
©Copyright 2003, NetChange, LLC All Rights Reserved

Leveraging Object Relational Bridge (OJB)

Building a Data
Persistence Tier

NetChange, LLC
 People•Ideas•Technology

©Copyright 2003, NetChange, LLC All Rights Reserved

About the Speaker
 John Carnell is a Principal Architect for NetChange, LLC.
 NetChange is an IT consulting firm specializing in enterprise
 application design and implementation. John is also an adjunct faculty
 member of Waukesha County Technical College (WCTC) School of
 Business.

 In addition to his consulting and teaching activities, John is a prolific
 speaker and writer. He has spoken at such national conferences as
Internet Expo and the Data Warehousing Institute. John just completed a speaking
tour with the Denver-based Complete Programmer Network. John has authored,
co-authored and been a technical reviewer for a number of technology books
and industry publications. Some of his works include:

John's current writing project is a second edition of his Struts book.
This book is scheduled for release by APress in early fall.

©Copyright 2003, NetChange, LLC All Rights Reserved

The Challenges of Java Database Development

What are Object/Relational (O/R) Mapping Tools?

What is Object Relational Bridge?

Installing and configuring Object Relational Bridge

Implementing Mapping with Object Relational
Bridge

Proxies for Performance

Using J2EE Design Patterns to build a Data Access
Tier

Agenda

©Copyright 2003, NetChange, LLC All Rights Reserved

The Challenges of Java Database
Development

©Copyright 2003, NetChange, LLC All Rights Reserved

Relational Databases

For many of us, the majority of our development
lives are spent writing code that retrieves and
manipulates data from relational databases.

Pretty depressing

Are we caught in the Matrix?

©Copyright 2003, NetChange, LLC All Rights Reserved

Some Truths about Java, SQL and JDBC

Java is a language where data and action is self
contained within a discrete body called an Object.

SQL (Self Query Language) is the language of
choice for retrieving and manipulating data from
relational databases.

JDBC (Java Database Connectivity) is the
de-facto API for Java applications to issue SQL calls
to a database

JDBC and SQL are about as non-Object oriented
as you can get

©Copyright 2003, NetChange, LLC All Rights Reserved

JDBC and SQL is powerful....

Writing JDBC/SQL Code is Tedious to Write

Writing JDBC/SQL code is Error-Prone

In even small projects, you end up writing a lot of
SQL Code

Very few people are good to writing SQL code

©Copyright 2003, NetChange, LLC All Rights Reserved

Writing JDBC/SQL Code is Tedious

Car

Engines

Tires

Axles

SELECT
FROM
 car, tires, engines, axles
WHERE car.car_id = axles.car_id
AND car.car_id = tires.car_id
AND car.car_id = engines.car_id

©Copyright 2003, NetChange, LLC All Rights Reserved

 pStatement = (OraclePreparedStatement) oraConn.prepareStatement(eventInsertSQL.toString());
eventVO.setEventID(new Integer(getNewEventID()));

pStatement.setInt(1, eventVO.getEventID().intValue());
pStatement.setString(2, eventVO.getStatusCode());
pStatement.setString(3, eventVO.getStatusMessage());
pStatement.setString(4, eventVO.getEventType());
pStatement.setString(5, eventVO.getOrderNO());
pStatement.setString(6, eventVO.getCustomer());
pStatement.setString(7, eventVO.getCreatedBy());

pStatement.execute();

//Retrieving the record I just inserted.
StringBuffer messageSQL = new StringBuffer(128);

messageSQL.append("SELECT message FROM asq_event WHERE event_id=? ");
messageSQL.append("FOR UPDATE OF message");

pStatement = (OraclePreparedStatement)oraConn.prepareStatement(messageSQL.toString());
pStatement.setInt(1, eventVO.getEventID().intValue());
rsMessage = pStatement.executeQuery()

 }
 finally{
 try{
 if (rsMessage!=null) rsMessage.close();
 if (pStatement!=null) pStatement.close();
 if (conn!=null) conn.close();
 }
 catch(SQLException e){}
 }

Writing JDBC/SQL code is Error-Prone

Forgot to close the statement
(Cursor Leak)

©Copyright 2003, NetChange, LLC All Rights Reserved

On a previous project where we
had to interact with a CRM we had
over 1000+ lines of code purely
dedicated to retrieving/
manipulating customer information.
(Never mind all of the other JDBC/
SQL code we had to write)

For most data entities you need to
write a lot of code to carry out
simple C.R.U.D. actions

It becomes even more complicated
when you have to start dealing with
data relationships and referential
integrity

Writing SQL Code often Involves a Lot of
Code

©Copyright 2003, NetChange, LLC All Rights Reserved

SELECT * FROM customer
WHERE customer table has 75
columns and he only needs 3
columns

Guilty of needlessly retrieving more data then
he needs and hosting a bad talk show.

