OGNL Developer Guide

Drew Davidson

OGNL Developer Guide

Drew Davidson
Copyright © 2004 OGNL Technology, Inc.

Table of Contents

O 0 g 11 oo (1 T o o PR 1

EmMBDedding OGNLcooiiiiiiiiiie et 1

[=: 2T 1o [€] | PP 1
2. PrOPEITY A CCESSOIS ..uttuititttte ittt ettt e e e e e e e e e e e et e e e e e e e e e e e et e e e e ae e en 3
3. IMIEENOO ACCESSOIS ... vuiee et ettt e e e e e et e e et et s e e et e e st s e st s e s aae e s ans e sansansenaen 4
A, ElOMENES ACCESSOIS ..o uenene ettt et e e e e e e e e e e e e e s e e e aae s e e s aaeens s e s ansensansenens 5
SO = = 3 == 010 TN 6
6. TYPE CONVEISION ...eeitieeeeit ettt ettt e e et e e et et e e et et e e e e ab e e e enen s 7
WY 110 0TS AN o o= 8
T AN LU =T | = N 9
L@ 10 N IR == (1< 10

TraCing EVAlUBLIONSveei e e e e e e e e e e e e e e e e e eaes 10

List of Examples

O q =S o] 1 1O =

Chapter 1. Introduction

OGNL as a language alows for the navigation of Java objects through a concise syntax that allows for
specifying, where possible, symmetrically settable and gettable values. The language specifies a syntax
that attempts to provide as high alevel of abstraction as possible for navigating object graphs; this usu-
ally means specifying paths through and to JavaBeans properties, collection indices, etc. rather than dir-
ectly accessing property getters and setters (collectively know as accessors).

The normal usage of OGNL is to embed the language inside of other constructs to provide a place for
flexible binding of values from one place to another. An example of thisis a web application where val-
ues need to be bound from a model of some sort to data transfer objects that are operated on by a view.
Another example is an XML configuration file wherein values are generated via expressions which are
then bound to configured objects.

Embedding OGNL

The ognl . Ognl class contains convenience methods for evaluating OGNL expressions. You can do
thisin two stages, parsing an expression into an internal form and then using that internal form to either
set or get the value of a property; or you can do it in a single stage, and get or set a property using the
String form of the expression directly. It is more efficient to pre-compile the expression to it's parsed
form, however, and thisis the recommended usage.

OGNL expressions can be evaluated without any external context, or they can be provided with an exe-
cution environment that sets up custom extensions to modify the way that expressions are evaluated.

The following example illustrates how to encapsulate the parsing of an OGNL expression within an ob-
ject so that execution will be more efficient. The class then takes an Ognl Cont ext and aroot object to
evaluate against.

Example 1.1. Expression Class

inport ognl.CQgnl;
inport ognl . Qgnl Cont ext ;

public class Ognl Expressi on
4 private Object expr essi on;
publi c Qgnl Expression(String expressionString) throws QOgnl Exception
super () ;
) expression = Qgnl . par seExpr essi on(expr essi onString);
public bject getExpression()

return expression;

}
public Object getVal ue(Qgnl Context context, Cbject rootCbject) throws Ognl Exception

o~

return Qgnl . get Val ue(get Expression(), context, rootObject);

—

public void setVal ue(Ognl Context context, Object rootbject, Cbject value) throws Qynl Exception

-~

Qgnl . set Val ue(get Expression(), context, rootCbject, value);

-~

Extending OGNL

OGNL expressions are hot evaluated in a static environment, as Java programs are. Expressions are not
compiled to bytecode at the expression level based on static class reachability. The same expression can
have multiple paths through an object graph depending upon the root object specified and the dynamic
results of the navigation. Objects that are delegated to handle al of the access to properties of objects,
elements of collections, methods of objects, resolution of class names to classes and converting between

1

Introduction

types are collectively known as OGNL extensions. The following chapters delve more deeply into these
extensions and provide a roadmap as to how they are used within OGNL to customize the dynamic
runtime environment to suit the needs of the embedding program.

