
XML Validation

DTDs, catalogs and whatnot
Table of contents

1 XML validation... 2

2 Validating new XML types... 2

2.1 Creating or extending a DTD..3

2.2 Associating DTDs with document types.. 4

3 Referring to entities... 5

4 Validating in an XML editor... 5

5 Validation using RELAX NG... 5

Copyright © 2002 The Apache Software Foundation. All rights reserved.

1. XML validation

By default, Forrest will validate your XML before generating HTML or a webapp from it, and fail if
any XML files are not valid. Validation can be performed manually by doing 'forrest validate'
in the project root directory.

For an XML file to be valid, it must have a document type declaration at the top, indicating its content
type. Hence by default, any Forrest-processed XML file that lacks a DOCTYPE declaration will cause
the build to break.

Despite the strict default behavior, Forrest is quite flexible about validation. Validation can be
switched off for certain sections of a project. In validated sections, it is possible for projects to specify
exactly what files they want (and don't want) validated. Forrest validation is controlled through a set of
properties in forrest.properties:

##############
validation properties

This set of properties determine if validation is performed
Values are inherited unless overridden.
e.g. if forrest.validate=false then all others are false unless set to true.
#forrest.validate=true
#forrest.validate.xdocs=${forrest.validate}
#forrest.validate.skinconf=${forrest.validate}
#forrest.validate.sitemap=${forrest.validate}
#forrest.validate.stylesheets=${forrest.validate}
#forrest.validate.skins=${forrest.validate}
#forrest.validate.skins.stylesheets=${forrest.validate.skins}

*.failonerror=(true|false) - stop when an XML file is invalid
#forrest.validate.failonerror=true

*.excludes=(pattern) - comma-separated list of path patterns to not validate
e.g.
#forrest.validate.xdocs.excludes=samples/subdir/**, samples/faq.xml
#forrest.validate.xdocs.excludes=

For example, to avoid validating ${project.xdocs-dir}/slides.xml and everything inside the
${project.xdocs-dir}/manual/ directory, add this to forrest.properties:
forrest.validate.xdocs.excludes=slides.xml, manual/**

Note:
The failonerror properties only work for files validated with Ant's <xmlvalidate> and not (yet) for those validated with <jing>, where
failonerror defaults to true.

2. Validating new XML types

Forrest provides an OASIS Catalog [see tutorial]
forrest/src/core/context/resources/schema/catalog.xcat as a means of
associating public identifiers (e.g. -//APACHE//DTD Documentation V1.1//EN above) with
DTDs. If you add a new content type, you should add the DTD to
${project.schema-dir}/dtd/ and add an entry to the
${project.schema-dir}/catalog.xcat file. This section describes the details of this
process.

XML Validation

Page 2/6
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.oasis-open.org/committees/entity/spec.html
http://xml.apache.org/commons/components/resolver/resolver-article.html
../docs_0_60/your-project.html#adding_new_content_type

2.1. Creating or extending a DTD

The main Forrest DTDs are designed to be modular and extensible, so it is fairly easy to create a new
document type that is a superset of one from Forrest. This is what we'll demonstrate here, using our
earlier download format as an example. Our download format adds a group of new elements to the
standard 'documentv13' format. Our new elements are described by the following DTD:

<!ELEMENT release (downloads)>
<!ATTLIST release
version CDATA #REQUIRED
date CDATA #REQUIRED>

<!ELEMENT downloads (file*)>

<!ELEMENT file EMPTY>
<!ATTLIST file
url CDATA #REQUIRED
name CDATA #REQUIRED
size CDATA #IMPLIED>

The document-v13 entities are defined in a reusable 'module':
forrest/src/core/context/resources/schema/dtd/document-v13.mod The
forrest/src/core/context/resources/schema/dtd/document-v13.dtd file
provides a full description and basic example of how to pull in modules. In our example, our DTD
reuses modules common-charents-v10.mod and document-v13.mod. Here is the full DTD,
with explanation to follow.

<!-- ===

Download Doc format

PURPOSE:
This DTD provides simple extensions on the Apache DocumentV11 format to link
to a set of downloadable files.

TYPICAL INVOCATION:

<!DOCTYPE document PUBLIC "-//Acme//DTD Download Documentation V1.0//EN"
"download-v10.dtd">

COPYRIGHT:
Copyright 2002-2005 The Apache Software Foundation or its licensors,
as applicable.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

== -->

<!-- === -->
<!-- Include the Common ISO Character Entity Sets -->

XML Validation

Page 3/6
Copyright © 2002 The Apache Software Foundation. All rights reserved.

