quote web service
 StockQuoteService service = (StockQuoteService) TurbineServices.getInstance().
 getService(StockQuoteService.SERVICE_NAME);

 // Retrieve portlet parameters
 String symbols = PortletConfigState.getParameter(portlet, rundata, SYMBOLS,
"IBM,MSFT,ORCL,SUNW");
 String columns = PortletConfigState.getParameter(portlet, rundata, COLUMNS,
StringUtils.arrayToString(ALL_COLUMNS, ","));2

 String[] selectedColumnsArray = StringUtils.stringToArray(columns, ",");3

 String sort = PortletConfigState.getParameter(portlet, rundata, SYMBOLS, "Symbol");4

 // Request stock quote(s) from the stock quote web service
 String[] symbolArray = StringUtils.stringToArray(symbols, ",");
 StockQuote[] quotes = service.fullQuotes(symbolArray);

 // Place appropriate objects in Velocity context
 context.put(QUOTES, quotes);
 context.put(SELECTED_COLUMNS, selectedColumnsArray);5

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (134 of 140) [20.12.2002 11:20:26]

Development

 context.put(COLUMNS, columns);6

 }
 catch (Exception e)
 {
 Log.error(e);
 }
}

So far the changes are related to stock quote column selection:

1. The SELECTED_COLUMN will be placed in the Velocity context as list of selected column headings.
2. The columns variable will hold user customized value of columns selected for display. Please note the usage of

PortletConfigState.getParameter() method to retrieve the value of COLUMNS from user's PSML.
3. Here we convert columns which is in a comma-delimited format to a string array selectedColumnsArray.
4. For the sake of example, we can also retrieve a custom sort setting. We will not be implementing the actual sort

though.
5. The selectedColumnsArray is placed in the Velocity context so the template can use it as headings.
6. The columns is placed in the Velocity context so the template can determine which stock quote fields to dsiplay.

Next, here's a modified Velocity template tutorial-stock-quote.vm used to display the stock quotes:

tutorial-stock-quote.vm
<table>
 <tr>
 <td>
 <table border="true" cellspacing="1" cellpadding="3">
 <tr>
 #foreach ($column in $selected-columns)
 #headerCell ($column)
 #end
 </tr>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (135 of 140) [20.12.2002 11:20:26]

Development

 #foreach ($quote in $quotes)
 <tr>
 #if ($columns.indexOf("Symbol") >= 0) #entryCell ($quote.Symbol) #end
 #if ($columns.indexOf("Price") >= 0) #entryCell ($quote.Price) #end
 #if ($columns.indexOf("Change") >= 0) #entryCell ($quote.Change) #end
 #if ($columns.indexOf("Volume") >= 0) #entryCell ($quote.Volume) #end
 </tr>
 #end
 </table>
 </td>
 </tr>
</table>

<portlet-entry name="TutorialStockQuote" hidden="false" type="ref" parent="Velocity" application="false">
 <meta-info>
 <title>Tutorial Stock Portfolio with parameter styles</title>
 <description>Tutorial Stock Portfolio Portlet with parameter styles</description>
 </meta-info>
 <parameter name="template" value="tutorial-stock-quote2" hidden="true"/>
 <parameter name="action" value="portlets.TutorialStockQuoteAction2" hidden="true"/>
 <parameter name="sort" value="Symbol" type="style" hidden="true">
 <meta-info>
 <title>Sort</title>
 <description>Sort is not implemented</description>
 </meta-info>
 </parameter>
 <parameter name="sort.style" value="ListBox" hidden="true"/>
 <parameter name="sort.style.items" value="Symbol,Price,Change,Volume" hidden="true"/>
 <parameter name="columns" value="Symbols,Price,Change,Volume" type="style" hidden="false">
 <meta-info>
 <title>Columns</title>
 <description>Columns to display</description>
 </meta-info>
 </parameter>
 <parameter name="columns.style.items" value="Symbol,Price,Change,Volume" hidden="true"/>
 <parameter name="columns.style.layout" value="$eastwest" hidden="true"/>
 <parameter name="columns.style" value="CheckBoxGroup" hidden="true"/>

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (136 of 140) [20.12.2002 11:20:26]

Development

 <parameter name="symbols" value="MSFT,IBM,ORCL,SUNW" type="style" hidden="false">
 <meta-info>
 <title>Symbols</title>
 <description>List of comma-separated stock symbols</description>
 </meta-info>
 </parameter>
 <parameter name="symbols.style" value="TextArea" hidden="true"/>
 <parameter name="About" value="About Stock Quote Web Service" type="style" hidden="false"/>
 <parameter name="About.style" value="VelocityParameterPresentationStyle" hidden="true"/>
 <parameter name="About.style.template" value="InputWithHelp.vm" hidden="true"/>
 <parameter name="About.style.src" value="images/info.gif" hidden="true"/>
 <parameter name="About.style.javascript:onclick" value="alert('For additional contact
info@bluesunrise.com')" hidden="true"/>
 <media-type ref="html"/>
 <category group="Jetspeed">tutorial</category>
</portlet-entry>

Future Possible Tutorials

If anyone wants to write one of these please feel free to do so.

