
JavaTM Data Objects 2.2

JSR 243

10 October 2008

4140 Network Circle
Santa Clara, California 95054
408 276-5638 fax: 408 276-7191

Sun Microsystems, Inc.

Java Data Objects Expert Group

Specification Lead: Craig Russell,
Sun Microsystems Inc.

Technical comments:
jdo-comments@sun.com

Process comments:
community-process@sun.com

Specification: JSR-000243 Java(tm) Data Objects ("Specification")

Version: 2.2

Release: 10 October 2008

Copyright 2008 SUN MICROSYSTEMS, INC.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid,
non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under Sun's applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of
the Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate constitute a
significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants
you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any
applicable copyrights or, subject to the provisions of subsection 4 below,
patent rights it may have covering the Specification to create and/or distribute
an Independent Implementation of the Specification that: (a) fully implements
the Specification including all its required interfaces and functionality; (b)
does not modify, subset, superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Java interfaces, fields or
methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (c) passes the
Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation").
In addition, the foregoing license is expressly conditioned on your not acting
outside its scope. No license is granted hereunder for any other purpose
(including, for example, modifying the Specification, other than to the extent
of your fair use rights, or distributing the Specification to third parties).
Also, no right, title, or interest in or to any trademarks, service marks, or
trade names of Sun or Sun's licensors, Sun or the Sun's licensors is granted
hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation or
products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations
(a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise
pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning
their implementation's compliance with the Spec in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under
subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking
it from You, a perpetual, non-exclusive, non-transferable, worldwide license
under Your patent rights which are or would be infringed by all technically
feasible implementations of the Specification to develop, distribute and use a
Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided
in a technically feasible manner when implementing the Specification, such
license shall terminate with respect to such claims if You initiate a claim
against Sun that it has, in the course of performing its responsibilities as the
Sun, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license
granted under subparagraph, where the infringement of such claims can be avoided
in a technically feasible manner when implementing the Specification such
license, with respect to such claims, shall terminate if You initiate a claim
against Sun that its making, having made, using, offering to sell, selling or
importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation"
shall mean an implementation of the Specification that neither derives from any
of Sun's source code or binary code materials nor, except with an appropriate
and separate license from Sun, includes any of Sun's source code or binary code
materials; "Licensor Name Space" shall mean the public class or interface
declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Sun through the Java
Community Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User's Guide provided by Sun which corresponds to the
Specification and that was available either (i) from Sun's 120 days before the
first release of Your Independent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 days from such release but

against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach
the Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
(INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE. This document does not represent any commitment to release or implement
any portion of the Specification in any product. In addition, the Specification
could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the
use or distribution of your Java application, applet and/or implementation;
and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under
this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification

("Feedback"), you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose,
and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to
export or import regulations in other countries. Licensee agrees to comply
strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter.
It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term
of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

Rev. January, 2006

Acknowledgments

I have come to know Rick Cattell during many shared experiences in the Java database standards
arena. Rick is a Distinguished Engineer at Sun Microsystems and has been the database guru and
Enterprise Cardinal in the Java “Church” for many years. I am deeply in his debt for his many
contributions to JDO, both technical and organizational.

I want to thank the experts on the JDO expert group who contributed ideas, APIs, feedback, and
other valuable input to the standard, especially Heiko Bobzin, Constantine Plotnikov, Luca
Garulli, Philip Conroy, Steve Johnson, Michael Birk, Michael Rowley, Gordan Vosicki, and Mar-
tin McClure.

I want to recognize Michael Bouschen, David Jordan, David Ezzio, Dave Bristor, and Jeff Norton
for their careful review of JDO for consistency, readability, and usability. Without their contribu-
tions, JDO would not have been possible.

Since the publication of JDO 1.0, many people have contributed time, energy, and ideas to the
JDO effort. I want to recognize these significant contributors: Robin Roos, Abe White, David Jor-
dan, Michael Bouschen, Michael Watzek, Wes Biggs, Geoff Hendry, Christian Romberg, David
Tinker, Patrick Linskey, Bernhard Sporkmann, David Ezzio, Dion Almaer, Dirk Bartels, Dirk
Theune, Eric Samson, Gordan Vosicki, Keiron McCammon, Matthew Adams, Oliver Kamps, Rod
Johnson, Erik Bengtson, Andy Jefferson, Michelle Caisse, and Joerg von Frantzius.

I want to recognize the major contributors to the maintenance release 2.1, Michael Bouschen,
Michelle Caisse, Matthew Adams, Andy Jefferson, Erik Bengtson, and Martin Zaun.

I want to recognize the major contributors to the maintenance release 2.2, Michael Bouschen,
Michelle Caisse, Andy Jefferson, Matthew Adams, and Richard Schilling.

Java Data Objects 2.2

 JDO 2.2 7 October 10, 2008

Table of Contents

1 Introduction . 24
1.1 Overview . 24
1.2 Scope . 25
1.3 Target Audience . 25
1.4 Organization . 25
1.5 Document Convention . 25
1.6 Terminology Convention . 26

2 Overview . 27
2.1 Definitions . 27

2.1.1 JDO common interfaces. 27
JDO Instance. 27
JDO Implementation. 27
JDO Enhancer . 27

2.1.2 JDO in a managed environment. 28
Enterprise Information System (EIS) . 28
EIS Resource. 29
Resource Manager (RM) . 29
Connection . 29
Application Component . 29
Session Beans . 29
Message-driven Beans . 29
Entity Beans . 29
Helper objects . 29
Container. 29

2.2 Rationale . 30
2.3 Goals . 31

3 JDO Architecture . 33
3.1 Overview . 33
3.2 JDO Architecture . 34

3.2.1 Two tier usage . 34
3.2.2 Application server usage . 34

Resource Adapter . 34
Pooling . 35
Contracts . 35

4 Roles and Scenarios . 37
4.1 Roles . 37

4.1.1 Application Developer . 37
4.1.2 Application Component Provider . 37
4.1.3 Application Assembler . 37
4.1.4 Deployer. 38
4.1.5 System Administrator . 38
4.1.6 JDO Vendor . 38

Java Data Objects 2.2

 JDO 2.2 8 October 10, 2008

4.1.7 Connector Provider . 38
4.1.8 Application Server Vendor . 38
4.1.9 Container Provider . 38

4.2 Scenario: Embedded calendar management system . 39
4.3 Scenario: Enterprise Calendar Manager . 40

5 Life Cycle of JDO Instances . 42
5.1 Overview . 42
5.2 Goals . 43
5.3 Architecture: . 43

JDO Instances . 43
JDO State Manager . 44
JDO Managed Fields . 44

5.4 JDO Identity . 44
Three Types of JDO identity . 44
Uniquing . 45
Change of identity. 46
JDO Identity Support . 46

5.4.1 Application (primary key) identity . 46
Compound Identity . 47

5.4.2 Single Field Identity. 48
5.4.3 Datastore identity . 49
5.4.4 Nondurable JDO identity . 49

5.5 Life Cycle States . 50
Datastore Transactions . 51

5.5.1 Transient (Required) . 51
5.5.2 Persistent-new (Required) . 51
5.5.3 Persistent-dirty (Required). 52
5.5.4 Hollow (Required) . 52
5.5.5 Persistent-clean (Required) . 53
5.5.6 Persistent-deleted (Required). 53
5.5.7 Persistent-new-deleted (Required). 53
5.5.8 Detached-clean (Required) . 54
5.5.9 Detached-dirty (Required) . 54

5.6 Nontransactional (Optional) . 54
5.6.1 Persistent-nontransactional (Optional) . 56
5.6.2 Persistent-nontransactional-dirty (Optional) . 56

5.7 Transient Transactional (Optional) . 57
5.7.1 Transient-clean (Optional) . 57
5.7.2 Transient-dirty (Optional) . 58

5.8 Optimistic Transactions (Optional) . 58
6 The Persistent Object Model . 69

6.1 Overview . 69
6.2 Goals . 70
6.3 Architecture . 70

Persistence-capable . 70
First Class Objects and Second Class Objects . 71

Java Data Objects 2.2

 JDO 2.2 9 October 10, 2008

First Class Objects . 71
Second Class Objects . 71
Arrays . 72
Primitives . 73
Interfaces. 73

6.4 Field types of persistence-capable classes . 73
6.4.1 Nontransactional non-persistent fields. 73
6.4.2 Transactional non-persistent fields . 73
6.4.3 Persistent fields . 73

Precision of fields . 73
Primitive types . 73
Immutable Object Class types . 73
Mutable Object Class types . 74
Persistence-capable Class types . 74
Object Class type . 74
Collection Interface types . 74
Other Interface types. 74
Arrays . 75
Enums . 75

6.4.4 Static and final fields . 75
6.4.5 Complex enum types . 75

6.5 Inheritance . 75
7 PersistenceCapable . 77

7.1 Persistence Manager . 77
7.2 Make Dirty . 78
7.3 JDO Identity . 78

7.3.1 Version. 78
7.4 Status interrogation . 78

7.4.1 Dirty . 79
7.4.2 Transactional . 79
7.4.3 Persistent . 79
7.4.4 New . 79
7.4.5 Deleted . 79
7.4.6 Detached . 79

7.5 New instance . 80
7.6 State Manager . 80
7.7 Replace Flags . 80
7.8 Replace Fields . 81
7.9 Provide Fields . 81
7.10 Copy Fields . 81
7.11 Static Fields . 81
7.12 JDO identity handling . 81

interface ObjectIdFieldSupplier . 83
interface ObjectIdFieldConsumer. 83
interface ObjectIdFieldManager . 83

7.13 Detachable . 83

Java Data Objects 2.2

 JDO 2.2 10 October 10, 2008

8 JDOHelper . 85
8.1 Persistence Manager . 85
8.2 Make Dirty . 86
8.3 JDO Identity . 86
8.4 JDO Version . 86
8.5 Status interrogation . 86

8.5.1 Dirty . 86
8.5.2 Transactional . 87
8.5.3 Persistent . 87
8.5.4 New . 87
8.5.5 Deleted . 87
8.5.6 Detached . 87

8.6 State Interrogation . 87
8.6.1 enum ObjectState . 88

8.7 PersistenceManagerFactory methods . 88
Get by Name with Overrides . 88
Get by Properties file or input stream. 89
Get by Name . 89
Get by Properties map. 90
Get by JNDI lookup . 90

9 JDOImplHelper . 91
9.1 JDOImplHelper access . 91
9.2 Metadata access . 91
9.3 Persistence-capable instance factory . 92
9.4 Registration of PersistenceCapable classes . 92

9.4.1 Notification of PersistenceCapable class registrations . 92
RegisterClassEvent . 93
RegisterClassListener . 93

9.5 Security administration . 93
9.6 Application identity handling . 94
9.7 Persistence-capable class state interrogation . 95

10 InstanceCallbacks . 96
10.1 jdoPostLoad . 96
10.2 jdoPreStore . 96
10.3 jdoPreClear . 97
10.4 jdoPreDelete . 97
10.5 jdoPreDetach and jdoPostDetach . 97
10.6 jdoPreAttach and jdoPostAttach . 97

11 PersistenceManagerFactory . 99
11.1 Interface PersistenceManagerFactory . 99

ServerTimeZoneID . 100
Transaction Isolation Level . 100
Connection . 100

11.1.1 Construction by Properties. 101
11.1.2 Construction by jdoconfig.xml . 103

Java Data Objects 2.2

 JDO 2.2 11 October 10, 2008

11.1.3 Access via persistence.xml . 103
11.1.4 jdoconfg.xml . 103

11.2 ConnectionFactory . 104
11.3 PersistenceManager access . 105

11.3.1 Access via proxy . 105
11.4 Close the PersistenceManagerFactory . 106
11.5 Non-configurable Properties . 106
11.6 Optional Feature Support . 107
11.7 Properties constructors . 109
11.8 Second-level cache management . 110

Evicting objects from the cache . 110
Pinning objects in the cache . 110
Unpinning objects in the cache . 110

11.9 Registering for life cycle events . 111
11.10 Serialization . 111
11.11 OSGi Service Discovery . 112

From the user perspective . 112
From the implementation perspective. 112
Examples. 112

12 PersistenceManager . 114
12.1 Overview . 114
12.2 Goals . 114
12.3 Architecture: JDO PersistenceManager . 114
12.4 Threading . 115
12.5 Class Loaders . 115
12.6 Interface PersistenceManager . 116

State Transitions for persistent instances at close. 116
Null management . 116

12.6.1 Cache management . 117
Evict instances . 117
Retrieve instances . 118

12.6.2 Transaction factory interface . 119
12.6.3 Query factory interface . 119
12.6.4 Extent Management . 119

Extents of interfaces . 120
12.6.5 JDO Identity management . 120

Getting Multiple Persistent Instances . 122
Getting an Object by Class and Key. 122

12.6.6 Persistent instance factory . 122
12.6.7 JDO Instance life cycle management. 123

Make instances persistent . 123
Delete persistent instances . 124
Make instances transient . 124
Make instances transactional . 125
Make instances nontransactional . 125

12.6.8 Detaching and attaching instances . 126

Java Data Objects 2.2

 JDO 2.2 12 October 10, 2008

Committing the transaction with DetachAllOnCommit . 126
Attaching Detached Instances with CopyOnAttach . 126
Serializing Persistent Instances. 127
Explicit detach . 127
Behavior of Detached Instances . 128

12.7 Fetch Plan . 129
12.7.1 Fetch Groups . 129
12.7.2 MaxFetchDepth . 130
12.7.3 Root instances . 131
12.7.4 Recursion-depth . 131
12.7.5 The FetchPlan interface . 131
12.7.6 Defining fetch groups . 133
12.7.7 Defining Fetch Groups Dynamically . 135

Persistence Manager Factory Scoped Fetch Groups. 135
Persistence Manager Scoped Fetch Groups . 136
Interface FetchGroup . 136

12.8 Flushing instances . 138
12.9 Transaction completion . 139
12.10 Multithreaded Synchronization . 139
12.11 User associated objects . 139
12.12 PersistenceManagerFactory . 140
12.13 ObjectId class management . 140
12.14 Sequence . 140
12.15 Life-cycle callbacks . 141

InstanceLifecycleEvent. 143
12.16 Access to internal datastore connection . 145

SQL Portability . 145
12.17 Server Date . 145
12.18 Serialization . 146

13 Transactions and Connections . 147
13.1 Overview . 147
13.2 Goals . 147
13.3 Architecture: PersistenceManager, Transactions, and Connections 147

Connection Management Scenarios . 148
Native Connection Management . 148
Non-native Connection Management . 148
Optimistic Transactions . 149

13.4 Interface Transaction . 149
13.4.1 PersistenceManager . 149
13.4.2 Transaction options . 150

Nontransactional access to persistent values . 150
Optimistic concurrency control . 150
Retain values at transaction commit . 150
Restore values at transaction rollback . 151
Transaction Isolation Level . 151

13.4.3 Synchronization . 151

Java Data Objects 2.2

 JDO 2.2 13 October 10, 2008

13.4.4 Transaction demarcation . 152
Non-managed environment. 153
Managed environment . 153

13.4.5 RollbackOnly . 154
13.5 Optimistic transaction management . 154

14 Query . 156
14.1 Overview . 156
14.2 Goals . 156
14.3 Architecture: Query . 157
14.4 Namespaces in queries . 158

Keywords . 158
14.5 Query Factory in PersistenceManager interface . 159
14.6 Query Interface . 161

Persistence Manager . 161
Fetch Plan . 161
Query element binding . 161
Query options . 163
Query modification . 163
Query evaluation. 163
Query compilation . 163

14.6.1 Query execution . 163
14.6.2 Filter specification . 165

Methods . 168
Subqueries. 169
Non-correlated subqueries . 169
Correlated subqueries . 169

14.6.3 Parameter declaration . 170
Implicit parameter declaration . 171

14.6.4 Import statements. 171
14.6.5 Variable declaration . 171

Implicit variable declaration . 171
14.6.6 Ordering statement. 172
14.6.7 Closing Query results. 172
14.6.8 Limiting the Cardinality of the Query Result . 173
14.6.9 Specifying the Result of a Query (Projections, Aggregates) 173

Distinct results . 173
Named Result Expressions . 175
Aggregate Types . 175
Primitive Types. 175
Null Results. 175
Default Result . 175
Projected Second Class Result . 175

14.6.10 Grouping Aggregate Results . 175
14.6.11 Specifying Uniqueness of the Query Result . 176

Default Unique setting . 176
14.6.12 Specifying the Class of the Result . 176

Java Data Objects 2.2

 JDO 2.2 14 October 10, 2008

Result Class Requirements . 176
14.6.13 Single-string Query element binding. 177

14.7 SQL Queries . 178
14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes. 180

14.8 Deletion by Query . 180
14.9 Extensions . 181
14.10 Examples: . 181

14.10.1 Basic query. 182
14.10.2 Basic query with ordering.. 182
14.10.3 Parameter passing. 182
14.10.4 Navigation through single-valued field. . 182
14.10.5 Navigation through multi-valued field. 183
14.10.6 Membership in a collection . 183
14.10.7 Projection of a Single Field . 183
14.10.8 Projection of Multiple Fields and Expressions . 183
14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance . . . 184
14.10.10 Aggregation of a single Field. 184
14.10.11 Aggregation of Multiple Fields and Expressions . 185
14.10.12 Aggregation of Multiple fields with Grouping . 185
14.10.13 Selection of a Single Instance . 185
14.10.14 Selection of a Single Field . 186
14.10.15 Projection of “this” to User-defined Result Class with Matching Field 186
14.10.16 Projection of “this” to User-defined Result Class with Matching Method . . . 186
14.10.17 Projection of variables . 187
14.10.18 Non-correlated subquery . 187
14.10.19 Correlated subquery . 188
14.10.20 Deleting Multiple Instances . 188

15 Object-Relational Mapping . 190
Mapping Overview . 190
Mapping Strategies . 190

15.1 Column Elements . 191
Mapping enums. 191

15.1.1 Mapping single-valued fields to columns . 191
15.2 Join Condition . 192

15.2.1 Secondary Table mapping . 192
15.2.2 Map using join table . 194

15.3 Relationship Mapping . 195
Mapping Strategies . 196

15.3.1 Many-to-One using foreign key. 196
15.3.2 One-to-Many using foreign key. 197
15.3.3 Many-to-One and One-to-Many using mapped-by . 198
15.3.4 Many-to-One and One-to-Many using compound foreign key 199
15.3.5 Many-to-One and One-to-Many using Map<Department, String> 200
15.3.6 Many-to-One and One-to-Many using Map<String, Employee> 201

15.4 Embedding . 202
15.4.1 Mapping relationships using embedded, referenced, and join table 202

Java Data Objects 2.2

 JDO 2.2 15 October 10, 2008

15.5 Foreign Key Constraints . 203
Delete Action, Update Action. 204

15.5.1 Many-to-One with foreign key constraint . 204
15.6 Indexes . 205

Unique Constraints . 206
15.6.1 Single-field and Compound Indexes . 206

15.7 Inheritance . 207
15.8 Versioning . 207

15.8.1 Inheritance with superclass-table and version . 208
15.8.2 Inheritance with new-table and version . 209
15.8.3 Inheritance with subclass-table . 210

