
Hadoop Map-Reduce Tutorial

Table of contents

1 Purpose...2

2 Pre-requisites..2

3 Overview..2

4 Inputs and Outputs... 3

5 Example: WordCount v1.0.. 3

5.1 Source Code...3

5.2 Usage... 6

5.3 Walk-through...7

6 Map-Reduce - User Interfaces... 8

6.1 Payload.. 9

6.2 Job Configuration.. 12

6.3 Job Submission and Monitoring..13

6.4 Job Input.. 14

6.5 Job Output... 15

6.6 Other Useful Features..16

7 Example: WordCount v2.0.. 18

7.1 Source Code...18

7.2 Sample Runs..24

7.3 Highlights.. 26

Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Purpose

This document comprehensively describes all user-facing facets of the Hadoop Map-Reduce
framework and serves as a tutorial.

2. Pre-requisites

Ensure that Hadoop is installed, configured and is running. More details:

• Hadoop Quickstart for first-time users.
• Hadoop Cluster Setup for large, distributed clusters.

3. Overview

Hadoop Map-Reduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable, fault-tolerant manner.

A Map-Reduce job usually splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the output
of the job are stored in a file-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the Map-Reduce
framework and the Distributed FileSystem are running on the same set of nodes. This
configuration allows the framework to effectively schedule tasks on the nodes where data is
already present, resulting in very high aggregate bandwidth across the cluster.

The Map-Reduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The master is responsible for scheduling the jobs'
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions via implementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits the
job (jar/executable etc.) and configuration to the JobTracker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in JavaTM, Map-Reduce applications need

Hadoop Map-Reduce Tutorial

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

quickstart.html
cluster_setup.html
hdfs_design.html

not be written in Java.

• Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

• Hadoop Pipes is a SWIG- compatible C++ API to implement Map-Reduce applications
(non JNITM based).

4. Inputs and Outputs

The Map-Reduce framework operates exclusively on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and produces a set of
<key, value> pairs as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to
implement the Writable interface. Additionally, the key classes have to implement the
WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a Map-Reduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3,
v3> (output)

5. Example: WordCount v1.0

Before we jump into the details, lets walk through an example Map-Reduce application to get
a flavour for how they work.

WordCount is a simple application that counts the number of occurences of each word in a
given input set.

This works with a local-standalone, pseudo-distributed or fully-distributed Hadoop
installation.

5.1. Source Code

WordCount.java

1. package org.myorg;

2.

3. import java.io.IOException;

4. import java.util.*;

5.

Hadoop Map-Reduce Tutorial

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/streaming/package-summary.html
api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html
quickstart.html#Standalone+Operation
quickstart.html#SingleNodeSetup
quickstart.html#Fully-Distributed+Operation

6. import org.apache.hadoop.fs.Path;

7. import org.apache.hadoop.conf.*;

8. import org.apache.hadoop.io.*;

9. import org.apache.hadoop.mapred.*;

10. import org.apache.hadoop.util.*;

11.

12. public class WordCount {

13.

14. public static class Map extends
MapReduceBase implements
Mapper<LongWritable, Text, Text,
IntWritable> {

15. private final static IntWritable
one = new IntWritable(1);

16. private Text word = new Text();

17.

18. public void map(LongWritable key,
Text value, OutputCollector<Text,
IntWritable> output, Reporter
reporter) throws IOException {

19. String line = value.toString();

20. StringTokenizer tokenizer = new
StringTokenizer(line);

21. while
(tokenizer.hasMoreTokens()) {

22.
word.set(tokenizer.nextToken());

23. output.collect(word, one);

24. }

25. }

26. }

Hadoop Map-Reduce Tutorial

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

27.

28. public static class Reduce extends
MapReduceBase implements
Reducer<Text, IntWritable, Text,
IntWritable> {

29. public void reduce(Text key,
Iterator<IntWritable> values,
OutputCollector<Text, IntWritable>
output, Reporter reporter) throws
IOException {

30. int sum = 0;

31. while (values.hasNext()) {

32. sum += values.next().get();

33. }

34. output.collect(key, new
IntWritable(sum));

35. }

36. }

37.

