Apache > Hadoop > Core
 

Hadoop Streaming

Hadoop Streaming

Hadoop streaming是Hadoop的一个工具, 它帮助用户创建和运行一类特殊的map/reduce作业, 这些特殊的map/reduce作业是由一些可执行文件或脚本文件充当mapper或者reducer。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper /bin/cat \
    -reducer /bin/wc

Streaming工作原理

在上面的例子里,mapper和reducer都是可执行文件,它们从标准输入读入数据(一行一行读), 并把计算结果发给标准输出。Streaming工具会创建一个Map/Reduce作业, 并把它发送给合适的集群,同时监视这个作业的整个执行过程。

如果一个可执行文件被用于mapper,则在mapper初始化时, 每一个mapper任务会把这个可执行文件作为一个单独的进程启动。 mapper任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,mapper收集可执行文件进程标准输出的内容,并把收到的每一行内容转化成key/value对,作为mapper的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。 如果没有tab,整行作为key值,value值为null。不过,这可以定制,在下文中将会讨论如何自定义key和value的切分方式。

如果一个可执行文件被用于reducer,每个reducer任务会把这个可执行文件作为一个单独的进程启动。 Reducer任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,reducer收集可执行文件进程标准输出的内容,并把每一行内容转化成key/value对,作为reducer的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。在下文中将会讨论如何自定义key和value的切分方式。

这是Map/Reduce框架和streaming mapper/reducer之间的基本通信协议。

用户也可以使用java类作为mapper或者reducer。上面的例子与这里的代码等价:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
    -reducer /bin/wc

用户可以设定stream.non.zero.exit.is.failure truefalse 来表明streaming task的返回值非零时是 Failure 还是Success。默认情况,streaming task返回非零时表示失败。

将文件打包到提交的作业中

任何可执行文件都可以被指定为mapper/reducer。这些可执行文件不需要事先存放在集群上; 如果在集群上还没有,则需要用-file选项让framework把可执行文件作为作业的一部分,一起打包提交。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper myPythonScript.py \
    -reducer /bin/wc \
    -file myPythonScript.py 

上面的例子描述了一个用户把可执行python文件作为mapper。 其中的选项“-file myPythonScirpt.py”使可执行python文件作为作业提交的一部分被上传到集群的机器上。

除了可执行文件外,其他mapper或reducer需要用到的辅助文件(比如字典,配置文件等)也可以用这种方式打包上传。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper myPythonScript.py \
    -reducer /bin/wc \
    -file myPythonScript.py \
    -file myDictionary.txt

Streaming选项与用法

只使用Mapper的作业

有时只需要map函数处理输入数据。这时只需把mapred.reduce.tasks设置为零,Map/reduce框架就不会创建reducer任务,mapper任务的输出就是整个作业的最终输出。

为了做到向下兼容,Hadoop Streaming也支持“-reduce None”选项,它与“-jobconf mapred.reduce.tasks=0”等价。

为作业指定其他插件

和其他普通的Map/Reduce作业一样,用户可以为streaming作业指定其他插件:

   -inputformat JavaClassName
   -outputformat JavaClassName
   -partitioner JavaClassName
   -combiner JavaClassName

用于处理输入格式的类要能返回Text类型的key/value对。如果不指定输入格式,则默认会使用TextInputFormat。 因为TextInputFormat得到的key值是LongWritable类型的(其实key值并不是输入文件中的内容,而是value偏移量), 所以key会被丢弃,只把value用管道方式发给mapper。

用户提供的定义输出格式的类需要能够处理Text类型的key/value对。如果不指定输出格式,则默认会使用TextOutputFormat类。

Hadoop Streaming中的大文件和档案

任务使用-cacheFile和-cacheArchive选项在集群中分发文件和档案,选项的参数是用户已上传至HDFS的文件或档案的URI。这些文件和档案在不同的作业间缓存。用户可以通过fs.default.name.config配置参数的值得到文件所在的host和fs_port。

这个是使用-cacheFile选项的例子:

-cacheFile hdfs://host:fs_port/user/testfile.txt#testlink

在上面的例子里,url中#后面的部分是建立在任务当前工作目录下的符号链接的名字。这里的任务的当前工作目录下有一个“testlink”符号链接,它指向testfile.txt文件在本地的拷贝。如果有多个文件,选项可以写成:

-cacheFile hdfs://host:fs_port/user/testfile1.txt#testlink1 -cacheFile hdfs://host:fs_port/user/testfile2.txt#testlink2

-cacheArchive选项用于把jar文件拷贝到任务当前工作目录并自动把jar文件解压缩。例如:

