
Workflow model

GM

Gumpy

AR

RM

Dynagump

Descriptors

DescriptorsDescriptors

<workspace>

<module>
<svn …/>

<project name=“myproject”>
<ant target=“jar”/>
<jar name=“build/myproject.jar”/>

<depend name=“otherproject”/>
…

</project>

</module>

<module href=“project/other.xml”>

</workspace>

Metadata

Workspace

Module Module Module

ProjectProject Project

CmdCmd Cmd

GM

Artifact Repository

myproject.jar

AR

Gumpy

Loader <<creates>>

Descriptors

<<reads>> Run

Runner
Actor

Actor

Actor
<<creates>>

<<runs>>

<<reads,annotates>>

<<interacts>>

CLI<<starts>>

UpdaterCheckouts
<<updates>>

Builder
<<runs>>

GM

Workspace

Module Module Module

ProjectProject Project

CmdCmd Cmd
<<runs>>

SVN,CMS,
Files,

Mailing lists,
Database,
Website,

…

<<runs>>

Gumpy

1

2

3

4 5

Runtime Metadata (RM)

Host

Workspace

Run

Build

Package
0

n 0

0

0

n
n

n

Result 1 1 Project_version

0

n

ProjectModule
1

1

dependencies

time-invariant

success|failure|halt

address|properties uri|timestamp uri|name

environment

uri|log timestamp

uri|descriptor
url|descriptor

RM

Dynagump

I don’t really get it!
Could you make gump easier to
use?
And make it a little prettier as well?

Gumpy Runner algorithm (1)
Building blocks:

A Building project “A”

A+ Project “A” built
successfully

A- Project “A” failed to
build successfully

A* Last successful build
of proejct “A”

A Send e-mail to
project “A”

A
Send e-mail to
project “A” if this state
has persisted for
“a while”

A
Build project
“A” against “B*”

B*

Algorithm parts:

X X (X-1)*
X+

X-1 X X,X-1
X-

X (X-1)y

X+
X X

X-X
y

X
0

X X
1

X

X X *

X
y X

X+1 X+1
*

X+y X+y
*

X+y
..

X+y
*..

Gumpy Runner algorithm (2)

A

B
A+

A-

A
2

C
B+

D
C+

D+

B-

B
2

C-

C
1

D-

D
0

Complete algorithm:
This tree shows the basic control flow
for gumpy. “Build all projects starting
from the top of the tree (“A”), if
successful, use that build further on,
otherwise, use one from a previous run
(“A*”).Send e-mail to “A” or “B” based on
the result of those attempts.

There are several things not clearly
shown here (like the fact that most
projects have multiple dependencies),
but the “basics” of detecting “cause” are
in there.