Very Few People Write Good SQL Code

©Copyright 2003, NetChange, LLC All Rights Reserved

SELECT customer_name,
products_name FROM
customer, products
WHERE
customer_name=’OZZY’

Guilty of cartesian joins, cruelty to bats and
destroying American culture. (Repeat
Offender)

Very Few People Write Good SQL Code

©Copyright 2003, NetChange, LLC All Rights Reserved

SELECT first_name, middle_name ,
last_name FROM Customer

WHERE SUBSTR(customer_id,1,5)
LIKE ‘1234%’ on a table with 12
million customer rows

Guilty of not understanding how indexes work
, world domination and not paying for his
coffee.....

Very Few People Write Good SQL Code

©Copyright 2003, NetChange, LLC All Rights Reserved

The Question Becomes Then

If Java is an Object-Oriented language.....

Why are we using a “row” and “table”
based API for retrieving and manipulating
data?

Wouldn’t be nicer to retrieve object
using Java Objects?

©Copyright 2003, NetChange, LLC All Rights Reserved

What are Object Relational
Mapping Tools?

©Copyright 2003, NetChange, LLC All Rights Reserved

Enter Object-Relational Mapping
Tools.....

Car

Engines

Tires

Axles

O/R Engine

Car

getCarId()
getModelType()
getStyle()
setCardId()
setModelType()
setStyle()
getTires()
setTires()
getAxles()
setAxles()
getEngines()
setEngines()

An O/R engines allows us to declaratively map data and data relationships from a
relational database to a Java Object.
The O/R Engine generates all SQL Code to the database
The developer uses a Object Query Language (OQL) to retrieve data.

©Copyright 2003, NetChange, LLC All Rights Reserved

Code Generators - Takes a defined mapping and
then generate Java code to carry out all database
transactions.

Torque (http://jakarta.apache.org/turbine/torque)

Middlegen (http://boss.bekk.no/boss/middlegen)

Transparent Persistence - Takes a defined
mapping and execute database calls on the fly.

Object Relational Bridge

Hibernate

Types of Object-Relational Mapping
Tools

©Copyright 2003, NetChange, LLC All Rights Reserved

The Reduction in Work is Staggering
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:/MySQLDS");
conn = ds.getConnection();
conn.setAutoCommit(false);

StringBuffer insertSQL = new StringBuffer();

insertSQL.append("INSERT INTO story(");
insertSQL.append(" member_id , ");
insertSQL.append(" story_title , ");
insertSQL.append(" story_into , ");
insertSQL.append(" story_body , ");
insertSQL.append(" submission_date ");
insertSQL.append(") ");
insertSQL.append("VALUES(");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" ? , ");
insertSQL.append(" CURDATE()) ");

ps = conn.prepareStatement(insertSQL.toString());

ps.setLong(1, memberVO.getMemberId().longValue());
ps.setString(2, postStoryForm.getStoryTitle());
ps.setString(3, postStoryForm.getStoryIntro());
ps.setString(4, postStoryForm.getStoryBody());

ps.execute();
conn.commit();

broker = ServiceLocator.getInstance().findBroker();
memberVO = (MemberVO) insertRecord;

broker.beginTransaction();
broker.store(memberVO);
broker.commitTransaction();

26 Lines 5 Lines

©Copyright 2003, NetChange, LLC All Rights Reserved

What is Object Relational Bridge?

OJB is an Open Source O/R mapping tool from the
Jakarta Apache Group.

OJB was started by Thomas Mahler.

It is a relative newcomer to the O/R mapping tool
set

Strengths of OJB include:

OJB is lightweight and extremely easy to setup.
Since OJB does not perform code generation, it makes
it extremely easy to re-factor existing applications to
use it.
OJB uses a micro-kernel architecture that allows it to
support multiple database APIs.

©Copyright 2003, NetChange, LLC All Rights Reserved

An object cache that greatly enhances performance and helps
guarantee the identity of multiple objects pointing to the same
row of data.

When using the Persistence broker API, automatic persistence
of children objects.

An architecture that can support running in a single JVM or in
a client-server mode that can support clusters.

Integrates into an application server environment including
participating in Container Managed transactions and access to
JNDI data sources

Multiple locking types including support for optimistic locking

A built-in sequence manager.

Other OJB Features

©Copyright 2003, NetChange, LLC All Rights Reserved

The OJB Micro-kernel
Architecture

OMDG and JDO APIs

Object Transaction Manager

Persistence Broker

JDBC/SQL Code

©Copyright 2003, NetChange, LLC All Rights Reserved

Installing and Configuring
Object Relational Bridge

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB can be downloaded from the http://
jakarta.apache.org/ojb

At its core OJB needs the following libraries (all of
which come with the distribution):

 db-ojb-1.0.rc3-junit.jar
commons-beans-util.jar
commons-collections-2.0.jar
commons-logging.jar
commons-pool.jar
commons-dbcp.jar
commons-lang-1.0-mod.jar

Installing OJB

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB requires two basic configuration files:

OJB.properties - Used to customize the run-time
properties of OJB (caching, transaction management,
etc....)

repository.xml - Used to describe the mapping of
the database tables to the database.

