
FELIX UPnP Documentation

Introduction

The Felix UPnP project provides an implementation of the OSGi UPnP specification (version 1.1)

as described in the OSGi Service Compendium (Release 4) [1]. The specification is implemented by

the org.apache.felix.upnp.basedriver bundle and it comes with other bundles, which have been

developed to ease the writing and testing of UPnP code.

The OSGi UPnP specification defines a set of interfaces which should be used by the developers in

order to write UPnP Devices and UPnP Control Points on the OSGi Service Platform. From the

OSGi point of view, UPnP devices are services registered with the framework, thus the different

phases of the UPnP protocol stack, as defined in the UPnP™ Device Architecture (UDA 1.0) [2],

have been mapped to the discovery and notification mechanisms offered by the OSGi framework.

The specification defines a UPnP Base Driver component that acts as software bridge between

UPnP networks and OSGi. Developers writing UPnP code do not need to interact directly with the

driver through some API. The driver works in background by exporting the registered services as

UPnP devices, and by registering as services the UPnP devices discovered on UPnP networks.

However, the Felix UPnP project has defined few additional interfaces, so a base knowledge of the

way the UPnP Base Driver works is useful and will help developers to write their code.

The document is organized as follow:

Getting Started ... 2
Common Problems ... 3

Overview of the Base Driver Architecture .. 4
Testing UPnP devices .. 6

The UPnP examples ... 7
Sample TV and Clock .. 8
The BinaryLight example .. 8

Writing UPnP Devices and Control Points .. 9
The Extra bundle and the driver interfaces .. 10

Known problems .. 11
Acknowledgments .. 11
References .. 11

Getting Started

Assuming that, as described in “Building Felix” web page, you have checked out the Felix project

in the $FELIX_HOME directory, the Felix UPnP project is located at $FELIX_HOME/trunk/upnp

directory. The project is organized in different directories shown in Figure 1.

Figure 1 The Felix UPnP project structure

The basedriver directory contains the project of the bundle implementing the UPnP spec. In the

samples directory there are three projects implementing simple test devices, while the tester and

extra directories are projects providing additional utilities for the UPnP development. At last, the

doc directory contains this documentation and a script file to launch all the Felix UPnP bundles.

After building the Felix project, you can start the script file “upnp.sh.bat” inside the /upnp/doc

directory; it launches a Felix runtime with all the UPnP bundles released by the project. The script

file defines a profile called “upnp” and the list of bundles
1
 installed with the profile is shown in

Figure 2. The UPnP Tester is a bundle that provides a browser utility to control and subscribe all the

UPnP devices registered with the OSGi framework. After executing the script, you should see in the

window opened by the UPnP Tester bundle three UPnP devices (left panel in Figure 3.a), which

correspond to the TV, Clock and BinaryLight devices shown in Figure 3. Of course the number of

discovered devices may be higher if other UPnP devices are installed in your local network

Figure 2 Bundles installed by the script “upnp.sh.bat”

1
 The actual version of the bundles may be different.

http://felix.apache.org/site/building-felix.html

To stop the devices launched by the script you can close their windows, while to start them again

type “start 10 11 12 13” from the Felix shell. See the sections “Testing UPnP devices” and “The

UPnP Examples” for details on how to use the these bundles.

a) UPnP Tester

b) UPnP Clock

c) UPnP TV

 d) UPnP BinaryLight

Figure 3 The GUIs started by the script “upnp.sh.bat”

The Felix build process by default uses the JDK1.4 as target class library for all the UPnP bundles.

The UPnP Base Driver can be built also with the JDK1.3 as target; to this end you have to define

the “platform” property in the command line: type “mvn Dplatform=jdk13 install” from the

/upnp/basedriver directory. For details on configuring your Eclipse IDE see [3].

Common Issues

If you experience problems discovering the UPnP devices of your network:

 Check the configuration of your firewalls.

