
Copyright © 2002 The Apache Software Foundation. All rights reserved.

XML validation and entity resolution

DTDs, catalogs and whatnot

Table of contents

1 Introduction..2

2 XML validation... 2

3 Validating new XML types...3

 3.1 Creating or extending a DTD.. 3

 3.2 Associating DTDs with document types... 4

4 Debugging the Catalog Entity Resolver..5

5 Referring to entities...6

6 Validating in an XML editor.. 6

7 Validation using RELAX NG... 6

8 Validation using Cocoon sitemap and the Cocoon Validation block... 6

XML validation and entity resolution

Page 2/6Copyright © 2002 The Apache Software Foundation. All rights reserved.

1 Introduction

When a source document uses a DTD to define its structure, then various abilities are enabled. Forrest
handles the annoying side of this and takes advantage of the benefits.

The xml parser must locate the DTDs and other entities. Forrest uses the XML Catalog Entity Resolver
to associate DTD references with local copies.

Forrest also uses the XML Document Type Declaration to effect the Content Aware Pipelines.
Remember that you are not required to use DTDs (for example Forrest can also respond to a
namespace) so RELAX NG or W3c XML Schema can be used.

If you do use DTDs, then forrest is automatically configured to do XML validation.

This document explains both the validation and entity resolution aspects of the Forrest XML
framework.

2 XML validation

By default, Forrest will validate your XML before generating HTML or a webapp from it, and fail if
any XML files are not valid. Validation can be performed manually by doing 'forrest validate'
in the project root directory.

For an XML file to be valid, it must have a document type declaration at the top, indicating its content
type. Hence by default, any Forrest-processed XML file that lacks a DOCTYPE declaration will cause
the build to break.

Despite the strict default behavior, Forrest is quite flexible about validation. Validation can be
switched off for certain sections of a project. In validated sections, it is possible for projects to specify
exactly what files they want (and don't want) validated. Forrest validation is controlled through a set of
properties in forrest.properties:

##############
validation properties

This set of properties determine if validation is performed
Values are inherited unless overridden.
e.g. if forrest.validate=false then all others are false unless set to true.
#forrest.validate=true
#forrest.validate.xdocs=${forrest.validate}
#forrest.validate.skinconf=${forrest.validate}
#forrest.validate.sitemap=${forrest.validate}
#forrest.validate.stylesheets=${forrest.validate}
#forrest.validate.skins=${forrest.validate}
#forrest.validate.skins.stylesheets=${forrest.validate.skins}

*.failonerror=(true|false) - stop when an XML file is invalid
#forrest.validate.failonerror=true

*.excludes=(pattern) - comma-separated list of path patterns to not validate
e.g.
#forrest.validate.xdocs.excludes=samples/subdir/**, samples/faq.xml
#forrest.validate.xdocs.excludes=

For example, to avoid validating ${project.xdocs-dir}/slides.xml and everything inside the
${project.xdocs-dir}/manual/ directory, add this to forrest.properties:

http://forrest.apache.org/../docs_0_90/cap.html

XML validation and entity resolution

Page 3/6Copyright © 2002 The Apache Software Foundation. All rights reserved.

forrest.validate.xdocs.excludes=slides.xml, manual/**

Note:

The failonerror properties only work for files validated with Ant's <xmlvalidate> and not (yet) for those
validated with <jing>, where failonerror defaults to true.

3 Validating new XML types

Forrest provides an OASIS Catalog [see tutorial] forrest/main/webapp/resources/
schema/catalog.xcat as a means of associating public identifiers (e.g. -//APACHE//DTD
Documentation V1.1//EN above) with DTDs. If you add a new content type, you should add
the DTD to ${project.schema-dir}/dtd/ and add an entry to the ${project.schema-
dir}/catalog.xcat file. This section describes the details of this process.