OJB Configuration Files

©Copyright 2003, NetChange, LLC All Rights Reserved

The OJB.properties file is used to control the
behavior of OJB run-time engine. Some of the
information that can be configured in it includes:

The server mode being used (single JVM or client-
server).

The number of persistence brokers in the pool.

Configuration information for:
Locking
Caching
Logging

Needs to be located in the CLASSPATH of the
project.

OJB.properties

OJB.properties

©Copyright 2003, NetChange, LLC All Rights Reserved

The repository.xml file holds the O/R mappings
that maps database tables to Java classes. Elements in
this file include:

JDBC Connection Information
DB2
Oracle
Microsoft Access/SQL Server
MySQL
Sybase

<class-descriptor> elements
<field-descriptor> elements
<reference-descriptor> elements
<collection-descriptor> elements

The repository.xml

repository.xml

©Copyright 2003, NetChange, LLC All Rights Reserved

Database connections are defined in the
repository.xml file

Elements defined in the connection include:

A name to identify the connection with
The database platform being connected to.
The JDBC level (Version 1, 2 and 3 are supported. The
default value is Version 1)
JDBC driver CLASS
Connection information (Protocol, Database alias, user
name and password)

Setting up a Database
Connection

©Copyright 2003, NetChange, LLC All Rights Reserved

<jdbc-connection-descriptor
 jcd-alias="strutsdb"
 platform=”MySQL”
 jdbc-level=”2.0”
 driver=”org.gjt.mm.mysql.Driver”
 protocol=”jdbc”
 dbalias=”waf”
 username=”waf_user”
 password=”password”/>

Setting up a Non-JNDI based
Connection

©Copyright 2003, NetChange, LLC All Rights Reserved

<jdbc-connection-descriptor
 jcd-alias="strutsdb"
 platform=”MySQL”
 jdbc-level=”2.0”
 jndi-datasource-name=”java:/MySQLDS”/>

Setting up a JNDI-based
Connection

©Copyright 2003, NetChange, LLC All Rights Reserved

Implementing Mapping with
Object Relational Bridge

©Copyright 2003, NetChange, LLC All Rights Reserved

For our first example we are going to map a class
called MemberVO to a database table called member.

Very simple data with basic data elements.

No data relationships to worry about at this point.

Mapping Our First Table

repository.xml MemberVO.java

©Copyright 2003, NetChange, LLC All Rights Reserved

 <class-descriptor class="com.wrox.javaedge.member.MemberVO" table="member">

 <field-descriptor id="1" name="memberId" column="member_id" jdbc-type="BIGINT"
 primarykey="true" autoincrement="true"/>

 <field-descriptor id="2" name="firstName" column="first_name" jdbc-type="VARCHAR"/>

 <field-descriptor id="3" name="lastName" column="last_name" jdbc-type="VARCHAR"/>

 <field-descriptor id="4" name="userId" column="userid" jdbc-type="VARCHAR"/>

 <field-descriptor id="5" name="password" column="password" jdbc-type="VARCHAR"/>

 <field-descriptor id="6" name="email" column="email" jdbc-type="VARCHAR"/>

 </class-descriptor>

Our First Mapping

Fully qualified Java class Database Table

Java Class Property Database Column

©Copyright 2003, NetChange, LLC All Rights Reserved

The jdbc-type attribute in the <field-
descriptor> tags supports a number of JDBC data
types including:

INTEGER

FLOAT

DOUBLE

DATE/TIMESTAMP

VARCHAR

BLOB/CLOBS/VARBINARY

Data Types Supported

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB does support JDO through the Sun reference
implementation.

To use JDO in OJB you need:

Download JDO from Sun (http://jcp.org/
aboutJava/communityprocess/final/jsr012/
index.html)
Make the JDO part of your Jar directory
Setup your repository.xml file. (No changes there)
Setup a *.JDO specific mapping
After building your class files, you need to invoke the
JDO runtime enhancement.

What about JDO support?

©Copyright 2003, NetChange, LLC All Rights Reserved

JDO File Example
<!DOCTYPE jdo SYSTEM "file://target/classes/test/org/apache/ojb/jdo.dtd">
<jdo>

 <package name="com.wrox.javaedge.member">

 <class name="MemberVO">
 <extension vendor-name="ojb" key="table" value="member"/>

 <field name="memberId">
 <extension vendor-name="ojb" key="column" value="member_id"/>
 </field>
 <field name="firstName">
 <extension vendor-name="ojb" key="column" value="first_name"/>
 </field>
 <field name="lastName">
 <extension vendor-name="ojb" key="column" value="last_name"/>
 </field>
 .
 .
 .
 </class>
 </package>
</jdo>

©Copyright 2003, NetChange, LLC All Rights Reserved

You can configure OJB to read/write data from a Java
class in one of two ways:

Using Java reflection to directly set a property
within the class.