38. public static void main(String[]
args) throws Exception {

39. JobConf conf = new
JobConf(WordCount.class);

40. conf.setJobName("wordcount");

41.

42.
conf.setOutputKeyClass(Text.class);

43.
conf.setOutputValueClass(IntWritable.class);

44.

45. conf.setMapperClass(Map.class);

46.

Hadoop Map-Reduce Tutorial

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

conf.setCombinerClass(Reduce.class);

47.
conf.setReducerClass(Reduce.class);

48.

49.
conf.setInputFormat(TextInputFormat.class);

50.
conf.setOutputFormat(TextOutputFormat.class);

51.

52. conf.setInputPath(new
Path(args[0]));

53. conf.setOutputPath(new
Path(args[1]));

54.

55. JobClient.runJob(conf);

57. }

58. }

59.

5.2. Usage

Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the
Hadoop version installed, compile WordCount.java and create a jar:

$ mkdir wordcount_classes
$ javac -classpath
${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d
wordcount_classes WordCount.java
$ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .

Assuming that:

• /usr/joe/wordcount/input - input directory in HDFS
• /usr/joe/wordcount/output - output directory in HDFS

Sample text-files as input:

Hadoop Map-Reduce Tutorial

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World Bye World
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
/usr/joe/wordcount/input /usr/joe/wordcount/output

Output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

5.3. Walk-through

The WordCount application is quite straight-forward.

The Mapper implementation (lines 14-26), via the map method (lines 18-25), processes one
line at a time, as provided by the specified TextInputFormat (line 49). It then splits the
line into tokens separated by whitespaces, via the StringTokenizer, and emits a
key-value pair of < <word>, 1>.

For the given sample input the first map emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

Hadoop Map-Reduce Tutorial

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

We'll learn more about the number of maps spawned for a given job, and how to control
them in a fine-grained manner, a bit later in the tutorial.

WordCount also specifies a combiner (line 46). Hence, the output of each map is passed
through the local combiner (which is same as the Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

The Reducer implementation (lines 28-36), via the reduce method (lines 29-35) just
sums up the values, which are the occurence counts for each key (i.e. words in this example).

Thus the output of the job is:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

The run method specifies various facets of the job, such as the input/output paths (passed
via the command line), key/value types, input/output formats etc., in the JobConf. It then
calls the JobClient.runJob (line 55) to submit the and monitor its progress.

We'll learn more about JobConf, JobClient, Tool and other interfaces and classes a bit
later in the tutorial.

6. Map-Reduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
Map-Reduce framwork. This should help users implement, configure and tune their jobs in a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; this is only meant to be a tutorial.

Let us first take the Mapper and Reducer interfaces. Applications typically implement
them to provide the map and reduce methods.

Hadoop Map-Reduce Tutorial

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

We will then discuss other core interfaces including JobConf, JobClient,
Partitioner, OutputCollector, Reporter, InputFormat, OutputFormat
and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
DistributedCache, IsolationRunner etc.

6.1. Payload

Applications typically implement the Mapper and Reducer interfaces to provide the map
and reduce methods. These form the core of the job.

6.1.1. Mapper

Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

The Hadoop Map-Reduce framework spawns one map task for each InputSplit
generated by the InputFormat for the job.

Overall, Mapper implementations are passed the JobConf for the job via the
JobConfigurable.configure(JobConf) method and override it to initialize themselves. The
framework then calls map(WritableComparable, Writable, OutputCollector, Reporter) for
each key/value pair in the InputSplit for that task. Applications can then override the
Closeable.close() method to perform any required cleanup.

Output pairs do not need to be of the same types as input pairs. A given input pair may map
to zero or many output pairs. Output pairs are collected with calls to
OutputCollector.collect(WritableComparable,Writable).