3.1 Creating or extending a DTD

The main Forrest DTDs are designed to be modular and extensible, so it is fairly easy to create a new
document type that is a superset of one from Forrest. This is what we'll demonstrate here, using our
earlier download format as an example. Our download format adds a group of new elements to the
standard 'documentv13' format. Our new elements are described by the following DTD:

<!ELEMENT release (downloads)>
<!ATTLIST release
version CDATA #REQUIRED
date CDATA #REQUIRED>

<!ELEMENT downloads (file*)>

<!ELEMENT file EMPTY>
<!ATTLIST file
url CDATA #REQUIRED
name CDATA #REQUIRED
size CDATA #IMPLIED>

The document-v13 entities are defined in a reusable 'module': forrest/main/webapp/
resources/schema/dtd/document-v13.mod The forrest/main/webapp/
resources/schema/dtd/document-v13.dtd file provides a full description and basic
example of how to pull in modules. In our example, our DTD reuses modules common-charents-
v10.mod and document-v13.mod. Here is the full DTD, with explanation to follow.

<!-- ===

Download Doc format

PURPOSE:
This DTD provides simple extensions on the Apache DocumentV11 format to link
to a set of downloadable files.

TYPICAL INVOCATION:

<!DOCTYPE document PUBLIC "-//Acme//DTD Download Documentation V1.0//EN"
"download-v10.dtd">

== -->

<!-- === -->
<!-- Include the Common ISO Character Entity Sets -->
<!-- === -->

http://www.oasis-open.org/committees/entity/spec.html
http://xml.apache.org/commons/components/resolver/resolver-article.html
http://forrest.apache.org/../docs_0_90/your-project.html#adding_new_content_type
http://forrest.apache.org/../docs_0_90/your-project.html#adding_new_content_type

XML validation and entity resolution

Page 4/6Copyright © 2002 The Apache Software Foundation. All rights reserved.

<!ENTITY % common-charents PUBLIC
"-//APACHE//ENTITIES Common Character Entity Sets V1.0//EN"
"common-charents-v10.mod">
%common-charents;

<!-- === -->
<!-- Document -->
<!-- === -->

<!ENTITY % document PUBLIC "-//APACHE//ENTITIES Documentation V1.3//EN"
"document-v13.mod">

<!-- Override this entity so that 'release' is allowed below 'section' -->
<!ENTITY % local.sections "|release">

%document;

<!ELEMENT release (downloads)>
<!ATTLIST release
version CDATA #REQUIRED
date CDATA #REQUIRED>

<!ELEMENT downloads (file*)>

<!ELEMENT file EMPTY>
<!ATTLIST file
url CDATA #REQUIRED
name CDATA #REQUIRED
size CDATA #IMPLIED>

<!-- === -->
<!-- End of DTD -->
<!-- === -->

This custom DTD should be placed in your project resources directory at src/documentation/
resources/schema/dtd/

The <!ENTITY % ... > blocks are so-called parameter entities. They are like macros, whose content
will be inserted when a parameter-entity reference, like %common-charents; or %document; is
inserted.

In our DTD, we first pull in the 'common-charents' entity, which defines character symbol sets. We
then define the 'document' entity. However, before the %document; PE reference, we first override
the 'local.section' entity. This is a hook into document-v13.mod. By setting its value to '|release', we
declare that our <release> element is to be allowed wherever "local sections" are used. There are five
or so such hooks for different areas of the document; see document-v13.dtd for more details. We then
import the %document; contents, and declare the rest of our DTD elements.

We now have a DTD for the 'download' document type.

Note:

Chapter 5: Customizing DocBook of Norman Walsh's "DocBook: The Definitive Guide" gives a complete
overview of the process of customizing a DTD.

3.2 Associating DTDs with document types

Recall that our DOCTYPE declaration for our download document type is:

<!DOCTYPE document PUBLIC "-//Acme//DTD Download Documentation V1.0//EN"
 "download-v10.dtd">

http://www.xml.com/axml/target.html#dt-PERef
http://www.oasis-open.org/docbook/documentation/reference/html/ch05.html

XML validation and entity resolution

Page 5/6Copyright © 2002 The Apache Software Foundation. All rights reserved.

We only care about the quoted section after PUBLIC, called the "public identifier", which globally
identifies our document type. We cannot rely on the subsequent "system identifier" part ("download-
v10.dtd"), because as a relative reference it is liable to break. The solution Forrest uses is to ignore the
system id, and rely on a mapping from the public ID to a stable DTD location, via a Catalog file.

Note:

See this article for a good introduction to catalogs and the Cocoon documentation Entity resolution with
catalogs.

Forrest provides a standard catalog file at forrest/main/webapp/resources/schema/
catalog.xcat for the document types that Forrest supplies.

