Gora Tutorial

Table of contents

I g1 0o 1 (o] o PSSP 3
I T g1 doe (0loi (o] o (o T € o] - 1N PP 3
2 Setting Up the ENVIFONMENE. ..ot 3
2.1 SEING UP GOTAL....cueiiieiiieieeieeiee ettt sttt e st b e bbb e se e e e e e e e e nne e nnas 3
2.2 SELtiNG UP HBASE.....c.eiiieeeeee ettt 4
2.3 CONFIGUITNG GOF@L.....eeiitieiieeiee et e sttt see et e e be e s be e e s e e sseeebeesaeeenreesseeenneenns 5
3 MOdelling the dataccoeeiiiieece et re e 5
3.1 Data for the TULOrT@l..........coeeieieeese e 5
3.2 DefiNiNg data DEANS..........coeiiiieiee s 6
3.3 ComMPIlING AVIO SCREIMES........ccuiiiiiiitiiterieee et 6
3.4 Defining data StOre MaPPINGS. ...c.eeeeierreriereesieeeeseesteseesreessesessseessesesssesssessesssesssens 8
4 BASIC APl .o ettt na e b nre e renrs 9
4.1 ParsinNg the TOQS.......ceuiieeiece ettt s te e te et e sreesneenneeneenneas 9
4.2 Storing ObjectS iN the DalaStOre........ccveieecee e 12
4.3 ClOSING the DELASIOIE..........ccirieeiieieiesie et nrenne s 12
4.4 Persisted data in HBESE.......ccccviieiieieeie sttt 13
4.5 Fetching objects from data SLOre..........cccoveiiiieeiiee s 14
4.6 QUENYING ODJECES ... ere e 15
LA D 1= T g To] oo £ 16
5 MaPREAUCE SUPPOIT......c.eeieeseeeie et esee st te e steete e e saeeeesseetesseesseeseeneesreensennee e 17
5.1 Log analytics in MBPREUUCEccoiuiiiriiriiriinereeee e 17
5.2 Setting up the enVIroNMENT...........ccoiiiiiee e 17

5.3 MOAEING the QaLAc..eeeiieeeieee e 18

Gora Tutorial

5.4 CONSLIUCING the JOD ... 20
5.5 Gora mappers and using GOra an iNPULcecveceeeereese e see e eee e 21
5.6 Gora reducers and uSiNGg GOra @S OULPUL.........ccveruerierierieriereneeeeeesee e see e sseeneas 21
5.7 RUNNING thE JOD ..o 22
6 MO EXAIMPIES......eeiiiiieeieeie ettt sttt st sttt st b et e e e b e et e ae e beeneas 24
A == |0 oSSR 24

Page 2

Gora Tutorial

Author : Enis Soztutar, enis [at] apache [dot] org

1 Introduction

Thisisthe official tutorial for Apache Gora. For this tutorial, we will be implementing a
system to store our web server logsin Apache HBase, and analyze the results using Apache
Hadoop and store the results either in HSQLDB or MySQL..

In this tutorial we will first look at how to set up the environment and configure Gora and the
data stores. Later, we will go over the data we will use and define the data beans that will be
used to interact with the persistency layer. Next, we will go over the API of Gorato do some
basi ¢ tasks such as storing objects, fetching and querying objects, and deleting objects. Last,
we will go over an example program which uses Hadoop M apReduce to analyze the web
server logs, and discuss the Gora MapReduce API in some detail.

1.1 Introduction to Gora

The Apache Gora open source framework provides an in-memory data model and persistence
for big data. Gora supports persisting to column stores, key value stores, document stores

and RDBMSs, and analyzing the data with extensive Apache Hadoop MapReduce support.

In Avro, the beans to hold the data and RPC interfaces are defined using a JSON schema. In
mapping the data beans to data store specific settings, Gora depends on mapping files, which
are specific to each data store. Unlike other ORM implementations, Gora the data bean to
data store specific schema mapping is explicit. This has the advantage that, when using data
models such as HBase and Cassandra, you can always know how the values are persisted.

Gorahas amodular architecture. Most of the data storesin Gora, hasit's own module, such
asgor a- hbase, gora-cassandr a, andgor a- sql . Inyour projects, you need to
only include the artifacts from the modules you use. Y ou can consult the Setting up your
project section in the quick start guide.

2 Setting up the environment

2.1 Setting up Gora

Asafirst step, we need to download and compile the Gora source code. The source codes for
the tutorial isinthegor a- t ut ori al module. If you have already downloaded Gora, that's
cool, otherwise, please go over the steps at the Quick Start guide for how to download and
compile Gora.

Now, after the source code for Gorais at hand, let's have alook at the files under the
directory gora-tutori al .