Applications can use the Reporter to report progress, set application-level status messages
and update Counters, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently grouped by the
framework, and passed to the Reducer(s) to determine the final output. Users can control
the grouping by specifying a Comparator via
JobConf.setOutputKeyComparatorClass(Class).

The Mapper outputs are sorted and then partitioned per Reducer. The total number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys

Hadoop Map-Reduce Tutorial

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/Mapper.html
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Mapper.html#map(K1, V1, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)

(and hence records) go to which Reducer by implementing a custom Partitioner.

Users can optionally specify a combiner, via JobConf.setCombinerClass(Class), to
perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer.

The intermediate, sorted outputs are always stored in files of SequenceFile format.
Applications can control if, and how, the intermediate outputs are to be compressed and the
CompressionCodec to be used via the JobConf.

6.1.1.1. How Many Maps?

The number of maps is usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

The right level of parallelism for maps seems to be around 10-100 maps per-node, although it
has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, so it is
best if the maps take at least a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unless setNumMapTasks(int) (which only provides a hint to the framework) is
used to set it even higher.

6.1.2. Reducer

Reducer reduces a set of intermediate values which share a key to a smaller set of values.

The number of reduces for the job is set by the user via JobConf.setNumReduceTasks(int).

Overall, Reducer implementations are passed the JobConf for the job via the
JobConfigurable.configure(JobConf) method and can override it to initialize themselves. The
framework then calls reduce(WritableComparable, Iterator, OutputCollector, Reporter)
method for each <key, (list of values)> pair in the grouped inputs. Applications
can then override the Closeable.close() method to perform any required cleanup.

Reducer has 3 primary phases: shuffle, sort and reduce.

6.1.2.1. Shuffle

Input to the Reducer is the sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, via HTTP.

6.1.2.2. Sort

Hadoop Map-Reduce Tutorial

Page 10
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setCombinerClass(java.lang.Class)
api/org/apache/hadoop/io/SequenceFile.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/Reducer.html
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConfigurable.html#configure(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/io/Closeable.html#close()

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those
for grouping keys before reduction, then one may specify a Comparator via
JobConf.setOutputValueGroupingComparator(Class). Since
JobConf.setOutputKeyComparatorClass(Class) can be used to control how intermediate keys
are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3. Reduce

In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is
called for each <key, (list of values)> pair in the grouped inputs.

The output of the reduce task is typically written to the FileSystem via
OutputCollector.collect(WritableComparable, Writable).

Applications can use the Reporter to report progress, set application-level status messages
and update Counters, or just indicate that they are alive.

The output of the Reducer is not sorted.

6.1.2.4. How Many Reduces?

The right number of reduces seems to be 0.95 or 1.75 multiplied by (<no. of nodes> *
mapred.tasktracker.tasks.maximum).

With 0.95 all of the reduces can launch immediately and start transfering map outputs as
the maps finish. With 1.75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases load
balancing and lowers the cost of failures.

The scaling factors above are slightly less than whole numbers to reserve a few reduce slots
in the framework for speculative-tasks and failed tasks.

6.1.2.5. Reducer NONE

Hadoop Map-Reduce Tutorial

Page 11
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setOutputValueGroupingComparator(java.lang.Class)
api/org/apache/hadoop/mapred/JobConf.html#setOutputKeyComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapred/Reducer.html#reduce(K2, java.util.Iterator, org.apache.hadoop.mapred.OutputCollector, org.apache.hadoop.mapred.Reporter)
api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapred/OutputCollector.html#collect(K, V)

It is legal to set the number of reduce-tasks to zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the FileSystem, into the output
path set by setOutputPath(Path). The framework does not sort the map-outputs before writing
them out to the FileSystem.

6.1.3. Partitioner

Partitioner partitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or
a subset of the key) is used to derive the partition, typically by a hash function. The total
number of partitions is the same as the number of reduce tasks for the job. Hence this
controls which of the m reduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartitioner is the default Partitioner.