Use JavaBean get()/set() methods to access data

Using Java reflection allows you tighter control
over what properties you are going to read and
write to.

Using JavaBean get()/set() methods allow you to
abstract away how data is actually handled by a
class.

Telling OJB How To Access and Set Properties

©Copyright 2003, NetChange, LLC All Rights Reserved

To configure how OJB is going to handle reading and
writing data to and from a Java class you must set the
PersistentFieldClass attribute in the
OJB.properties to be one of two values:

org.apache.ojb.broker.metadata.PersistentFieldDefaultImpl -
Sets the attribute via Java reflection.

org.apache.ojb.broker.metadata.PersistentFieldPropertyImpl -
Sets an attribute via get()/set() methods.

Telling OJB How To Access and Set Properties

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB can handle Blob and Clob data types. However,
for the end-developer isn’t it better to hide the
complexities of dealing with Blobs.

Configuring OJB to use get()/set() methods allow
us to perform data conversion on retrieved
elements.

Developers only deal with Strings and not the
actually byte[] array.

Fun with CLOBs

StoryVO.java repository.xml

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB provides two different methods for retrieving
data. They are

Query By Example - Retrieves all objects whose
attributes match values set on an instance of an
Object.

Object Query Language (OQL) - Similair in
function to SQL, but used to retrieve Objects
instead of database rows.

Retrieving a Single Record

©Copyright 2003, NetChange, LLC All Rights Reserved

First Lets Get a Connection
public PersistenceBroker findBroker() throws ServiceLocatorException{
 PersistenceBroker broker = null;
 try{
 broker = PersistenceBrokerFactory.defaultPersistenceBroker();
 }
 catch(PBFactoryException e) {
 e.printStackTrace();
 throw new ServiceLocatorException("PBFactoryException error " +
 "occurred while parsing the repository.xml file in " +
 "ServiceLocator constructor",e);
 }

 return broker;
 }

©Copyright 2003, NetChange, LLC All Rights Reserved

Performing a Query By Example -
Retrieving a Single Row

 try {
 broker = .getInstance().findBroker();
 storyVO = new StoryVO();
 storyVO.setStoryId(new Long(primaryKey));

 Query query = new QueryByCriteria(storyVO);
 storyVO = (StoryVO) broker.getObjectByQuery(query);
 } catch (ServiceLocatorException e) {
 log.error("PersistenceBrokerException thrown in StoryDAO.findByPK():
 " + e.toString());
 throw new DataAccessException("Error in StoryDAO.findByPK(): " +
 e.toString(),e);
}
finally {
 if (broker != null) broker.close();
}

Defining the query criteria

Call to retrieve the data.
Returns a single object.

If No Object is Found a Null Value is Retrieved!

©Copyright 2003, NetChange, LLC All Rights Reserved

Retrieving A Single Object with
JDO

//Plug-in Point to get to OJB
OjbStorePMF factory= new OjbStoryPMF();

//Used to manage the transaction
PersistenceManager manager = factory.getPersistenceManager();

//Setting up my query
MemberVO memberVO = new MemberVO();
MemberVO.setMemberID(id);

PersistenceBroker broker = PersistenceBrokerFactory.defaultPersistenceBroker();
Identity oid = new Identity(memberVO, broker);

//Executing the query
memberVO = (MemberVO) manager.getObjectById(oid, false);

©Copyright 2003, NetChange, LLC All Rights Reserved

Performing a Query By Example -
Retrieving Multiple Rows

 try {
 broker = ServiceLocator.getInstance().findBroker();
 CustomerVO = new CustomerVO();
 customerVO.setLastName(”carnell”);

 Query query = new QueryByCriteria(customerVO);
 Collection = (Collection) broker.getCollectionByQuery(query);
 } catch (ServiceLocatorException e) {....}
finally {
 if (broker != null) broker.close();
}

Defining the query criteria

Call to retrieve the data.
Returns a single object.

©Copyright 2003, NetChange, LLC All Rights Reserved

Inserting and Updating Data

StoryVO storyVO = new StoryVO();
storyVO.setStoryTitle("Test Story");
storyVO.setStoryIntro("This is the Story Intro");
storyVO.setStoryBody("This is the Story Body");
storyVO.setStoryMemberVO(memberVO);

broker = ServiceLocator.getInstance().findBroker();
broker.beginTransaction();
broker.store(storyVO);
broker.commitTransaction();

Setting up the object to be
inserted

Telling OJB to store the
object.

©Copyright 2003, NetChange, LLC All Rights Reserved

broker = ServiceLocator.getInstance().findBroker();

//Begin the transaction.
broker.beginTransaction();
broker.delete(storyVO);
broker.commitTransaction();

Deleting Data

OJB deletes the record

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB does have a built in primary-key generation
mechanism. To use it you must:

Uncomment the database profile in the OJB
build.properties file.

