
Copyright © 2002 The Apache Software Foundation. All rights reserved.

Cocoon sitemap explained

This document is intended to be a concise explanation of the Apache Cocoon Sitemap and its use in
Apache Forrest. This is a worked example showing the automatically generated Table of Contents.
Please follow the various sitemaps as we explain.

cd $FORREST_HOME/site-author
forrest run

In a separate browser window, open localhost:8888/linkmap.html to see the generated
Table of Contents. This has been transformed from the site.xml navigation configuration to show the
layout of the whole site as a ToC.

Cocoon consults the sitemaps to find out how to process the linkmap.html request.

The main sitemap is $FORREST_HOME/main/webapp/sitemap.xmap and if the match is not
found there then other sitemaps are consulted. The first match wins. Various sitemaps are responsible
for different types of processing and there are also sitemaps in the many plugins.

So let us see how linkmap.html is handled.

Open $FORREST_HOME/main/webapp/sitemap.xmap in another window. Search for
"linkmap" to find the following snippet:

<map:match pattern="linkmap.*">
 <map:mount uri-prefix="" src="linkmap.xmap" check-reload="yes" />
</map:match>

Cocoon has passed through the other potential matches earlier in the sitemap and now does further
handling via the linkmap.xmap sitemap.

Before going any further, it is necessary to understand the "**" and "*" pattern matching and
replacements. See the email thread: "Re: explain sitemap matches and pass parameters to
transformers" FOR-874.

Okay we will skip some explanation of processing. At this stage we are only concerned with
generating the internal xml. Later steps of processing will transform that into the final html output and
adorn it with navigation menus and headers, etc. This is your main aim for most of your sitemap work
for input formats: handle the incoming requests, and transform into the standard internal xml format.
Then Forrest automatically does the rest.

In another browser window, open localhost:8888/linkmap.xml to see the internal xml
format.

Open $FORREST_HOME/main/webapp/linkmap.xmap sitemap. Move to the "map:pipeline"
section.

A digression: The first match is not triggered because our request is for linkmap.xml and this
match handles linkmap.source.xml to essentially re-direct it to linkmap.xml instead.
That is what the cocoon:// means: generate it via a different request within this sitemap. Try
localhost:8888/linkmap.source.xml to see the exact same internal xml format.

http://forrest.apache.org/../docs_0_90/sitemap-ref.html
http://forrest.apache.org/../linkmap.html
http://issues.apache.org/jira/browse/FOR-874

Cocoon sitemap explained

Page 2/3Copyright © 2002 The Apache Software Foundation. All rights reserved.

The second match exactly meets our pattern linkmap.xml

<map:match pattern="linkmap.xml">
 <map:generate src="cocoon://abs-linkmap" />
 <map:transform src="{lm:transform.linkmap.document}"/>
 <map:serialize type="xml" />
</map:match>

As with all pipelines, it starts with a generator to commence the xml stream, then transforms it
with a single transformer (there could be multiple sequential transformers) and finally the serializer
component. Here it is:

The generator is not simply reading an xml file. It produces the xml via a different part of this sitemap.
Let us explain that later and assume for now that it produces the xml from your site.xml file.

Move on to the transformer. It transforms the xml obtained from the site.xml into the internal
document xml format using an XSLT stylesheet. The locationmap reference defines the source for
that stylesheet: "lm:transform.linkmap.document" is evaluated by the Locationmap to be the main/
webapp/resources/stylesheets/linkmap-to-document.xsl stylesheet. See the
Locationmap documentation for explanation.

Now let us get back to that new request for "abs-linkmap". This is used a number of times within this
sitemap, hence it is its own pipeline. As usual it starts with a generator, then a transformer, then a
serializer.

Again the generator is sent to some other part of the sitemap hierarchy, because this request is
needed by many other parts of the system beyond just this linkmap handling. You see that it is
not matched within this linkmap.xmap sitemap. Go to the main sitemap.xmap and search for
"site.navigation.links.xml" where you find the match that handles this by looking for various
Locationmap definitions to find and transform the site.xml file.

Don't get lost, come back to the linkmap.xmap sitemap.

Following this generator, the transformer turns the links into absolute references. This is then
serialized as xml to finish this "abs-linkmap" match which is the end of the generator in our main
match.

A developer's trick will help to understand what is happening. Edit the linkmap.xmap to comment-out
the transformer ...

 <map:match pattern="linkmap.xml">
 <map:generate src="cocoon://abs-linkmap" />
<!--
 <map:transform src="{lm:transform.linkmap.document}"/>
-->
 <map:serialize type="xml" />
 </map:match>

Browser localhost:8888/linkmap.xml to see the result of the "abs-linkmap" generation
before it is transformed into the internal document xml.

So now you understand some of the power of sitemaps.

A basic understanding of Cocoon's pipelines and their components will help you to realise the
true power. You should know about matchers, generators, transformers and serializers and have a

http://forrest.apache.org/../docs_0_90/locationmap.html

Cocoon sitemap explained

Page 3/3Copyright © 2002 The Apache Software Foundation. All rights reserved.

rough idea how they work together in a pipeline. A good place to start learning about Cocoon is
Understanding Apache Cocoon. The Forrest Sitemap Reference will also be helpful.

http://cocoon.apache.org/2.1/userdocs/concepts/
http://forrest.apache.org/../docs_0_90/sitemap-ref.html