6.1.4. Reporter

Reporter is a facility for Map-Reduce applications to report progress, set application-level
status messages and update Counters.

Mapper and Reducer implementations can use the Reporter to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount of
time to process individual key/value pairs, this is crucial since the framework might assume
that the task has timed-out and kill that task. Another way to avoid this is to set the
configuration parameter mapred.task.timeout to a high-enough value (or even set it to
zero for no time-outs).

Applications can also update Counters using the Reporter.

6.1.5. OutputCollector

OutputCollector is a generalization of the facility provided by the Map-Reduce framework to
collect data output by the Mapper or the Reducer (either the intermediate outputs or the
output of the job).

Hadoop Map-Reduce comes bundled with a library of generally useful mappers, reducers,
and partitioners.

6.2. Job Configuration

Hadoop Map-Reduce Tutorial

Page 12
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/Partitioner.html
api/org/apache/hadoop/mapred/lib/HashPartitioner.html
api/org/apache/hadoop/mapred/Reporter.html
api/org/apache/hadoop/mapred/OutputCollector.html
api/org/apache/hadoop/mapred/lib/package-summary.html

JobConf represents a Map-Reduce job configuration.

JobConf is the primary interface for a user to describe a map-reduce job to the Hadoop
framework for execution. The framework tries to faithfully execute the job as described by
JobConf, however:

• f Some configuration parameters may have been marked as final by administrators and
hence cannot be altered.

• While some job parameters are straight-forward to set (e.g. setNumReduceTasks(int)),
other parameters interact subtly with the rest of the framework and/or job configuration
and are more complex to set (e.g. setNumMapTasks(int)).

JobConf is typically used to specify the Mapper, combiner (if any), Partitioner,
Reducer, InputFormat and OutputFormat implementations. JobConf also
indicates the set of input files (setInputPath(Path)/addInputPath(Path)) and where the output
files should be written (setOutputPath(Path)).

Optionally, JobConf is used to specify other advanced facets of the job such as the
Comparator to be used, files to be put in the DistributedCache, whether
intermediate and/or job outputs are to be compressed (and how), debugging via
user-provided scripts (setMapDebugScript(String)/setReduceDebugScript(String)) , whether
job tasks can be executed in a speculative manner (setSpeculativeExecution(boolean)) ,
maximum number of attempts per task
(setMaxMapAttempts(int)/setMaxReduceAttempts(int)) , percentage of tasks failure which
can be tolerated by the job
(setMaxMapTaskFailuresPercent(int)/setMaxReduceTaskFailuresPercent(int)) etc.

Of course, users can use set(String, String)/get(String, String) to set/get arbitrary parameters
needed by applications. However, use the DistributedCache for large amounts of
(read-only) data.

6.3. Job Submission and Monitoring

JobClient is the primary interface by which user-job interacts with the JobTracker.

JobClient provides facilities to submit jobs, track their progress, access component-tasks'
reports/logs, get the Map-Reduce cluster's status information and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.
2. Computing the InputSplit values for the job.
3. Setting up the requisite accounting information for the DistributedCache of the job,

if necessary.

Hadoop Map-Reduce Tutorial

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html
api/org/apache/hadoop/conf/Configuration.html#FinalParams
api/org/apache/hadoop/mapred/JobConf.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setNumMapTasks(int)
api/org/apache/hadoop/mapred/JobConf.html#setInputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#addInputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setOutputPath(org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapred/JobConf.html#setMapDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setReduceDebugScript(java.lang.String)
api/org/apache/hadoop/mapred/JobConf.html#setSpeculativeExecution(boolean)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxMapTaskFailuresPercent(int)
api/org/apache/hadoop/mapred/JobConf.html#setMaxReduceTaskFailuresPercent(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)
api/org/apache/hadoop/mapred/JobClient.html

4. Copying the job's jar and configuration to the map-reduce system directory on the
FileSystem.

5. Submitting the job to the JobTracker and optionally monitoring it's status.

Normally the user creates the application, describes various facets of the job via JobConf,
and then uses the JobClient to submit the job and monitor its progress.