Page 3

quickstart.html#Setting+up+your+project
quickstart.html#Setting+up+your+project
quickstart.html

Gora Tutorial

$ cd gora-tutori al
$ tree

Since gora-tutoria isatop level module of Gora, it depends on the directory structure
imposed by Gora's main build scripts (bui | d. xm and bui | d- common. xm with vy
and pom.xml for Maven). The Java source code residesin directory src/ mai n/j aval/,
avro schemasinsr c/ mai n/ avr o/ , and datainsr c/ mai n/ r esour ces/ .

2.2 Setting up HBase

For thistutorial we will be using HBase to store the logs. For those of you not familiar with
HBase, it isaNoSQL column store with an architecture very similar to Google's BigTable.

If you don't already have already HBase setup, you can go over the stepsat HBase Overview
documentation. Although Gora aims to support the most recent HBase versions, the above
tutoria is specifically for HBase 0.20.6 (don't worry the principals are the same), so
download aversion from HBase releases. After extracting the file, cd to the hbase-${ dist}
directory and start the HBase server.

Page 4

http://hbase.apache.org/
http://hbase.apache.org/docs/r0.20.6/api/overview-summary.html#overview_description
http://hbase.apache.org/releases.html

Gora Tutorial

$ bin/start-hbase. sh
and make sure that HBase is available by using the Hbase shell.
$ bi n/ hbase shell

2.3 Configuring Gora

Gorais configured through afile in the classpath named gor a. pr operti es. Wewill be
using the following filegor a-t ut ori al / conf/ gor a. properties

gor a. dat ast or e. def aul t =or g. apache. gor a. hbase. st ore. HBaseSt or e
gor a. dat ast or e. aut ocr eat eschema=t r ue

Thisfile states that the default store will be HBase St or e, and schemas(tables) should be
automatically created.

More information for configuring different settings in gora.properties can be found here.

3 Modelling the data

3.1 Data for the tutorial

For thistutorial, we will be parsing and storing the logs of aweb server. Some example logs
areat src/ mai n/ resour ces/ access. | og. t ar. gz, which belongsto the (now
shutdown) server at http://www.buldinle.com/. Example logs contain 10,000 lines, between
dates 2009/03/10 - 2009/03/15.

The first thing, we need to do isto extract the logs.

$ tar zxvf src/main/resources/access.log.tar.gz -C src/ main/
resour ces/

Y ou can aso use your own log files, given that the log format is Combined L og Format.
Some example lines from the log are:

88.254.190. 73 - - [10/ Mar/2009: 20: 40: 26 +0200] "CET /

HTTP/1.1" 200 43 "http://ww. bul dinle.com™ "Mzilla/4.0
(conpatible; MSIE 6.0; Wndows NT 5.1; SV1; GIB5; .NET CLR
2.0.50727; InfoPath.2)"

78.179.56.27 - - [11/ Mar/2009: 00: 07: 40 +0200] "GET /i ndex. php?
I =3&a=1__6x39kovbj i 8&=3750105 HTTP/1.1" 200 43 "http://

www. bul di nl e. conl i ndex. php?i =3&=1__6X39Kovbj i 8&k=3750105"
"Mozillal/ 4.0 (conpatible; MSIE 6.0; Wndows NT 5.1; SV1; .NET
CLR 2.0.50727; OficeLiveConnector.1.3; OficeLivePatch.0.0)"

Page 5

gora-conf.html
http://httpd.apache.org/docs/current/logs.html

Gora Tutorial

78.163.99.14 - - [12/Mar/2009:18:18: 25 +0200] "GET /

i ndex. php?a=3__x71 72c&k=4476881 HTTP/ 1. 1" 200 43 "http://

www. bul di nl e. cont i ndex. php?a=3__ x71 72c&=4476881" "Mbzilla/ 4.0
(conpatible; MSIE 7.0; Wndows NT 5.1; InfoPath.1)"

Thefirst fieldsin order are: User'sip, ignored, ignored, Date and time, HT TP method, URL,
HTTP Method, HTTP status code, Number of bytes returned, Referrer, and User Agent.

3.2 Defining data beans

Data beans are the main way to hold the datain memory and persist in Gora. Gora needs to
explicitly keep track of the status of the datain memory, so we use Apache Avro for defining
the beans. Using avro gives us the possibility to explicitly keep track object's persistency
state, and away to serialize object's data.

Defining data beansis avery easy task, but for the exact syntax, please consult to Avro
Specification.

