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DescriptorsDescriptors

<workspace>

<module>
<svn …/>

<project name=“myproject”>
<ant target=“jar”/>
<jar name=“build/myproject.jar”/>

<depend name=“otherproject”/>
…

</project>

</module>

<module href=“project/other.xml”>

</workspace>
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Artifact Repository
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Runtime Metadata (RM)
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Dynagump

I don’t really get it!
Could you make gump easier to
use?
And make it a little prettier as well?



Gumpy Runner algorithm (1)
Building blocks:

A Building project “A”

A+ Project “A” built
successfully

A- Project “A” failed to
build successfully

A* Last successful build
of proejct “A”

A Send e-mail to
project “A”

A
Send e-mail to
project “A” if this state
has persisted for
“a while”

A
Build project 
“A” against “B*”

B*

Algorithm parts:
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Gumpy Runner algorithm (2)
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Complete algorithm:
This tree shows the basic control flow
for gumpy. “Build all projects starting
from the top of the tree (“A”), if
successful, use that build further on,
otherwise, use one from a previous run
(“A*”).Send e-mail to “A” or “B” based on
the result of those attempts.

There are several things not clearly
shown here (like the fact that most
projects have multiple dependencies),
but the “basics” of detecting “cause” are
in there.