UPnP discovery is based on multicast messages over UDP that usually are not filtered by firewalls,

on the contrary the XML description of devices is retrieved using HTTP protocol; usually bound to

non standard ports which might be blocked. Check whether firewall is active on your host or on the

host of the device you want discover.

 Install a loopback interface if needed.

The base driver by default is configured for not using the localhost as loopback interface. If you

want to run and test UPnP devices on a machine disconnected by any network, you should install

and activate a loopback interface. Pay attention to disable the loopback interface when you are

connected to a network again, otherwise both interfaces will be used to expose the UPnP services

registered with the framework.

Overview of the Base Driver Architecture

The Figure 4 shows a simplified component view of the base driver. The driver is composed of two

components, the exporter and importer; both using the CyberDomo library, which is a modified

version of the library released by the CyberLink for Java project [4], maintained by the Domoware

project [5]. The library implements a full UPnP stack. The base driver acts as a bridge between

OSGi and the UPnP networks
2
.

Figure 4 The UPnP Base Driver architecture

In order to instantiate UPnP devices, developers must register services implementing the interfaces

represented in Figure 5 and provided by the org.osgi.compendium bundle. The exporter is registered

2
 By default the Base Driver has to bind all the available network interfaces

as ServiceListener with the framework and it automatically exposes on the networks each

UPnPDevice service registered with the registration property UPNP_EXPORT. The importer

listens to the advertisements sent on the networks by external devices and registers with the

framework one or more UPnPDevice services. Even if it is not required by the specification, the

devices imported by the Felix base driver are labeled with the registration property

UPNP_IMPORT.

Figure 5 The UPnP Device interfaces

Working with UPnP Device from the OSGi point of view means to operate with services; the

discovery, controlling and eventing phases of the UPnP protocol are naturally mapped to the OSGi

service layer, which allows to publish, find, bind and notify events. There are some aspects that

make it different to work with UPnP in OSGi with respect to other UPnP libraries, due basically to

the centralized nature of the OSGi registry opposed to the distributed approach used in UPnP

networks; some hints are provided in the section ”Writing UPnP Devices and Control Points”

The Felix base driver comes with some system properties you can use to configure it at startup.

The system properties:
 cyberdomo.ssdp.mx (default 5)

 cyberdomo.ssdp.buffersize (default 2048)

 cyberdomo.ssdp.port (default 1900)

are used by the UPnP stack library during the UPnP discovery process. The paper “Adaptive Jitter

Control for UPnP M-Search” [6] provides a good analysis of the tuning of such parameters related

to scalability issues. The MX parameter default has been set to 5 sec. Higher values improve the

discovery effectiveness but increase the latency for new device discovery. The Intel “Device Spy”

tool [7] uses a delay of 10 sec, the CyberLink for Java [4] library 3 sec. The SSDP port in UPnP

specification is by default 1900 we allow the modification of such parameter.

The following system properties:
 felix.upnpbase.exporter.enabled (default true)

 felix.upnpbase.importer.enabled (default true)

http://www.osgi.org/javadoc/r4/org/osgi/framework/ServiceListener.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPDevice.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPDevice.html#UPNP_EXPORT
http://svn.apache.org/viewvc/felix/trunk/upnp/basedriver/src/main/java/org/apache/felix/upnp/basedriver/util/Constants.java?view=markup

can be used to enable or disable the two main components of the base driver. For example with

small devices (ARM-based processor), disabling the exporting or importing of devices might reduce

the resource consumption.

 felix.upnpbase.log (default 2)

 felix.upnpbase.cyberdomo.log (default false)

are properties used to enable the different logging facilities offered by the base driver. You can also

modify them at run time by using the GUI provided by the UPnP Tester bundle

Finally the following properties are used to set the networking parameters. The loopback interface

is usually disabled :

 felix.upnpbase.cyberdomo.net.loopback (default false)

 felix.upnpbase.cyberdomo.net.onlyIPV4 (default true)

 felix.upnpbase.cyberdomo.net.onlyIPV6 (default false)

Testing UPnP devices

The org.apache.felix.upnp.tester bundle installs a component that shows the UPnP devices

registered with the OSGi framework. It provides a GUI shown in the Figure 6 that can be used for

controlling the discovered devices: by invoking actions and by subscribing for the state variable

changes occurring on them.