First, we need to define the bean Pagevi ewto hold asingle URL accessin thelogs. Let's
goover theclassat src/ mai n/ avr o/ pagevi ew. j son

"type": "record",

"name": "Pageview',

"nanmespace": "org.apache.gora.tutorial.log.generated",

"fields" : [
{"nane": "url", "type": "string"},
{"nane": "tinestanp", "type": "long"},
{"nane": "ip", "type": "string"},
{"nane": "httpMethod", "type": "string"},
{"nane": "httpStatusCode", "type": "int"},
{"nane": "responseSize", "type": "int"},
{"nane": "referrer", "type": "string"},
{"nane": "userAgent", "type": "string"}

Avro schemas are declared in JSON. Records are defined with type" r ecor d", witha
name as the name of the class, and a namespace which is mapped to the package name in
Java. Thefieldsarelistedinthe” fi el ds" element. Each field is given with itstype.

3.3 Compiling Avro Schemas

The next step after defining the data beans is to compile the schemas into Java classes. For
that we will use Gor aConpi | er . Invoking the Gora compiler by (from Goratop level
directory)

$ bin/gora conpile

Page 6

http://avro.apache.org/
http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html#schema_record

Gora Tutorial

resultsin:
$ Usage: SpecificConpiler <schema file> <output dir>
so we will issue:

$ bin/gora conpile gora-tutorial/src/min/avro/ pagevi ew.json
gora-tutorial/src/main/javal

to compile the Pageview classinto gor a-t ut ori al / src/ mai n/ j aval/ or g/
apache/ goral/tutorial/l og/ generat ed/ Pagevi ew. j ava. However, the
tutorial java classes are already committed, so you do not need to do that now.

Goracompiler extends Avro's Speci fi cConpi | er to convert JSON definition into a
Java class. Generated classes extend the Persistent interface. Most of the methods of the
Per si st ent interface deal with bookkeeping for persistence, and state tracking, so most
of the time they are not used explicitly by the user. Now, let'slook at the internals of the
generated class Pagevi ew. | ava.

Page 7

apidocs-0.2.1/org/apache/gora/persistency/Persistent.html

Gora Tutorial

We can see the actual field declarationsin the class. Note that Avro uses Ut f 8 classasa
placeholder for string fields. We can also see the embedded Avro Schema declaration and
an inner enum named Fi el d. Thisenum andthe ALL_FI ELDS field will come in handy
when we will use them to query the datastore for specific fields.

3.4 Defining data store mappings

Gorais designed to flexibly work with various types of data modeling, including column
stores(such as HBase, Cassandra, etc), SQL databases, flat files(binary, JSON, XML
encoded), and key-value stores. The mapping between the data bean and the data store is thus
defined in XML mapping files. Each data store has its own mapping format, so that data-
store specific settings can be leveraged more easily. The mapping files declare how the fields
of the classes declared in Avro schemas are serialized and persisted to the data store.

3.4.1 HBase mappings

HBase mappings are stored at file named gor a- hbase- mappi ngs. xn . For thistutorial
we will beusing thefilegor a-t ut ori al / conf/ gor a- hbase- mappi ngs. xm .

Every mapping file starts with the top level element <gor a- or n». Gora HBase mapping
files can have two type of child elements, t abl e and cl ass declarations. All of the table
and class definitions should be listed at thislevel.

Page 8

Gora Tutorial

t abl e declaration is optional and most of the time, Gora infers the table declaration from
the cl ass sub elements. However, some of the HBase specific table configuration such as
compression, blockCache, etc can be given here, if Gorais used to auto-create the tables. The
exact syntax for the file can be found here.

In Gora, data store access is always done in a key-value data model, since most of the target
backends support this model. DataStore API expects to know the class names of the key
and persistent classes, so that they can be instantiated. The key value pair is declared in
thecl ass element. The nane attribute is the fully qualified name of the class, and the
keyd ass attribute isthe fully qualified class name of the key class.

Children of the<cl ass> element are <f i el d> elements. Each field element hasanane
andf am | y attribute, and an optional qual i fi er attribute. nane attribute contains the
name of the field in the persistent class, and f am | y declares the column family of the
HBase data model. If the qualifier is not given, the name of the field is used as the column
qualifier. Note that map and array type fields are stored in unique column families, so

the configuration should be list unique column families for each map and array type, and
no qualifier should be given. The exact data model is discussed further at the gora-hbase
documentation.

4 Basic API

4.1 Parsing the logs

Now that we have the basic setup, we can see Gora API in action. As you can notice below
the AP is pretty smple to use. We will be using the classLogManager (which islocated
atgora-tutorial/src/ main/javal/ org/ apache/ gora/tutorial/log/
LogManager . j ava) for parsing and storing the logs, deleting some lines and querying.