-cacheArchive hdfs://host:fs_port/user/testfile.jar#testlink3

在上面的例子中,testlink3是当前工作目录下的符号链接,它指向testfile.jar解压后的目录。

下面是使用-cacheArchive选项的另一个例子。其中,input.txt文件有两行内容,分别是两个文件的名字:testlink/cache.txt和testlink/cache2.txt。“testlink”是指向档案目录(jar文件解压后的目录)的符号链接,这个目录下有“cache.txt”和“cache2.txt”两个文件。

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
                  -input "/user/me/samples/cachefile/input.txt"  \
                  -mapper "xargs cat"  \
                  -reducer "cat"  \
                  -output "/user/me/samples/cachefile/out" \  
                  -cacheArchive 'hdfs://hadoop-nn1.example.com/user/me/samples/cachefile/cachedir.jar#testlink' \  
                  -jobconf mapred.map.tasks=1 \
                  -jobconf mapred.reduce.tasks=1 \ 
                  -jobconf mapred.job.name="Experiment"

$ ls test_jar/
cache.txt  cache2.txt

$ jar cvf cachedir.jar -C test_jar/ .
added manifest
adding: cache.txt(in = 30) (out= 29)(deflated 3%)
adding: cache2.txt(in = 37) (out= 35)(deflated 5%)

$ hadoop dfs -put cachedir.jar samples/cachefile

$ hadoop dfs -cat /user/me/samples/cachefile/input.txt
testlink/cache.txt
testlink/cache2.txt

$ cat test_jar/cache.txt 
This is just the cache string

$ cat test_jar/cache2.txt 
This is just the second cache string

$ hadoop dfs -ls /user/me/samples/cachefile/out      
Found 1 items
/user/me/samples/cachefile/out/part-00000  <r 3>   69

$ hadoop dfs -cat /user/me/samples/cachefile/out/part-00000
This is just the cache string   
This is just the second cache string

为作业指定附加配置参数

用户可以使用“-jobconf <n>=<v>”增加一些配置变量。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper org.apache.hadoop.mapred.lib.IdentityMapper\
    -reducer /bin/wc \
    -jobconf mapred.reduce.tasks=2

上面的例子中,-jobconf mapred.reduce.tasks=2表明用两个reducer完成作业。

关于jobconf参数的更多细节可以参考:hadoop-default.html

其他选项

Streaming 作业的其他选项如下表:

选项可选/必须描述
-cluster name 可选 在本地Hadoop集群与一个或多个远程集群间切换
-dfs host:port or local 可选 覆盖作业的HDFS配置
-jt host:port or local 可选 覆盖作业的JobTracker配置
-additionalconfspec specfile 可选 用一个类似于hadoop-site.xml的XML文件保存所有配置,从而不需要用多个"-jobconf name=value"类型的选项单独为每个配置变量赋值
-cmdenv name=value 可选 传递环境变量给streaming命令
-cacheFile fileNameURI 可选 指定一个上传到HDFS的文件
-cacheArchive fileNameURI 可选 指定一个上传到HDFS的jar文件,这个jar文件会被自动解压缩到当前工作目录下
-inputreader JavaClassName 可选 为了向下兼容:指定一个record reader类(而不是input format类)
-verbose 可选 详细输出

使用-cluster <name>实现“本地”Hadoop和一个或多个远程Hadoop集群间切换。默认情况下,使用hadoop-default.xml和hadoop-site.xml;当使用-cluster <name>选项时,会使用$HADOOP_HOME/conf/hadoop-<name>.xml。

下面的选项改变temp目录:

  -jobconf dfs.data.dir=/tmp

下面的选项指定其他本地temp目录:

   -jobconf mapred.local.dir=/tmp/local
   -jobconf mapred.system.dir=/tmp/system
   -jobconf mapred.temp.dir=/tmp/temp

更多有关jobconf的细节请参考:http://wiki.apache.org/hadoop/JobConfFile

在streaming命令中设置环境变量:

-cmdenv EXAMPLE_DIR=/home/example/dictionaries/

其他例子

使用自定义的方法切分行来形成Key/Value对

之前已经提到,当Map/Reduce框架从mapper的标准输入读取一行时,它把这一行切分为key/value对。 在默认情况下,每行第一个tab符之前的部分作为key,之后的部分作为value(不包括tab符)。

但是,用户可以自定义,可以指定分隔符是其他字符而不是默认的tab符,或者指定在第n(n>=1)个分割符处分割而不是默认的第一个。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
    -reducer org.apache.hadoop.mapred.lib.IdentityReducer \
    -jobconf stream.map.output.field.separator=. \
    -jobconf stream.num.map.output.key.fields=4 

在上面的例子,“-jobconf stream.map.output.field.separator=.”指定“.”作为map输出内容的分隔符,并且从在第四个“.”之前的部分作为key,之后的部分作为value(不包括这第四个“.”)。 如果一行中的“.”少于四个,则整行的内容作为key,value设为空的Text对象(就像这样创建了一个Text:new Text(""))。