Figure 6 The UPnP Tester GUI

In the left panel you can browse the devices discovered on the OSGi platform. Remember that they

may be registered by the base driver as well as by other bundles installed on the platform. Therefore

stopping the base driver you will continue to see the local devices, but they will be no more

exported. The devices with their hierarchy of the embedded devices and services are represented as

nodes of a tree with the following icons:

 Root Device

 Embedded Device

 Service

 Action

 State Variable

 Evented State Variable

 Subscribed State Variable

By clicking on the Root Device icon, the register properties defined by the device are shown on the

right panel. You can distinguish between exported and imported devices by looking for the property

key “UPnP.export” and “UPnP.device.imported” respectively.

By right-clicking on the Root Device, Embedded device, or Service icon a context menu is

displayed to open the XML description of devices and services (see Figure 6)

By clicking on the Service icon, the Service Id and Type are shown in the right panel together with

buttons for subscribing all the state variables of the service. The received notify message is

displayed on the bottom panel.

By clicking on the Action icons, the right panel displays a form where the input parameters of the

action can be inserted. Use the “do Action” button to execute it; the results, if any, will be displayed

in the table below the input parameters.

Finally, by clicking on the state variables shows the associated property keys as the default value

and minimum and maximum value, if any.

Menus

 The “Search” menu forces the UPnP Base Driver to execute a UPnP M-Search for UPnP Root

Devices or for all types of devices. This search is usually automatically executed during the start

up of the base driver.

 The “Felix Logger” and “Cyber Debugger” menus enable displaying of the messages received

and sent by the base driver (i.e. the content of the UDP communication).

 The “Print Pending Devices” is a utility menu to verify whether incomplete hierarchy of

embedded devices have been registered with the framework.

 The “Check Errata UPnPDevices” menu may help the user verify that all the local UPnP

Devices have been registered with the mandatory properties, otherwise they would not be

exported.

The UPnP examples

The UPnP examples released by the UPnP project are simple UPnP devices developed as a proof of

concept. The first two examples, the TV and Clock, are used to check the importing and exporting

capabilities of the base driver. The third one, the Binary Light, implements a standard UPnP DCP

and provides additionally a UPnP presentation page.

Sample TV and Clock

These devices are dual version of the sample devices developed by the project “Cyberlink for Java”

by Satoshi Konno. They have been rewritten according to the OSGi specification and can be used to

check the importing and exporting capabilities of the base driver. The simulated TV screen is used

to show the messages received by the Clock device and other simulated device like the Air

Conditionator and Washing Machine. When launching the original version of such devices you will

see that the Felix TV running on the OSGi platform is able to receive the messages from UPnP

devices running on different platform and imported in OSGi. At the same time, the Cyberlink TV is

able to receive the time event generated by the Felix Clock device and exported by the base driver.

Figure 7 The Felix UPnP TV GUI Figure 8 The Felix UPnP Clock GUI

If you want to avoid installing the Cyberlink devices, you can run a second instance of Felix by

clicking on the batch file again. In this case the Felix TV and Clock will be exported and re-

imported by both Felix runtimes and you will see a duplicated TV and Clock device on each

platform. Notice that you can stop in any moment a device by closing its window. You can start it

again from the Felix shell by selecting the respective bundle ID. Starting with two running instances

of the Felix Clock, you can stop the first one and the TVs will lose for a moment the time signal. In

fact, being subscribed to the Clock device type and not to a specific device instance, they will

receive the time event from the remaining device Clock. One TV will be notified from the clock

running on the same platform, while the other will receive the events from an imported TV device.

As soon as you stop also the second clock device, the Time message will disappear from both the

TVs.