Edit the OJB distribution/profile/database type file
to point to the database where OJB specific tables
will be generated for primary key usage.

Run the prepare-testdb ant target to build the
OJB primary key tables.

How Primary Keys are
Generated

©Copyright 2003, NetChange, LLC All Rights Reserved

Modifying the build.properties
With the 'profile' property you can choose the RDBMS
platform OJB is using
implemented profiles:
#profile=hsqldb
#profile=mssqldb
profile=mysql
#profile=db2
#profile=oracle
#profile=msaccess
#profile=postgresql
#profile=informix
#profile=sybase
#profile=sapdb

Uncommenting the mysql
profile

©Copyright 2003, NetChange, LLC All Rights Reserved

Modifying mysql.profile

dbmsName = MySql
jdbcLevel = 2.0
urlProtocol = jdbc
urlSubprotocol = mysql
urlDbalias = //localhost:3306/javaedge

databaseDriver = org.gjt.mm.mysql.Driver
databaseUser = waf
databasePassword = waf_user
databaseHost = localhost

©Copyright 2003, NetChange, LLC All Rights Reserved

To build the tables run ant prepare-db. You
should see the following tables generated in your
target database:

OJB_HL_SEQ
OJB_LOCKENTRY
OJB_NRM
OJB_DLIST
OJB_DLIST_ENTRIES
OJB_DSET
OJB_DSET_ENTRIES
OJB_DMAP
OJB_DMAP_ENTRIES

Running the Ant Target

©Copyright 2003, NetChange, LLC All Rights Reserved

Mapping One-to-One
Relationships

<class-descriptor class="com.wrox.javaedge.story.StoryCommentVO" table="story_comment">

 <field-descriptor id="1" name="commentId" column="comment_id" jdbc-type="BIGINT"
 primarykey="true" autoincrement="true"/>

 <field-descriptor id="2" name="storyId" column="story_id" jdbc-type="BIGINT"/>
 <field-descriptor id="3" name="memberId" column="member_id" jdbc-type="BIGINT"/>

 <reference-descriptor name="commentAuthor"
 class-ref="com.wrox.javaedge.member.MemberVO"
 auto-retrieve="true">
 <foreignkey field-id-ref="3"/>
 </reference-descriptor>

</class-descriptor>

Creates a one-to-one
relationship between a

the author of the comment
and the comment

©Copyright 2003, NetChange, LLC All Rights Reserved

Mapping One-to-Many
Relationships

 <class-descriptor class="com.wrox.javaedge.story.StoryVO" table="story">

 <field-descriptor id="1" name="storyId" column="story_id" jdbc-type="BIGINT"
 primarykey="true" autoincrement="true"/>
 <field-descriptor id="2" name="memberId" column="member_id" jdbc-type="BIGINT"/>
 <field-descriptor id="3" name="storyTitle" column="story_title" jdbc-type="VARCHAR"/>
 <field-descriptor id="4" name="storyIntro" column="story_intro" jdbc-type="VARCHAR"/>
 <field-descriptor id="5" name="storyBody" column="story_body" jdbc-type="LONGVARBINARY"/>
 <field-descriptor id="6" name="submissionDate" column="submission_date" jdbc-type="DATE"/>

 <collection-descriptor name ="comments" element-class-ref="com.wrox.javaedge.story.StoryCommentVO"
 auto-retrieve="true" auto-update="true" auto-delete="true">
 <inverse-foreignkey field-id-ref="2"/>
 </collection-descriptor>

 <reference-descriptor name="storyAuthor" class-ref="com.wrox.javaedge.member.MemberVO" auto-
retrieve="true">
 <foreignkey field-id-ref="2"/>
 </reference-descriptor>
</class-descriptor>

©Copyright 2003, NetChange, LLC All Rights Reserved

Mapping Many-to-Many Relationships
<class-descriptor class="com.wrox.javaedge.story.StoryVO" table="story">
 <field-descriptor id="1" name="storyId" column="story_id" jdbc-type="BIGINT" primarykey="true"
autoincrement="true"/>
 <field-descriptor id="2" name="memberId" column="member_id" jdbc-type="BIGINT"/>
 <field-descriptor id="3" name="storyTitle" column="story_title" jdbc-type="VARCHAR"/>
 <field-descriptor id="4" name="storyIntro" column="story_intro" jdbc-type="VARCHAR"/>
 <field-descriptor id="5" name="storyBody" column="story_body" jdbc-type="LONGVARBINARY"/>
 <field-descriptor id="6" name="submissionDate" column="submission_date" jdbc-type="DATE"/>

 <collection-descriptor name ="comments"
 element-class-ref="com.wrox.javaedge.story.StoryCommentVO"
 auto-retrieve="true"
 auto-update="true" auto-delete="true"
 indirection_table="STORY_STORY_COMMENTS">
 <fk-pointing-to-this-class column="STORY_ID"/>
 <fk-pointing-to-this-class column="COMMENT_ID"/>
 </collection-descriptor>

 <reference-descriptor name="storyAuthor" class-ref="com.wrox.javaedge.member.MemberVO"
auto-retrieve="true">
 <foreignkey field-id-ref="2"/>
 </reference-descriptor>
</class-descriptor>

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB allows the developer to retrieve data using more
sophisticated queries.