同样,用户可以使用“-jobconf stream.reduce.output.field.separator=SEP”和“-jobconf stream.num.reduce.output.fields=NUM”来指定reduce输出的行中,第几个分隔符处分割key和value。

一个实用的Partitioner类 (二次排序,-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner 选项)

Hadoop有一个工具类org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner, 它在应用程序中很有用。Map/reduce框架用这个类切分map的输出, 切分是基于key值的前缀,而不是整个key。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
    -reducer org.apache.hadoop.mapred.lib.IdentityReducer \
    -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
    -jobconf stream.map.output.field.separator=. \
    -jobconf stream.num.map.output.key.fields=4 \
    -jobconf map.output.key.field.separator=. \
    -jobconf num.key.fields.for.partition=2 \
    -jobconf mapred.reduce.tasks=12

其中,-jobconf stream.map.output.field.separator=.-jobconf stream.num.map.output.key.fields=4是前文中的例子。Streaming用这两个变量来得到mapper的key/value对。

上面的Map/Reduce 作业中map输出的key一般是由“.”分割成的四块。但是因为使用了 -jobconf num.key.fields.for.partition=2 选项,所以Map/Reduce框架使用key的前两块来切分map的输出。其中, -jobconf map.output.key.field.separator=. 指定了这次切分使用的key的分隔符。这样可以保证在所有key/value对中, key值前两个块值相同的所有key被分到一组,分配给一个reducer。

这种高效的方法等价于指定前两块作为主键,后两块作为副键。 主键用于切分块,主键和副键的组合用于排序。一个简单的示例如下:

Map的输出(key)

11.12.1.2
11.14.2.3
11.11.4.1
11.12.1.1
11.14.2.2

切分给3个reducer(前两块的值用于切分)

11.11.4.1
-----------
11.12.1.2
11.12.1.1
-----------
11.14.2.3
11.14.2.2

在每个切分后的组内排序(四个块的值都用于排序)

11.11.4.1
-----------
11.12.1.1
11.12.1.2
-----------
11.14.2.2
11.14.2.3

Hadoop聚合功能包的使用(-reduce aggregate 选项)

Hadoop有一个工具包“Aggregate”( https://svn.apache.org/repos/asf/hadoop/core/trunk/src/java/org/apache/hadoop/mapred/lib/aggregate)。 “Aggregate”提供一个特殊的reducer类和一个特殊的combiner类, 并且有一系列的“聚合器”(“aggregator”)(例如“sum”,“max”,“min”等)用于聚合一组value的序列。 用户可以使用Aggregate定义一个mapper插件类, 这个类用于为mapper输入的每个key/value对产生“可聚合项”。 combiner/reducer利用适当的聚合器聚合这些可聚合项。

要使用Aggregate,只需指定“-reducer aggregate”:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper myAggregatorForKeyCount.py \
    -reducer aggregate \
    -file myAggregatorForKeyCount.py \
    -jobconf mapred.reduce.tasks=12

python程序myAggregatorForKeyCount.py例子:

#!/usr/bin/python

import sys;

def generateLongCountToken(id):
    return "LongValueSum:" + id + "\t" + "1"

def main(argv):
    line = sys.stdin.readline();
    try:
        while line:
            line = line[:-1];
            fields = line.split("\t");
            print generateLongCountToken(fields[0]);
            line = sys.stdin.readline();
    except "end of file":
        return None
if __name__ == "__main__":
     main(sys.argv)

字段的选取(类似于unix中的 'cut' 命令)

Hadoop的工具类org.apache.hadoop.mapred.lib.FieldSelectionMapReduce帮助用户高效处理文本数据, 就像unix中的“cut”工具。工具类中的map函数把输入的key/value对看作字段的列表。 用户可以指定字段的分隔符(默认是tab), 可以选择字段列表中任意一段(由列表中一个或多个字段组成)作为map输出的key或者value。 同样,工具类中的reduce函数也把输入的key/value对看作字段的列表,用户可以选取任意一段作为reduce输出的key或value。例如:

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir \
    -mapper org.apache.hadoop.mapred.lib.FieldSelectionMapReduce\
    -reducer org.apache.hadoop.mapred.lib.FieldSelectionMapReduce\
    -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \
    -jobconf map.output.key.field.separa=. \
    -jobconf num.key.fields.for.partition=2 \
    -jobconf mapred.data.field.separator=. \
    -jobconf map.output.key.value.fields.spec=6,5,1-3:0- \
    -jobconf reduce.output.key.value.fields.spec=0-2:5- \
    -jobconf mapred.reduce.tasks=12

选项“-jobconf map.output.key.value.fields.spec=6,5,1-3:0-”指定了如何为map的输出选取key和value。Key选取规则和value选取规则由“:”分割。 在这个例子中,map输出的key由字段6,5,1,2和3组成。输出的value由所有字段组成(“0-”指字段0以及之后所有字段)。

选项“-jobconf reduce.output.key.value.fields.spec=0-2:0-”(译者注:此处应为”0-2:5-“)指定如何为reduce的输出选取value。 本例中,reduce的输出的key将包含字段0,1,2(对应于原始的字段6,5,1)。 reduce输出的value将包含起自字段5的所有字段(对应于所有的原始字段)。

常见问题

我该怎样使用Hadoop Streaming运行一组独立(相关)的任务呢?