6.3.1. Job Control

Users may need to chain map-reduce jobs to accomplish complex tasks which cannot be done
via a single map-reduce job. This is fairly easy since the output of the job typically goes to
distributed file-system, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

• runJob(JobConf) : Submits the job and returns only after the job has completed.
• submitJob(JobConf) : Only submits the job, then poll the returned handle to the

RunningJob to query status and make scheduling decisions.
• JobConf.setJobEndNotificationURI(String) : Sets up a notification upon job-completion,

thus avoiding polling.

6.4. Job Input

InputFormat describes the input-specification for a Map-Reduce job.

The Map-Reduce framework relies on the InputFormat of the job to:

1. Validate the input-specification of the job.
2. Split-up the input file(s) into logical InputSplit instances, each of which is then

assigned to an individual Mapper.
3. Provide the RecordReader implementation used to glean input records from the

logical InputSplit for processing by the Mapper.

The default behavior of file-based InputFormat implementations, typically sub-classes of
FileInputFormat, is to split the input into logical InputSplit instances based on the total
size, in bytes, of the input files. However, the FileSystem blocksize of the input files is
treated as an upper bound for input splits. A lower bound on the split size can be set via
mapred.min.split.size.

Clearly, logical splits based on input-size is insufficient for many applications since record
boundaries must be respected. In such cases, the application should implement a
RecordReader, who is responsible for respecting record-boundaries and presents a
record-oriented view of the logical InputSplit to the individual task.

Hadoop Map-Reduce Tutorial

Page 14
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobClient.html#runJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/JobClient.html#submitJob(org.apache.hadoop.mapred.JobConf)
api/org/apache/hadoop/mapred/RunningJob.html
api/org/apache/hadoop/mapred/JobConf.html#setJobEndNotificationURI(java.lang.String)
api/org/apache/hadoop/mapred/InputFormat.html
api/org/apache/hadoop/mapred/FileInputFormat.html

TextInputFormat is the default InputFormat.

6.4.1. InputSplit

InputSplit represents the data to be processed by an individual Mapper.

Typically InputSplit presents a byte-oriented view of the input, and it is the
responsibility of RecordReader to process and present a record-oriented view.

FileSplit is the default InputSplit. It sets map.input.file to the path of the input
file for the logical split.

6.4.2. RecordReader

RecordReader reads <key, value> pairs from an InputSplit.

Typically the RecordReader converts the byte-oriented view of the input, provided by the
InputSplit, and presents a record-oriented to the Mapper implementations for
processing. RecordReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.5. Job Output

OutputFormat describes the output-specification for a Map-Reduce job.

The Map-Reduce framework relies on the OutputFormat of the job to:

1. Validate the output-specification of the job; for example, check that the output directory
doesn't already exist.

2. Provide the RecordWriter implementation used to write the output files of the job.
Output files are stored in a FileSystem.

TextOutputFormat is the default OutputFormat.

6.5.1. Task Side-Effect Files

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or Reducer
running simultaneously (for example, speculative tasks) trying to open and/or write to the
same file (path) on the FileSystem. Hence the application-writer will have to pick unique
names per task-attempt (using the taskid, say
task_200709221812_0001_m_000000_0), not just per task.

Hadoop Map-Reduce Tutorial

Page 15
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/TextInputFormat.html
api/org/apache/hadoop/mapred/InputSplit.html
api/org/apache/hadoop/mapred/FileSplit.html
api/org/apache/hadoop/mapred/RecordReader.html
api/org/apache/hadoop/mapred/OutputFormat.html

To avoid these issues the Map-Reduce framework maintains a special
${mapred.output.dir}/_${taskid} sub-directory for each task-attempt on the
FileSystem where the output of the task-attempt is stored. On successful completion of
the task-attempt, the files in the ${mapred.output.dir}/_${taskid} (only) are
promoted to ${mapred.output.dir}. Of course, the framework discards the
sub-directory of unsuccessful task-attempts. This process is completely transparent to the
application.