Queries are built using a Criteria object

Criteria objects can be “AND” and “OR”’ed to
create more complex queries

Building More Sophisticated
Queries

©Copyright 2003, NetChange, LLC All Rights Reserved

Criteria criteriaEquals = new Criteria();
Criteria criteriaLike = new Criteria();

criteriaEquals.addEqualTo(”last_name”, “Smith”);
criteriaLike.addIsLike(”first_name”,”J%”);
criteriaEquals.addAndCriteria(criteriaLike);
criteriaEquals.addOrderByAscending(”first_name”);

Query query = new QueryByCriteria(MemberVO.class,
 criteriaEquals);
Collection results = broker.getCollectionByQuery(query);

More Complex Queries in Action

Builds the Query that is
going to be created

©Copyright 2003, NetChange, LLC All Rights Reserved

WHERE last_name=’Smith’ and first_name
LIKE ‘J%’ ORDER BY first_name
ASCENDING

All of This Translates Into....

To see the SQL code generated by OJB, you need to set the
org.apache.broker.accesslayer.sql.SqlGeneratoDefaultImpl.LogLevel to
DEBUG. All the SQL code generated by OJB will be written out
System.out.

©Copyright 2003, NetChange, LLC All Rights Reserved

addEqualTo()
addGreaterThan()
addGreaterOrEqualThan()
addLessThan()
addLessOrEqualThan()
addIsNull()
addNotNull()
addIsLike()
addSQL()

Some of the Methods for Building
Queries

This is only a small subset of
the functions for building

queries

©Copyright 2003, NetChange, LLC All Rights Reserved

Proxies for
Performance

©Copyright 2003, NetChange, LLC All Rights Reserved

So What’s Wrong with this Picture?
 <class-descriptor class="com.wrox.javaedge.story.StoryVO" table="story">

 <field-descriptor id="1" name="storyId" column="story_id" jdbc-type="BIGINT" primarykey="true"
 autoincrement="true"/>
 <field-descriptor id="2" name="memberId" column="member_id" jdbc-type="BIGINT"/>
 <field-descriptor id="3" name="storyTitle" column="story_title" jdbc-type="VARCHAR"/>
 <field-descriptor id="4" name="storyIntro" column="story_intro" jdbc-type="VARCHAR"/>
 <field-descriptor id="5" name="storyBody" column="story_body" jdbc-type="LONGVARBINARY"/>
 <field-descriptor id="6" name="submissionDate" column="submission_date" jdbc-type="DATE"/>

 <collection-descriptor name ="comments" element-class-ref="com.wrox.javaedge.story.StoryCommentVO"
 auto-retrieve="true" auto-update="true" auto-delete="true">
 <inverse-foreignkey field-id-ref="2"/>
 </collection-descriptor>

 <reference-descriptor name="storyAuthor" class-ref="com.wrox.javaedge.member.MemberVO"
 auto-retrieve="true">
 <foreignkey field-id-ref="2"/>
 </reference-descriptor>
 </class-descriptor>

©Copyright 2003, NetChange, LLC All Rights Reserved

PersistenceBroker broker = null;
Collection results = null;

Criteria criteria = new Criteria();
criteria.addOrderByDescending("storyId");

Query query = QueryFactory.newQuery(StoryVO.class, criteria);

query.setStartAtIndex(1);
query.setEndAtIndex(MAXIMUM_TOPSTORIES - 1);

The way the Story mapping is
setup, every StoryVO automatically retrieves a Collection of all of the
StoryCommentVO’s associated with it. In the main home page
we only care about the Stories, not the Story comments.

©Copyright 2003, NetChange, LLC All Rights Reserved

Lets Do the Math

• 10 Stories with 10 Comments

• 10 users all hit the main home page
concurrently.

• 10x10x10 = 1000 Approximately Objects

©Copyright 2003, NetChange, LLC All Rights Reserved

Wow if you are not careful you can end up with a ton of
mappings.

Fortunately, OJB supports the concepts of Proxies.

Proxies allow you to retrieve data without having to
retrieve all of the data for an object or all of the children
objects. This is the concept “lazy instantiation.”

Two types of Proxies:

Single Class Proxies - Used to only load the OID for an
object.

Collection Proxies - Will not load children mappings
until the Children objects are accessed.

Yikes!

©Copyright 2003, NetChange, LLC All Rights Reserved

To use Proxies class you need to implement the
following items:

An Interface class that has all of the get()/set() methods
for a class.
A concrete implementation of the class being mapped
in OJB.
A Proxy class that extends the OJB class VirtualProxy.
An proxy attribute defined for the OJB mapping.