The BinaryLight example

The Binary Light device, according the UPnP DCP, shows a graphical interface you can use to

switch on/off the light and to simulate the breaking of the lamp bulb. In this last circumstance you

can see, by using the Felix UPnPDevice Tester interface, that the values of the “Status” and

“Target” variable may be different. While the “Target” variable represents the expected status after

invoking the related action, the “Status” variable describes the real status of the Light Device.

This example, by exploiting the Felix HTTP Service implementation, installs a UPnP presentation

page. By code you can retrieve the presentation page URL by looking for the service property

called “UPnP.presentationURL”. This property is also visible, as link, through the interface

provided by the Tester bundle. Accessing the presentation page by means of a web browser you can

switch the light status by clicking on the Light image: the icon on the device windows changes

accordingly.

Figure 9 The BinaryLight GUI and the presentation page

The source code for the Binary light is slightly different from the one for TV and Clock code

because it has been written starting from a Light model which notifies its changes through the

PropertyChangeListener interface.

Writing UPnP Devices and Control Points

The OSGi UPnP Specification (v 1.1) [1] dedicates section 111.6 “Working with a UPnP Device”

to describe the details of implementing UPnP Devices on OSGi. Here we provide some hints on the

main differences you may encounter working with OSGi with respect to the UDA 1.0 specification

[112].

The first peculiarity is that OSGi provides a centralized register for discovering of UPnP devices as

opposed to the distributed mechanism of the UPnP protocol stack. Thus, while in the UPnP

networks the steps for subscribing the services of some device are typically 1) discover the required

device and 2) subscribe the service, within the OSGi platform a Control Point may register an

interest in receiving notify events even before the device is really plugged on the network. This is

possible because the subscription mechanism is based on the UPnPEventListener interface that is

used for registering OSGi services, which ultimately handles the notify messages sent by the

producers of the events. The base driver (importer) keeps track of such UPnPEventListener services

and as soon as a matching service is discovered on the UPnP network, a subscription is made on

behalf of the registered listeners.

On the other hand, even if it is enough to register a service implementing the UPnPDevice interface

to expose it as UPnP devices on the network, the developers have to implement on their own the

event management required by the UPnP technology. From this point of view, for each evented

state variable declared by the UPnP device, the developers have to monitor UPnPEventListener

services that is error prone
3
. The correct implementation of the UPnP eventing phase is left entirely

to developers. In particular, in UDA 1.0, the first time a Control Point subscribes a service, the

current value of its state variables should soon be delivered to it. To manage this situation in a

standard way, the last OSGi UPnP specification defined the extended interface

UPnPLocalStateVariable. In fact, the previous basic interface UPnPStateVariable provided only a

descriptive interface which did not enable to get the value of a state variable without knowing the

final implementation class. Every developer should use this new interface in order to allow the

specification of helper classes that ease the subscription/notify management (see

UPnPEventNotifier below).

We have factorized and released part of the code used by the UPnP examples with the

org.apache.felix.upnp.extra bundle.

3
 Developers should monitor UPnpEventListener services with a filter matching either the own service Id or service

type, either the own device Id or device type and even a empty filter which are usually used to express interest for every

UPnP device

http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPEventListener.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPDevice.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPEventListener.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPLocalStateVariable.html
http://svn.apache.org/viewvc/felix/trunk/upnp/extra/src/main/java/org/apache/felix/upnp/extra/util/UPnPSubscriber.java?view=markup
http://www.osgi.org/javadoc/r4/org/osgi/framework/Filter.html

The Extra bundle and the driver interfaces

We provide some utility classes and services through the extra bundle and the services registered by

the UPnP Base Driver.

