
All About Gump Presentation

1

Workflow model

GM

Gumpy

AR

RM

Dynagump

Descriptors

At a very high level, this is what gump does. We’ll be looking at each
of the items described here seperately.

•User edits project descriptor and commits
•Projects maintain their own descriptors (based on the GOM or
mavens POM)
•The Gump Metadata (GM) is built from those GOMs and POMS (as a
RDBMS, potentially)
•Gump checks out or updates stuff and runs build scripts
•Gump sends certain output into the artifact repository
•Gump sends build results and information into the Runtime
Metadata (RDBMS with history information)
•Dynagump sends e-mails and the like based on that
•Dynagump generates user reports on demand

All About Gump Presentation

2

DescriptorsDescriptors

<workspace>

<module>
<svn …/>

<project name=“myproject”>
<ant target=“jar”/>
<jar name=“build/myproject.jar”/>

<depend name=“otherproject”/>

…

</project>

</module>

<module href=“project/other.xml”>
</workspace>

•XML files. Most live in Gump CVS (will live in Gump SVN).
•Similar to maven project.xml files
•Can split up into multiple files (across repositories) using hrefs
•<module/> for each CVS or SVN module
•<project/>, usually for each “unit” that produces something (ie a jar
file), may also run tests or generate docs or …
•Projects declare inputs (dependencies), outputs, and build
commands (<ant/>, <maven/>, <mkdir/>…)

•See http://gump.apache.org/metadata/, actually a lot of docs on these
•Learn by example…look at setups for other projects…

TODO:
•We want to make gump read maven project.xml files…

All About Gump Presentation

3

Metadata

Workspace

Module Module Module

ProjectProject Project

CmdCmd Cmd

GM

Gumpy builds an object graph in memory (gump.model package)
which contains all the gump “intelligence” regarding the model, for
example, it will fill out the model with defaults if some elements are
omitted, and transform the way dependencies are specified into a
standard way.

It is a bit of a shame that most of what goes on here is not
documented. Rather, the assumptions made here can only be
retrieved from seeing how the actual XML descriptors we use actually
lead up to something. Fortunately for end users, you never need to
see most of this.

All About Gump Presentation

4

Artifact Repository

myproject.jar

AR

Gumpy maintains a repository of all the stuff that it has built. But we
consider it internal-use only: because Gump is inherently unsecure
(we download arbitrary code from arbitrary CVS that can execute
arbitrary commands), these files could contains bugs or even viruses!

All About Gump Presentation

5

Gumpy

Loader <<creates>>

Descriptors

<<reads>> Run

Runner
Actor

Actor

Actor
<<creates>>

<<runs>>

<<reads,annotates>>

<<interacts>>

CLI<<starts>>

UpdaterCheckouts
<<updates>>

Builder
<<runs>>

GM

Workspace

Module Module Module

ProjectProject Project

CmdCmd Cmd
<<runs>>

SVN,CMS,
Files,

Mailing lists,
Database,
Website,

…

<<runs>>

Gumpy

1

2

3

4 5

Gumpy is our “buildmeister”, an object-oriented python engine which
handles all different kinds of tasks, which we split up into bits called
“Work”. These Work items are handled by either a core component
(Runner, Loader, Updater or Builder) or by an Actor (documenter,
notifier, and others).

The workflow is as follows:
•A command is started from a cronjob
•This command does a self-update, initialization, parses options,
sets up logging, etc
•Now, a Runner is created, which contains most of the core build logic
•It delegates to the Loader to build a Gump Object Model in memory
from the xml descriptors
•Next it fires up the Update which checks out or updates materials
from version control
•It is now time to start doing “real” things.
•The main task is building all the different projects, which the Builder
handles.
•The runner also references several Actors, which can cause “side
effects”, like sending out e-mail.

TODOs:
•It would probably be better to make Builder, Updater and perhaps
even Loader into Actors as well
•It might be a good idea to stash the Gump Metadata into a relational
database instead of a python object graph
•The GM right now contains quite a bit of logic which might best be
offloaded elsewhere

All About Gump Presentation

6

Runtime Metadata (RM)

Host

Workspace

Run

Build

Package
0

n 0

0

0

n
n

n

Result 1 1
Project_version

0

n

ProjectModule
1

1

dependencies

time-invariant

success|failure|halt

address|properties uri|timestamp uri|name

environment

uri|log timestamp

uri|descriptor
url|descriptor

RM

The RM database is the basis for most of gump’s “intelligent”
behaviour. By careful analysis of the data in this database, we can
figure out who caused what to break when, which projects are long-
term problematic, etc etc.

The RM database is different from what happens before it (ie the stuff
that Gumpy does) in that it models time. Gumpy simply runs several
times a day and publishes the result of each run, but it doesn’t try and
compare those runs to each other. Instead, Gumpy pushes data into
the RM so that Dynagump can do that analysis.

•Hosts are identifiers for physical machines; besides an address (ie
brutus.apache.org) they have certain info about it, like the # and type
of cpu.
•Workspaces are gump runs configured with some particular set of
parameters that might influence the way it builds (like the “live” build
or the “kaffe” build on a machine). Decisions which change over time
(by a gump admin changing something) are in the workspace rather
than directly with the host.
•Runs are the complete sets of results for any particular gump run.
They specify what installed packages (for example java version or
kernel version) was built against, ie the entire environment, as well
as all the builds that were run. Things which change over time (out of
the gump admin’s direct concious control) are part of a run rather
than the workspace.
•Builds are the “meat” of the model. There is a-build-per-project-per-
run. Among other things, we associate the build log (console output)
of executing a particular project build with this table.
•Results are integers defining what state the build ended in (ie,
success or failure).
•The project_version is a project-at-a-specific-timestamp. Projects
depend on other projects (with usually nearly the same timestamp)
so this table defines the dependencies.
•Projects are what corresponds to the Gump Object Model
representations of projects. They’re always checked out from a
module, hence always reference one.
•Modules are what corresponds to a particular branch or tag of a
particular svn or cvs sourcetree, and as such correspond to the
Gump Object Model representation of modules.

All About Gump Presentation

7

Dynagump

I don’t really get it!
Could you make gump easier to
use?
And make it a little prettier as
well?

DynaGump is currently under development. We don’t know exactly
what it will look like (Shiny! Sweet! Cool!) and its featureset is still
being thought about. The key thing we want to do here is make gump
easier to use. Better reporting, friendlier e-mails, etc etc.

Watch this space!