First of all, let uslook at the constructor. The only real thing it doesisto call thei ni t ()
method. i ni t () method constructs the Dat aSt or e instance so that it can be used by the
LogManager 's methods.

publi c LogManager () {
try {
init();
} catch (I CException ex) {
t hrow new Runti neExcepti on(ex);
}
}
private void init() throws | OException {
dat aStore = Dat aStoreFact ory. get Dat aSt or e(Long. cl ass, Pagevi ew. cl ass) ;

}

Page 9

gora-hbase.html#Gora+HBase+mappings
gora-hbase.html
gora-hbase.html

Gora Tutorial

DataStore is probably the most important classin the Gora API. Dat aSt or e handles actual
object persistence. Objects can be persisted, fetched, queried or deleted by the DataStore
methods. Every data store that Gora supports, defines its own subclass of the DataStore class.
For example gor a- hbase module defines HBaseSt or e, and gor a- sql module defines
Sql St or e. However, these subclasses are not explicitly used by the user.

DataStores always have associated key and value(persistent) classes. Key classisthe class
of the keys of the data store, and the value is the actual data bean's class. The value classis
almost always generated by Avro schema definitions using the Gora compiler.

Data store objects are created by DataStoreFactory. It is necessary to provide the key and
value class. The datastore class is optional, and if not specified it will be read from the
configuration (gora.properties).

For thistutorial, we have aready defined the avro schemato use and compiled our data bean
into Pagevi ewclass. For keysin the data store, we will be using Longs. The keyswill hold
the line of the pageview in the datafile.

Next, let'slook at the main function of the LogManager class.

We can use the example log manager program from the command line (in the top level Gora
directory):

$ bin/gora | ognanager

Page 10

apidocs-0.2.1/org/apache/gora/store/DataStore.html
apidocs-0.2.1/org/apache/gora/store/DataStoreFactory.html

Gora Tutorial

which lists the usage as.

So to parse and store our logs located at gor a-t ut ori al / src/ mai n/ resour ces/
access. | og, wewill issue:

$ bin/gora | ognanager -parse gora-tutorial/src/main/resources/
access. |l og

This should output something like:

Now, let'slook at the code which parses the data and stores the logs.

Thefileisiterated line-by-line. Notice that the par seLi ne(| i ne) function doesthe
actual parsing converting the string to aPagevi ew object defined earlier.

Copyright © 2010 Apache Software Foundation. All rights reserved. Page 11

Gora Tutorial

par seLi ne() usesstandard St r i ngTokeni zer sfor the job and constructs and returns
aPagevi ewobject.

4.2 Storing objects in the DataStore

If welook back at the par se() method above, we can see that the Pagevi ew objects
returned by par seLi ne() arestoredviast or ePagevi ew() method.

The storePageview() method is where magic happens, but if we look at the code, we can see
that it isdead simple.

All we need to doisto call the put() method, which expects along as key and an instance of
Pagevi ewasavalue.

4.3 Closing the DataStore

Dat aSt or e implementations can do alot of caching for performance. However, this means
that datais not always flushed to persistent storage all the times. So we need to make sure
that upon finishing storing objects, we need to close the datastore instance by calling it's
close() method. LogManager aways closesit's datastore init'sown cl ose() method.

Page 12

apidocs-0.2.1/org/apache/gora/store/DataStore.html#put(K,T)
apidocs-0.2.1/org/apache/gora/store/DataStore.html#close()

Gora Tutorial

If you are pushing alot of data, or if you want your data to be accessible before closing
the data store, you can also the flush() method which, as expected, flushes the data to

the underlying data store. However, the actual flush semantics can vary by the data store
backend. For example, in SQL flush callsconmi t () onthejdbc Connect i on object,
whereas in Hbase, HTabl e#f | ush() iscalled. Also note that evenif you call f | ush()
at the end of all data manipulation operations, you still need to call thecl ose() onthe
datastore.

4.4 Persisted data in HBase

Now that we have stored the web access log datain HBase, we can look at how the datais
stored at HBase. For that, start the HBase shell.

$ cd ../ hbase-0.20.6
$ bi n/ hbase shel |

If you have a fresh HBase installation, there should be one table.
hbase(mai n): 010: 0> |i st

Remember that AccessLog is the name of the table we specified at gor a- hbase-
mappi ng. xnl . Looking at the contents of the table:

hbase(mai n): 010: 0> scan ' AccessLog', {LIM T=>1}

Page 13

apidocs-0.2.1/org/apache/gora/store/DataStore.html#flush()

Gora Tutorial

The output shows all the columns matching the first line with key 0. We can see the columns
common: i p, comon:timestanp, common:url, etc. Remember that these are
the columns that we have described in the gor a- hbase- mappi ng. xm file.

Y ou can also count the number of entries in the table to make sure that all the records have
been stored.

hbase(mai n): 010: 0> count ' AccesslLog'

4.5 Fetching objects from data store

Fetching objects from the data store is as easy as storing them. There are essentially two
methods for fetching objects. First oneisto fetch a single object given it's key. The second
method is to run a query through the data store.