16 Enterprise Java Beans . 211
16.1 Session Beans . 211

16.1.1 Stateless Session Bean with Container Managed Transactions. 212
16.1.2 Stateful Session Bean with Container Managed Transactions 212
16.1.3 Stateless Session Bean with Bean Managed Transactions 212
16.1.4 Stateful Session Bean with Bean Managed Transactions 213

16.2 Entity Beans . 213
17 JDO Exceptions . 214

17.1 JDOException . 214
17.1.1 JDOFatalException . 215
17.1.2 JDOCanRetryException. 215
17.1.3 JDOUnsupportedOptionException . 215
17.1.4 JDOUserException . 215
17.1.5 JDOFatalUserException . 216
17.1.6 JDOFatalInternalException . 216
17.1.7 JDODataStoreException . 216
17.1.8 JDOFatalDataStoreException . 216
17.1.9 JDOObjectNotFoundException . 216
17.1.10 JDOOptimisticVerificationException . 216
17.1.11 JDODetachedFieldAccessException . 217
17.1.12 JDOUserCallbackException . 217

18 XML Metadata . 218
Mapping to Relational Databases . 219

18.1 ELEMENT jdo . 220
18.2 ELEMENT package . 220
18.3 ELEMENT interface . 220
18.4 ELEMENT column . 220
18.5 ELEMENT class . 223

18.5.1 ELEMENT datastore-identity . 225
18.5.2 ELEMENT version . 225

18.6 ELEMENT primary-key . 225
18.7 ELEMENT join . 226
18.8 ELEMENT inheritance . 226
18.9 ELEMENT discriminator . 227

Java Data Objects 2.2

 JDO 2.2 16 October 10, 2008

18.10 ELEMENT implements . 227
18.11 ELEMENT foreign-key . 227

18.11.1 ATTRIBUTE update-action . 227
18.11.2 ATTRIBUTE delete-action . 227
18.11.3 ATTRIBUTE deferred . 228
18.11.4 ATTRIBUTE name . 228

18.12 ELEMENT unique . 228
18.13 ELEMENT index . 228
18.14 ELEMENT property . 228
18.15 ELEMENT field . 229

Default persistence-modifier. 229
Embedded . 230
Column Mapping . 231
Foreign key . 232

18.15.1 ELEMENT collection . 232
18.15.2 ELEMENT map. 233
18.15.3 ELEMENT array . 233
18.15.4 ELEMENT embedded . 234
18.15.5 ELEMENT key . 234
18.15.6 ELEMENT value . 234
18.15.7 ELEMENT element . 235
18.15.8 ELEMENT order . 235

18.16 ELEMENT query . 235
18.17 ELEMENT sequence . 235
18.18 ELEMENT extension . 236
18.19 ELEMENT orm . 236
18.20 ELEMENT jdoquery . 236
18.21 The jdo Schema Descriptor . 236
18.22 The orm Schema Descriptor . 241
18.23 The jdoquery Schema Descriptor . 245
18.24 Example XML file . 246

19 Annotations . 248
Java Persistence API Annotations . 249
Overrides. 249

19.1 Cacheable Annotation . 249
19.2 Column Annotation . 249
19.3 Columns Annotation . 250
19.4 DatastoreIdentity Annotation . 250
19.5 Discriminator Annotation . 251
19.6 DiscriminatorStrategy Enum . 252
19.7 Element Annotation . 252
19.8 Embedded Annotation . 254
19.9 EmbeddedOnly Annotation . 255
19.10 Extension Annotation . 255
19.11 Extensions Annotation . 255
19.12 FetchGroup Annotation . 255

Java Data Objects 2.2

 JDO 2.2 17 October 10, 2008

19.13 FetchGroups Annotation . 256
19.14 FetchPlan Annotation . 256
19.15 FetchPlans Annotation . 257
19.16 ForeignKey Annotation . 257
19.17 ForeignKeyAction Enum . 258
19.18 ForeignKeys Annotation . 258
19.19 IdGeneratorStrategy Enum . 258
19.20 IdentityType Enum . 259
19.21 Index Annotation . 259
19.22 Indices Annotation . 259
19.23 Inheritance Annotation . 260
19.24 InheritanceStrategy Enum . 260
19.25 Join Annotation . 260
19.26 Joins Annotation . 261
19.27 Key Annotation . 262
19.28 NotPersistent Annotation . 264
19.29 NullValue Enum . 264
19.30 Order Annotation . 264
19.31 PersistenceAware Annotation . 264
19.32 PersistenceCapable Annotation . 265
19.33 PersistenceModifier Enum . 265
19.34 Persistent Annotation . 266
19.35 PrimaryKey Annotation . 269
19.36 Queries Annotation . 269
19.37 Query Annotation . 269
19.38 Sequence Annotation . 270
19.39 SequenceStrategy Enum . 271
19.40 Serialized Annotation . 271
19.41 Transactional Annotation . 271
19.42 Unique Annotation . 271
19.43 Uniques Annotation . 272
19.44 Value Annotation . 272
19.45 Version Annotation . 274
19.46 VersionStrategy Enum . 275

20 Java Persistence API (JSRs 220, 317) Alignment 279
20.1 JDOEntityManagerFactory . 279
20.2 JDOEntityManager . 279

21 Extent . 280
21.1 Overview . 280
21.2 Goals . 280
21.3 Interface Extent . 281

22 Portability Guidelines . 283
22.1 Optional Features . 283

22.1.1 Optimistic Transactions . 283
22.1.2 Nontransactional Read . 283

Java Data Objects 2.2

 JDO 2.2 18 October 10, 2008

22.1.3 Nontransactional Write . 283
22.1.4 Transient Transactional . 283
22.1.5 RetainValues . 283
22.1.6 IgnoreCache . 283

22.2 Object Model . 283
22.3 JDO Identity . 284
22.4 PersistenceManager . 284
22.5 Query . 284
22.6 XML metadata . 285
22.7 Life cycle . 285
22.8 JDOHelper . 285
22.9 Transaction . 285
22.10 Binary Compatibility . 285

23 JDO Reference Enhancer . 286
23.1 Overview . 286
23.2 Goals . 286
23.3 Enhancement: Architecture . 287
23.4 Inheritance . 290
23.5 Field Numbering . 290
23.6 Serialization . 290
23.7 Cloning . 291
23.8 Introspection (Java core reflection) . 292
23.9 Field Modifiers . 292

23.9.1 Non-persistent . 292
23.9.2 Transactional non-persistent . 292
23.9.3 Persistent . 292
23.9.4 PrimaryKey . 293
23.9.5 Embedded . 293
23.9.6 Null-value . 293

23.10 Treatment of standard Java field modifiers . 294
23.10.1 Static . 294
23.10.2 Final . 294
23.10.3 Private . 294
23.10.4 Public, Protected . 294

23.11 Fetch Groups . 294
23.12 jdoFlags Definition . 295
23.13 Exceptions . 295
23.14 Modified field access . 295
23.15 Generated fields in least-derived PersistenceCapable class 296
23.16 Generated fields in all PersistenceCapable classes . 296

Generated static initializer . 297
23.17 Generated methods in least-derived PersistenceCapable class 297
23.18 Generated methods in PersistenceCapable root classes . 298
23.19 Generated method in least-derived Detachable classes . 300
23.20 Generated methods in all PersistenceCapable classes . 300
23.21 Example class: Employee . 302

Java Data Objects 2.2

 JDO 2.2 19 October 10, 2008

23.21.1 Generated fields . 303
23.21.2 Generated static initializer . 303
23.21.3 Generated interrogatives . 303
23.21.4 Generated jdoReplaceStateManager . 304
23.21.5 Generated jdoReplaceFlags . 304
23.21.6 Generated jdoNewInstance helpers . 304
23.21.7 Generated jdoGetManagedFieldCount . 305
23.21.8 Generated jdoGetXXX methods (one per persistent field) 305
23.21.9 Generated jdoSetXXX methods (one per persistent field) 306
23.21.10 Generated jdoReplaceField and jdoReplaceFields . 306
23.21.11 Generated jdoProvideField and jdoProvideFields . 307
23.21.12 Generated jdoCopyField and jdoCopyFields methods 308
23.21.13 Generated writeObject method . 309
23.21.14 Generated jdoPreSerialize method. 309
23.21.15 Generated jdoNewObjectIdInstance . 309
23.21.16 Generated jdoCopyKeyFieldsToObjectId . 310
23.21.17 Generated jdoCopyKeyFieldsFromObjectId . 310
23.21.18 Generated Detachable methods . 310

24 Interface StateManager . 311
24.1 Overview . 311

Clone support . 311
24.2 StateManager Management . 311
24.3 PersistenceManager Management . 312
24.4 Dirty management . 312
24.5 State queries . 312
24.6 JDO Identity . 313
24.7 Serialization support . 313
24.8 Field Management . 313

24.8.1 User-requested value of a field . 314
24.8.2 User-requested modification of a field . 314
24.8.3 StateManager-requested value of a field . 315
24.8.4 StateManager-requested modification of a field . 315

24.9 Detached instance support . 316
25 JDOPermission . 317
26 JDOQL BNF . 319

26.1 Single-String JDOQL . 319
26.2 Filter Specification . 320
26.3 Subqueries . 321
26.4 Parameter Declaration . 322
26.5 Variable Declaration . 322
26.6 Import Declaration . 323
26.7 Ordering Specification . 323
26.8 Result Specification . 323
26.9 Grouping Specification . 324
26.10 Types . 324

Java Data Objects 2.2

 JDO 2.2 20 October 10, 2008

26.11 Literals . 325
26.12 Names . 325
26.13 Keywords . 326

27 Items Deferred to the Next Release . 327
27.1 Nested Transactions . 327
27.2 Savepoint, Undosavepoint . 327
27.3 Inter-PersistenceManager References . 327
27.4 Enhancer Invocation API . 327
27.5 Prefetch API . 327
27.6 BLOB/CLOB datatype support . 327
27.7 Managed (inverse) relationship support . 328
27.8 Case-Insensitive Query . 328
27.9 String conversion in Query . 328
27.10 Read-only fields . 328
27.11 Enumeration pattern . 328
27.12 Non-static inner classes . 329
27.13 Projections in query . 329
27.14 LogWriter support . 329
27.15 New Exceptions . 329
27.16 Distributed object support . 329
27.17 Object-Relational Mapping . 329

28 JDO 1.0.1 Metadata . 330
28.1 ELEMENT jdo . 331
28.2 ELEMENT package . 331
28.3 ELEMENT class . 331
28.4 ELEMENT field . 332

Default persistence-modifier. 332
28.4.1 ELEMENT collection . 333
28.4.2 ELEMENT map. 333
28.4.3 ELEMENT array . 334

28.5 ELEMENT extension . 334
28.6 The Document Type Descriptor . 334
28.7 Example XML file . 335

Appendix A: References . 336
Appendix B: Design Decisions . 337

B.1 Enhancer . 337
Appendix C: Revision History . 338

C.1 Changes since Draft 0.1 . 338
C.1 Changes since Draft 0.2 . 338
C.1 Changes since Draft 0.3 . 338
C.1 Changes since Draft 0.4 . 338
C.1 Changes since Draft 0.5 . 339
C.1 Changes since Draft 0.6 (Participant Review Draft) . 340
C.1 Changes since Draft 0.7 . 340
C.1 Changes since Draft 0.8 . 340

Java Data Objects 2.2

 JDO 2.2 21 October 10, 2008

C.1 Changes since Draft 0.9 . 341
C.1 Changes since draft 0.91 . 342
C.1 Changes since draft 0.92 . 343
C.1 Changes since draft 0.93 . 343
C.1 Changes since draft 0.94 . 344
C.1 Changes since draft 0.95 (Proposed Final Draft) . 344
C.1 Changes since draft 0.96 . 345
C.1 Changes since draft 0.97 . 346
C.1 Changes since Approved Draft . 346
C.1 Changes since 1.0.1 . 349
C.1 Changes since Proposed Final Draft . 350
C.1 Changes since 2.0 . 351

Appendix D: XML Schema for jdoconfig.xml . 355
Appendix E: XML Schema for jdo.xml . 359
Appendix F: XML Schema for orm.xml . 380
Appendix G: XML Schema for jdoquery.xml . 395
Index . 397

Java Data Objects 2.2

 JDO 2.2 22 October 10, 2008

List of Tables
Which Enhancement Interface is Used .28
State Transitions .59
State interrogation. .79
Query Operators .166
Query Methods .168
Shape of Result (C is the candidate class) .177
Shape of Result of SQL Query .179
Default jdbc-type .222
Annotation correspondence to xml metadata .275
Field access mediation .296
Java SE 5 Signature Changes .353

Java Data Objects 2.2

 JDO 2.2 23 October 10, 2008

List of Figures
Figure 1: Standard plug-and-play between application programs and EISes using JDO. 31
Figure 2: Overview of non-managed JDO architecture . 33
Figure 3: Contracts between application server and native JDO resource adapter. 36
Figure 4: Contracts between application server and layered JDO implementation 36
Figure 5: Scenario: Embedded calendar manager . 39
Figure 6: Scenario: Enterprise Calendar Manager . 41
Figure 7: Life Cycle: New Persistent Instances . 64
Figure 8: Life Cycle: Transactional Access . 64
Figure 9: Life Cycle: Datastore Transactions . 64
Figure 10: Life Cycle: Optimistic Transactions . 65
Figure 11: Life Cycle: Access Outside Transactions . 65
Figure 12: Life Cycle: Transient TransactionalLife Cycle: Transient Transactional 65
Figure 13: Life Cycle: Detached. 66
Figure 14: JDO Instance State Transitions . 67
Figure 15: Instantiated persistent objects . 69
Figure 16: Transactions and Connections. 149

Java Data Objects 2.2

 JDO 2.2 24 October 10, 2008

1 Introduction

Java is a language that defines a runtime environment in which user-defined classes execute. The
instances of these user-defined classes might represent real world data. The data might be stored in
databases, file systems, or mainframe transaction processing systems. These data sources are col-
lectively referred to as Enterprise Information Systems (EIS). Additionally, small footprint environ-
ments often require a way to manage persistent data in local storage.
The data access techniques are different for each type of data source, and accessing the data presents
a challenge to application developers, who currently need to use a different Application Program-
ming Interface (API) for each type of data source.
This means that application developers need to learn at least two different languages to develop
business logic for these data sources: the Java programming language; and the specialized data ac-
cess language required by the data source.
Currently, aside from JDO, there are four Java standards for storing Java data persistently: serial-
ization, JDBC, Enterprise JavaBeans, and Java Persistence API. Serialization preserves relation-
ships among a graph of Java objects, but does not support sharing among multiple users. JDBC
requires the user to explicitly manage the values of fields and map them into relational database ta-
bles. Enterprise JavaBeans require a container in which to run. Java Persistence API can run either
in a container or in a Java SE VM.
Developers can be more productive if they focus on creating Java classes that implement business
logic, and use native Java classes to represent data from the data sources. Mapping between the Java
classes and the data source, if necessary, can be done by an EIS domain expert.
JDO defines interfaces and classes to be used by application programmers when using classes
whose instances are to be stored in persistent storage (persistence-capable classes), and specifies the
contracts between suppliers of persistence-capable classes and the run-time environment (which is
part of the JDO Implementation).
The supplier of the JDO Implementation is hereinafter called the JDO vendor.

1.1 Overview
There are two major objectives of the JDO architecture: first, to provide application programmers a
transparent Java-centric view of persistent information, including enterprise data and locally stored
data; and second, to enable pluggable implementations of data-stores into application servers.
The Java Data Objects architecture defines a standard API to data contained in local storage systems
and heterogeneous enterprise information systems, such as ERP, mainframe transaction processing
and database systems. The architecture also refers to the Connector architecture [see Appendix A
reference 4] which defines a set of portable, scalable, secure, and transactional mechanisms for the
integration of EIS with an application server.
This architecture enables a local storage expert, an enterprise information system (EIS) vendor, or
an EIS domain expert to provide a standard data view (JDO Implementation) for the local data or
EIS.

Java Data Objects 2.2

 JDO 2.2 25 October 10, 2008

1.2 Scope
The JDO architecture defines a standard set of contracts between an application programmer and an
JDO vendor. These contracts focus on the view of the Java instances of persistence-capable classes.
JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract between
the JDO vendor and an application server. These contracts focus on the important aspects of inte-
gration with heterogeneous enterprise information systems: instance management, connection man-
agement, and transaction management.
To provide transparent storage of local data, the JDO architecture does not require the Connector
Architecture in non-managed (non-application server) environments.

1.3 Target Audience
The target audience for this specification includes:

• application developers

• JDO vendors

• enterprise information system (EIS) vendors and EIS Connector providers

• container providers

• enterprise system integrators

• enterprise tool vendors

JDO defines two types of interfaces: the JDO API, of primary interest to application developers (the
JDO instance life cycle) and the JDO SPI, of primary interest to container providers and JDO ven-
dors. An italicized notice may appear at the end of a section, directing readers interested only in the
API side to skip to the next API-side section.

1.4 Organization
This document describes the rationale and goals for a standard architecture for specifying the inter-
face between an application developer and a local file system or EIS datastore. It then elaborates the
JDO architecture and its relationship to the Connector architecture.
The document next describes two typical JDO scenarios, one managed (application server) and the
other non-managed (local file storage). This chapter explains key roles and responsibilities involved
in the development and deployment of portable Java applications that require persistent storage.
The document then details the prescriptive aspects of the architecture. It starts with the JDO in-
stance, which is the application programmer-visible part of the system. It then details the JDO Per-
sistenceManager, which is the primary interface between a persistence-aware application,
focusing on the contracts between the application developer and JDO implementation provider. Fi-
nally, the contracts for connection and transaction management between the JDO vendor and appli-
cation server vendor are defined.

1.5 Document Convention
A Palatino font is used for describing the JDO architecture.
A courier font is used for code fragments.

Java Data Objects 2.2

 JDO 2.2 26 October 10, 2008

1.6 Terminology Convention
“Must” is used where the specified component is required to implement some interface or action to
be compliant with the specification.
“Might” is used where there is an implementation choice whether or how to implement a method or
function.
“Should” is used to describe objectives of the specification and recommended application program-
ming usage. If the recommended usage is not followed by applications, behavior is non-portable,
unexpected, or unspecified.
“Should” is also used where there is a recommended choice for possibly different implementation
actions. If the recommended usage is not followed by implementations, inefficiencies might result.

Java Data Objects 2.2

 JDO 2.2 27 October 10, 2008

2 Overview

This chapter introduces key concepts that are required for an understanding of the JDO architecture.
It lays down a reference framework to facilitate a formal specification of the JDO architecture in the
subsequent chapters of this document.