Writing a Proxy Class

IPerson.java Person.java PersonProxy.java

©Copyright 2003, NetChange, LLC All Rights Reserved

Writing all of these proxies classes are a
pain.

Fortunately OJB allows you to use Dynamic
Proxies and eliminate the need to write a
proxy class.

However, even with Dynamic Proxies, you
still need to write an interface class.

Dynamic Proxies

©Copyright 2003, NetChange, LLC All Rights Reserved

Collection proxies are used to proxy relationships
between objects.

Collection proxies do not retrieve data until the first time
a object is requested from the collection.

Do not use collection proxies in combination with regular
proxies, as you will end up far more calls to a database
then needed.

You can implement your own Collection proxies by
modifying the CollectionProxyClass attribute in the
OJB.properties.

Collection Proxies

IStoryComment.javaStoryCommentVO.java

©Copyright 2003, NetChange, LLC All Rights Reserved

Moving Beyond the Technology:
Developing a Data Access

Strategy

©Copyright 2003, NetChange, LLC All Rights Reserved

OJB is a tool, not a solution.

Tools like OJB can significantly speed up your
development efforts.

However, most organizations should architect their
data access tier to be technology independent.

In the next section, we are going to look at how to
use some common J2EE Design Patterns to build a
flexible data access solution.

Beyond OJB

©Copyright 2003, NetChange, LLC All Rights Reserved

The Truth about the Data Access Tier

Most development teams do not have a coherent
strategy for building their data access tier

The main reason is developers tend to only think
about modeling the business tier of the application.
They define their data access tier by:

The particular data access technology being used
(JDBC, Entity EJBs, etc..)

The database they use to hold their data (Oracle,
Sybase, SQL Server)

©Copyright 2003, NetChange, LLC All Rights Reserved

Technologies change at a rapid rate.

Different technologies offer different competitive
advantages

Not paying attention to this and coupling your
applications to particular technology or vendor can
leave you unable to be responsive to new business
requirements.

The Problem with This Approach

©Copyright 2003, NetChange, LLC All Rights Reserved

Symptoms of Data Madness include:

The creation of tight dependencies between
applications and the structures of the underlying
data stores.
The presence of a 2.5 tier architecture.
The inability to easily port an application to
another database platform because of vendor-
specific database extensions.
The inability to easily change data access
technologies.

This Can Lead To Data Madness

©Copyright 2003, NetChange, LLC All Rights Reserved

A Bad, But Typical Piece of Code

 public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response){

 PostStoryForm postStoryForm = (PostStoryForm) form;
 HttpSession session = request.getSession();

 try{
 Context ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup("java:/OracleDS");
 conn = ds.getConnection();
 conn.setAutoCommit(false);

 StringBuffer insertSQL = new StringBuffer();

 insertSQL.append("INSERT INTO story ");
 insertSQL.append("VALUES(");
 insertSQL.append(" story_id_seq.nextval , ");
 insertSQL.append(" ? , ");
 insertSQL.append(" ? , ");
 insertSQL.append(" ? , ");
 insertSQL.append(" ? , ");
 insertSQL.append(" SYSDATE) ");

 ps = conn.prepareStatement(insertSQL.toString());

 ps.setLong(1, memberVO.getMemberId().longValue());
 ps.setString(2, postStoryForm.getStoryTitle());
 ps.setString(3, postStoryForm.getStoryIntro());
 ps.setString(4, postStoryForm.getStoryBody());

 ps.execute();
 conn.commit();
}

Details about the underlying
data structure are exposed

to the application.

The application now has a
dependency on the Oracle

database.

Watch out for SQL
droppings in the business

tier.

The application has been
needlessly exposed to data

access implementation
details

©Copyright 2003, NetChange, LLC All Rights Reserved

Good architecture often starts with what appear to
be small design decisions.

We often times do not feel the pain of bad
architecture until after we try to extend or
maintain the application.

Paying attention to these details at the data access
tier often results in big re-use payoffs later on

Remember, for many developers the majority of
their careers are spent moving data from point A-B.

The Problem with This Approach

©Copyright 2003, NetChange, LLC All Rights Reserved

Ideally a data access tier should be designed so that
business services can consume data without giving any
idea how or from where the data is being retrieved.

Allow a clean separation of data persistence logic or business
logic.
Decouple the application(s) from any knowledge of the
database platform in which the data resides.
Abstract away the physical details of how data is stored within
the database and the relationships that exist between entities
within the database.
Simplify the application development process by hiding details
associated with getting a DB connection, issuing commands
etc....

What Should Be The Goal?

©Copyright 2003, NetChange, LLC All Rights Reserved

Ideally We Want

Business Logic Space

Data Access Space
VO

Business
Delegate

Session
Facade

Session
Facade

Session
Facade

DAO

DAO

DAO
Service
Locator

Relational Databases

XML

Legacy Systems

External Apps using
Web Services

©Copyright 2003, NetChange, LLC All Rights Reserved

Encapsulates all physical details of the data source
being accessed.