To fetch objects one by one, we can use one of the overloaded get() methods. The method
with signature get (K key) returnsthe object corresponding to the given key fetching all
thefields. On the other hand get (K key, String[] fiel ds) returnsthe object
corresponding to the given key, but fetching only the fields given as the second argument.

When run with the argument -get LogManager class fetches the pageview object from the
data store and prints the results.

To display the 42nd line of the accesslog :

Page 14

apidocs-0.2.1/org/apache/gora/store/DataStore.html#get(K)

Gora Tutorial

$ bin/gora | ognmanager -get 42

4.6 Querying objects

DataStore API defines a Query interface to query the objects at the data store. Each data
store implementation can use a specific implementation of the Quer y interface. Queries are
instantiated by calling DataStore#newQuery(). When the query is run through the datastore,
the results are returned viathe Result interface. Let's see how we can run a query and display
the results below in the the LogManager class.

After constructing a Query, its properties are set via the setter methods. Then calling
guery.execute() returns the Result object.

Result interface allows usto iterate the results one by one by calling the next() method. The
getKey() method returns the current key and get() returns current persistent object.

Page 15

apidocs-0.2.1/org/apache/gora/query/Query.html
apidocs-0.2.1/org/apache/gora/store/DataStore.html#newQuery()
apidocs-0.2.1/org/apache/gora/query/Result.html
apidocs-0.2.1/org/apache/gora/query/Query.html
apidocs-0.2.1/org/apache/gora/query/Query.html#execute()
apidocs-0.2.1/org/apache/gora/query/Result.html
apidocs-0.2.1/org/apache/gora/query/Result.html#next()
apidocs-0.2.1/org/apache/gora/query/Result.html#getKey()
apidocs-0.2.1/org/apache/gora/query/Result.html#getKey()
apidocs-0.2.1/org/apache/gora/query/Result.html#get()

Gora Tutorial

With these functions defined, we can run the Log Manager class, to query the access logs at
HBase. For example, to display the log records between lines 10 and 12 we can use

bi n/ gora | ogmanager -query 10 12
Which resultsin:

4.7 Deleting objects

Just like fetching objects, there are two main methods to del ete objects from the data store.
Thefirst oneisto delete objects one by one using the DataStore#del ete(K) method, which
takes the key of the object. Alternatively we can delete all of the data that matches agiven
query by calling the DataStore#del eteByQuery(Query) method. By using deleteByQuery, we
can do fine-grain deletes, for example deleting just a specific field from several records.

Continueing from the LogManager class, the api's for both are given below.

apidocs-0.2.1/org/apache/gora/store/DataStore.html#delete(K)
apidocs-0.2.1/org/apache/gora/store/DataStore.html#deleteByQuery(org.gora.query.Query)

Gora Tutorial

//they are conmitted

}

/** This method illustrates del ete by query call */
private void del eteByQuery(long startKey, |ong endKey) throws | OException {

I/ Constructs a query fromthe dataStore. The matching rows to this query will be
del et ed

QuerylLong, Pagevi ew> query = dat aStore. newQuery();
//set the properties of query

query. set St art Key(start Key) ;

query. set EndKey(endKey) ;

dat aSt or e. del et eByQuery(query);

And from the command line :
bi n/ gora | ogmanager -delete 12
bi n/ gora | ogmanager -del et eByQuery 40 50

5 MapReduce Support

Gorahasfirst class MapReduce support for Apache Hadoop. Gora data stores can be used as
inputs and outputs of jobs. Moreover, the objects can be serialized, and passed between tasks
keeping their persistency state. For the serialization, Gora extends Avro DatumWriters,

5.1 Log analytics in MapReduce

For this part of the tutorial, we will be analyzing the logs that have been stored at HBase
earlier. Specifically, we will develop a MapReduce program to calculate the number of daily
pageviews for each URL in the site.

We will be using the LogAnal yt i cs classto analyze the logs, which can be found at
gora-tutorial/src/main/javal org/ apache/ gora/tutorial/l og/
LogAnal yti cs. j ava. For computing the analytics, the mapper takes in pageviews, and
outputs tuples of <URL, timestamp> pairs, with 1 as the value. The timestamp represents
the day in which the pageview occurred, so that the daily pageviews are accumulated. The
reducer just sums up the values, and outputs Met r i cDat umobjects to be sent to the output
Gora data store.

5.2 Setting up the environment

We will be using the logs stored at HBase by the LogManager class. We will push the
output of the job to an HSQL database, since it has a zero conf set up. However, you can also
use MySQL or HBase for storing the analytics results. If you want to continue with HBase,
you can skip the next sections.