2.1 Definitions
2.1.1 JDO common interfaces

JDO Instance
A JDO instance is a Java programming language instance of a Java class that implements the appli-
cation functions, and represents data in a local file system or enterprise datastore. Without limita-
tion, the data might come from a single datastore entity, or from a collection of entities. For
example, an entity might be a single object from an object database, a single row of a relational da-
tabase, the result of a relational database query consisting of several rows, a merging of data from
several tables in a relational database, or the result of executing a data retrieval API from an ERP
system.
The objective of JDO is that most user-written classes, including both entity-type classes and utility-
type classes, might be persistence capable. The limitations are that the persistent state of the class
must be represented entirely by the state of its Java fields. Thus, system-type classes such as Sys-
tem, Thread, Socket, File, and the like cannot be JDO persistence-capable, but common user-
defined classes can be.

JDO Implementation
A JDO implementation is a collection of classes that implement the JDO contracts. The JDO imple-
mentation might be provided by an EIS vendor or by a third party vendor, collectively known as
JDO vendor. The third party might provide an implementation that is optimized for a particular ap-
plication domain, or might be a general purpose tool (such as a relational mapping tool, embedded
object database, or enterprise object database).
The primary interface to the application is PersistenceManager, with interfaces Query and
Transaction playing supporting roles for application control of the execution environment.

JDO Enhancer
To use persistence-capable classes with binary-compatible JDO implementations, the classes must
implement the PersistenceCapable contract, which includes implementing the javax.jdo.spi.Persis-
tenceCapable contract, as well as adding other methods including static registration methods. This
contract enables management of classes including transparent loading and storing of the fields of
their persistent instances. A JDO enhancer, or byte code enhancer, is a program that modifies the
byte codes of application-component Java class files to implement this interface.
The JDO reference implementation (reference enhancement) contains an approach for the enhance-
ment of Java class files to allow for enhanced class files to be shared among several coresident JDO
implementations.

Java Data Objects 2.2

 JDO 2.2 28 October 10, 2008

There are alternative approaches to byte code enhancement for having the classes implement the
PersistenceCapable contract. These include preprocessing or code generation. If one of these alter-
natives is used instead of byte code enhancement, the PersistenceCapable contract is imple-
mented explicitly.
A JDO implementation is free to extend the Reference Enhancement contract with implementation-
specific methods and fields that might be used by its runtime environment.
Binary Compatibility
A JDO implementation may optionally choose to support binary compatibility with other JDO im-
plementations by supporting the PersistenceCapable contract for persistence-capable classes. If it
does, then enhanced classes produced by another implementation or by the reference enhancer must
be supported according to the following requirements.

• classes enhanced by the reference enhancer must be usable by any JDO compliant
implementation that supports BinaryCompatibility;

• classes enhanced by a JDO compliant implementation must be usable by the reference
implementation; and

• classes enhanced by a JDO compliant implementation must be usable by any other JDO
compliant implementation that supports BinaryCompatibility.

The following table determines which interface is used by a JDO implementation based on the en-

hancement of the persistence-capable class. For example, if Vendor A runtime detects that the class
was enhanced by its own enhancement, then the runtime will use its enhancement contract. Other-
wise, it will use the Reference Enhancement contract.
Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 – Rationale.

2.1.2 JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which JDO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)
An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services to
its clients. These services are exposed to clients as local and/or remote interfaces. Examples of EIS
include:

• relational database system;

• object database system;

• ERP system; and

• mainframe transaction processing system.

Table 1: Which Enhancement Interface is Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhancement

Vendor A Enhancer Reference Enhancement Vendor A Enhancement Reference Enhancement

Vendor B Enhancer Reference Enhancement Reference Enhancement Vendor B Enhancement

Java Data Objects 2.2

 JDO 2.2 29 October 10, 2008

EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

• a record or set of records in a database system;

• a business object in an ERP system; and

• a transaction program in a transaction processing system

Resource Manager (RM)
A resource manager manages a set of shared resources. A client requests access to a resource man-
ager to use its managed resources. A transactional resource manager can participate in transactions
that are externally controlled and coordinated by a transaction manager.

Connection
A connection provides connectivity to a resource manager. It enables an application client to con-
nect to a resource manager, perform transactions, and access services provided by that resource
manager. A connection can be either transactional or non-transactional. Examples include a data-
base connection and a SAP R/3 connection.

Application Component
An application component can be a server-side component, such as an EJB, JSP, or servlet, that is
deployed, managed and executed on an application server. It can be a component executed on the
web-client tier but made available to the web-client by an application server, such as a Java applet,
or DHTML page. It might also be an embedded component executed in a small footprint device us-
ing flash memory for persistent storage.

Session Beans
Session objects are EJB application components that execute on behalf of a single client, might be
transaction aware, might update data in an underlying datastore, and do not directly represent data
in the datastore.

Message-driven Beans
Message-driven beans are EJB application components that execute on behalf of a single client in
response to an incoming message, might be transaction aware, might update data in an underlying
datastore, and do not directly represent data in the datastore.

Entity Beans
Entity objects are EJB application components that provide an object view of transactional data in
an underlying datastore, allow shared access from multiple users, including session objects and re-
mote clients, and directly represent data in the datastore.

Helper objects
Helper objects are application components that provide an object view of data in an underlying
datastore, allow transactionally consistent view of data in multiple transactions, are usable by local
session and entity beans, but do not have a remote interface.

Container
A container is a part of an application server that provides deployment and runtime support for ap-
plication components. It provides a federated view of the underlying application server services for
the application components. For more details on different types of standard containers, refer to En-
terprise JavaBeans (EJB) [see Appendix A reference 1], Java Server Pages (JSP), and Servlets spec-
ifications.

Java Data Objects 2.2

 JDO 2.2 30 October 10, 2008

2.2 Rationale
The JDO architecture offers a Java solution to the problem of presenting a consistent view of data
from the large number of application programs and enterprise information systems already in exist-
ence. By using the JDO architecture, it is not necessary for application component vendors to cus-
tomize their products for each type of datastore.
This architecture enables an EIS vendor to provide a standard data access interface for its EIS. The
JDO implementation is plugged into an application server and provides underlying infrastructure for
integration between the EIS and application components.
Similarly, a third party vendor can provide a standard data access interface for locally managed data
such as would be found in an embedded device.
An application component vendor extends its system only once to support the JDO architecture and
then exploits multiple data sources. Likewise, an EIS vendor provides one standard JDO implemen-
tation and it has the capability to work with any application component that uses the JDO architec-
ture.
The Figure 1.0 on page 31 shows that an application component can plug into multiple JDO imple-
mentations. Similarly, multiple JDO implementations for different EISes can plug into an applica-
tion component. This standard plug-and-play is made possible through the JDO architecture.

Java Data Objects 2.2

 JDO 2.2 31 October 10, 2008

Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

2.3 Goals
The JDO architecture has been designed with the following goals:

• The JDO architecture provides a transparent interface for application component and helper
class developers to store data without learning a new data access language for each type of
persistent data storage.

• The JDO architecture simplifies the development of scalable, secure and transactional JDO
implementations for a wide range of EISes — ERP systems, database systems, mainframe-
based transaction processing systems.

• The JDO architecture is implementable for a wide range of heterogeneous local file systems
and EISes. The intent is that there will be various implementation choices for different
EIS—each choice based on possibly application-specific characteristics and mechanisms
of a mapping to an underlying EIS.

• The JDO architecture is suitable for a wide range of uses from embedded small footprint
systems to large scale enterprise application servers. This architecture provides for
exploitation of critical performance features from the underlying EIS, such as query
evaluation and relationship management.

Enterprise Information

Application Programs System

Application Program

JDO

JDO

Application program/EJB container

JDO implementation provided by JDO vendor

Legend:

implementations

implementation

Systems

Enterprise Informatio

Java Data Objects 2.2

 JDO 2.2 32 October 10, 2008

• The JDO architecture uses the J2EE Connector Architecture to make it applicable to all
J2EE platform compliant application servers from multiple vendors.

• The JDO architecture makes it easy for application component developers to use the Java
programming model to model the application domain and transparently retrieve and store
data from various EIS systems.

• The JDO architecture defines contracts and responsibilities for various roles that provide
pieces for standard connectivity to an EIS. This enables a standard JDO implementation
from a EIS or third party vendor to be pluggable across multiple application servers.

• The connector architecture also enables an application programmer in a non-managed
application environment to directly use the JDO implementation to access the underlying
file system or EIS. This is in addition to a managed access to an EIS with the JDO
implementation deployed in the middle-tier application server. In the former case,
application programmers will not rely on the services offered by a middle-tier application
server for security, transaction, and connection management, but will be responsible for
managing these system-level aspects by using the EIS connector.

Java Data Objects 2.2

 JDO 2.2 33 October 10, 2008

3 JDO Architecture

3.1 Overview
Multiple JDO implementations - possibly multiple implementations per type of EIS or local storage
- are pluggable into an application server or usable directly in a two tier or embedded architecture.
This enables application components, deployed either on a middle-tier application server or on a cli-
ent-tier, to access the underlying datastores using a consistent Java-centric view of data. The JDO
implementation provides the necessary mapping from Java objects into the special data types and
relationships of the underlying datastore.

Figure 2.0 Overview of non-managed JDO architecture

In a non-managed environment, the JDO implementation hides the EIS specific issues such as data
type mapping, relationship mapping, and data retrieval and storage. The application component sees
only the Java view of the data organized into classes with relationships and collections presented as
native Java constructs.
Managed environments additionally provide transparency for the application components’ use of
system-level mechanisms - distributed transactions, security, and connection management, by hid-
ing the contracts between the application server and JDO implementations.

Enterprise Information

Local Persistent
Storage

System

JDO PersistenceManager

JDO PersistenceManager

Application

transient
instance

transient
instance

transient
instance

Java Virtual Machine

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Query

Transaction

Transaction

Query

Java Data Objects 2.2

 JDO 2.2 34 October 10, 2008

With both managed and non-managed environments, an application component developer focuses
on the development of business and presentation logic for the application components without get-
ting involved in the issues related to connectivity with a specific EIS.

3.2 JDO Architecture
3.2.1 Two tier usage

For simple two tier usage, JDO exposes to the application component two primary interfaces: jav-
ax.jdo.PersistenceManager, from which services are requested; and jav-
ax.jdo.JDOHelper, which provides the bootstrap and management view of user-defined
persistence-capable classes.
The PersistenceManager interface provides services such as query management, transaction
management, and life cycle management for instances of persistence-capable classes.
The JDOHelper class provides services such as bootstrap methods to acquire an instance of Per-
sistenceManagerFactory and life cycle state interrogation for instances of persistence-capable class-
es.
Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 – Roles and Scenarios.

3.2.2 Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture, which de-
fines a standard set of system-level contracts between the application server and EIS connectors.
These system-level contracts are implemented in a resource adapter from the EIS side.
The JDO persistence manager is a caching manager as defined by the J2EE Connector architecture,
that might use either its own (native) resource adapter or a third party resource adapter. If the JDO
PersistenceManager has its own resource adapter, then implementations of the system-level
contracts specified in the J2EE Connector architecture must be provided by the JDO vendor. These
contracts include ManagedConnectionFactory, XAResource, and LocalTransaction
interfaces.
The JDO Transaction must implement the Synchronization interface so that transaction
completion events can cause flushing of state through the underlying connector to the EIS.
The application components are unable to distinguish between JDO implementations that use native
resource adapters and JDO implementations that use third party resource adapters. However, the de-
ployer will need to understand that there are two configurable components: the JDO Persis-
tenceManager and its underlying resource adapter.
For convenience, the PersistenceManagerFactory provides the interface necessary to con-
figure the underlying resource adapter.

Resource Adapter
A resource adapter provided by the JDO vendor is called a native resource adapter, and the interface
is specific to the JDO vendor. It is a system-level software driver that is used by an application serv-
er or an application client to connect to a resource manager.
The resource adapter plugs into a container (provided by the application server). The application
components deployed on the container then use the client API exposed by javax.jdo.Persis-
tenceManager to access the JDO PersistenceManager. The JDO implementation in turn
uses the underlying resource adapter interface specific to the datastore. The resource adapter and
application server collaborate to provide the underlying mechanisms - transactions, security and
connection pooling - for connectivity to the EIS.

Java Data Objects 2.2

 JDO 2.2 35 October 10, 2008

The resource adapter is located within the same VM as the JDO implementation using it. Examples
of JDO native resource adapters are:

• Object/Relational (O/R) products that use their own native drivers to connect to object
relational databases

• Object Database (OODBMS) products that store Java objects directly in object databases

Examples of non-native resource adapter implementations are:
• O/R mapping products that use JDBC drivers to connect to relational databases

• Hierarchical mapping products that use mainframe connectivity tools to connect to
hierarchical transactional systems

Pooling
There are two levels of pooling in the JDO architecture. JDO PersistenceManagers might be
pooled, and the underlying connections to the datastores might be independently pooled.
Pooling of the connections is governed by the Connector Architecture contracts. Pooling of Per-
sistenceManagers is an optional feature of the JDO Implementation, and is not standardized
for two-tier applications. For managed environments, PersistenceManager pooling is re-
quired to maintain correct transaction associations with PersistenceManagers.
For example, a JDO PersistenceManager instance might be bound to a session running a long
duration optimistic transaction. This instance cannot be used by any other user for the duration of
the optimistic transaction.
During the execution of a business method associated with the session, a connection might be re-
quired to fetch data from the datastore. The PersistenceManager will request a connection
from the connection pool to satisfy the request. Upon termination of the business method, the con-
nection is returned to the pool but the PersistenceManager remains bound to the session.
After completion of the optimistic transaction, the PersistenceManager instance might be re-
turned to the pool and reused for a subsequent transaction.

Contracts
JDO specifies the application level contract between the application components and the JDO Per-
sistenceManager.
The J2EE Connector architecture specifies the standard contracts between application servers and
an EIS connector used by a JDO implementation. These contracts are required for a JDO implemen-
tation to be used in an application server environment. The Connector architecture defines important
aspects of integration: connection management, transaction management, and security.
The connection management contracts are implemented by the EIS resource adapter (which might
include a JDO native resource adapter).
The transaction management contract is between the transaction manager (logically distinct from
the application server) and the connection manager. It supports distributed transactions across mul-
tiple application servers and heterogeneous data management programs.
The security contract is required for secure access by the JDO connection to the underlying datas-
tore.

Java Data Objects 2.2

 JDO 2.2 36 October 10, 2008

Figure 3.0 Contracts between application server and native JDO resource adapter

Figure 4.0 Contracts between application server and layered JDO implementation

The above diagram illustrates the relationship between a JDO implementation provided by a third
party vendor and an EIS-provided resource adapter.

Application
Component

Container

Transaction Manager

JDO Native

Adapter

Application Server

JDO data

Connection

Management
contract

Security
contract

JDO API

Transaction
contract

Resource

store

Application
Component

Container

Transaction Manager

Resource
Adapter

Application Server

Resource
Manager

XAResource

Synchronization
contract

JDO API EIS-
specific
APIs

JDO implementation

(EIS datastore)

Connector Contracts
(e.g. ManagedConnection)

Java Data Objects 2.2

 JDO 2.2 37 October 10, 2008

4 Roles and Scenarios

4.1 Roles
This chapter describes roles required for the development and deployment of applications built us-
ing the JDO architecture. The goal is to identify the nature of the work specific to each role so that
the contracts specific to each role can be implemented on each side of the contracts.
The detailed contracts are specified in other chapters of this specification. The specific intent here
is to identify the primary users and implementors of these contracts.

4.1.1 Application Developer

The application developer writes software to the JDO API. The JDO application developer does not
have to be an expert in the technology related to a specific datastore.

4.1.2 Application Component Provider

The application component provider produces an application library that implements application
functionality through Java classes with business methods that store data persistently in one or more
EISes through the JDO API.
There are two types of application components that interact with JDO. JDO-transparent application
components, typically helper classes, are those that use JDO to have their state stored in a transac-
tional datastore, and directly access other components by references of their fields. Thus, they do
not need to use JDO APIs directly.
JDO-aware application components (message-driven beans and session beans) use services of JDO
by directly accessing its API. These components use JDO query facilities to retrieve collections of
JDO instances from the datastore, make specific instances persistent in a particular datastore, delete
specific persistent instances from the datastore, interrogate the cached state of JDO instances, or ex-
plicitly manage the cache of the JDO PersistenceManager. These application components are
non-transparent users of JDO.
Session beans that use helper JDO classes interact directly with PersistenceManager and
JDOHelper. They can use the life cycle methods and query factory methods, while ignoring the
transaction demarcation methods if they use container-managed transactions.
The output of the application component provider is a set of jar files containing application compo-
nents.

4.1.3 Application Assembler

The application assembler is a domain expert who assembles application components from multiple
sources including in-house developers and application library vendors. The application assembler
can combine different types of application components, for example EJBs, servlets, or JSPs, into a
single end-user-visible application.
The input of the application assembler is one or more jar files, produced by application component
providers. The output is one or more jar files with deployment specific descriptions.

Java Data Objects 2.2

 JDO 2.2 38 October 10, 2008

4.1.4 Deployer

The deployer is responsible for configuring assembled components into specific operational envi-
ronments. The deployer resolves all external references from components to other components or to
the operational system.
For example, the deployer will bind application components in specific operating environments to
datastores in those environments, and will resolve references from one application component to an-
other. This typically involves using container-provided tools.
The deployer must understand, and be able to define, security roles, transactions, and connection
pooling protocols for multiple datastores, application components, and containers.

4.1.5 System Administrator

The system administrator manages the configuration and administration of multiple containers, re-
source adapters and EISs that combine into an operational system.
Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.6 JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is responsible for
providing a JDO SPI implementation for that specific datastore. Since this role is highly datastore
specific, a datastore vendor will often provide the standard JDO implementation.
A vendor can also provide a JDO implementation and associated set of application development
tools through a loose coupling with a specific third party datastore. Such providers specialize in
writing connectors and related tools for a specific EIS or might provide a more general tool for a
large number of datastores.
The JDO vendor requires that the EIS vendor has implemented the J2EE Connector architecture and
the role of the JDO implementation is that of a synchronization adapter to the connector architec-
ture.
Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.7 Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible for sup-
plying a library of interface implementations that satisfy the resource adapter interface.
In the JDO architecture, the Connector is a separate component, supplied by either the JDO vendor
or by an EIS vendor or third party.

4.1.8 Application Server Vendor

An application server vendor [see Appendix A reference 1], provides an implementation of a J2EE
compliant application server that provides support for component-based enterprise applications. A
typical application server vendor is an OS vendor, middleware vendor, or database vendor.
The role of application server vendor will typically be the same as that of the container provider.

4.1.9 Container Provider

For bean-managed persistence, the container provides deployed application components with trans-
action and security management, distribution of clients, scalable management of resources and other
services that are generally required as part of a managed server platform.

Java Data Objects 2.2

 JDO 2.2 39 October 10, 2008

4.2 Scenario: Embedded calendar management system
This section describes a scenario to illustrate the use of JDO architecture in an embedded mobile
device such as a personal information manager (PIM) or telephone.