In the Extra bundle the class org.apache.felix.upnp.extra.util.UPnPSubscriber can be

instantiated to subscribe one or more services. The constructor takes two parameters a

BundleContext reference and a UPnPEventListener reference. In this class the method

subscribe(Filter aFilter) is a general and powerful way to subscribe to any service by using

an LDAP filter. For example by using the string :
“(& (UPnP.device.type=urn:schemas-upnp-org:device:BinaryLight:1)

 (UPnP.service.type= urn:schemas-upnp-org:service:SwitchPower:1))”

we would subscribe to the SwitchPower service offered by any device implementing the

BinaryLight profile. Looking at the Felix UPnP TV sample code, the UPnPSubscriber class is used

in the file org.apache.felix.upnp.sample.tv.TVDevice to subscribe to the different service

types offered by the Cyberlink sample devices. However, in this case, the utility method

subscribeEveryServiceType is used to provide just the device and service types.

private final static String CLOCK_DEVICE_TYPE = "urn:schemas-upnp-org:device:clock:1";

private final static String TIME_SERVICE_TYPE = "urn:schemas-upnp-org:service:timer:1";

private final static String LIGHT_DEVICE_TYPE = "urn:schemas-upnp-org:device:light:1";

private final static String POWER_SERVICE_TYPE = "urn:schemas-upnp-org:service:power:1";

private final static String AIRCON_DEVICE_TYPE = "urn:schemas-upnp-org:device:aircon:1";

private final static String TEMP_SERVICE_TYPE = "urn:schemas-upnp-org:service:temp:1";

private final static String WASHER_DEVICE_TYPE = "urn:schemas-upnp-org:device:washer:1";

private final static String STATUS_SERVICE_TYPE = "urn:schemas-upnp-org:service:state:1";

public void doSubscribe()

{

 subscriber = new UPnPSubscriber(Activator.context,this);

 subscriber.subscribeEveryServiceType(CLOCK_DEVICE_TYPE, TIME_SERVICE_TYPE);

 subscriber.subscribeEveryServiceType(AIRCON_DEVICE_TYPE, TEMP_SERVICE_TYPE);

 subscriber.subscribeEveryServiceType(LIGHT_DEVICE_TYPE, POWER_SERVICE_TYPE);

 subscriber.subscribeEveryServiceType(WASHER_DEVICE_TYPE, STATUS_SERVICE_TYPE);

}

public void undoSubscribe(){

 subscriber.unsubscribeAll();

}

The class org.apache.felix.upnp.extra.util.UPnPEventNotifier is a utility class that

manages the delivery of notifications for you. There are two constructors. The first one takes a

BundleContext, a UPnPDevice, and a UPnPService reference. They are internally used to keep trace

of all the registered UPnPEvenListener that are interested in monitoring events generated by your

UPnP service. UPnPEventNotifier implements the java beans PropertyChangeListener interface;

once changes of the service state variables occurs you should call the method

propertyChange(PropertyChangeEvent evt). Alternatively, you may use the second constructor

to pass a reference to a model implementing the interface: EventSource defined in the Extra

bundle. This model should use the PropertyChangeSupport to keep trace of

PropertyChangeListener, and the related method firePropertyChange to notify changes. The

EventSource interface is used internally by the UPnPEventNotifier to register itself as

propertychangeListener of the model. Thus, in this case, you don’t have to call

propertyChange()directly: it is a duty of your model. As an example, take a look at LightModel

class in the BinaryLight bundle.

The Felix UPnP base driver registers a non standard service implementing two interfaces:
org.apache.felix.upnp.basedriver.controller.DevicesInfo;