../docs_0_60/your-project.html#adding_new_content_type

<!-- === -->

<!ENTITY % common-charents PUBLIC
"-//APACHE//ENTITIES Common Character Entity Sets V1.0//EN"
"common-charents-v10.mod">
%common-charents;

<!-- === -->
<!-- Document -->
<!-- === -->

<!ENTITY % document PUBLIC "-//APACHE//ENTITIES Documentation V1.3//EN"
"document-v13.mod">

<!-- Override this entity so that 'release' is allowed below 'section' -->
<!ENTITY % local.sections "|release">

%document;

<!ELEMENT release (downloads)>
<!ATTLIST release
version CDATA #REQUIRED
date CDATA #REQUIRED>

<!ELEMENT downloads (file*)>

<!ELEMENT file EMPTY>
<!ATTLIST file
url CDATA #REQUIRED
name CDATA #REQUIRED
size CDATA #IMPLIED>

<!-- === -->
<!-- End of DTD -->
<!-- === -->

This custom DTD should be placed in your project resources directory at
src/documentation/resources/schema/dtd/

The <!ENTITY % ... > blocks are so-called parameter entities. They are like macros, whose content
will be inserted when a parameter-entity reference, like %common-charents; or %document; is
inserted.

In our DTD, we first pull in the 'common-charents' entity, which defines character symbol sets. We
then define the 'document' entity. However, before the %document; PE reference, we first override
the 'local.section' entity. This is a hook into document-v13.mod. By setting its value to '|release', we
declare that our <release> element is to be allowed wherever "local sections" are used. There are five
or so such hooks for different areas of the document; see document-v13.dtd for more details. We then
import the %document; contents, and declare the rest of our DTD elements.

We now have a DTD for the 'download' document type.

Note:
Chapter 5: Customizing DocBook of Norman Walsh's "DocBook: The Definitive Guide" gives a complete overview of the process of
customizing a DTD.

2.2. Associating DTDs with document types

Recall that our DOCTYPE declaration for our download document type is:
<!DOCTYPE document PUBLIC "-//Acme//DTD Download Documentation V1.0//EN"

XML Validation

Page 4/6
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.xml.com/axml/target.html#dt-PERef
http://www.oasis-open.org/docbook/documentation/reference/html/ch05.html

"download-v10.dtd">

We only care about the quoted section after PUBLIC, called the "public identifier", which globally
identifies our document type. We cannot rely on the subsequent "system identifier" part
("download-v10.dtd"), because as a relative reference it is liable to break. The solution Forrest uses is
to ignore the system id, and rely on a mapping from the public ID to a stable DTD location, via a
Catalog file.

Note:
See this article for a good introduction to catalogs and the Cocoon documentation Entity resolution with catalogs.

Forrest provides a standard catalog file at
forrest/src/core/context/resources/schema/catalog.xcat for the document
types that Forrest provides. Projects can augment this with their own catalog file located in
${project.schema-dir}/catalog.xcat

Forrest uses the XML Catalog syntax by default, although the older plain-text format can also be used.
Here is what the XML Catalog format looks like:
<?xml version="1.0"?>
<!-- OASIS XML Catalog for Forrest -->
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<public publicId="-//Acme//DTD Download Documentation V1.0//EN"
uri="dtd/download-v10.dtd"/>

</catalog>

The format is described in the spec, and is fairly simple and very powerful. The "public" elements
map a public identifier to a DTD (relative to the catalog file).

Next specify the full path to your catalog.xcat in the
src/documentation/classes/CatalogManager.properties file. Cocoon needs this
file when it starts to run. A template file is provided in the "fresh-site" when you do the 'forrest
seed' to commence a new project.

We now have a custom DTD and a catalog mapping which lets both Forrest and Cocoon locate the
DTD. Now if we were to run 'forrest validate' our download file would validate along with
all the others. If something goes wrong, try running 'forrest -v validate' to see the error in
more detail. Remember to raise the "verbosity" level in cocoon.xconf if you suspect problems with
your catalog.

3. Referring to entities

Look at the source of this document (xdocs/docs/validation.xml) and see how the entity set
"Numeric and Special Graphic" is declared in the document type declaration.

ISOnum.pen ½ ½

4. Validating in an XML editor

If you have an XML editor that understands SGML or XML catalogs, let it know where the Forrest
catalog file is, and you will be able to validate any Forrest XML file, regardless of location, as you edit
your files. See the configuration notes your favourite editor.

XML Validation

Page 5/6
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://xml.apache.org/commons/components/resolver/resolver-article.html
http://cocoon.apache.org/2.1/userdocs/concepts/catalog.html
http://www.oasis-open.org/committees/entity/spec.html
../docs_0_60/catalog.html

5. Validation using RELAX NG

Other validation is also conducted during build-time using RELAX NG. This validates all of the
important configuration files, both in Forrest itself and in your project. At the moment it processes all
skinconf.xml files, all sitemap.xmap files, and all XSLT stylesheets.

The RNG grammars to do this are located in the
src/core/context/resources/schema/relaxng directory. If you want to know more
about this, and perhaps extend it for your own use, then see
src/core/context/resources/schema/relaxng/README.txt and the Ant targets in
the various build.xml files.

XML Validation

Page 6/6
Copyright © 2002 The Apache Software Foundation. All rights reserved.

	1 XML validation
	2 Validating new XML types
	2.1 Creating or extending a DTD
	2.2 Associating DTDs with document types

	3 Referring to entities
	4 Validating in an XML editor
	5 Validation using RELAX NG