Chapter 2. Property Accessors

When navigating an OGNL expression many of the elements that are found are properties. Properties
can be many things depending on the object being accessed. Most of the time these property hames re-
solve to JavaBeans properties that conform to the set/get pattern. Other objects (such as Map) access
properties as keyed values. Regardless of access methodology the OGNL syntax remains the same. Un-
der the hood, however, there are Pr oper t yAccessor objects that handle the conversion of property
name to an actual access to an objects’ properties.

public interface PropertyAccessor
{

Obj ect getProperty(Map context, Object target, Object name) throws Ognl Exception;
voi d setProperty(Map context, Cbject target, Object name, Object value) throws Ognl Excepti on;

You <can set a property accessor on a classbhy-class basis using Ognl -
Runti ne. set PropertyAccessor (). There are default property accessors for Cbj ect (which
uses JavaBeans patterns to extract properties) and Map (which uses the property name as a key).

Chapter 3. Method Accessors

Method calls are another area where OGNL needs to do lookups for methods based on dynamic inform-
ation. The MethodA ccessor interface provides a hook into how OGNL calls a method. When a static or
instance method is requested the implementor of thisinterface is called to actually execute the method.

public interface MethodAccessor

Obj ect call StaticMethod(Map context, Class targetC ass, String nethodName, List args) throws MethodFail edException;
Obj ect cal | Method(Map context, Object target, String nethodName, List args) throws MethodFailedException;

You can st a method accessor on a classby-class basis using Ognl -
Runt i ne. set Met hodAccessor (). The is a default method accessor for Cbj ect (which simply
finds an appropriate method based on method name and argument types and uses reflection to call the
method).

Chapter 4. Elements Accessors

Since iteration is a built-in function of OGNL and many objects support the idea of iterating over the
contents of an object (i.e. theobj ect.{ ... } syntax) OGNL provides a hook into how iteration is
done. The El erent sAccessor interface defines how iteration is done based on a source object.
Simple examples could bea Col | ect i on elements accessor, which would simply

public interface El ementsAccessor

public Enuneration getEl ements(Object target) throws Ognl Excepti on;

You can st a method accessor on a classby-class basis using Qgnl -
Runt i ne. set El ement sAccessor (). There are default elements accessors for Obj ect (which
returns an Enurrer at i on of itself asthe only object), Map (which iterates over the values in the Map),
and Collection (which uses the collection'si t er at or ()). One clever use of El enent sAccessors
isthe Nunber El enment sAccessor class which alows for generating numeric sequences from 0 to
the target value. For example the expression (100) . { #t hi s } will generate a list of 100 integers
ranged 0..99.

Chapter 5. Class References

In the sections on accessing static field and static methods it stated that classes must be full-specified in
between the class reference specifier (@cl assnanme>@fieldimethod>@. Thisis not entirely true; the
default Cl assResol ver simply looks up the name of the class and assumes that it is fully specified.
The d assResol ver interfaceisincluded in the OGNL context to perform lookup of classes when an
expression is evaluated. This makes it possible to specify, for example, alist of imports that are specific
to a particular set Val ue() or get Val ue() context in order to look up classes. It also makes class
references agreeably short because you don't have to full specify a class name.

public interface O assResol ver

public O ass classFor Name(Map context, String classNane) throws Cl assNot FoundExcepti on;

Y ou can set aclass resolver on a context basis using the Ognl methods addDef aul t Cont ext () and
creat eDef aul t Context ().

Chapter 6. Type Conversion

When performing set operations on properties or calling methods it is often the case that the values you
want to set have a different type from the expected type of the class. OGNL supports a context variable
(set by Ognl Runti me. set TypeConverter(Map context, TypeConverter typeCon-
verter)) that will alow types to be converted from one to another. The default type converter that is
usesisthe ognl . Def aul t TypeConvert er, which will convert among numeric types (| nt eger,
Long, Short, Doubl e, Fl oat, Bi gl nt eger, Bi gDeci mal , and their primitive equivalents),
string types (St r i ng, Char act er) and Bool ean. Should you need specialized type conversion (one
popular example is in Servlets where you have a String[] from an HttpServl et Re-
guest . get Par anet er s() and you want to set values with it in other objects; a custom type con-
verter can be written (most likely subclassing ognl . Def aul t TypeConverter) to convert
String[] towhatever is necessary.

public interface TypeConverter

public Object convertVal ue(Map context,
Cbj ect target,
Menber nenber,
String propertyNane,
Obj ect val ue,
Cl ass toType);