http://svn.apache.org/viewvc/felix/trunk/upnp/extra/src/main/java/org/apache/felix/upnp/extra/util/UPnPSubscriber.java?view=markup
http://www.osgi.org/javadoc/r4/org/osgi/framework/BundleContext.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPEventListener.html
http://www.osgi.org/javadoc/r4/org/osgi/framework/Filter.html
http://svn.apache.org/viewvc/felix/trunk/upnp/samples/tv/src/main/java/org/apache/felix/upnp/sample/tv/TvDevice.java?view=markup
http://svn.apache.org/viewvc/felix/trunk/upnp/extra/src/main/java/org/apache/felix/upnp/extra/util/UPnPEventNotifier.java?view=markup
http://www.osgi.org/javadoc/r4/org/osgi/framework/BundleContext.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPDevice.html
http://www.osgi.org/javadoc/r4/org/osgi/service/upnp/UPnPService.html
http://svn.apache.org/viewvc/felix/trunk/upnp/extra/src/main/java/org/apache/felix/upnp/extra/util/UPnPEventNotifier.java?view=markup
http://java.sun.com/j2se/1.4.2/docs/api/java/beans/PropertyChangeListener.html
http://svn.apache.org/viewvc/felix/trunk/upnp/extra/src/main/java/org/apache/felix/upnp/extra/util/EventSource.java?view=markup
http://java.sun.com/j2se/1.4.2/docs/api/java/beans/PropertyChangeSupport.html
http://svn.apache.org/viewvc/felix/trunk/upnp/samples/binarylight/src/main/java/org/apache/felix/upnp/sample/binaryLight/LightModel.java?view=markup
http://svn.apache.org/viewvc/felix/trunk/upnp/basedriver/src/main/java/org/apache/felix/upnp/basedriver/controller/DevicesInfo.java?view=markup

org.apache.felix.upnp.basedriver.controller.DriverController;

The former can be used to retrieve the XML description of both devices and services. Other than be

used for debugging purpose, it allows access to the UPnP schema extensions defined by UPnP

Vendors. According to the UDA 1.0 [2] they consist of elements inserted in different points of the

XML description and by convention starting with the prefix “X_”. This interface is used by the

context menu handler of the UPnP Tester bundle.

The latter interface can be used to change the log messages of the base driver at runtime. Two

different methods are available to modify the log level of the base driver or to enable the

visualization of low level messages related to the UPnP stack protocol (CyberDomo). Furthermore,

the interface allows developers to send an M-SEARCH discovery message to the UPnP networks,

thus refreshing the list of imported devices.

Known issues

Currently the bundle does not support the following requirements:

 upnp.ssdp.address Configuration Service

 exported device changes: if a service already exported as UPnP Device changes its own

configuration, i.e.: implements new service, changes the friendly name, etc., the new service

description is not reflected on the UPnP Device

 icons for exported device are not tested

 no localization support

Acknowledgments

The Felix UPnP base driver and related bundles were originally developed by the Domoware

project [5] which targeted the OSGi R3. The driver is based on a modified version of the UPnP for

Java library released by the Cyberlink project [4]. This version, called CyberDomo, is currently

maintained by the Domoware project team and aligned to the Cyberlink library regularly.

References

1. OSGi Specifications - http://www.osgi.org/Specifications/HomePage

2. UPnP Device architecture - http://www.upnp.org/resources/documents/CleanUPnPDA101-

20031202s.pdf

3. Integrating Felix inside Eclipse - http://felix.apache.org/site/integration-of-felix-inside-

eclipse.html

4. Cyberlink for Java - http://www.cybergarage.org/net/upnp/java/index.html

5. Domoware Project - http://domoware.isti.cnr.it/

6. K. Mills, C. Dabrowski “Adaptive Jitter Control for UPnP M-Search” IEEE International

Conference on Communications, 2003. ICC '03. page(s): 1008- 1013 vol.2 -

http://w3.antd.nist.gov/~mills/papers/Paper521.pdf

7. Intel® Software for UPnP* Technology - http://www.intel.com/cd/ids/developer/asmo-

na/eng/downloads/upnp/index.htm

http://svn.apache.org/viewvc/felix/trunk/upnp/basedriver/src/main/java/org/apache/felix/upnp/basedriver/controller/DriverController.java?view=markup
http://www.osgi.org/Specifications/HomePage
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf
http://felix.apache.org/site/integration-of-felix-inside-eclipse.html
http://felix.apache.org/site/integration-of-felix-inside-eclipse.html
http://www.cybergarage.org/net/upnp/java/index.html
http://domoware.isti.cnr.it/
http://w3.antd.nist.gov/~mills/papers/Paper521.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/index.htm