Abstracts away how data is being retrieved and
manipulated.

Centralizes all CRUD logic behind a logical Java
interface.

Allows for the optimization of data requests
through caching.

What is a Data Access Object?

©Copyright 2003, NetChange, LLC All Rights Reserved

The Data Access Object

©Copyright 2003, NetChange, LLC All Rights Reserved

The DAO Factory

1. Application needs a DAO to retrieve
and manipulate data. It creates a
DAOFactory and calls getDAO().

2. The DAOFactory will take the user’s
request and looks up the fully-qualified
class name (dao.properties).

3. Upon retrieving the class name , the
DAO will instantiate an instance of the
DAO.

1. Applications 2. DAOFactory

3. DAO
Implementations

DAO.properties

MemberDAO.java

MemberDAOJDBC.java

DAOFactory.java

©Copyright 2003, NetChange, LLC All Rights Reserved

Value Object/Data Transfer
Object Pattern

©Copyright 2003, NetChange, LLC All Rights Reserved

The Value Object pattern was originally
implemented to deal with the performance
problems inherent in the Entity EJB 1.1
specification.
The introduction of Local interfaces for the Entity
EJB has mitigated the need for this pattern.
Some would argue that the Value Object Pattern is
a step back from OO-design because it is
separating data and behavior.

Some History On the Value
Object

©Copyright 2003, NetChange, LLC All Rights Reserved

A Value Object Pattern wrappers a row of data retrieved from a
data source in a Plain Old Java (POJ) class.
This lets the user deal with a logical view of the data instead of a
physical view.

Value objects hide the data types of the data being retrieved.
Value objects hide the relationships that exist between tables in the
database.

Value objects are the glue that ties the tiers together. They are
used to pass data back and forth between all tiers in the
application. This is where they have Value (OK bad Pun)

The Value Object Pattern Still
has Value

©Copyright 2003, NetChange, LLC All Rights Reserved

Framework
Space

Business Logic Space

Data Access Space

The Value Object In Action

VO

Action
Class

Business
Delegate

Session
Facade

Session
Facade

Session
Facade

DAO

DAO

DAO
Service
Locator

The Value Object is a consistent
interface for moving data back and forth
across the tiers.

©Copyright 2003, NetChange, LLC All Rights Reserved

Watch how much data you pull back from your DAOs.
A DAO can abstract any data source.
A DAO can build Value Objects that have to one-to-many
and many-to-many relationships.
Watch the level of DAO granularity.
Value Objects represent a view of the data.
It is possible for the same DAO to return multiple types
of Value Objects all representing a specific view of the
data.
Be careful with how “deep” you make your value objects.
Leverage proxies at the appropriate time.

Understand How Data is Going to be
Used

©Copyright 2003, NetChange, LLC All Rights Reserved

Even with the J2EE Data Access Patterns there are
still several things that need to be built into a
persistence framework:

Abstracting small details
Exception Handling
SQL Code Management
Primary Key Generation

Additional Data Access Strategies

©Copyright 2003, NetChange, LLC All Rights Reserved

The Service Locator (SL)

The Service Locator hides how a
resource is instantiated and returned.

This patterns gives the architect more
flexibility in implementing optimizations.

©Copyright 2003, NetChange, LLC All Rights Reserved

SQL Code Management

String and StringBuffer objects containing SQL code can
be the most frequently created objects in an application.
This rampant object creation can represent a significant
amount of overhead.
However, we can implement a mechanism that
externalizes the SQL statement from the application’s
code. In addition, we can cache these SQL statements to
improve efficiency.

©Copyright 2003, NetChange, LLC All Rights Reserved

Exception Handling

Never expose the business tier to
implementation specific exceptions that
can be thrown by the data access tier.

©Copyright 2003, NetChange, LLC All Rights Reserved

Primary Key Generation

OJB provides us with a mechanism for generating
primary keys. However what happens if you have to
integrate to an existing CRM.
The management of primary keys is often times very
database dependent.
Ideally we do not want to expose our applications
to underlying database extensions.
We are going to examine different options for
primary key generation:

Database Triggers
Database “Sequence” Objects
PrimaryKeyManager Class

©Copyright 2003, NetChange, LLC All Rights Reserved

A data access tier is often times one of the most
neglected pieces of an application architecture.

However, for most organizations a data access tier
can be one of the more re-used pieces of code.

Use the J2EE Data Access patterns shown in this
presentation to abstract away implementation
details.

Most importantly, understand how your data is
used by your applications. There is no one size fits
all solution.

Some Final Thoughts

©Copyright 2003, NetChange, LLC All Rights Reserved

Any Questions?
Please feel free to send me an email if you have any

questions:

john.carnell@netchange.us