1. WebPage Portlet
2. Torque OM configuration

Appendix A - How Property Merging Works in the Tutorial

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (137 of 140) [20.12.2002 11:20:26]

Development

You may be wondering why the tutorial works with only a few properties, and why we have our own versions of the
configuration-property files. The reason is that Jetspeed does not have a standard way to deploy portlet applications, thus
with version 1.4 we have to merge property files in order for a portal application to override and define its own
configuration properties, and also to avoid editing the Jetspeed property files everytime they are modified in the CVS.

The build.xml file in the JPortal source is capable of doing just that. It merges the JPortal configuration files shown below
on the left into the master Jetspeed resource files on the right:

JPortal Configuration File Jetspeed Configuration File
JPortalJetspeed.properties à JetspeedResources.properties
JPortalTurbine.properties à TurbineResources.properties
JPortalSecurity.properties à JetspeedSecurity.properties
JPortalTorque.properties à Torque.properties

The merge program is provided with Jetspeed. Let’s take a look at one of the Ant targets for merging the
JetspeedResources.properties:

<target name="merge_jrp" depends="properties">
 <echo> merge_jrp required </echo>
 <java fork="yes"
 classname="org.apache.jetspeed.util.OverwriteProperties" dir=".">
 <classpath refid="test.classpath"/>
 <sysproperty key="DEBUG" value="true"/>
 <arg
 value="${build.home}/WEB-INF/conf/JetspeedResources.properties"/>
 <arg value="./webapp/WEB-INF/conf/JPortalJetspeed.properties"/>
 <arg value="./webapp/WEB-INF/conf/"/>
 </java>
</target>

The OverwriteProperties class is run with these arguments:

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (138 of 140) [20.12.2002 11:20:26]

Development

Argument
Master File "${build.home}/WEB-

INF/conf/JetspeedResources.properties
Merge File ./webapp/WEB-INF/conf/JPortalJetspeed.properties

The general rules for merging properties are:

1. A property in the Master File with the same name as a property in the Merge File will be overwritten by the Merge
File property **

2. Properties from the Merge File that are not found in the Master File will be added to the Master File
3. Properties will be removed from the Master File if they match the property name prefix-strings described below.

** with the exception of the include directive and module.properties property, which are added since there can be multiple include directives or module.packages
properties.

Removing Properties

There are many properties in the default Jetspeed configuration that aren’t used by many sites. For instance, the RSS and
OCS support, which requires background threads to be running, can automatically be removed by merging them out of the
master properties file. This is accomplished using a remove directive and prefix strings in your merge property file:

-contentfeeds.
-#contentfeeds.
-daemon.
-services.DaemonFactory

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (139 of 140) [20.12.2002 11:20:26]

Development

-content.
-#content.

Any line that begins with a dash “-“ will instruct the property merger to remove a property starting with the given prefix-
string immediately following the dash. The prefix-string can include comments (or all comments).

Appendix B - Turbine and ECS

The getContent() method of a portlet takes a RunData object, which is passed through from an internal component
called Turbine. The RunData class is one of the few Turbine classes that you must deal with often. Turbine is a MVC-2
(Model View Controller) Servlet framework that Jetspeed was founded upon.

Another component coupled to in the Portlet interface is the Element Construction Set (ECS), an object-based mark-up
generator. The Jetspeed Portlet interface requires that portlets return ECS elements as their content. It uses Java objects to
construct the elements of the respective mark-up. Admittedly, this approach is better than hard coding mark-up tags, but it
still places mark-up information into compiled code.

Therefore, we generally recommend using a page template mechanism of your choice, rather than using ECS directly. The
majority of the portlets in Jetspeed are based upon the base class Velocity Portlet, a template-based portlet which does not
mix Java source with mark-up. Similarly, you can use the JSP Portlet to create MVC portlets based upon the Java JSP
standard.

Note: Starting with version 2.0 of Jetspeed, ECS will be deprecated.

http://www.bluesunrise.com/jetspeed-docs/JetspeedTutorial.htm (140 of 140) [20.12.2002 11:20:26]

http://jakarta.apache.org/turbine
http://jakarta.apache.org/ecs
http://jakarta.apache.org/jetspeed/site/portlet_config_Velocity.html
http://jakarta.apache.org/jetspeed/site/portlet_config_JSP.html

	bluesunrise.com
	Development

