Workflow model

(/1
\~Descriptors
B I I
R \ /v

©/

Gumpy

Dynagump

L

(v

L

Descriptors

<workspace>
<module>
<svn ../>

<project name=“"myproject”>
<ant target=%“jar”/>
<jar name=“build/myproject.jar”/>
<depend name=“otherproject”/>

</project>
</module>
<module href=“project/other.xml”>
</workspace>

>
Metadata

< Workspace >

< Proje Ct > »< Proje Ct > < Proje Ct >

Artifact Repository

@

Gumpy

<<runs>>

Gumpy

<<updates
Checkouts [|

<<reads>>
\

Descriptors

.

CLI 1
<<runs>> <<SAZ‘W
Builder 4
Runner
Updater (3 <<runs>>
<<creates>>
Loader (2 <<creates>>

e

GM

Project)

C Module

Project) Project

Cmd Cmd

Cmd

<<runs=>=>

Actor @

s A
—————

Actor

Actor]¢

<<reads,annotates>>

<<jnteracts>>

SVN,CMS,
Files,
Mailing lists,
Database,
Web site,

>

Runtime Metadata (RM)

time-invariant

environment

Host

address|properties

Run

uriltimestamp

Package

urilname

dependencies

Result

success|failure|halt

- 1

Project

urildescriptor

Module

url|descriptor

Dynagump

| don’t really get it!
Could you make gump easier to

And make it a little prettier as well?

Gumpy Runner algorithm (1)
D7 S ® NS S)

X+ X-
A+ Project A”buil X-1 X X-1

successfully

A Project “A” failed to
= build successfully (X_ 1)y
A* Last successful build y

of proejct “A” X —

A Send e-mail to
project ‘A”
Send e-mail to
project “A” if this state
has persisted for
“a while”

Build project
‘A” against “B*”

B*

Gumpy Runner algorithm (2)

Complete algorithm: : .
A+ <« 2
B®

S

C -
+

0 >

This tree shows the basic control flow
for gumpy. “Build all projects starting
from the top of the tree (“A”), if
successful, use that build further on,
otherwise, use one from a previous run
(“A*”).Send e-mail to “A” or “B” based on
the result of those attempts.

There are several things not clearly
shown here (like the fact that most
projects have multiple dependencies),
but the “basics” of detecting “cause” are
in there.