The application-writer can take advantage of this feature by creating any side-files required
in ${mapred.output.dir} during execution of a task via JobConf.getOutputPath(), and
the framework will promote them similarly for succesful task-attempts, thus eliminating the
need to pick unique paths per task-attempt.

6.5.2. RecordWriter

RecordWriter writes the output <key, value> pairs to an output file.

RecordWriter implementations write the job outputs to the FileSystem.

6.6. Other Useful Features

6.6.1. Counters

Counters represent global counters, defined either by the Map-Reduce framework or
applications. Each Counter can be of any Enum type. Counters of a particular Enum are
bunched into groups of type Counters.Group.

Applications can define arbitrary Counters (of type Enum) and update them via
Reporter.incrCounter(Enum, long) in the map and/or reduce methods. These counters are
then globally aggregated by the framework.

6.6.2. DistributedCache

DistributedCache distributes application-specific, large, read-only files efficiently.

DistributedCache is a facility provided by the Map-Reduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs:// or http://) in the JobConf. The
DistributedCache assumes that the files specified via hdfs:// urls are already present on
the FileSystem.

The framework will copy the necessary files to the slave node before any tasks for the job are

Hadoop Map-Reduce Tutorial

Page 16
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/JobConf.html#getOutputPath()
api/org/apache/hadoop/mapred/RecordWriter.html
api/org/apache/hadoop/mapred/Reporter.html#incrCounter(java.lang.Enum, long)
api/org/apache/hadoop/filecache/DistributedCache.html

executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

DistributedCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip files) are un-archived at the slave
nodes. Jars maybe be optionally added to the classpath of the tasks, a rudimentary software
distribution mechanism. Files have execution permissions set. Optionally users can also
direct the DistributedCache to symlink the cached file(s) into the working directory of
the task.

DistributedCache tracks the modification timestamps of the cached files. Clearly the
cache files should not be modified by the application or externally while the job is executing.

6.6.3. Tool

The Tool interface supports the handling of generic Hadoop command-line options.

Tool is the standard for any Map-Reduce tool or application. The application should
delegate the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>
-D <property=value>
-fs <local|namenode:port>
-jt <local|jobtracker:port>

6.6.4. IsolationRunner

IsolationRunner is a utility to help debug Map-Reduce programs.

To use the IsolationRunner, first set keep.failed.tasks.files to true (also
see keep.tasks.files.pattern).

Next, go to the node on which the failed task ran and go to the TaskTracker's local
directory and run the IsolationRunner:
$ cd <local path>/taskTracker/${taskid}/work
$ bin/hadoop org.apache.hadoop.mapred.IsolationRunner
../job.xml

IsolationRunner will run the failed task in a single jvm, which can be in the debugger,
over precisely the same input.

Hadoop Map-Reduce Tutorial

Page 17
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/mapred/IsolationRunner.html

6.6.5. JobControl

JobControl is a utility which encapsulates a set of Map-Reduce jobs and their dependencies.

7. Example: WordCount v2.0

Here is a more complete WordCount which uses many of the features provided by the
Map-Reduce framework we discussed so far.

This needs the HDFS to be up and running, especially for the DistributedCache-related
features. Hence it only works with a pseudo-distributed or fully-distributed Hadoop
installation.

7.1. Source Code

WordCount.java

1. package org.myorg;

2.

3. import java.io.*;

4. import java.util.*;

5.

6. import org.apache.hadoop.fs.Path;

7. import
org.apache.hadoop.filecache.DistributedCache;

8. import org.apache.hadoop.conf.*;

9. import org.apache.hadoop.io.*;

10. import org.apache.hadoop.mapred.*;

11. import org.apache.hadoop.util.*;

12.