Page 17

http://hadoop.apache.org/mapreduce/

Gora Tutorial

5.2.1 Setting up the database

First we need to download HSQL dependencies. For that, uncomment the following line
fromgora-tutorial/ivy/ivy.xm (if using Maven hsgldb should already be
available). Ofcourse MySQL users should uncomment the mysgl dependency instead.

<! --<dependency org="org. hsql db" name="hsql db" rev="2.0.0"
conf="*->defaul t"/>-->

Then we need to run ant so that the new dependencies can be downloaded.
$ ant

If you are using Mysgl, you should also setup the database server, create the database and
give necessary permissionsto create tables, etc so that Gora can run properly.

5.2.2 Configuring Gora

We will put the configuration necessary to connect to the databaseto gor a-t ut ori al /
conf/ gora. properties.

#JDBC properties for gora-sql nodul e usi ng HSQL
gora. sqgl store.jdbc. driver=org. hsqgl db. j dbcDri ver
gora. sqgl store.jdbc. url =jdbc: hsqgl db: hsql : / /1 ocal host/ gor at est

#JDBC properties for gora-sql nodul e usi ng MySQL

#gora. sql store. jdbc. dri ver=com nysql . dbc. Dri ver

#gora. sql store. jdbc. url =j dbc: nysql : / /1 ocal host : 3306/ gor at est
#gor a. sql store. j dbc. user =r oot

#gor a. sql store. j dbc. passwor d=

Asexpectedthej dbc. dri ver property isthe JDBC driver class, andj dbc. ur| isthe
JDBC connection URL. Moreover j dbc. user andj dbc. passwor d can be specificis
needed. More information for these parameters can be found at gora-sgl documentation.

5.3 Modelling the data

5.3.1 Data Beans for Analytics

For web site analytics, we will be using ageneric Met r i cDat umdata structure. It holds
astring et ri cDi nensi on,alongti nmest anp,andalong et ri c fields. Thefirst
two fields are the dimensions of the web analytics data, and the last is the actual aggregate
metric value. For example we might have an instance { net ri cDi mensi on="/1i ndex",
ti mestanp=101, netric=12}, representing that there have been 12 pageviewsto the
URL "/index" for the given time interval 101.

Page 18

gora-sql.html

Gora Tutorial

The avro schema definition for Met r i cDat umcan befound at gor a-t ut ori al /

src/ mai n/ avro/ metri cdat um j son, and the compiled source code at gor a-
tutorial/src/min/javal org/ apache/ gora/tutorial/log/generated/
Met ri cDat um j ava.

5.3.2 Data store mappings

We will be using the SQL backend to store the job output data, just to demonstrate the SQL
backend.

Similar to what we have seen with HBase, gora-sgl plugin reads configuration from the
gor a- sql - mappi ngs. xm file. Specifically, we will usethegor a-t ut ori al /
conf/ gor a-sqgl - mappi ngs. xm file.

SQL mapping files contain one or more cl ass elements as the children of gor a- or m The
key value pair isdeclared inthe cl ass element. The nane attributeis the fully qualified
name of the class, and the keyd ass attribute isthe fully qualified class name of the key
class.

Children of thecl ass element aref i el d elementsand one pri mar yKey element. Each
fi el d element hasanane and col unm attribute, and optional j dbc-t ype, | engt h and
scal e attributes. nane attribute contains the name of the field in the persistent class, and
col um attribute is the name of the column in the database. The pr i mar yKey holdsthe

Page 19

Gora Tutorial

actual key asthe primary key field. Currently, Gora only supports tables with one primary
key.

5.4 Constructing the job

In constructing the job object for Hadoop, we need to define whether we will use Gora as
job input, output or both. Gora defines its own Goral nputFormat, and GoraOutputFormat,
which uses Dat aSt or e's as input sources and output sinks for the jobs. Gor a{ | n|

Qut } put For mat classes define static methods to set up the job properly. However, if the
mapper or reducer extends Gora's mapper and reducer classes, you can use the static methods
defined in GoraM apper and GoraReducer since they are more convenient.

For thistutorial we will use Gora as both input and output. As can be seen from the

creat eJob() function, quoted below, we create the job as normal, and set the input
parameters via GoraM apper#initM apperJob(), and GoraReducer#initReducerJob() .

