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Descriptors

<workspace>
<module>
<svn ../>

<project name=“"myproject”>
<ant target=%“jar”/>
<jar name=“build/myproject.jar”/>
<depend name=“otherproject”/>

</project>
</module>
<module href=“project/other.xml”>
</workspace>
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Runtime Metadata (RM)

time-invariant
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Host

address|properties

Run
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urilname

dependencies

Result

success|failure|halt

- 1

Project

urildescriptor

Module
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Dynagump

| don’t really get it!
Could you make gump easier to

And make it a little prettier as well?



Gumpy Runner algorithm (1)
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Gumpy Runner algorithm (2)
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This tree shows the basic control flow
for gumpy. “Build all projects starting
from the top of the tree (“A”), if
successful, use that build further on,
otherwise, use one from a previous run
(“A*”).Send e-mail to “A” or “B” based on
the result of those attempts.

There are several things not clearly
shown here (like the fact that most
projects have multiple dependencies),
but the “basics” of detecting “cause” are
in there.