Figure 5.0 Scenario: Embedded calendar manager

Sven’s Phones is a manufacturer of high function telephones for the traveling businessperson. They
have implemented a Java operating environment that provides persistence via a Java file I/O sub-
system that writes to flash RAM.
Apache Persistware is a supplier of JDO software that has a small footprint and as such, is especially
suited for embedded devices such as personal digital assistants and telephones. They use Java file
I/O to store JDO instances persistently.
Calendars-R-Us is a supplier of appointment and calendar software that is written for several oper-
ating environments, from high function telephones to desktop workstations and enterprise applica-
tion servers.
Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of the user.
The calendar application needs to insert, delete, and change calendar appointments based on the us-
er’s keypad input. It uses Java application domain classes: Appointment, Contact, Note, Re-
minder, Location, and TelephoneNumber. It employs JDK library classes: Time, Date,
ArrayList, and Calendar.
Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficulties. The
most efficient storage for some environments was an indexed file system, which was required only
for management of thousands of entries. However, when they ported the application to the tele-
phone, the indexed file system was too resource-intensive, and had to be abandoned.

Flash RAM

Telephone JVM

File Manager

JDO

implementation

Java File

I/O APIs

Calendar
Manager
Application JDO

API

Calendars-R-Us Apache Persistware Sven’s Phones

Java Data Objects 2.2

 JDO 2.2 40 October 10, 2008

They then wrote a data access manager for sequential files, but found that it burned out the flash
RAM due to too much rewriting of data. They concluded that they needed to use the services of an-
other software provider who specialized in persistence for flash RAM in embedded devices.
Apache Persistware developed a file access manager based on the Berkeley File System and suc-
cessfully sold it to a range of Java customers from embedded devices to workstations. The interface
was proprietary, which meant that every new sale was a challenge, because customers were loath to
invest resources in learning a different interface for each environment they wanted to support. After
all, Java was portable. Why wasn’t file access?
Sven’s Phones was a successful supplier of telephones to the mobile professional, but found them-
selves constrained by a lack of software developers. They wanted to offer a platform on which spe-
cially tailored software from multiple vendors could operate, and take advantage of external
developers to write software for their telephones.
The solution to all of these issues was to separate the software into components that could be tailored
by the domain expert for each component.
Sven’s phones implemented the Java runtime environment for their phones, and wrote an efficient
sequential file I/O manager that implemented the Java file I/O interface. This interface was used by
Apache Persistware to build a JDO implementation, including a JDO instance handler and a JDO
query manager.
Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The applica-
tion classes did not have to be changed. Only the persistence interface that queried for specific in-
stances needed to be modified.
Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 – Life Cycle of JDO Instances.

4.3 Scenario: Enterprise Calendar Manager
Calendars-R-Us also supports workstations and enterprise mainframes with their calendar software,
and they use the same interface for persistence in all environments. For enterprise environments,
they simply need to use a different JDO implementation supplied by a different vendor to achieve
persistence for their calendar objects.

Java Data Objects 2.2

 JDO 2.2 41 October 10, 2008

Figure 6.0 Scenario: Enterprise Calendar Manager

In this scenario, the JDO implementation is provided by a vendor that maps Java objects to relational
databases. The implementation uses a JCA Resource Adapter to connect to the datastore.
The JDO PersistenceManager is a caching manager, as defined by the Connector architec-
ture, and it is configured to use a JCA Resource Adapter. The PersistenceManager instance
might be cached when used with a Session Bean, and might be serially reused for multiple session
beans.
Multiple JDO PersistenceManager instances might serially reuse connections from the same
pool of JDBC drivers. Therefore, resource sharing is accomplished while maintaining state for each
session.

JDO

implementation

Calendar
Manager
Session Bean, JDO

API

Application Server

Container

 Entity Beans

Database

JCA

Transaction Manager

Resource
Adapter

Java Data Objects 2.2

 JDO 2.2 42 October 10, 2008

5 Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter “JDO in-
stances”. The classes include behavior as specified by the class (bean) developer, and for binary
compatible implementations, additional behavior as provided by the reference enhancer or JDO
vendor’s deployment tool. The enhancement of the classes allows application developers to treat
JDO instances as if they were normal instances, with automatic fetching of persistent state from the
JDO implementation.

5.1 Overview
JDO instances might be transient, detached, or persistent. That is, they might represent the persistent
state of data contained in a transactional datastore. If a JDO instance is transient (and not transac-
tional), then the instance behaves exactly like an ordinary instance of the persistence capable class.
If a JDO instance is persistent, its behavior is linked to the transactional datastore with which it is
associated. The JDO implementation automatically tracks changes made to the values in the in-
stance, and automatically refreshes values from the datastore and saves values into the datastore as
required to preserve transactional integrity of the data. Persistent instances stored in the datastore
retain their class and the state of their persistent fields. Changing the class of a persistent instance is
not supported explicitly by the JDO API. However, it might be possible for an instance to change
class based on external (outside the JDO environment) modifications to the datastore.
If a JDO instance is detached, its behavior is very similar to that of a transient instance, with a few
significant exceptions. A detached instance does not necessarily have all of its persistent fields load-
ed from the data store, and any attempt to access unloaded fields, whether for read or write, is de-
nied. A detached instance maintains its persistent identity and the identity can be obtained by an
observer. A detached instance allows changes to be made to loaded fields, and tracks those changes
while detached. Detached instances never observe transaction boundaries.
During the life of a JDO instance, it transitions among various states until it is finally garbage col-
lected by the JVM. During its life, the state transitions are governed by the behaviors executed on
it directly as well as behaviors executed on the JDO PersistenceManager by both the appli-
cation and by the execution environment (including the TransactionManager).
During the life cycle, instances at times might be inconsistent with the datastore as of the beginning
of the transaction. If instances are inconsistent, the notation for that instance in JDO is “dirty”. In-
stances made newly persistent, deleted, or modified in the transaction are dirty. Detached instances
might be dirty.
At times, the JDO implementation might store the state of persistent instances in the datastore. This
process is called “flushing”, and it does not affect the “dirty” state of the instances.
Under application control, transient JDO instances might observe transaction boundaries, in which
the state of the instances is either preserved (on commit) or restored (on rollback). Transient instanc-
es that observe transaction boundaries are called transient transactional instances. Support for tran-
sient transactional instances is a JDO option; that is, a JDO compliant implementation is not
required to implement the APIs that cause the state transitions associated with transient transactional
instances.

Java Data Objects 2.2

 JDO 2.2 43 October 10, 2008

Under application control, persistent JDO instances might not observe transaction boundaries.
These instances are called persistent-nontransactional instances, and the life cycle of these instances
is not affected by transaction boundaries. Support for nontransactional instances is a JDO option.
In a binary-compatible implementation, if a JDO instance is persistent or transactional, it contains
a non-null reference to a JDO StateManager instance which is responsible for managing the
JDO instance state changes and for interfacing with the JDO PersistenceManager.

5.2 Goals
The JDO instance life cycle has the following goals:

• The fact of persistence should be transparent to both JDO instance developer and
application component developer

• JDO instances should be able to be used efficiently in a variety of environments, including
managed (application server) and non-managed (two-tier) cases

• Several JDO PersistenceManagers might be coresident and might share the same
persistence capable classes (although a JDO instance can be associated with only one
PersistenceManager at a time)

5.3 Architecture:
JDO Instances
For transient JDO instances, there is no supporting infrastructure required. That is, transient instanc-
es will never make calls to methods to the persistence infrastructure. There is no requirement to in-
stantiate objects outside the application domain. In a binary-compatible implementation, there is no
difference in behavior between transient instances of enhanced classes and transient instances of the
same non-enhanced classes, with some exceptions:

• additional methods and fields added by the enhancement process are visible to Java core
reflection,

• timing of method execution is different because of added byte codes,

• extra methods for registration of metadata are executed at class load time.

Persistent JDO instances execute in an environment that contains an instance of the JDO Persis-
tenceManager responsible for its persistent behavior. In a binary-compatible implementation,
the JDO instance contains a reference to an instance of the JDO StateManager responsible for
the state transitions of the instance as well as for managing the contents of the fields of the instance.
The PersistenceManager and the StateManager might be implemented by the same in-
stance, but their interfaces are distinct.
The contract between the persistence capable class and other application components extends the
contract between the associated non-persistence capable class and application components. For both
binary-compatible and non-binary-compatible implementations, these contract extensions support
interrogation of the life cycle state of the instances and are intended for use by management parts of
the system.
Persistent instances might be constructed by the application and made persistent; or might be con-
structed by the JDO PersistenceManager in response to a query or navigation from a persis-
tent instance or via the newInstance method. If the JDO PersistenceManager constructs the
instance, the class of the instance might be a derived class of the class of the original instance, and
will respond true to instanceof the class of the original. Thus, applications must not rely on tests of
the actual class of persistent instances, but must instead use the instanceof test.

Java Data Objects 2.2

 JDO 2.2 44 October 10, 2008

JDO State Manager
In a binary-compatible implementation, persistent and transactional JDO instances contain a refer-
ence to a JDO StateManager instance to which all of the JDO interrogatives are delegated. The
associated JDO StateManager instance maintains the state changes of the JDO instance and in-
terfaces with the JDO PersistenceManager to manage the values of the datastore.

JDO Managed Fields
Only some fields are of interest to the persistence infrastructure: fields whose values are stored in
the datastore are called persistent; fields that participate in transactions (their values may be restored
during rollback) are called transactional; fields of either type are called managed.

5.4 JDO Identity
Java defines two concepts for determining if two instances are the same instance (identity), or rep-
resent the same data (equality). JDO extends these concepts to determine if two in-memory instanc-
es represent the same stored object.
Java object identity is entirely managed by the Java Virtual Machine. Instances are identical if and
only if they occupy the same storage location within the JVM. The Java VM implements object
identity via the = = operator. This can be used by JDO implementations to determine whether two
instances are identical (have the same location) in the VM.
Java object equality is determined by the class. Distinct instances are equal if they represent the
same data, such as the same value for an Integer, or same set of bits for a BitSet.
The application implements hashCode and equals, to create the application's vision of equality of
instances, typically based on values of fields in the instances. The JDO implementation must not use
the application's hashCode and equals methods from the persistence-capable classes except as need-
ed to implement the Collections Framework in package java.util. The JDO implementation must use
the application's hashCode and equals methods from the application-provided object id classes.
The interaction between Java object identity and equality is an important one for JDO developers.
Java object equality is an application specific concept, and JDO implementations must not change
the application’s semantic of equality. Still, JDO implementations must manage the cache of JDO
instances such that there is only one JDO instance associated with each JDO PersistenceMan-
ager representing the persistent state of each corresponding datastore object. Therefore, JDO de-
fines object identity differently from both the Java VM object identity and from the application
equality.
Applications should implement equals for persistence-capable classes differently from Ob-
ject’s default equals implementation, which simply uses the Java VM object identity. This is
because the JVM object identity of a persistent instance cannot be guaranteed between Persis-
tenceManagers and across space and time, except in very specific cases noted below.
Additionally, if persistence instances are stored in the datastore and are queried using the == query
operator, or are referred to by a persistent collection that enforces equality (Set, Map) then the im-
plementation of equals should exactly match the JDO implementation of equality, using the pri-
mary key or ObjectId as the key. This policy is not enforced, but if it is not correctly
implemented, semantics of standard collections and JDO collections may differ.
To avoid confusion with Java object identity, this document refers to the JDO concept as JDO iden-
tity. The JDO implementation is responsible for the implementation of JDO identity based on the
user's declaration of the identity type of each persistence-capable class.

Three Types of JDO identity
JDO defines three types of JDO identity:

Java Data Objects 2.2

 JDO 2.2 45 October 10, 2008

• Application identity - JDO identity managed by the application and enforced by the
datastore; JDO identity is often called the primary key

• Datastore identity - JDO identity managed by the datastore without being tied to any field
values of a JDO instance

• Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore

The type of JDO identity used is a property of a JDO persistence-capable class and is fixed at class
loading time.
The representation of JDO identity in the JVM is via a JDO object id. Every persistent instance (Java
instance representing a persistent object) has a corresponding object id. There might be an instance
in the JVM representing the object id, or not. The object id JVM instance corresponding to a persis-
tent instance might be acquired by the application at run time and used later to obtain a reference to
the same datastore object, and it might be saved to and retrieved from durable storage (by serializa-
tion or other technique).
The class representing the object id for datastore and nondurable identity classes is defined by the
JDO implementation. The implementation might choose to use any class that satisfies the require-
ments for the specific type of JDO identity for a class. It might choose the same class for several
different JDO classes, or might use a different class for each JDO class.
The class representing the object id for application identity classes is defined by the application in
the metadata, and might be provided by the application or by a JDO vendor tool.
The application-visible representation of the JDO identity is an instance that is completely under the
control of the application. The object id instances used as parameters or returned by methods in the
JDO interface (getObjectId, getTransactionalObjectId, and getObjectById) will
never be saved internally; rather, they are copies of the internal representation or used to find in-
stances of the internal representation.
Therefore, the object returned by any call to getObjectId might be modified by the user, but that
modification does not affect the identity of the object that was originally referred. That is, the call
to getObjectId returns only a copy of the object identity used internally by the implementation.
It is a requirement that the instance returned by a call to getObjectById(Object) of different
PersistenceManager instances returned by the same PersistenceManagerFactory
represent the same persistent object, but with different Java object identity (specifically, all instanc-
es returned by getObjectId from the instances must return true to equals comparisons with
all others).
Further, any instances returned by any calls to getObjectById(Object) with the same object
id instance to the same PersistenceManager instance must be identical (assuming the instanc-
es were not garbage collected between calls).
The JDO identity of transient instances is not defined. Attempts to get the object id for a transient
instance will return null.

Uniquing
JDO identity of persistent instances is managed by the implementation. For a durable JDO identity
(datastore or application), there is only one persistent instance associated with a specific datastore
object per PersistenceManager instance, regardless of how the persistent instance was put
into the cache:

• PersistenceManager.getObjectById(Object oid, boolean
validate);

• query via a Query instance associated with the PersistenceManager instance;

Java Data Objects 2.2

 JDO 2.2 46 October 10, 2008

• navigation from a persistent instance associated with the PersistenceManager
instance;

• PersistenceManager.makePersistent(Object pc);

Change of identity
Change of identity is supported only for application identity, and is an optional feature of a JDO
implementation. An application attempt to change the identity of an instance (by writing a primary
key field) where the implementation does not support this optional feature results in JDOUnsup-
portedOptionException being thrown. The exception might be thrown immediately or upon
flush or transaction commit.

 NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

JDO instances using application identity may change their identity during a transaction if the appli-
cation changes a primary key field. In this case, there is a new JDO Identity associated with the JDO
instance immediately upon completion of the statement that changes a primary key field. If a JDO
instance is already associated with the new JDO Identity, then a JDOUserException is thrown.
The exception might be thrown immediately or upon flush or transaction commit.
Upon successful commit of the transaction, the existing datastore instance will have been updated
with the changed values of the primary key fields.

JDO Identity Support
A JDO implementation is required to support either or both of application (primary key) identity or
datastore identity, and may optionally support nondurable identity.

5.4.1 Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance determine the
identity of the object in the datastore. Thus, JDO identity is managed by the application. The class
provided by the application that implements the JDO object id has all of the characteristics of an
RMI remote object, making it possible to use the JDO object id class as the EJB primary key class.
Specifically:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the default
constructor;

• the field types of all non-static fields in the ObjectId class must be serializable, and for
portability should be primitive, String, Date, Byte, Short, Integer, Long,
Float, Double, BigDecimal, or BigInteger types; JDO implementations
are required to support these types and might support other reference types;

• all serializable non-static fields in the ObjectId class must be public;

• the names of the non-static fields in the ObjectId class must include the names of the
primary key fields in the JDO class, and the types of the corresponding fields must be
identical;

Java Data Objects 2.2

 JDO 2.2 47 October 10, 2008

• the equals() and hashCode() methods of the ObjectId class must use the value(s)
of all the fields corresponding to the primary key fields in the JDO class;

• if the ObjectId class is an inner class, it must be static;

• the ObjectId class must override the toString() method defined in Object, and
return a String that can be used as the parameter of a constructor;

• the ObjectId class must provide a constructor taking either a String alone or a Class
and String that returns an instance that compares equal to an instance that returned that
String by the toString() method.

These restrictions allow the application to construct an instance of the primary key class providing
values only for the primary key fields, or alternatively providing only the result of toString()
from an existing instance. The JDO implementation is permitted to extend the primary key class to
use additional fields, not provided by the application, to further identify the instance in the datastore.
Thus, the JDO object id instance returned by an implementation might be a subclass of the user-
defined primary key class. Any JDO implementation must be able to use the JDO object id instance
from any other JDO implementation.
A primary key identity is associated with a specific set of fields. The fields associated with the pri-
mary key are a property of the persistence-capable class, and cannot be changed after the class is
enhanced for use at runtime. When a transient instance is made persistent, the implementation uses
the values of the fields associated with the primary key to construct the JDO identity.
A primary key instance must have none of its primary key fields set to null when used to find a per-
sistent instance. The persistence manager will throw JDOUserException if the primary key instance
contains any null values when the key instance is the parameter of getObjectById.
Persistence-capable classes that use application identity have special considerations for inheritance.
To be portable, the key class must be the same for all classes in the inheritance hierarchy derived
from the least-derived (topmost) concrete persistence-capable class in the hierarchy.