13. public class WordCount extends
Configured implements Tool {

14.

15. public static class Map extends

Hadoop Map-Reduce Tutorial

Page 18
Copyright © 2007 The Apache Software Foundation. All rights reserved.

api/org/apache/hadoop/mapred/jobcontrol/package-summary.html
quickstart.html#SingleNodeSetup
quickstart.html#Fully-Distributed+Operation

MapReduceBase implements
Mapper<LongWritable, Text, Text,
IntWritable> {

16.

17. static enum Counters {
INPUT_WORDS }

18.

19. private final static IntWritable
one = new IntWritable(1);

20. private Text word = new Text();

21.

22. private boolean caseSensitive =
true;

23. private Set<String>
patternsToSkip = new
HashSet<String>();

24.

25. private long numRecords = 0;

26. private String inputFile;

27.

28. public void configure(JobConf
job) {

29. caseSensitive =
job.getBoolean("wordcount.case.sensitive",
true);

30. inputFile =
job.get("map.input.file");

31.

32. if
(job.getBoolean("wordcount.skip.patterns",
false)) {

33. Path[] patternsFiles = new
Path[0];

Hadoop Map-Reduce Tutorial

Page 19
Copyright © 2007 The Apache Software Foundation. All rights reserved.

34. try {

35. patternsFiles =
DistributedCache.getLocalCacheFiles(job);

36. } catch (IOException ioe) {

37. System.err.println("Caught
exception while getting cached
files: " +
StringUtils.stringifyException(ioe));

38. }

39. for (Path patternsFile :
patternsFiles) {

40. parseSkipFile(patternsFile);

41. }

42. }

43. }

44.

45. private void parseSkipFile(Path
patternsFile) {

46. try {

47. BufferedReader fis = new
BufferedReader(new
FileReader(patternsFile.toString()));

48. String pattern = null;

49. while ((pattern =
fis.readLine()) != null) {

50. patternsToSkip.add(pattern);

51. }

52. } catch (IOException ioe) {

53. System.err.println("Caught
exception while parsing the cached
file '" + patternsFile + "' : " +
StringUtils.stringifyException(ioe));

Hadoop Map-Reduce Tutorial

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

54. }

55. }

56.

57. public void map(LongWritable key,
Text value, OutputCollector<Text,
IntWritable> output, Reporter
reporter) throws IOException {

58. String line = (caseSensitive) ?
value.toString() :
value.toString().toLowerCase();

59.

60. for (String pattern :
patternsToSkip) {

61. line = line.replaceAll(pattern,
"");

62. }

63.

64. StringTokenizer tokenizer = new
StringTokenizer(line);

65. while
(tokenizer.hasMoreTokens()) {

66.
word.set(tokenizer.nextToken());

67. output.collect(word, one);

68.
reporter.incrCounter(Counters.INPUT_WORDS,
1);

69. }

70.

71. if ((++numRecords % 100) == 0) {

72. reporter.setStatus("Finished
processing " + numRecords + "
records " + "from the input file: "

Hadoop Map-Reduce Tutorial

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

+ inputFile);

73. }

74. }

75. }

76.

77. public static class Reduce extends
MapReduceBase implements
Reducer<Text, IntWritable, Text,
IntWritable> {

78. public void reduce(Text key,
Iterator<IntWritable> values,
OutputCollector<Text, IntWritable>
output, Reporter reporter) throws
IOException {

79. int sum = 0;

80. while (values.hasNext()) {

81. sum += values.next().get();

82. }

83. output.collect(key, new
IntWritable(sum));

84. }

85. }

86.

87. public int run(String[] args)
throws Exception {

88. JobConf conf = new
JobConf(getConf(), WordCount.class);

89. conf.setJobName("wordcount");

90.

91.
conf.setOutputKeyClass(Text.class);

Hadoop Map-Reduce Tutorial

Page 22
Copyright © 2007 The Apache Software Foundation. All rights reserved.