多数情况下,你不需要Map Reduce的全部功能, 而只需要运行同一程序的多个实例,或者使用不同数据,或者在相同数据上使用不同的参数。 你可以通过Hadoop Streaming来实现。

如何处理多个文件,其中每个文件一个map?

例如这样一个问题,在集群上压缩(zipping)一些文件,你可以使用以下几种方法:

  1. 使用Hadoop Streaming和用户编写的mapper脚本程序:
    • 生成一个文件,文件中包含所有要压缩的文件在HDFS上的完整路径。每个map 任务获得一个路径名作为输入。
    • 创建一个mapper脚本程序,实现如下功能:获得文件名,把该文件拷贝到本地,压缩该文件并把它发到期望的输出目录。
  2. 使用现有的Hadoop框架:
    • 在main函数中添加如下命令:
             FileOutputFormat.setCompressOutput(conf, true);
             FileOutputFormat.setOutputCompressorClass(conf, org.apache.hadoop.io.compress.GzipCodec.class);
             conf.setOutputFormat(NonSplitableTextInputFormat.class);
             conf.setNumReduceTasks(0);
      
    • 编写map函数:
      
             public void map(WritableComparable key, Writable value, 
                                     OutputCollector output, 
                                     Reporter reporter) throws IOException {
                  output.collect((Text)value, null);
             }
      
    • 注意输出的文件名和原文件名不同

应该使用多少个reducer?

请参考Hadoop Wiki:Reducer

如果在Shell脚本里设置一个别名,并放在-mapper之后,Streaming会正常运行吗? 例如,alias cl='cut -fl',-mapper "cl"会运行正常吗?

脚本里无法使用别名,但是允许变量替换,例如:

$ hadoop dfs -cat samples/student_marks
alice   50
bruce   70
charlie 80
dan     75

$ c2='cut -f2'; $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
    -input /user/me/samples/student_marks 
    -mapper \"$c2\" -reducer 'cat'  
    -output /user/me/samples/student_out 
    -jobconf mapred.job.name='Experiment'

$ hadoop dfs -ls samples/student_out
Found 1 items/user/me/samples/student_out/part-00000    <r 3>   16

$ hadoop dfs -cat samples/student_out/part-00000
50
70
75
80

我可以使用UNIX pipes吗?例如 –mapper "cut –fl | set s/foo/bar/g"管用么?

现在不支持,而且会给出错误信息“java.io.IOException: Broken pipe”。这或许是一个bug,需要进一步研究。

在streaming作业中用-file选项运行一个分布式的超大可执行文件(例如,3.6G)时, 我得到了一个错误信息“No space left on device”。如何解决?

配置变量stream.tmpdir指定了一个目录,在这个目录下要进行打jar包的操作。stream.tmpdir的默认值是/tmp,你需要将这个值设置为一个有更大空间的目录:

-jobconf stream.tmpdir=/export/bigspace/...

如何设置多个输入目录?

可以使用多个-input选项设置多个输入目录:

 hadoop jar hadoop-streaming.jar -input '/user/foo/dir1' -input '/user/foo/dir2' 

如何生成gzip格式的输出文件?

除了纯文本格式的输出,你还可以生成gzip文件格式的输出,你只需设置streaming作业中的选项‘-jobconf mapred.output.compress=true -jobconf mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCode’。

Streaming中如何自定义input/output format?

至少在Hadoop 0.14版本以前,不支持多个jar文件。所以当指定自定义的类时,你要把他们和原有的streaming jar打包在一起,并用这个自定义的jar包替换默认的hadoop streaming jar包。

Streaming如何解析XML文档?

你可以使用StreamXmlRecordReader来解析XML文档。

hadoop jar hadoop-streaming.jar -inputreader "StreamXmlRecord,begin=BEGIN_STRING,end=END_STRING" ..... (rest of the command)

Map任务会把BEGIN_STRING和END_STRING之间的部分看作一条记录。

在streaming应用程序中如何更新计数器?

streaming进程能够使用stderr发出计数器信息。 reporter:counter:<group>,<counter>,<amount> 应该被发送到stderr来更新计数器。

如何更新streaming应用程序的状态?

streaming进程能够使用stderr发出状态信息。 reporter:status:<message> 要被发送到stderr来设置状态。