Compound Identity
Compound identity is a special case of application identity. References to other persistence-capable
classes can be defined as key fields. In this case, the object id class contains a field that is of the type
of the object id of the relationship field.
For example, two classes have a one-many relationship, and on the reference side of the relation-
ship, the field is a key field. On the other side of the relationship, there is a Collection or other multi-
valued type.
class Order {

long orderId;
Set<OrderItem> items;

...}
class OrderId {

long orderId; // matches orderId field name and type
...}
class OrderItem {

Order order;
long item;
...}
class OrderItemId {

OrderId order; // matches order field name and OrderId type
long item; // matches item field name and type

...}

Java Data Objects 2.2

 JDO 2.2 48 October 10, 2008

5.4.2 Single Field Identity

A common case of application identity uses exactly one persistent field in the class to represent
identity. In this case, the application can use a standard JDO class instead of creating a new user-
defined class for the purpose.
A JDO implementation that supports application identity must also support single field identity.
package javax.jdo.identity;
public abstract class SingleFieldIdentity

implements Externalizable, Comparable {
protected SingleFieldIdentity(Class pcClass);
public Class getTargetClass();
public String getTargetClassName();
public Object getKeyAsObject();

}

public class ByteIdentity
extends SingleFieldIdentity {
public byte getKey();
public ByteIdentity(Class pcClass, byte key);
public ByteIdentity(Class pcClass, Byte key);
public ByteIdentity(Class pcClass, String key);

}

public class CharIdentity
extends SingleFieldIdentity {
public char getKey();
public CharIdentity(Class pcClass, char key);
public CharIdentity(Class pcClass, Character key);
public CharIdentity(Class pcClass, String key);

}

public class ShortIdentity
extends SingleFieldIdentity {
public short getKey();
public ShortIdentity(Class pcClass, short key);
public ShortIdentity(Class pcClass, Short key);
public ShortIdentity(Class pcClass, String key);

}

public class IntIdentity
extends SingleFieldIdentity {
public int getKey();
public IntIdentity(Class pcClass, int key);
public IntIdentity(Class pcClass, Integer key);
public IntIdentity(Class pcClass, String key);

}

public class LongIdentity
extends SingleFieldIdentity {
public long getKey();
public LongIdentity(Class pcClass, long key);
public LongIdentity(Class pcClass, Long key);
public LongIdentity(Class pcClass, String key);

}

public class StringIdentity
extends SingleFieldIdentity {
public String getKey();
public StringIdentity(Class pcClass, String key);

}

Java Data Objects 2.2

 JDO 2.2 49 October 10, 2008

public class ObjectIdentity
extends SingleFieldIdentity {
public Object getKey();
public ObjectIdentity(Class pcClass, Object key);

}

The constructors that take reference types throw JDONullIdentityException if the second
argument is null. Valid key values are never null.
Constructors of primitive identity types that take String parameters convert the parameter to the
proper type using the static parseXXX method of the corresponding wrapper class.
Instances of SingleFieldIdentity classes are immutable. When serialized, the name of the
target class is serialized. When deserialized, the name of the target class is restored, but not the target
class. The deserialized instance will return null to getTargetClass. All instances will return
the “binary” name of the target class (the result of Class.getName()).
The SingleFieldIdentity classes adhere to all of the requirements for application object id
classes, with the exception of field names. That is, there are no public fields visible to the applica-
tion.
The SingleFieldIdentity classes implement the Comparable interface. They can thus be
used as elements in ordered Sets and keys in ordered Maps. The order is an absolute ordering. In
the specific case of ObjectIdentity, the ordering is based first upon the name of the target class
and second upon the value of the key. If the key does not implement Comparable, then the com-
pareTo method in ObjectIdentity will throw ClassCastException.

5.4.3 Datastore identity

This is the JDO identity type used for datastores in which the identity of the data in the datastore
does not depend on the values in the instance. The implementation guarantees uniqueness for all in-
stances.
A JDO implementation might choose one of the primitive wrapper classes as the ObjectId class
(e.g. Short, Integer, Long, or String), or might choose an implementation-specific class.
Implementation-specific classes used as JDO ObjectId have the following characteristics:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the default
constructor;

• all serializable fields in the ObjectId class must be public;

• the field types of all non-static fields in the ObjectId class must be serializable;

• the ObjectId class must override the toString() method defined in Object, and
return a String that can be used as the parameter of the PersistenceManager
method newObjectIdInstance(Class cls, String key);

Note that, unlike application identity, datastore identity ObjectId classes are not required to sup-
port equality with ObjectId classes from other JDO implementations. Further, the application
cannot change the JDO identity of an instance of a class using datastore identity.

5.4.4 Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other similar files,
where performance is a primary concern, and there is no need for the overhead associated with man-
aging a durable identity for each datastore instance. Objects are typically inserted into datastores

Java Data Objects 2.2

 JDO 2.2 50 October 10, 2008

with transactional semantics, but are not accessed by key. They may have references to instances
elsewhere in the datastore, but often have no keys or indexes themselves. They might be accessed
by other attributes, and might be deleted in bulk.
Multiple objects in the datastore might have exactly the same values, yet an application program
might want to treat the objects individually. For example, the application must be able to count the
persistent instances to determine the number of datastore objects with the same values. Also, the ap-
plication might change a single field of an instance with duplicate objects in the datastore, and the
expected result in the datastore is that exactly one instance has its field changed. If multiple instanc-
es in memory are modified, then instances in the datastore are modified corresponding one-to-one
with the modified instances in memory. Similarly, if the application deletes some number of multi-
ple duplicate objects, the same number of the objects in the datastore must be deleted.
As another example, if a datastore instance using nondurable identity is loaded twice into the VM
by the same PersistenceManager, then two separate instances are instantiated, with two dif-
ferent JDO identities, even though all of the values in the instances are the same. It is permissible to
update or delete only one of the instances. At commit time, if only one instance was updated or de-
leted, then the changes made to that instance are reflected in the datastore by changing the single
datastore instance. If both instances were changed, then the transaction will fail at commit, with a
JDOUserException because the changes must be applied to different datastore instances. Because
the JDO identity is not visible in the datastore, there are special behaviors with regard to nondurable
JDO identity:

• the ObjectId is not valid after making the associated instance hollow, and attempts to
retrieve it will throw a JDOUserException;

• the ObjectId cannot be used in a different instance of PersistenceManager from
the one that issued it, and attempts to use it even indirectly (e.g. getObjectById with a
persistence-capable object as the parameter) will throw a JDOUserException;

• the persistent instance might transition to persistent-nontransactional or hollow but cannot
transition to any other state afterward;

• attempts to access the instance in the hollow state will throw a JDOUserException;

• the results of a query in the datastore will always return instances that are not already in the
Java VM, so multiple queries that find the same objects in the datastore will return
additional JDO instances with the same values and different JDO identities;

• makePersistent will succeed even though another instance already has the same
values for all persistent fields.

For JDO identity that is not managed by the datastore, the class that implements JDO ObjectId
has the following characteristics:

• the ObjectId class must be public;

• the ObjectId class must have a public constructor, which might be the default
constructor or a no-arg constructor;

• all fields in the ObjectId class must be public;

• the field types of all fields in the ObjectId class must be serializable.

5.5 Life Cycle States
There are many states defined by this specification. Some states are required, and others states are
optional. If an implementation does not support certain operations, then these optional states are not
reachable.

Java Data Objects 2.2

 JDO 2.2 51 October 10, 2008

Datastore Transactions
The following descriptions apply to datastore transactions with retainValues=false. Optimistic
transaction and retainValues=true state transitions are covered later in this chapter.

5.5.1 Transient (Required)

JDO instances created by using a developer-written or compiler-generated constructor that do not
involve the persistence environment behave exactly like instances of the unenhanced class.
There is no JDO identity associated with a transient instance.
There is no intermediation to support fetching or storing values for fields. There is no support for
demarcation of transaction boundaries. Indeed, there is no transactional behavior of these instances,
unless they are referenced by transactional instances at commit time.
When a persistent instance is committed to the datastore, instances referenced by persistent fields
of the flushed instance become persistent. This behavior propagates to all instances in the closure
of instances through persistent fields. This behavior is called persistence by reachability.
No methods of transient instances throw exceptions except those defined by the class developer.
A transient instance transitions to persistent-new if it is the parameter of makePersistent, or if
it is referenced by a persistent field of a persistent instance when that instance is committed or made
persistent.

5.5.2 Persistent-new (Required)

JDO instances that are newly persistent in the current transaction are persistent-new. This is the state
of an instance that has been requested by the application component to become persistent, by using
one of the PersistenceManager makePersistent methods on the instance.
During the transition from transient to persistent-new

• the associated PersistenceManager becomes responsible to implement state
interrogation and further state transitions.

• if the transaction flag restoreValues is true, the values of persistent and
transactional non-persistent fields are saved for use during rollback.

• the values of persistent fields of mutable SCO types (e.g. java.util.Date,
java.util.HashSet, etc.) are replaced with JDO implementation-specific copies of
the field values that track changes and are owned by the persistent instance.

• a JDO identity is assigned to the instance by the JDO implementation. This identity
uniquely identifies the instance inside the PersistenceManager and might uniquely
identify the instance in the datastore. A copy of the JDO identity will be returned by the
PersistenceManager method getObjectId(Object).

• instances reachable from this instance by fields of persistence-capable types and collections
of persistence-capable types become provisionally persistent and transition from transient
to persistent-new. If the instances made provisionally persistent are still reachable at
commit time, they become persistent. This effect is recursive, effectively making the
transitive closure of transient instances provisionally persistent.

A persistent-new instance transitions to persistent-new-deleted if it is the parameter of deleteP-
ersistent.
A persistent-new instance transitions to hollow when it is flushed to the datastore during commit
when retainValues is false. This transition is not visible during beforeCompletion, and is vis-
ible during afterCompletion. During beforeCompletion, the user-defined jdoPre-
Store method is called if the class implements InstanceCallbacks.

Java Data Objects 2.2

 JDO 2.2 52 October 10, 2008

A persistent-new instance transitions to transient at rollback. The instance loses its JDO Identity and
its association with the PersistenceManager. If restoreValues is false, the values of managed
fields in the instance are left as they were at the time rollback was called.If restoreValues is true, the
values of managed fields in the instance are restored to the values as they were at the time makeP-
ersistent was called.

5.5.3 Persistent-dirty (Required)

JDO instances that represent persistent data that was changed in the current transaction are persis-
tent-dirty.
A persistent-dirty instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent.
Persistent-dirty instances transition to hollow during commit when retainValues is false or during
rollback when restoreValues is false. During beforeCompletion, the user-defined jdoPre-
Store method is called if the class implements StoreCallback.
If an application modifies a managed field, but the new value is equal to the old value, then it is an
implementation choice whether the JDO instance is modified or not. If no modification to any man-
aged field was made by the application, then the implementation must not mark the instance as dirty.
If a modification was made to any managed field that changes the value of the field, then the imple-
mentation must mark the instance as dirty.
Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-type man-
aged field marks the field as dirty, even if the new value is identical to the old value. This special
case is required to allow the user to mark an array-type field as dirty without having to call the
JDOHelper method makeDirty.

5.5.4 Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are not in the
JDO instance are hollow. The hollow state provides for the guarantee of uniqueness for persistent
instances between transactions.
This is permitted to be the state of instances committed from a previous transaction, acquired by the
method getObjectById, returned by iterating an Extent, returned in the result of a query ex-
ecution, or navigating a persistent field reference. However, the JDO implementation may choose
to return instances in a different state reachable from hollow.
A JDO implementation is permitted to effect a legal state transition of a hollow instance at any time,
as if a field were read. Therefore, the hollow state might not be visible to the application.
During the commit of the transaction in which a dirty persistent instance has had its values changed
(including a new persistent instance), the underlying datastore is changed to have the transactionally
consistent values from the JDO instance, and the instance transitions to hollow.
Requests by the application for an instance with the same JDO identity (query, navigation, or lookup
by ObjectId), in a subsequent transaction using the same PersistenceManager instance, will
return the identical Java instance, assuming it has not been garbage collected. If the application does
not hold a strong reference to a hollow instance, the instance might be garbage collected, as the
PersistenceManager must not hold a strong reference to any hollow instance.
The hollow JDO instance maintains its JDO identity and its association with the JDO Persis-
tenceManager. If the instance is of a class using application identity, the hollow instance main-
tains its primary key fields.
A hollow instance transitions to persistent-deleted if it is the parameter of deletePersistent.

Java Data Objects 2.2

 JDO 2.2 53 October 10, 2008

A hollow instance transitions to persistent-dirty if a change is made to any managed field. It transi-
tions to persistent-clean if a read access is made to any persistent field other than one of the primary
key fields.
A hollow instance transitions to detached if the transaction associated with its persistence manager
is committed while the DetachAllOnCommit property is true.
The behavior of persistent instances at close of the corresponding PersistenceManager is not further
defined in this specification.

5.5.5 Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and whose values
have not been changed in the current transaction, are persistent-clean. This is the state of an instance
whose values have been requested in the current datastore transaction, and whose values have not
been changed by the current transaction.
A persistent-clean instance transitions to persistent-dirty if a change is made to any managed field.
A persistent-clean instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent.A persistent-clean instance transitions to persistent-nontransactional if it is the parameter
of makeNontransactional.
A persistent-clean instance transitions to hollow at commit when retainValues is false; or rollback
when restoreValues is false. It retains its identity and its association with the PersistenceMan-
ager.

5.5.6 Persistent-deleted (Required)

JDO instances that represent specific persistent data in the datastore, and that have been deleted in
the current transaction, are persistent-deleted.
Read access to primary key fields is permitted. Any other access to persistent fields is not supported
and might throw a JDOUserException.
Before the transition to persistent-deleted, the user-written jdoPreDelete is called if the persis-
tence-capable class implements InstanceCallbacks.
A persistent-deleted instance transitions to transient at commit. During the transition, its persistent
fields are written with their Java default values, and the instance loses its JDO Identity and its asso-
ciation with the PersistenceManager.
A persistent-deleted instance transitions to hollow at rollback when restoreValues is false. The in-
stance retains its JDO Identity and its association with the PersistenceManager.

5.5.7 Persistent-new-deleted (Required)

JDO instances that represent instances that have been newly made persistent and deleted in the cur-
rent transaction are persistent-new-deleted.
Read access to primary key fields is permitted. Any other access to persistent fields is not supported
and might throw a JDOUserException.
Before the transition to persistent-new-deleted, the user-written jdoPreDelete is called if the
persistence-capable class implements InstanceCallbacks.
A persistent-new-deleted instance transitions to transient at commit. During the transition, its per-
sistent fields are written with their Java default values, and the instance loses its JDO Identity and
its association with the PersistenceManager.
A persistent-new-deleted instance transitions to transient at rollback. The instance loses its JDO
Identity and its association with the PersistenceManager.

Java Data Objects 2.2

 JDO 2.2 54 October 10, 2008

If RestoreValues is true, the values of managed fields in the instance are restored to their state
as of the call to makePersistent. If RestoreValues is false, the values of managed fields
in the instance are left as they were at the time rollback was called.

5.5.8 Detached-clean (Required)

JDO instances that have been detached from their persistence manager and have not been modified
are detached-clean. Detachment is done by one of three ways:

• the instance or an instance containing a reference to the instance is serialized; in this case,
the serialized instance is detached

• the transaction of the persistence manager managing the instance is committed and the
DetachAllOnCommit property is true; in this case the persistent instance itself is
detached (there is no copy)

• the instance is explicitly detached from the persistence manager via one of the
detachCopy or detachCopyAll methods; in this case the copy is detached.

Detached-clean instances transition to detached-dirty if a loaded field is modified. Attempts to
change their state via any of the persistence manager methods except for makePersistent and
deletePersistentthrow JDOUserException.
Evict, refresh, retrieve, makeTransient, makeTransactional, and makeNontransactional throw
JDOUserException if a parameter instance is in the detached-clean or detached-dirty state.
A detachable class is not serialization-compatible with the corresponding unenhanced class.
Detached-clean instances transition to persistent-nontransactional or persistent-clean (depending on
the Optimistic setting) if they are parameters to makePersistent when CopyOnAttach
is false.
Detached instances are further described in section 12.6.8.

5.5.9 Detached-dirty (Required)

JDO instances that have been removed from their persistence manager and have fields marked as
modified are detached-dirty.
Fields are marked as modified if a field of the detached instance is explicitly modified by the appli-
cation.
Detached-dirty instances do not change their life cycle state unless CopyOnAttach is false. When
CopyOnAttach is false, detached-dirty instances transition to persistent-dirty during makePer-
sistent.
Evict, refresh, retrieve, makeTransient, makeTransactional, and makeNontransactional throw
JDOUserException if a parameter instance is in the detached-clean or detached-dirty state.

5.6 Nontransactional (Optional)
Management of nontransactional instances is an optional feature of a JDO implementation. Usage
is primarily for slowly changing data or for optimistic transaction management, as the values in non-
transactional instances are not guaranteed to be transactionally consistent.
The use of this feature is governed by the PersistenceManager options Nontransaction-
alRead, NontransactionalWrite, Optimistic, and RetainValues. An implementa-
tion might support any or all of these options. For example, an implementation might support only
NontransactionalRead. For options that are not supported, the value of the unsupported
property is false and it may not be changed.

Java Data Objects 2.2

 JDO 2.2 55 October 10, 2008

If a PersistenceManager does not support this optional feature, an operation that would result
in an instance transitioning to the persistent-nontransactional state or a request to set the Non-
transactionalRead, NontransactionalWrite, Optimistic, or RetainValues
option to true, throws a JDOUnsupportedOptionException.
NontransactionalRead, NontransactionalWrite, Optimistic, and Retain-
Values are independent options. A JDO implementation must not automatically change the values
of these properties as a side effect of the user changing other properties.
With NontransactionalRead set to true:

• Navigation and queries are valid outside a transaction. It is a JDO implementation decision
whether the instances returned are in the hollow or persistent-nontransactional state.

• When a managed, non-key field of a hollow instance is read outside a transaction, the
instance transitions to persistent-nontransactional.

• If a persistent-clean instance is the parameter of makeNontransactional, the
instance transitions to persistent-nontransactional.

With NontransactionalWrite set to true:
• Modification of persistent-nontransactional instances is permitted outside a transaction.

The changes might participate in a subsequent transaction.

• This is an incompatible change from the behavior in JDO 1.0. Compatibility is only
supported if a subsequent transaction is not begun after making changes to persistent
instances in the cache.

With RetainValues set to true:
• At commit, persistent-clean, persistent-new, and persistent-dirty instances transition to

persistent-nontransactional. Fields defined in the XML metadata as containing mutable
second-class types are examined to ensure that they contain instances that track changes
made to them and are owned by the instance. If not, they are replaced with new second class
object instances that track changes, constructed from the contents of the second class object
instance. These include java.util.Date, and Collection and Map types. NOTE:
This process is not required to be recursive, although an implementation might choose to
recursively convert the closure of the collection to become second class objects. JDO
requires conversion only of the affected persistence-capable instance’s fields.

With RestoreValues set to true:
• If the JDO implementation does not support persistent-nontransactional instances, at

rollback persistent-deleted, persistent-clean and persistent-dirty instances transition to
hollow.

• If the JDO implementation supports persistent-nontransactional instances, at rollback
persistent-deleted, persistent-clean and persistent-dirty instances transition to persistent-
nontransactional. The state of each managed field in persistent-deleted and persistent-dirty
instances is restored:

• fields of primitive types (int, float, etc.), wrapper types (Integer, Float, etc.),
immutable types (Locale, etc.), and references to persistence-capable types are restored
to their values as of the beginning of the transaction and the fields are marked as loaded.

• fields of mutable types (Date, Collection, array-type, etc.) are set to null and the
fields are marked as not loaded.

Java Data Objects 2.2

 JDO 2.2 56 October 10, 2008

5.6.1 Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for a discus-
sion on how optimistic transactions change this behavior.
JDO instances that represent specific persistent data in the datastore, whose values are currently
loaded but not transactionally consistent, are persistent-nontransactional. There is a JDO Identity as-
sociated with these instances, and transactional instances can be obtained from the object ids.
The persistent-nontransactional state allows persistent instances to be managed as a shadow cache
of instances that are updated asynchronously.
As long as a transaction is not in progress:

• if NontransactionalRead is true, persistent field values might be retrieved from
the datastore by the PersistenceManager;

• if NontransactionalWrite is true, the application might make changes to the
persistent field values in the instance. These changes might be committed in a subsequent
transaction.