Gor aMapper #i ni t Mapper Job() takesastore and an optiona query to fetch the data
from. When aquery is given, only the results of the query is used as the input of the job, if
not all the records are used. The actual Mapper, map output key and value classes are passed
toi ni t Mapper Job() function aswell. Gor aReducer #i ni t Reducer Job() accepts
the data store to store the job's output as well as the actual reducer class. i ni t Mapper Job
andi ni t Reducer Job functions have also overriden methods that take the data store class
rather than data store instances.

public Job createJob(DataSt ore<Long, Pagevi ew> inStore
, DataStore<String, MetricDatun> outStore, int nunReducer) throws | CException {
Job job = new Job(get Conf());

j ob. set JobNane("Log Anal ytics");
j ob. set NumReduceTasks(nunReducer) ;
j ob. set JarByd ass(get C ass());

/* Mappers are initialized with GoraMapper.initMpper() or
* Cor al nput For mat . set | nput () */
Cor aMapper . i ni t Mapper Job(j ob, inStore, TextLong.class, LongWitable.class
, LogAnal yti csMapper.class, true);

/* Reducers are initialized with GoraReducer#i ni t Reducer () .
* |f the output is not to be persisted via Gora, any reducer
* can be used instead. */
Cor aReducer . i ni t Reducer Job(j ob, out Store, LogAnal yti csReducer. cl ass);

return job;

Page 20

apidocs-0.2.1/org/apache/gora/mapreduce/GoraInputFormat.html
apidocs-0.2.1/org/apache/gora/mapreduce/GoraOutputFormat.html
apidocs-0.2.1/org/apache/gora/mapreduce/GoraMapper.html
apidocs-0.2.1/org/apache/gora/mapreduce/GoraReducer.html
apidocs-0.2.1/org/apache/gora/mapreduce/GoraMapper.html#initMapperJob(org.apache.hadoop.mapreduce.Job,%20org.gora.store.DataStore,%20java.lang.Class,%20java.lang.Class,%20java.lang.Class,%20boolean)
apidocs-0.2.1/org/apache/gora/mapreduce/GoraReducer.html#initReducerJob(org.apache.hadoop.mapreduce.Job,%20org.apache.gora.store.DataStore,%20java.lang.Class)

Gora Tutorial

5.5 Gora mappers and using Gora an input

Typicaly, if Gorais used as job input, the Mapper class extends GoraM apper. However,
currently thisis not forced by the API so other class hierarchies can be used instead. The
mapper receives the key value pairs that are the results of the input query, and emits the
results of the custom map task. Note that output records from map are independent from

the input and output data stores, so any Hadoop serializable key value class can be used.
However, Gora persistent classes are also Hadoop serializable. Hadoop serialization is
handled by the PersistentSerialization class. Gora also definesa_StringSerialization class, to
serialize strings easily.

Coming back to the code for the tutorial, we can see that LogAnal yti cs class defines
aninner classLogAnal yti csMapper which extends Gor aMapper . The map function
receives Long keyswhich are the line numbers, and Pagevi ewvalues as read from the
input data store. The map simply rolls up the timestamp up to the day (meaning that only the
day of the timestamp is used), and outputs the key as atuple of <URL, day>.

private TextLong tuple;

protected void map(Long key, Pagevi ew pagevi ew, Context context)
throws | CException ,|nterruptedException {

utf8 url
| ong day

pagevi ew. get Url () ;
get Day(pagevi ew. get Ti nest anp()) ;

tupl e. get Key().set(url.toString());
tupl e. get Val ue() . set (day) ;

context.wite(tuple, one);

5.6 Gora reducers and using Gora as output

Similar to the input, typically, if Gorais used asjob output, the Reducer extends
GoraReducer. The values emitted by the reducer are persisted to the output data store as a
result of the job.

For thistutorial, the LogAnal yt i csReducer inner class, which extends Gor aReducer ,
is used as the reducer. The reducer just sums up all the values that correspond to the

<URL, day> tuple. Then the metric dimension object is constructed and emitted, which will
be stored at the output data store.

protected void reduce(TextLong tuple
, Iterabl e<LongWit abl e> val ues, Context context)
throws | CException ,|nterruptedException {

Page 21

apidocs-0.2.1/org/apache/gora/mapreduce/GoraMapper.html
apidocs-0.2.1/org/apache/gora/mapreduce/PersistentSerialization.html
apidocs-0.2.1/org/apache/gora/mapreduce/StringSerialization.html
apidocs-0.2.1/org/apache/gora/mapreduce/GoraReducer.html

Gora Tutorial

5.7 Running the job

Now that the job is constructed, we can run the Hadoop job as usual. Note that the r un
function of the LogAnal yt i cs class parses the arguments and runs the job. We can run the
program by

$ bin/gora | oganal ytics [<input data store> [<output data
store>]]

5.7.1 Running the job with SQL

Now, let's run the log analytics tools with the SQL backend(either Hsgl or MySql). The input
data store will beor g. apache. gor a. hbase. st or e. HBaseSt or e and output store
will beor g. apache. gor a. sql . st ore. Sql St or e. Remember that we have aready
configured the database connection properties and which database will be used at the Setting
up the environment section.