An additional system-wide catalog can be configured for use by multiple forrest-based projects. See
the "local-catalog" parameter in main/webapp/WEB-INF/xconf/forrest-core.xconf

Projects can augment this with their own catalog file located in ${project.schema-dir}/
catalog.xcat to use it you must specify either the path (full or relative) to your catalog.xcat
in the CatalogManager.properties file. If you provide a relative path you must set the
property relative-catalogs to "yes".

When Cocoon starts, it reads the CatalogManager.properties file from your
project.classes-dir. This is usually src/documentation/classes/ but you can change this in
forrest.properties. When you seed a new site using forrest seed a sample catalog file is
placed in the site structure, you can use this as a template for your own files.

Forrest uses the XML Catalog syntax by default, although the older plain-text format can also be used.
Here is what the XML Catalog format looks like:

<?xml version="1.0"?>
<!-- OASIS XML Catalog for Forrest -->
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <public publicId="-//Acme//DTD Download Documentation V1.0//EN"
 uri="dtd/download-v10.dtd"/>
</catalog>

The format is described in the spec, and is fairly simple and very powerful. The "public" elements
map a public identifier to a DTD (relative to the catalog file).

We now have a custom DTD and a catalog mapping which lets both Forrest and Cocoon locate the
DTD. Now if we were to run 'forrest validate-xdocs' our download file would validate
along with all the others. If something goes wrong, try running 'forrest -v validate-
xdocs' to see the error in more detail.

4 Debugging the Catalog Entity Resolver

If you suspect problems with your project catalog, then raise the "verbosity" level in src/
documentation/classes/CatalogManager.properties and re-start forrest. This should
show your project catalogs being parsed and loaded.

However this configuration does not show your DTDs being resolved. So raise the verbosity level in
the central configuration at main/webapp/WEB-INF/properties/dev/core.properties
and re-start forrest. This also shows the main catalogs being loaded and shows the resolving of every
DTD and entity set.

When a DTD is successfully resolved you should see the message: Resolved public:

http://xml.apache.org/commons/components/resolver/resolver-article.html
http://cocoon.apache.org/2.1/userdocs/concepts/catalog.html
http://cocoon.apache.org/2.1/userdocs/concepts/catalog.html
http://www.oasis-open.org/committees/entity/spec.html

XML validation and entity resolution

Page 6/6Copyright © 2002 The Apache Software Foundation. All rights reserved.

When debugging such issues, a network monitoring tool (e.g. ngrep.sf.net) is useful to ensure that all
resources are being locally resolved and not wandering onto the network to find remote copies.

5 Referring to entities

Look at the source of this document (xdocs/docs/validation.xml) and see how the entity set
"Numeric and Special Graphic" is declared in the document type declaration.

ISOnum.pen ½ ½

6 Validating in an XML editor

If you have an XML editor that understands SGML or XML catalogs, let it know where the Forrest
catalog file is, and you will be able to validate any Forrest XML file, regardless of location, as you edit
your files. See the configuration notes your favourite editor.

7 Validation using RELAX NG

Other validation is also conducted during build-time using RELAX NG. This validates all of the
important configuration files, both in Forrest itself and in your project. At the moment it processes all
skinconf.xml files, all sitemap.xmap files, and all XSLT stylesheets.

The RNG grammars to do this are located in the main/webapp/resources/schema/relaxng
directory. If you want to know more about this, and perhaps extend it for your own use, then see
main/webapp/resources/schema/relaxng/README.txt and the Ant targets in the
various build.xml files.

8 Validation using Cocoon sitemap and the Cocoon Validation block

The content of pipelines can be validated at various points in the Cocoon sitemaps using RELAX NG
or W3C XML Schema. See notes.

http://forrest.apache.org/../docs_0_90/catalog.html
http://forrest.apache.org/../howto-dev.html#debug-validation

	Table of contents
	1 Introduction
	2 XML validation
	3 Validating new XML types
	3.1 Creating or extending a DTD
	3.2 Associating DTDs with document types

	4 Debugging the Catalog Entity Resolver
	5 Referring to entities
	6 Validating in an XML editor
	7 Validation using RELAX NG
	8 Validation using Cocoon sitemap and the Cocoon Validation block