A persistent-nontransactional instance transitions to persistent-clean if it is the parameter of a ma-
keTransactional method executed when a transaction is in progress. The state of the instance
in memory is discarded (cleared) and the state is loaded from the datastore.
A persistent-nontransactional instance transitions to persistent-clean if any managed field is access-
ed when a datastore transaction is in progress. The state of the instance in memory is discarded and
the state is loaded from the datastore.
A persistent-nontransactional instance transitions to persistent-dirty if any managed field is written
when a transaction is in progress. The state of the instance in memory is saved for use during roll-
back, and the state is loaded from the datastore. Then the change is applied.
A persistent-nontransactional instance transitions to persistent-deleted if it is the parameter of
deletePersistent. The state of the instance in memory is saved for use during rollback.
A persistent-nontransactional instance transitions to detached if a transaction is commited while the
DetachAllOnCommit property is true.
A persistent-nontransactional instance transitions to persistent-nontransactional-dirty if a change is
made outside a transaction while the NontransactionalWrite property is true.
If the application does not hold a strong reference to a persistent-nontransactional instance, the in-
stance might be garbage collected. The PersistenceManager must not hold a strong reference
to any persistent-nontransactional instance.
The behavior of persistent instances at close of the corresponding PersistenceManager is not further
defined in this specification.

5.6.2 Persistent-nontransactional-dirty (Optional)

JDO instances that represent specific persistent data in the datastore, whose values may be currently
loaded but not transactionally consistent, and have been modified since the last commit, are persis-
tent-nontransactional-dirty. There is a JDO Identity associated with these instances, and non-trans-
actional instances can be obtained from the object ids.
The persistent-nontransactional-dirty state allows applications to operate on nontransactional in-
stances in the cache and make changes to the instances without having a transaction active. At some
future point, the application can begin a transaction and incorporate the changes into the transac-
tional state. Committing the transaction makes the changes made outside the transaction durable.

Java Data Objects 2.2

 JDO 2.2 57 October 10, 2008

A persistent-nontransactional-dirty instance transitions to hollow if it is the parameter of evict or
evictAll. This allows the application to remove instances from the set of instances whose state is to
be committed to the datastore.
If a datastore transaction is begun, no state change occurs immediately, and commit will write the
changes to the datastore with no checking as to the current state of the instances in the datastore.
That is, the changes made outside the transaction together with any changes made inside the trans-
action will overwrite the current state of the datastore. The persistent-nontransactional-dirty instanc-
es will transition according to the RetainValues flag. With the RetainValues flag set to true,
persistent-nontransactional-dirty instances will transition to persistent-nontransactional. With the
RetainValues flag set to false, persistent-nontransactional-dirty instances will transition to hol-
low.
If a datastore transaction is begun, no state change occurs immediately, and rollback will not write
any changes to the datastore. The persistent-nontransactional-dirty instances will transition accord-
ing to the RestoreValues flag. With the RestoreValues flag set to true, persistent-nontrans-
actional-dirty instances will make no state transition, but the fields will be restored to their values
as of the beginning of the transaction, and any changes made within the transaction will be discard-
ed. With the RestoreValues flag set to false, persistent-nontransactional-dirty instances will
transition to hollow.
If an optimistic transaction is begun, no state change occurs immediately, and commit will write the
changes to the datastore after checking as to the current state of the instances in the datastore. The
changes made outside the transaction together with any changes made inside the transaction will up-
date the current state of the datastore if the version checking is successful. The persistent-nontrans-
actional-dirty instances will transition according to the RetainValues flag. With the
RetainValues flag set to true, persistent-nontransactional-dirty instances will transition to per-
sistent-nontransactional. With the RetainValues flag set to false, persistent-nontransactional-
dirty instances will transition to hollow.
If an optimistic transaction is begun, no state change occurs immediately, and rollback will not write
any changes to the datastore. The persistent-nontransactional-dirty instances will transition accord-
ing to the RestoreValues flag. With the RestoreValues flag set to true, persistent-non-
transactional-dirty instances will make no state transition, but the fields will be restored to their
values as of the beginning of the transaction, and any changes made within the transaction will be
discarded. With the RestoreValues flag set to false, persistent-nontransactional-dirty instances
will transition to hollow.
The behavior of persistent instances at close of the corresponding PersistenceManager is not further
defined in this specification.

5.7 Transient Transactional (Optional)
Management of transient transactional instances is an optional feature of a JDO implementation.
The following sections describe the additional states and state changes when using transient trans-
actional behavior.
A transient instance transitions to transient-clean if it is the parameter of make-Transaction-
al.

5.7.1 Transient-clean (Optional)

JDO instances that represent transient transactional instances whose values have not been changed
in the current transaction are transient-clean. This state is not reachable if the JDO Persis-
tenceManager does not implement the optional feature javax.jdo.option.Transient-
Transactional.

Java Data Objects 2.2

 JDO 2.2 58 October 10, 2008

Changes made outside a transaction are allowed without a state change. A transient-clean instance
transitions to transient-dirty if any managed field is changed in a transaction. During the transition,
values of managed fields are saved by the PersistenceManager for use during rollback. This
behavior is not dependent on the setting of the RestoreValues flag.
A transient-clean instance transitions to transient if it is the parameter of makeNontransac-
tional.

5.7.2 Transient-dirty (Optional)

JDO instances that represent transient transactional instances whose values have been changed in
the current transaction are transient-dirty. This state is not reachable if the JDO PersistenceM-
anager does not implement the optional feature javax.jdo.option.TransientTrans-
actional.
A transient-dirty instance transitions to transient-clean at commit. The values of managed fields
saved (for rollback processing) at the time the transition was made from transient-clean to transient-
dirty are discarded. None of the values of fields in the instance are modified as a result of commit.
A transient-dirty instance transitions to transient-clean at rollback. The values of managed fields
saved at the time the transition was made from transient-clean to transient-dirty are restored. This
behavior is not dependent on the setting of the RestoreValues flag.
A transient-dirty instance transitions to persistent-new at makePersistent. The values of man-
aged fields saved at the time the transition was made from transient-clean to transient-dirty are used
as the before image for the purposes of rollback.

5.8 Optimistic Transactions (Optional)
Optimistic transaction management is an optional feature of a JDO implementation.
The Optimistic flag set to true changes the state transitions of persistent instances:

• If a persistent field other than one of the primary key fields is read, a hollow instance
transitions to persistent-nontransactional instead of persistent-clean. Subsequent reads of
these fields do not cause a transition from persistent-nontransactional.

• A persistent-nontransactional instance transitions to persistent-deleted if it is a parameter
of deletePersistent. The state of the managed fields of the instance in memory is
saved for use during rollback, and for verification during commit. The values in fields of
the instance in memory are unchanged. If fresh values need to be loaded from the datastore,
then the user should first call refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-clean if it is a parameter of
a makeTransactional method executed when an optimistic transaction is in progress.
The values in managed fields of the instance in memory are unchanged. If fresh values need
to be loaded from the datastore, then the user should first call refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-dirty if a managed field is
modified when an optimistic transaction is in progress. If RestoreValues is true, a
before image is saved before the state transition. This is used for restoring field values
during rollback. Depending on the implementation the before image of the instance in
memory might be saved for verification during commit. The values in fields of the instance
in memory are unchanged before the update is applied. If fresh values need to be loaded
from the datastore, then the user should first call refresh on the instance.

Java Data Objects 2.2

 JDO 2.2 59 October 10, 2008

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchanged

deletePersistent error P-new-del P-del P-del P-del

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit
retainValues=false

unchanged Hollow Hollow Hollow unchanged

commit
retainValues=true

unchanged P-nontrans P-nontrans P-nontrans unchanged

commit
DetachAllOnCommit true

unchanged detached-
clean

detached-
clean

detached-
clean

detached-
clean

rollback
restoreValues=false

unchanged Transient Hollow Hollow unchanged

rollback
restoreValues=true

unchanged Transient P-nontrans P-nontrans unchanged

refresh with active Datas-
tore transaction

unchanged unchanged unchanged P-clean unchanged

refresh with active Opti-
mistic transaction

unchanged unchanged unchanged P-nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outside transac-
tion

unchanged impossible impossible impossible P-nontrans

read field with active
Optimistic transaction

unchanged unchanged unchanged unchanged P-nontrans

read field with active
Datastore transaction

unchanged unchanged unchanged unchanged P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible P-nontrans

write field or
makeDirty with
active transaction

unchanged unchanged P-dirty unchanged P-dirty

Java Data Objects 2.2

 JDO 2.2 60 October 10, 2008

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged P-nontrans

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

detachCopy outside trans-
action with Nontransac-
tionalRead true

error impossible impossible impossible parameter:
P-nontrans
returned:
detached-
clean

detachCopy outside trans-
action with Nontransac-
tionalRead false

error impossible impossible impossible error

detachCopy with active
Optimistic transaction

parameter:
P-new
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
P-nontrans
returned:
detached-
clean

detachCopy with active
Datastore transaction

parameter:
P-new
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

parameter:
P-clean
returned:
detached-
clean

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

makePersistent P-new P-new unchanged unchanged unchanged

deletePersistent error error unchanged unchanged P-del

makeTransactional unchanged unchanged unchanged unchanged P-clean

makeNontransactional Transient error error error unchanged

makeTransient unchanged unchanged error error Transient

commit
retainValues=false

unchanged T-clean Transient Transient unchanged

commit
retainValues=true

unchanged T-clean Transient Transient unchanged

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

Java Data Objects 2.2

 JDO 2.2 61 October 10, 2008

commit transaction with
DetachAllOnCommit true

unchanged T-clean Transient Transient detached-
clean

rollback
restoreValues=false

unchanged T-clean Transient Hollow unchanged

rollback
restoreValues=true

unchanged T-clean Transient P-nontrans unchanged

refresh unchanged unchanged unchanged unchanged unchanged

evict unchanged unchanged unchanged unchanged Hollow

read field outside transac-
tion

unchanged impossible impossible impossible unchanged

read field with Optimistic
transaction

unchanged unchanged error error unchanged

read field with active
Datastore transaction

unchanged unchanged error error P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible P-nontrans-
dirty

write field or
makeDirty with
active transaction

T-dirty unchanged error error P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged unchanged

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

detachCopy outside trans-
action with Nontransac-
tionalRead true

error impossible impossible impossible parameter:
unchanged
returned:
detached-
clean

detachCopy outside trans-
action with Nontransac-
tionalRead false

error impossible impossible impossible error

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

Java Data Objects 2.2

 JDO 2.2 62 October 10, 2008

detachCopy with active
optimistic transaction

parameter:
P-new
returned:
detached-
clean

parameter:
P-new
returned:
detached-
clean

error error parameter:
unchanged
returned:
detached-
clean

detachCopy with active
datastore transaction

parameter:
P-new
returned:
detached-
clean

parameter:
P-new
returned:
detached-
clean

error error parameter:
P-clean
returned:
detached-
clean

method \ current state P-nontrans-
dirty

detached-
clean

detached-
dirty

makePersistent with
active Optimistic
transaction and
CopyOnAttach false

unchanged P-nontrans P-dirty

makePersistent with
active Datastore
transaction and
CopyOnAttach false

unchanged P-clean P-dirty

makePersistent with
CopyOnAttach false
and instance with the
same oid already in
the cache

unchanged error error

makePersistent with
active Optimistic
transaction and
CopyOnAttach true

unchanged parameter:
unchanged
returned:
P-nontrans

parameter:
unchanged
returned:
P-dirty

makePersistent with
active Datastore
transaction and
CopyOnAttach true

unchanged parameter:
unchanged
returned:
P-clean

parameter:
unchanged
returned:
P-dirty

deletePersistent error unchanged unchanged

makeTransactional unchanged error error

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

Java Data Objects 2.2

 JDO 2.2 63 October 10, 2008

• error: a JDOUserException is thrown; the state does not change

• unchanged: no state change takes place; no exception is thrown due to the state change

• n/a: not applicable; if this instance is an explicit parameter of the method, a
JDOUserException is thrown; if this instance is an implicit parameter, it is ignored.

• impossible: the state cannot occur in this scenario

makeNontransactional error error error

makeTransient error error error

commit with
retainValues=false

hollow unchanged unchanged

commit with
retainValues=true

P-nontrans unchanged unchanged

rollback unchanged unchanged unchanged

refresh unchanged error error

evict hollow error error

read field unchanged unchanged unchanged

write field or
makeDirty

unchanged detached-
dirty

unchanged

retrieve unchanged error error

commit transaction with
DetachAllOnCommit true

detached unchanged unchanged

detachCopy outside trans-
action with Nontransac-
tionalRead true

parameter:
unchanged
returned:
unspecified

parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
unspecified

detachCopy outside trans-
action with Nontransac-
tionalRead false

error error error

detachCopy with active
transaction

impossible parameter:
unchanged
returned:
detached-
clean

parameter:
unchanged
returned:
detached-
clean

method \ current state P-nontrans-
dirty

detached-
clean

detached-
dirty

Java Data Objects 2.2

 JDO 2.2 64 October 10, 2008

Figure 7.0 Life Cycle: New Persistent Instances

Figure 8.0 Life Cycle: Transactional Access

Figure 9.0 Life Cycle: Datastore Transactions

Persistent-
new

Transient Hollow

Persistent-
new-deleted

makePersistent

rollback

commit,
rollback

deletePersistent

commit

Transient

Persistent-
deleted

Hollow

Active
Persistent
Instances

deletePersistent

read field,
write field

commit,
rollback

deletePersistent

rollback
commit

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

clean

dirty

Java Data Objects 2.2

 JDO 2.2 65 October 10, 2008

Figure 10.0 Life Cycle: Optimistic Transactions

Figure 11.0 Life Cycle: Access Outside Transactions

Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

nontransactional

dirty

Hollow
Persistent-

nontransactional

read field,
write field

evict

read field

Persistent-
nontransactional-
dirty

evict

write field

Transient

Transient-

Transient-

makeTransactional

write field

makeNontransactional

commit,
rollback

clean

dirty

Java Data Objects 2.2

 JDO 2.2 66 October 10, 2008

Figure 13.0 Life Cycle: Detached

Detached-

Detached-

write field

dirty

clean
Persistent-

Persistent-

makePersistent with CopyOnAttach false

clean

dirty

write fieldcommit with DetachAllOnCommit true

commit with DetachAllOnCommit true

makePersistent with CopyOnAttach false

Java Data Objects 2.2

 JDO 2.2 67 October 10, 2008

Figure 14.0 JDO Instance State Transitions

NOTE: Not all possible state transitions are shown in this diagram.

1. A transient instance transitions to persistent-new when the instance is the
parameter of a makePersistent method.

2. A persistent-new instance transitions to hollow when the transaction in which it
was made persistent commits.

3. A hollow instance transitions to persistent-clean when a field is read.

4. A persistent-clean instance transitions to persistent-dirty when a field is written.

5. A persistent-dirty instance transitions to hollow at commit or rollback.

6. A persistent-clean instance transitions to hollow at commit or rollback.

7. A transient instance transitions to transient-clean when it is the parameter of a
makeTransactional method.

8. A transient-clean instance transitions to transient-dirty when a field is written.

9. A transient-dirty instance transitions to transient-clean at commit or rollback.

10. A transient-clean instance transitions to transient when it is the parameter of a
makeNontransactional method.

11. A hollow instance transitions to persistent-dirty when a field is written.

transient-clean

transient-dirty

transient

persistent-

persistent-dirty

persistent-clean

hollow

TRANSIENT PERSISTENT

READ-OK

WRITE-OK

nontransactional

1.

3.
4.

2.
6.

8.

7.

9.

10.

12.

persistent-
new

13.

14.

5.

persistent-deleted

persistent-
new-deleted

16.

17.

18.

19.

20.

19.

21.

15.

22.

19.

11.
23.

24.

Java Data Objects 2.2

 JDO 2.2 68 October 10, 2008

12. A persistent-clean instance transitions to persistent-nontransactional at commit
when RetainValues is set to true, at rollback when RestoreValues is set to
true, or when it is the parameter of a makeNontransactional method.

13. A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of a makeTransactional method.

14. A persistent-nontransactional instance transitions to persistent-dirty when a
field is written in a transaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of deletePersistent.

17. A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of the makePersistent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of deletePersistent.

20. A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
NontransactionalRead option is set to true, a field is read, and there is
either an optimistic transaction or no transaction active.

23. A persistent-dirty instance transitions to persistent-nontransactional at commit
when RetainValues is set to true or at rollback when RestoreValues is set
to true.

24. A persistent-new instance transitions to persistent-nontransactional at commit
when RetainValues is set to true.

Java Data Objects 2.2

 JDO 2.2 69 October 10, 2008

6 The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possible, the
object model is the same as the Java object model. Differences between the Java object model and
the JDO object model are highlighted.

6.1 Overview
The Java execution environment supports different kinds of classes that are of interest to the devel-
oper. The classes that model the application and business domain are the primary focus of JDO. In
a typical application, application classes are highly interconnected, and the graph of instances of
those classes includes the entire contents of the datastore.
Applications typically deal with a small number of persistent instances at a time, and it is the func-
tion of JDO to allow the illusion that the application can access the entire graph of connected in-
stances, while in reality only small subset of instances needs to be instantiated in the JVM. This
concept is called transparent data access, transparent persistence, or simply transparency.

Figure 15.0 Instantiated persistent objects

Instantiated persistent objects

Persistent objects

Java VM

Datastore virtual objects

Datastore

Mapping function
Transient objects

Java Data Objects 2.2

 JDO 2.2 70 October 10, 2008

Within a JVM, there may be multiple independent units of work that must be isolated from each
other. This isolation imposes requirements on JDO to permit the instantiation of the same datastore
object into multiple Java instances. The connected graph of Java instances is only a subset of the
entire contents of the datastore. Whenever a reference is followed from one persistent instance to
another, the JDO implementation transparently instantiates the required instance into the JVM.
The storage of objects in datastores might be quite different from the storage of objects in the JVM.
Therefore, there is a mapping between the Java instances and the objects in the datastore. This map-
ping is performed by the JDO implementation, using metadata that is available at runtime. The
metadata is generated by a JDO vendor-supplied tool, in cooperation with the deployer of the sys-
tem. The mapping is not standardized by JDO except in the case of relational databases, for which
a subset of mapping functionality is standard. The standard part of the mapping is specified in Chap-
ter 15.
JDO instances are stored in the datastore and retrieved, possibly field by field, from the datastore at
specific points in their life cycle. The class developer might use callbacks at certain points to make
a JDO instance ready for execution in the JVM, or make a JDO instance ready to be removed from
the JVM. While executing in the JVM, a JDO instance might be connected to other instances, both
persistent and transient.
There is no restriction on the types of non-persistent fields of persistence-capable classes. These
fields behave exactly as defined by the Java language. Persistent fields of persistence-capable class-
es have restrictions in JDO, based on the characteristics of the types of the fields in the class defini-
tion.