$ bin/gora | oganal ytics org. apache. gora. hbase. st ore. HBaseSt ore
or g. apache. gora. sql . store. Sql Store

Now we should see some logging output from the job, and whether it finished with success.
To check out the output if we are using HSQLDB, below command can be used.

$ java -jar gora-tutorial/lib/hsqldb-2.0.0.jar

In the connection URL, the same URL that we have provided in gora.properties should be

used. If on the other hand MySQL is used, than we should be able to see the output using the
mysgl command line utility.

Page 22

Gora Tutorial

The results of the job are stored at the table Metrics, which is defined at the gor a- sql -
mappi ng. xn file. Running a select query over this data confirms that the daily pageview
metrics for the web site isindeed stored. To see the most popular pages, run:

> SELECT METRI CDI MENSION, TS, METRIC FROM netrics order by
metric desc

/ 1236902400000 220
/ 1236988800000 212
/ 1236816000000 191
/ 1237075200000 155
/ 1241395200000 111
/ 1236643200000 110
/ 1236729600000 95

/index.php? 1236816000000 45

a=3_ x8g0vi&k=5508310

/index.php? 1236816000000 37
a=1_ 5kf9nvgrzos& k=208773

Asyou can see, the home page (/) for varios days and some other pages are listed. In total
3033 rows are present at the metrics table.

5.7.2 Running the job with HBase

Since HBaseStore is already defined as the default data store at gor a. properti es we
can run the job with HBase as:

$ bin/gora | oganal ytics

The outputs of the job will be saved in the Metrics table, whose layout is defined at gor a-
hbase- mappi ng. xm file. To see the results:

hbase(mai n): 010: 0> scan 'Metrics', {LIMT=>1}

ROW COLUMN+CELL

/?a=1__-znawt uabsy&k=96804_ col utm=conmon: netric, tinmestanp=1289815441740, val ue=
\ x00\ x00\ x00\ x00\ x00\ x00\ x00

1236902400000 \ x09

Page 23

Gora Tutorial

/?a=1__- znawt uabsy&=96804_ col unm=common: net ri cDi nensi on, tinmestanp=1289815441740,
val ue=/ ?a=1__-znawt uabsy&
1236902400000 k=96804
/?a=1__- znawt uabsy&=96804_ col unn=common:ts, ti nmestanp=1289815441740, val ue=
\ x00\ x00\ x01\ x1F\ xFD \ xDO\ x00
1236902400000
1 row(s) in 0.0490 seconds

6 More Examples

Other than thistutorial, there are several places that you can find examples of Gorain action.

Thefirst place to look at is the examples directories under various Gora modules. All the
modules have a<gor a- nodul e>/ sr ¢/ exanpl es/ directory under which some
example classes can be found. Especialy, there are some classes that are used for tests under
<gor a- cor e>/ sr c/ exanpl es/

Second, various unit tests of Gora modules can be referred to see the APl in use. The unit
tests can be found at <gor a- nodul e>/ src/test/

The source code for the projects using Gora can also be checked out as a reference. Apache
Nutch is one of the first class users of Gora; so looking into how Nutch uses Gorais always a
good idea.

Please feel free to grab our poweredBYy sticker and embedded it in anything backed by
Apache Gora.

7 Feedback

At last, thanks for trying out Gora. If you find any bugs or you have suggestions for
improvement, do not hesitate to give feedback on the dev@gora.apache.org mailing list.

Page 24

http://nutch.apache.org/
http://nutch.apache.org/
http://gora.apache.org/images/powered-by-gora.png
http://gora.apache.org/mailing_lists.html

	Table of contents
	1 Introduction
	1.1 Introduction to Gora

	2 Setting up the environment
	2.1 Setting up Gora
	2.2 Setting up HBase
	2.3 Configuring Gora

	3 Modelling the data
	3.1 Data for the tutorial
	3.2 Defining data beans
	3.3 Compiling Avro Schemas
	3.4 Defining data store mappings
	3.4.1 HBase mappings

	4 Basic API
	4.1 Parsing the logs
	4.2 Storing objects in the DataStore
	4.3 Closing the DataStore
	4.4 Persisted data in HBase
	4.5 Fetching objects from data store
	4.6 Querying objects
	4.7 Deleting objects

	5 MapReduce Support
	5.1 Log analytics in MapReduce
	5.2 Setting up the environment
	5.2.1 Setting up the database
	5.2.2 Configuring Gora

	5.3 Modelling the data
	5.3.1 Data Beans for Analytics
	5.3.2 Data store mappings

	5.4 Constructing the job
	5.5 Gora mappers and using Gora an input
	5.6 Gora reducers and using Gora as output
	5.7 Running the job
	5.7.1 Running the job with SQL
	5.7.2 Running the job with HBase

	6 More Examples
	7 Feedback