92.
conf.setOutputValueClass(IntWritable.class);

93.

94. conf.setMapperClass(Map.class);

95.
conf.setCombinerClass(Reduce.class);

96.
conf.setReducerClass(Reduce.class);

97.

98.
conf.setInputFormat(TextInputFormat.class);

99.
conf.setOutputFormat(TextOutputFormat.class);

100.

101. List<String> other_args = new
ArrayList<String>();

102. for (int i=0; i < args.length;
++i) {

103. if ("-skip".equals(args[i])) {

104.
DistributedCache.addCacheFile(new
Path(args[++i]).toUri(), conf);

105.
conf.setBoolean("wordcount.skip.patterns",
true);

106. } else {

107. other_args.add(args[i]);

108. }

109. }

110.

111. conf.setInputPath(new
Path(other_args.get(0)));

Hadoop Map-Reduce Tutorial

Page 23
Copyright © 2007 The Apache Software Foundation. All rights reserved.

112. conf.setOutputPath(new
Path(other_args.get(1)));

113.

114. JobClient.runJob(conf);

115. return 0;

116. }

117.

118. public static void main(String[]
args) throws Exception {

119. int res = ToolRunner.run(new
Configuration(), new WordCount(),
args);

120. System.exit(res);

121. }

122. }

123.

7.2. Sample Runs

Sample text-files as input:

$ bin/hadoop dfs -ls /usr/joe/wordcount/input/
/usr/joe/wordcount/input/file01
/usr/joe/wordcount/input/file02
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01
Hello World, Bye World!
$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.

Run the application:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
/usr/joe/wordcount/input /usr/joe/wordcount/output

Output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000

Hadoop Map-Reduce Tutorial

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Bye 1
Goodbye 1
Hadoop, 1
Hello 2
World! 1
World, 1
hadoop. 1
to 1

Notice that the inputs differ from the first version we looked at, and how they affect the
outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, via the
DistributedCache.

$ hadoop dfs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to

Run it again, this time with more options:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
-Dwordcount.case.sensitive=true /usr/joe/wordcount/input
/usr/joe/wordcount/output -skip
/user/joe/wordcount/patterns.txt

As expected, the output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 1
Hello 2
World 2
hadoop 1

Run it once more, this time switch-off case-sensitivity:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount
-Dwordcount.case.sensitive=false /usr/joe/wordcount/input
/usr/joe/wordcount/output -skip
/user/joe/wordcount/patterns.txt

Hadoop Map-Reduce Tutorial

Page 25
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Sure enough, the output:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000
bye 1
goodbye 1
hadoop 2
hello 2
world 2

7.3. Highlights

The second version of WordCount improves upon the previous one by using some features
offered by the Map-Reduce framework:

• Demonstrates how applications can access configuration parameters in the configure
method of the Mapper (and Reducer) implementations (lines 28-43).

• Demonstrates how the DistributedCache can be used to distribute read-only data
needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 104).

• Demonstrates the utility of the Tool interface and the GenericOptionsParser to
handle generic Hadoop command-line options (lines 87-116, 119).

• Demonstrates how applications can use Counters (line 68) and how they can set
application-specific status information via the Reporter instance passed to the map
(and reduce) method (line 72).

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Hadoop Map-Reduce Tutorial

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Pre-requisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Walk-through

	6 Map-Reduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE

	6.1.3 Partitioner
	6.1.4 Reporter
	6.1.5 OutputCollector

	6.2 Job Configuration
	6.3 Job Submission and Monitoring
	6.3.1 Job Control

	6.4 Job Input
	6.4.1 InputSplit
	6.4.2 RecordReader

	6.5 Job Output
	6.5.1 Task Side-Effect Files
	6.5.2 RecordWriter

	6.6 Other Useful Features
	6.6.1 Counters
	6.6.2 DistributedCache
	6.6.3 Tool
	6.6.4 IsolationRunner
	6.6.5 JobControl

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Highlights