6.2 Goals
The JDO Object Model has the following objectives:

• All field types supported by the Java language, including primitive types, reference types
and interface types should be supported by JDO instances.

• All class and field modifiers supported by the Java language including private, public,
protected, static, transient, abstract, final, synchronized, and volatile, should be supported
by JDO instances. There are some known issues with final and static fields; therefore
implementations are not required to support making final or static fields persistent.

• All user-defined classes should be allowed to be persistence-capable.

• Some system-defined classes (especially those for modeling state) should be persistence-
capable.

6.3 Architecture
In Java, variables (including fields of classes) have types. Types are either primitive types or refer-
ence types. Reference types are either classes or interfaces. Arrays are treated as classes.
An object is an instance of a specific class, determined when the instance is constructed. Instances
may be assigned to variables if they are assignment compatible with the variable type.

Persistence-capable
The JDO Object Model distinguishes between two kinds of classes: those that are marked as persis-
tence-capable and those that aren’t. A user-defined class can be persistence-capable unless its state
depends on the state of inaccessible or remote objects (e.g. it extends java.net.SocketImpl
or uses JNI (native calls) to implement java.net.SocketOptions). A non-static inner class

Java Data Objects 2.2

 JDO 2.2 71 October 10, 2008

cannot be persistence-capable because the state of its instances depends on the state of their enclos-
ing instances.
Except for system-defined classes specially addressed by the JDO specification, system-defined
classes (those defined in java.lang, java.io, java.util, java.net, etc.) are not persis-
tence-capable, nor is a system-defined class allowed to be the type of a persistent field.

First Class Objects and Second Class Objects
A First Class Object (FCO) is an instance of a persistence-capable class that has a JDO Identity, can
be stored in a datastore, and can be independently deleted and queried. A Second Class Object
(SCO) has no JDO Identity of its own and is stored in the datastore only as part of a First Class Ob-
ject. In some JDO implementations, some SCO instances are actually artifacts that have no literal
datastore representation at all, but are used only to represent relationships. For example, a Collection
of instances of a persistence-capable class might not be stored in the datastore, but created when
needed to represent the relationship in memory. At commit time, the memory artifact is discarded
and the relationship is represented entirely by datastore relationships.

First Class Objects
FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaranteed to be
only one instance representing that FCO managed by the same PersistenceManager instance.
They are passed as arguments by reference.
An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change is commit-
ted to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects
Second Class Objects are either instances of immutable system classes (java.lang.Integer, ja-
va.lang.String, etc.), JDO implementation subclasses of mutable system classes that implement the
functionality of their system class (java.util.Date, java.util.HashSet, etc.), or persistence-capable
classes.
Second Class Objects of mutable system classes and persistence-capable classes track changes
made to them, and notify their owning FCO that they have changed. The change is reflected as a
change to the owning FCO (e.g. the owning instance might change state from persistent-clean to
persistent-dirty). They are stored in the datastore only as part of a FCO. They do not support uniqu-
ing, and the Java object identity of the values of the persistent fields containing them is lost when
the owning FCO is flushed to the datastore. They are passed as arguments by reference.
SCO fields must be explicitly or by default identified in the metadata as embedded. If a field, or an
element of a collection or a map key or value is identified as embedded (embedded-element, em-
bedded-key, or embedded-value) then any instances so identified in the collection or map are treated
as SCO during commit. That is, the value is stored with the owning FCO and the value loses its own
identity if it had one.
SCO fields of persistence-capable types are identified as embedded. The behavior of embedded per-
sistence-capable types is intended to mirror the behavior of system types, but this is not standard,
and portable applications must not depend on this behavior.
It is possible for an application to assign the same instance of a mutable SCO class to multiple FCO
embedded fields, but this non-portable behavior is strongly discouraged for the following reason: if
the assignment is done to persistent-new, persistent-clean, or persistent-dirty instances, then at the
time that the FCOs are committed to the datastore, the Java object identity of the owned SCOs might
change, because each FCO might have its own unshared SCO. If the assignment is done before
makePersistent is called to make the FCOs persistent, the embedded fields are immediately replaced
by copies, and no sharing takes place.

Java Data Objects 2.2

 JDO 2.2 72 October 10, 2008

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field of a mu-
table type is accessed, the JDO implementation assigns to these fields a new instance that tracks
changes made to itself, and notifies the owning FCO of the change. Similarly, when an FCO is made
persistent, either by being the parameter of makePersistent or makePersistentAll or by being reach-
able from a parameter of makePersistent or makePersistentAll at the time of the execution of the
makePersistent or makePersistentAll method call, the JDO implementation replaces the field values
of mutable SCO types with instances of JDO implementation subclasses of the mutable system
types.
Therefore, the application cannot assume that it knows the actual class of instances assigned to SCO
fields, although it is guaranteed that the actual class is assignment compatible with the type.
There are few differences visible to the application between a field mapped to an FCO and an SCO.
One difference is in sharing. If an FCO1 is assigned to a persistent field in FCO2 and FCO3, then
any changes at any time to instance FCO1 will be visible from FCO2 and FCO3.
If an SCO1 is assigned to a persistent field in persistent instances FCO1 and FCO2, then any chang-
es to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1 and FCO2 are commit-
ted. After commit, instance SCO1 might not be referenced by either FCO1 or FCO2, and any
changes made to SCO1 might not be reflected in either FCO1 or FCO2.
Another difference is in visibility of SCO instances by queries. SCO instances are not added to Ex-
tents. If the SCO instance is of a persistence-capable type, it is not visible to queries of the Extent
of the persistence-capable class. Furthermore, the field values of SCO instances of persistence-ca-
pable types might not be visible to queries at all.
Sharing of immutable SCO fields is supported in that it is good practice to assign the same immu-
table instance to multiple SCO fields. But the field values should not be compared using Java iden-
tity, but only by Java equality. This is the same good practice used with non-persistent instances.

Arrays
Arrays are system-defined classes that do not necessarily have any JDO Identity of their own, and
support by a JDO implementation is optional. If an implementation supports them, they might be
stored in the datastore as part of an FCO. They do not support uniquing, and the Java object identity
of the values of the persistent fields containing them is lost when the owning FCO is flushed to the
datastore. They are passed as arguments by reference.
Tracking changes to Arrays is not required to be done by a JDO implementation. If an Array owned
by an FCO is changed, then the changes might not be flushed to the datastore. Portable applications
must not require that these changes be tracked. In order for changes to arrays to be tracked, the ap-
plication must explicitly notify the owning FCO of the change to the Array by calling the
makeDirty method of the JDOHelper class, or by replacing the field value with its current val-
ue.
Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-type man-
aged field marks the field as dirty, even if the new value is identical to the old value. This special
case is required to allow the user to mark an array-type field as dirty without having to call the
JDOHelper method makeDirty.
Furthermore, an implementation is permitted, but not required to, track changes to Arrays passed as
references outside the body of methods of the owning class. There is a method defined on class
JDOHelper that allows the application to mark the field containing such an Array to be modified so
its changes can be tracked. Portable applications must not require that these changes be tracked au-
tomatically. When a reference to the Array is returned as a result of a method call, a portable appli-
cation first marks the Array field as dirty.
It is possible for an application to assign the same instance of an Array to multiple FCOs, but after
the FCO is flushed to the datastore, the Java object identity of the Array might change.

Java Data Objects 2.2

 JDO 2.2 73 October 10, 2008

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an Array
type a new instance with a different Java object identity from the instance stored.
Therefore, the application cannot assume that it knows the identity of instances assigned to Array
fields, although it is guaranteed that the actual value is the same as the value stored.

Primitives
Primitives are types defined in the Java language and comprise boolean, byte, short, int,
long, char, float, and double. They might be stored in the datastore only as part of an FCO.
They have no Java identity and no datastore identity of their own. They are passed as arguments by
value.

Interfaces
Interfaces are types whose values may be instances of any class that declare that they implement
that interface.

6.4 Field types of persistence-capable classes
6.4.1 Nontransactional non-persistent fields

There are no restrictions on the types of nontransactional non-persistent fields. These fields are man-
aged entirely by the application, not by the JDO implementation. Their state is not preserved by the
JDO implementation, although they might be modified during execution of user-written callbacks
defined in interface InstanceCallbacks at specific points in the life cycle, or any time during
the instance’s existence in the JVM.

6.4.2 Transactional non-persistent fields

There are no restrictions on the types of transactional non-persistent fields. These fields are partly
managed by the JDO implementation. Their state is preserved and restored by the JDO implemen-
tation during certain state transitions.

6.4.3 Persistent fields

Precision of fields
JDO implementations may not represent Java types precisely in the datastore, because not all datas-
tores are able to natively represent all Java types. Some type mapping may be required. The preci-
sion of the mapping is a quality of service issue with the JDO implementation and the particular
datastore.
The mapping precision restriction applies to the range of values that can be faithfully stored and re-
trieved, the precision of the values, and the scale of BigDecimal values.

Primitive types
JDO implementations must support fields of any of the primitive types

• boolean, byte, short, int, long, char, float, and double.

Primitive values are stored in the datastore associated with their owning FCO. They have no JDO
Identity.

Immutable Object Class types
JDO implementations must support fields that reference instances of immutable object classes, and
may choose to support these instances as SCOs or FCOs:

• package java.lang: Boolean, Character, Byte, Short, Integer, Long,
Float, Double, and String;

Java Data Objects 2.2

 JDO 2.2 74 October 10, 2008

• package java.util: Locale, Currency.

• package java.math: BigDecimal, BigInteger.

Portable JDO applications must not depend on SCO or FCO uniquing behavior, nor on the storage
mechanism in the datastore, of values of fields of immutable classes. Portable applications may use
the same instance of these classes as field values in any persistence-capable class instance.
The scale of BigDecimal values is not guaranteed to be preserved by implementations. For ex-
ample, saving a persistent field with value BigDecimal("1.2300") might be returned as value
BigDecimal("1.23").

Mutable Object Class types
JDO implementations must support fields that reference instances of the following mutable object
classes, and may choose to support these instances as SCOs or FCOs:

• package java.util: Date, HashSet, HashMap, Hashtable,
LinkedHashMap, LinkedHashSet.

JDO implementations may optionally support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util:ArrayList, LinkedList, TreeMap, TreeSet, and
Vector.

Because the treatment of these fields may be as SCO, the behavior of these mutable object classes
when used in a persistent instance is not identical to their behavior in a transient instance.
Portable JDO applications must not depend on whether instances of these classes referenced by
fields are treated as SCOs or FCOs.

Persistence-capable Class types
JDO implementations must support references to FCO instances of persistence-capable classes and
are permitted, but not required, to support references to SCO instances of persistence-capable class-
es.
Portable JDO applications must not depend on whether these fields are treated as SCOs or FCOs.

Object Class type
JDO implementations must support fields of Object class type as FCOs. The implementation is
permitted, but is not required, to allow any class to be assigned to the field. If an implementation
restricts instances to be assigned to the field, a ClassCastException must be thrown at the
time of any incorrect assignment.
Portable JDO applications must not depend on whether these fields are treated as SCOs or FCOs.

Collection Interface types
JDO implementations must support fields of interface types, and may choose to support them as
SCOs or FCOs: package java.util: Collection, Map, Set, and List. Collection,
Map, and Set are required; List is optional.
Portable JDO applications must not depend on whether these fields are treated as SCOs or FCOs.

Other Interface types
JDO implementations must support fields of interface types other than Collection interface
types as FCOs. The implementation is permitted, but is not required, to allow any class that imple-
ments the interface to be assigned to the field. If an implementation further restricts instances that
can be assigned to the field, a ClassCastException must be thrown at the time of any incorrect
assignment.

Java Data Objects 2.2

 JDO 2.2 75 October 10, 2008

Portable JDO applications must treat these fields as FCOs.

Arrays
JDO implementations may optionally support fields of array types, and may choose to support them
as SCOs or FCOs. If Arrays are supported by JDO implementations, they are permitted, but not re-
quired, to track changes made to Arrays that are fields of persistence capable classes in the methods
of the classes. They need not track changes made to Arrays that are passed by reference as argu-
ments to methods, including methods of persistence-capable classes.
Portable JDO applications must not depend on whether these fields are treated as SCOs or FCOs.

Enums
JDO implementations that support Java 5 must support fields of enum types and collections of as
enum types identified above and optionally arrays of enum types. If arrays are supported, arrays of
enums must be supported.
Portable JDO applications must not depend on whether these fields are treated as SCOs or FCOs.

6.4.4 Static and final fields

Static fields pose a challenge for implementations. Since they are singletons typically initialized
when the class is loaded, there is no convenient time to load the values from the database. Therefore,
in portable applications, static fields are not persistent.
Final fields pose a challenge for implementations. While it is possible to modify the values of static
fields, it can only be done via reflection and there are synchronization issues. Therefore, in portable
applications, final fields are not persistent.

6.4.5 Complex enum types

Complex enum types are enums that contain fields that might change during execution instead of
being initialized during class initialization. While it is possible to manage these singleton instances’
persistent state, there are issues with the transaction isolation of the instances and with the owner-
ship of the instances by a persistence manager. Therefore, dynamically changing fields of enum
types are not persistent.

6.5 Inheritance
A class might be persistence-capable even if its superclass is not persistence-capable. This allows
users to extend classes that were not designed to be persistence-capable. If a class is persistence-
capable, then its subclasses might or might not be persistence-capable themselves.
Further, subclasses of such classes that are not persistence-capable might be persistence-capable.
That is, it is possible for some classes in the inheritance hierarchy to be persistence-capable and
some not persistence-capable.
The expression "obj instanceof PersistenceCapable" can be true (because of a persistence-capable
superclass) when in fact the class of obj is not persistence-capable. Thus, it is not possible for an
application to examine a class to determine whether an instance of that class is allowed to be per-
sistent.
Fields identified in the XML metadata as persistent or transactional in persistence-capable classes
must be fields declared in that Java class definition. That is, inherited fields cannot be named in the
XML metadata.
Fields identified as persistent in persistence-capable classes will be persistent in subclasses; fields
identified as transactional in persistence-capable classes will be transactional in subclasses; and
fields identified as non-persistent in persistence-capable classes will be non-persistent in subclasses.

Java Data Objects 2.2

 JDO 2.2 76 October 10, 2008

Of course, a class might define a new field with the same name as the field declared in the super-
class, and might define it with a different persistence-modifier from the inherited field. But Java
treats the declared field as a different field from the inherited field, so there is no conflict.
All persistence-capable classes must have a no-arg constructor. This constructor might be a private
constructor, as it is only used from within the jdoNewInstance methods. The constructor might be
the default no-arg constructor created by the compiler when the source code does not define any
constructors.
The identity type of the least-derived persistence-capable class defines the identity type for all per-
sistence-capable classes that extend it.
Persistence-capable classes that use application identity have special considerations for inheritance:
Key fields may be declared only in abstract superclasses and least-derived concrete classes in inher-
itance hierarchies. Key fields declared in these classes must also be declared in the corresponding
objectid classes, and the objectid classes must form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. A persistence-capable class can only have
one concrete objectid class anywhere in its inheritance hierarchy.
For example, if an abstract class Component declares a key field masterId, the objectid class
ComponentKey must also declare a field of the same type and name. If ComponentKey is con-
crete, then no subclass is allowed to define an objectid class.
If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must be used
to find a persistent instance. A concrete class Part that extends Component must declare a con-
crete objectid class (for example, PartKey) that extends ComponentKey. There might be no key
fields declared in Part or PartKey. Persistence-capable subclasses of Part must not have an
objectid class.
Another concrete class Assembly that extends Component must declare a concrete objectid
class (for example, AssemblyKey) that extends ComponentKey. If there is a key field, it must
be declared in both Assembly and AssemblyKey. Persistence-capable subclasses of Assem-
bly must not have an objectid class.
There might be other abstract classes or non-persistence-capable classes in the inheritance hierarchy
between Component and Part, or between Component and Assembly. These classes are ig-
nored for the purposes of objectid classes and key fields.
Readers primarily interested in developing applications with the JDO API can ignore the following
chapter. Skip to 8 – JDOHelper.

Java Data Objects 2.2

 JDO 2.2 77 October 10, 2008

7 PersistenceCapable

For JDO implementations that support the BinaryCompatibility rules, every instance that is man-
aged by a JDO PersistenceManager must be of a class that implements the public Persis-
tenceCapable interface. This interface defines methods that allow the implementation to
manage the instances. It also defines methods that allow a JDO aware application to examine the
runtime state of instances, for example to discover whether the instance is transient, persistent,
transactional, dirty, etc., and to discover its associated PersistenceManager if it has one.
The JDO Reference Enhancer modifies the class to implement PersistenceCapable prior to
loading the class into the runtime environment. The enhancer additionally adds code to implement
the methods defined by PersistenceCapable. Other enhancers can be used for specific bina-
ry-compatible JDO implementations.
The PersistenceCapable interface is designed to avoid name conflicts in the scope of user-
defined classes. All of its declared method names are prefixed with “jdo”.
Class implementors may explicitly declare that the class implements PersistenceCapable. If
this is done, the implementor must implement the PersistenceCapable contract, and the en-
hancer will ignore the class instead of enhancing it.
The recommended (and only portable) approach for applications to interrogate the state of persis-
tence-capable instances is to use the class JDOHelper, which provides static methods that delegate
to the instance if it implements PersistenceCapable, and if not, attempts to find the JDO im-
plementation responsible for the instance, and if unable to do so, returns the values that would have
been returned by a transient instance.
Classes that are to be detached from the persistence manager further implement the Detachable inter-
face. This interface is used to establish the fields loaded before detachment and to query the instance
if it is presented for attachment later.
The persistence modifier, identity type, identity class, key fields, persistent fields, and detachability
of the class are fixed at enhancement time, or when the class is loaded, whichever occurs first.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations. Applications should use the methods
defined in class JDOHelper instead of these methods.

package javax.jdo.spi;

public interface PersistenceCapable {

7.1 Persistence Manager
PersistenceManager jdoGetPersistenceManager();

This method returns the associated PersistenceManager or null if the instance is transient.

Java Data Objects 2.2

 JDO 2.2 78 October 10, 2008

7.2 Make Dirty
void jdoMakeDirty (String fieldName);void jdoMakeDirty (int
fieldNumber);

These methods mark the specified field dirty so that its values will be modified in the datastore when
the transaction in which the instance is modified is committed. The fieldName is the name of the
field to be marked as dirty, optionally including the fully qualified package name and class name of
the field. This method returns with no effect if the instance is not detached or managed by a State-
Manager. This method has the same effect on the life cycle state of the instance as changing a man-
aged field would. The fieldNumber parameter is the internal field number assigned during class
enhancement.
If the instance is detached and the field has not been loaded, JDODetachedFieldAccessEx-
ception is thrown.
If the same name is used for multiple fields (a class declares a field of the same name as a field in
one of its superclasses) then the unqualified name refers to the most-derived class in which the field
is declared to be persistent. The qualified name (className.fieldName) should always be used to
identify the field to avoid ambiguity with subclass-defined fields.
The rationale for this is that a method in a superclass might call this method, and specify the name
of the field that is hidden by a subclass. The StateManager has no way of knowing which class
called this method, and therefore assumes the Java rule regarding field names.
It is always safe to explicitly name the class and field referred to in the parameter to the method. The
StateManager will resolve the scope of the name in the class named in the parameter.
For example, if class C inherits class B which inherits class A, and field X is declared in classes A
and C, a method declared in class B may refer to the field in the method as “B.X” and it will refer
to the field declared in class A. Field X is not declared in B; however, in the scope of class B, X
refers to A.X.