Note that ognl . Def aul t TypeConvert er is much easier to subclass; it implements Ty peCon-
verter and cals it's own convert Val ue(Map context, Object value, Cass to-
Type) method and already provides the numeric conversions. For example, the above converter (i.e.
converting St ring[] toi nt[] for alist of identifier parameters in a request) implemented as a sub-
classof ognl . Def aul t TypeConverter:
Ht t pSer vl et Request request ;
Map context = Qgnl . createDefaul t Context (this);
/* Create an anonynous inner class to handl e special conversion */
Qgnl . set TypeConverter (context, new ognl. Defaul t TypeConverter() {
public Object convertValue(Map context, Object value, Class toType)
Cbject result = null;
if ((toType == int[].class) && (value instanceof String[].class)) {
String sa = (String[])val ue;
int[] ia = newint[sa.length];

for (int i =0; i < sa.length; i++) {
I nt eger cv;

cv = (Integer)super.convertVal ue(context,

sali],
I nteger. cl ass);
ia[i] = cv.intValue();

result =ia;
} else {
result = super.convertVal ue(context, value, toType);

return result;

/* Setting values within this OGNL context will use the above-defined TypeConverter */
Qgnl . set Val ue("identifiers",

cont ext ,

this,

request . get Par amet er Val ues("i dentifier"));

Chapter 7. Member Access

Normally in Java the only members of a class (fields, methods) that can be accessed are the ones defined
with public access. OGNL includes an interface that you can set globaly (using Ognl Con-
t ext. set Menber AccessManager ()) that allows you to modify the runtime in Java 2 to alow ac-
cess to private, protected and package protected fields and methods. Included in the OGNL package is
the Def aul t Menber Access class. It contains a constructor that allows you to selectively lower the
protection on any private, protected or package protected members usi ng the Accessi bl eb-
j ect interface in Java2. The default class can be subclasses to select different objects for which access-
ibility is allowed.

public interface MenberAccess

public Object setup(Menber nenber);
public void restore(Member nenber, Object state);
public bool ean i sAccessibl e(Menber nember);

Chapter 8. Null Handler

When navigating a chain sometimes properties or methods will evaluate to null, causing subsequent
properties or method calls to fail with Nul | Poi nt er Except i ons. Most of the time this behaviour is
correct (asit iswith Java), but sometimes you want to be able to dynamically substitute another object in
place of nul | . The Nul | Handl er interface alows you to specify on a class-by-class basis how nulls
are handled within OGNL expressions. Implementing this interface allows you to intercept when meth-
odsreturn nul | and properties evaluate to nul | and allow you to substitute a new value. Since you are
given the source of the method or property areally clever implementor might write the property back to
the object so that subsequent invocations do not return or evaluateto nul | .

public interface Nul | Handl er

public Object null MethodResul t (Map context, Cbject target, String nethodName, List args);
public Object nullPropertyVal ue(Map context, Cbject target, Object property);

Nul | Handl er implementors are registered with OGNL using the Qgnl -
Runt i ne. set Nul | Handl er () method.

Chapter 9. Other API features
Tracing Evaluations

As of OGNL 2.5.0 the Ognl Cont ext object can automatically tracks evaluations of expressions. This
tracking is kept in the Ognl Cont ext as currentEvaluation during the evaluation. After execution you
can access the last evaluation through the lastEvaluation property of Ognl Cont ext .

Note

!:" The tracing feature is turned off by default. If you wish to turn it on thereisaset Tr aceEval uat i ons() method on Ognl Cont ext
that you can call.

Any method accessor, elements accessor, type converter, property accessor or null handler may find this
useful to give context to the operation being performed. The Eval uat i on object isitself atree and can
be traversed up, down and left and right through siblings to determine the exact circumstances of an
evaluation. In addition the Eval uat i on object tracks the node that was performing the operation, the
source object on which that operation was being performed and the result of the operation. If an excep-
tion is thrown during execution the user can get the last evaluation's last descendent to find out exactly
which subexpression caused the error. The execption is also tracked in the Eval uat i on.

10

	OGNL Developer Guide
	Table of Contents
	Chapter 1. Introduction
	Embedding OGNL
	Extending OGNL

	Chapter 2. Property Accessors
	Chapter 3. Method Accessors
	Chapter 4. Elements Accessors
	Chapter 5. Class References
	Chapter 6. Type Conversion
	Chapter 7. Member Access
	Chapter 8. Null Handler
	Chapter 9. Other API features
	Tracing Evaluations