7.3 JDO Identity
Object jdoGetObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is returned.
If the identity is being changed in a transaction, this method returns the identity as of the beginning
of the transaction. If the instance is detached, this method returns the identity as of the time of de-
tachment.
Object jdoGetTransactionalObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is returned.
If the identity is being changed in a transaction, this method returns the current identity in the trans-
action. If the instance is detached, this method returns the identity as of the time of detachment.

7.3.1 Version

Object jdoGetVersion();

This method returns the version of the instance.

7.4 Status interrogation
The status interrogation methods return a boolean that represents the state of the instance:

Java Data Objects 2.2

 JDO 2.2 79 October 10, 2008

7.4.1 Dirty

boolean jdoIsDirty();

Instances whose state has been changed in the current transaction return true. Instances whose
state has not been changed in the current transaction return false to a call to jdoIsDirty.If the
instance is transient or detached, false is returned.

7.4.2 Transactional

boolean jdoIsTransactional();

Instances whose state is associated with the current transaction return true.Instances whose state
has not been changed in the current transaction return false to a call to jdoIsTransaction-
al.If the instance is transient or detached, false is returned.

7.4.3 Persistent

boolean jdoIsPersistent();

Instances that represent persistent objects in the datastore return true. Instances that do not repre-
sent persistent objects in the datastore return false to a call to jdoIsPersistent.If the in-
stance is transient or detached, false is returned.

7.4.4 New

boolean jdoIsNew();

Instances that have been made persistent in the current transaction return true. Instances that have
not been made persistent in the current transaction return false to a call to jdoIsNew.If the in-
stance is transient or detached, false is returned.

7.4.5 Deleted

boolean jdoIsDeleted();

Instances that have been deleted in the current transaction return true. Instances that have not been
deleted in the current transaction return false to a call to jdoIsDeleted.If the instance is tran-
sient or detached, false is returned.

7.4.6 Detached

boolean jdoIsDetached();

Table 3: State interrogation

Persistent Transactional Dirty New Deleted Detached

Transient

Transient-clean

Transient-dirty

Persistent-new

Persistent-
nontransactional

Persistent-nontrans-
actional-dirty

Java Data Objects 2.2

 JDO 2.2 80 October 10, 2008

Instances that have been detached return true.

7.5 New instance
PersistenceCapable jdoNewInstance(StateManager sm);

This method creates a new instance of the class of the instance. It is intended to be used as a perfor-
mance optimization compared to constructing a new instance by reflection using the constructor. It
is intended to be used only by JDO implementations, not by applications. If the class is abstract, JD-
OFatalInternalException is thrown.
PersistenceCapable jdoNewInstance(StateManager sm, Object oid);

This method creates a new instance of the class of the instance, and copies key field values from the
oid parameter instance. It is intended to be used as a performance optimization compared to con-
structing a new instance by reflection using the constructor, and copying values from the oid in-
stance by reflection. It is intended to be used only by JDO implementations for classes that use
application identity, not by applications. If the class is abstract, null is returned.

7.6 State Manager
void jdoReplaceStateManager (StateManager sm)

throws SecurityException;

This method sets the jdoStateManager field to the parameter. This method is normally used by
the StateManager during the process of making an instance persistent, transactional, or tran-
sient. The caller of this method must have JDOPermission("setStateManager") for the
instance, otherwise SecurityException is thrown.

7.7 Replace Flags
void jdoReplaceFlags ();

This method tells the instance to call the owning StateManager’s replacingFlags method
to get a new value for the jdoFlags field.

Persistent-clean

Persistent-dirty

Hollow

Persistent-deleted

Persistent-new-
deleted

Detached-clean

Detached-dirty

Table 3: State interrogation

Persistent Transactional Dirty New Deleted Detached

Java Data Objects 2.2

 JDO 2.2 81 October 10, 2008

7.8 Replace Fields
void jdoReplaceField (int fieldNumber);

This method gets a new value from the StateManager for the field specified in the parameter.
The field number must refer to a field declared in this class or in a superclass.
void jdoReplaceFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoReplaceField for each one.

7.9 Provide Fields
void jdoProvideField (int fieldNumber);

This method provides the value of the specified field to the StateManager. The field number
must refer to a field declared in this class or in a superclass.
void jdoProvideFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoProvideField for each one.

7.10 Copy Fields
void jdoCopyFields (Object other, int[] fieldNumbers);

void jdoCopyField (Object other, int fieldNumber);

These methods copy fields from another instance of the same class. These methods can be invoked
only when both this and other are managed by the same StateManager.

7.11 Static Fields
The following fields define the permitted values for the jdoFlags field.
public static final byte READ_WRITE_OK = 0;

public static final byte READ_OK = -1;

public static final byte LOAD_REQUIRED = 1;

The following fields define the flags for the jdoFieldFlags elements.
public static final byte CHECK_READ = 1;

public static final byte MEDIATE_READ = 2;

public static final byte CHECK_WRITE = 4;

public static final byte MEDIATE_WRITE = 8;

public static final byte SERIALIZABLE = 16;

7.12 JDO identity handling
public Object jdoNewObjectIdInstance();

This method creates a new instance of the class used for JDO identity. It is intended only for appli-
cation identity. If the class has been enhanced for datastore identity, or if the class is abstract, null
is returned.

Java Data Objects 2.2

 JDO 2.2 82 October 10, 2008

For classes using single field identity, this method must be called on an instance of a persistence-
capable class with its primary key field initialized (not null), or a JDONullIdentityExcep-
tion is thrown.
The instance returned is initialized with the value(s) of the primary key field(s) of the instance on
which the method is called.
public Object jdoNewObjectIdInstance(Object key);

This method creates a new instance of the class used for JDO identity, using the appropriate con-
structor of the object id class. It is intended only for application identity, including single field iden-
tity. If the class has been enhanced for datastore identity, or if the class is abstract, null is returned.
The identity instance returned has no relationship with the values of the primary key fields of the
persistence-capable instance on which the method is called.
For single field identity, there is specific behavior required for parameters of these types:

• ObjectIdFieldSupplier: the field value is fetched and used to construct the single
field identity instance.

• Number or Character: the parameter key must be an instance of the key type or, for
primitive key types, the wrapper of the key type; the key is passed as a parameter to the
single field identity constructor.

• String: the String is parsed to a value of the appropriate type and the value is used to
construct the single field identity instance. For ObjectIdentity, the String is
decomposed into two parts using “:” as a delimiter. The first part is the class name; the
second is the String representation of the value of the class.

• Object: for ObjectIdentity, the key type must be assignable from the parameter
key.

public void jdoCopyKeyFieldsToObjectId(Object oid);

This method copies all key fields from this instance to the parameter. The parameter must be an in-
stance of the JDO identity class, or ClassCastException is thrown. If the class uses single
field identity, this method always throws JDOFatalInternalException.jdoCopyKey-
FieldsToObjectId (PersistenceCapable pc, Object oid) copies all key fields
from the first parameter to the second parameterThe first parameter of jdoCopyKeyField-
sToObjectId (PersistenceCapable pc, Object oid) must be of the same class as
this intance, or a ClassCastException is thrown.The second parameter of jdoCopyKey-
FieldsToObjectId (PersistenceCapable pc, Object oid) must be an instance
of the JDO identity class, or a ClassCastException is thrown.
public void jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier fs,
Object oid);

This method copies fields from the field manager instance to the second parameter instance. Each
key field in the ObjectId class matching a key field in the PersistenceCapable class is set
by the execution of this method. For each key field, the method of the ObjectIdFieldSuppli-
er is called for the corresponding type of field. The second parameter must be an instance of the
JDO identity class. If the parameter is not of the correct type, then ClassCastException is
thrown. If the class uses single field identity, this method always throws JDOFatalInternal-
Exception.
public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid);

This method copies fields to the field manager instance from the second parameter instance. Each
key field in the ObjectId class matching a key field in the PersistenceCapable class is re-
trieved by the execution of this method. For each key field, the method of the ObjectIdField-

Java Data Objects 2.2

 JDO 2.2 83 October 10, 2008

Consumer is called for the corresponding type of field. The second parameter must be an instance
of the JDO identity class. If the parameter is not of the correct type, then ClassCastException
is thrown.

interface ObjectIdFieldSupplier
boolean fetchBooleanField (int fieldNumber);

byte fetchByteField (int fieldNumber);

char fetchCharField (int fieldNumber);

short fetchShortField (int fieldNumber);

int fetchIntField (int fieldNumber);

long fetchLongField (int fieldNumber);

float fetchFloatField (int fieldNumber);

double fetchDoubleField (int fieldNumber);

String fetchStringField (int fieldNumber);

Object fetchObjectField (int fieldNumber);

These methods all fetch one field from the field manager. The returned value is stored in the object
id instance. The generated code in the PersistenceCapable class calls a method in the field
manager for each key field in the object id. The field number is the same as in the persistence capa-
ble class for the corresponding key field.

interface ObjectIdFieldConsumer
void storeBooleanField (int fieldNumber, boolean value);

void storeByteField (int fieldNumber, byte value);

void storeCharField (int fieldNumber, char value);

void storeShortField (int fieldNumber, short value);

void storeIntField (int fieldNumber, int value);

void storeLongField (int fieldNumber, long value);

void storeFloatField (int fieldNumber, float value);

void storeDoubleField (int fieldNumber, double value);

void storeStringField (int fieldNumber, String value);

void storeObjectField (int fieldNumber, Object value);

These methods all store one field to the field manager. The value is retrieved from the object id in-
stance. The generated code in the PersistenceCapable class calls a method in the field man-
ager for each key field in the object id. The field number is the same as in the persistence capable
class for the corresponding key field.

interface ObjectIdFieldManager
This interface is a convenience interface that extends both ObjectIdFieldSupplier and Ob-
jectIdFieldConsumer.

7.13 Detachable
This interface contains the method used by the StateManager to manage the detached state in a
detached instance. This interface is not intended to be used by application programs.

Java Data Objects 2.2

 JDO 2.2 84 October 10, 2008

The detached state is stored as a field in each instance of Detachable. The field is serialized so
as to maintain the state of the instance while detached. While detached, only the BitSet of mod-
ified fields will be modified. The structure is as follows.
Object[] jdoDetachedState;

jdoDetachedState[0]: the Object Id of the instance

jdoDetachedState[1]: the Version of the instance

jdoDetachedState[2]: a BitSet of loaded fields

jdoDetachedState[3]: a BitSet of modified fields

package javax.jdo.spi;

public interface Detachable {

void jdoReplaceDetachedState();

}

This method calls the StateManager with the current detached state instance as a parameter and
replaces the current detached state instance with the value provided by the StateManager.

Java Data Objects 2.2

 JDO 2.2 85 October 10, 2008

8 JDOHelper

JDOHelper is a class with static methods that is intended for use by persistence-aware classes. It
contains methods that allow interrogation of the persistent state of an instance of a persistence-ca-
pable class.
Each method delegates to the instance, if it implements PersistenceCapable. Otherwise, it
delegates to any JDO implementations registered with JDOImplHelper via the StateInter-
rogation interface.
If no registered implementation recognizes the instance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes the in-
stance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes the in-
stance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

• if the method returns void, there is no effect.

package javax.jdo;

class JDOHelper {

/* Some applications might prefer to use an instance

 * method instead of static methods.

 */

public JDOHelper();

The instance returned by the constructor is thread safe. It can be used from any number of threads
without concern for synchronization.

8.1 Persistence Manager
static PersistenceManager getPersistenceManager (Object pc);

This method returns the associated PersistenceManager. It returns null if the instance is
transient or null or if its class is not persistence-capable.
See also PersistenceCapable.jdoGetPersistenceManager().

Java Data Objects 2.2

 JDO 2.2 86 October 10, 2008

8.2 Make Dirty
static void makeDirty (Object pc, String fieldName);

This method marks the specified field dirty so that its values will be modified in the datastore when
the instance is flushed. The fieldName is the name of the field to be marked as dirty, optionally
including the fully qualified package name and class name of the field. This method has no effect if
the instance is transient or null, or if its class is not persistence-capable; or fieldName is not a
managed fieldIf the instance is not transient and the field is not managed, a JDOUserException
is thrown by makeDirty.
See also PersistenceCapable.jdoMakeDirty(String fieldName).

8.3 JDO Identity
static Object getObjectId (Object pc);

This method returns the JDO identity of the instance for persistent and detached instances. It returns
null if the instance is transient or null or if its class is not persistence-capable. If the identity is
being changed in a transaction, this method returns the identity as of the beginning of the transac-
tion.
See also PersistenceCapable.jdoGetObjectId() and PersistenceMan-
ager.getObjectId(Object pc).
static Object[] getObjectIds (Object[] pcs);

static Collection getObjectIds (Collection pcs);

These methods return the JDO identities of the parameter instances. For each instance in the param-
eter, the getObjectId method is called. They return one identity instance for each persistence-
capable instance in the parameter. The order of iteration of the returned Collection exactly
matches the order of iteration of the parameter Collection.
static Object getTransactionalObjectId (Object pc);

This method returns the JDO identity of the instance. It returns null if the instance is transient or
null or does not implement PersistenceCapable. If the identity is being changed in a trans-
action, this method returns the current identity in the transaction.
See also PersistenceCapable.jdoGetTransactionalObjectId()and Persis-
tenceManager.getTransactionalObjectId(Object pc).

8.4 JDO Version
static Object getVersion (Object pc);

This method returns the JDO version of the instance for persistent and detached instances. It returns
null if the instance is transient or null or if its class is not persistence-capable.

8.5 Status interrogation
The status interrogation methods return a boolean that represents the state of the instance:

8.5.1 Dirty

static boolean isDirty (Object pc);

Instances whose state has been changed in the current transaction return true. If the object param-
eter is not null and implements PersistenceCapable, JDOHelper.isDirty delegates to

Java Data Objects 2.2

 JDO 2.2 87 October 10, 2008

the parameter instance and instances whose state has not been changed in the current transaction re-
turn false. It returns false if the instance is transient or null or if its class is not persistence-
capable.
See also PersistenceCapable.jdoIsDirty();

8.5.2 Transactional

static boolean isTransactional (Object pc);

Instances whose state is associated with the current transaction return true.If the object parameter
is not null, not transient, and implements PersistenceCapable, isTransactional delegates to the pa-
rameter instance and instances whose state is not associated with the current transaction return
false. It returns false if the instance is transient or null or if its class is not persistence-capable.
See also PersistenceCapable.jdoIsTransactional().

8.5.3 Persistent

static boolean isPersistent (Object pc);

Instances that represent persistent objects in the datastore return true. If the object parameter is
not null, not transient, and implements PersistenceCapable, isPersistent delegates to
the parameter instance and instances that do not represent persistent objects in the data store return
false. It returns false if the instance is transient or null or if its class is not persistence-ca-
pable.
See also PersistenceCapable.jdoIsPersistent();

8.5.4 New

static boolean isNew (Object pc);

Instances that have been made persistent in the current transaction return true. If the object param-
eter is not null, not transient, and implements PersistenceCapable, isNew delegates to the
parameter instance and instances that have not been made persistent in the current transaction return
false. It returns false if the instance is transient or null or if its class is not persistence-capa-
ble.
See also PersistenceCapable.jdoIsNew();

8.5.5 Deleted

static boolean isDeleted (Object pc);

Instances that have been deleted in the current transaction return true. If the object parameter is
not null, not transient, and implements PersistenceCapable, isDeleted delegates to the
parameter instance and instances that have not been deleted in the current transaction return false.
It returns false if the instance is transient or null or if its class is not persistence-capable.
See also PersistenceCapable.jdoIsDeleted();

8.5.6 Detached

static boolean isDetached (Object pc);

Instances that have been detached return true. The method returns false if the instance is transient
or null or if its class is not detachable.

See also PersistenceCapable.jdoIsDetached();

8.6 State Interrogation
public static ObjectState getObjectState(Object pc);

Java Data Objects 2.2

 JDO 2.2 88 October 10, 2008

This method returns an enum representing the life cycle state of the parameter instance. The enum
has an overloaded toString method that returns the life cycle state as discussed in section 5.5.
If the parameter instance is null, the returned ObjectState is null.

8.6.1 enum ObjectState
public enum ObjectState {

TRANSIENT("transient"),
TRANSIENT_CLEAN("transient-clean"),
TRANSIENT_DIRTY("transient-dirty"),
PERSISTENT_NEW("persistent-new"),
HOLLOW_PERSISTENT_NONTRANSACTIONAL("hollow/persistent-nontransactional"),
PERSISTENT_NONTRANSACTIONAL_DIRTY("persistent-nontransactional-dirty"),
PERSISTENT_CLEAN("persistent-clean"),
PERSISTENT_DIRTY("persistent-dirty"),
PERSISTENT_DELETED("persistent-deleted"),
PERSISTENT_NEW_DELETED("persistent-new-deleted"),
DETACHED_CLEAN("detached-clean"),
DETACHED_DIRTY("detached-dirty");

}

8.7 PersistenceManagerFactory methods
The methods in this section provide for bootstrapping the PersistenceManagerFactory by
configuration according to the properties documented in Section 11.1. Users have a choice of con-
figuration techniques:

• The application provides a Map of properties used to construct a
PersistenceManagerFactory

• The application provides a name (the name of a resource in standard Java Properties
format, the name of a named PersistenceManagerFactory from jdoconfig.xml, or the name
of a JPA persistence unit), used to construct a PersistenceManagerFactory

• The application provides a Map of override properties and a name, used to construct a
PersistenceManagerFactory

• The application provides an InputStream in standard Java Properties format
whose contents define the properties for the PersistenceManagerFactory

• The application provides a File whose contents are in standard Java Properties
format which define the properties for the PersistenceManagerFactory

• The application provides a JNDI name and context in which the name is defined

• The application provides a resource named META-INF/jdoconfig.xml and
optionally META-INF/services/
javax.jdo.PersistenceManagerFactory which contain configuration
information

• The application provides a resource named META-INF/persistence.xml and
optionally META-INF/services/
javax.persistence.EntityManagerFactory which contain configuration
information

Get by Name with Overrides
public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map overrides, String name, ClassLoader loader);

Java Data Objects 2.2

 JDO 2.2 89 October 10, 2008

public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map overrides, String name);

These methods resolve the name parameter, taking the name as a resource name, the name of a Per-
sistenceManagerFactory from jdoconfig.xml, or a Persistence Unit name from persistence.xml and
delegate to the static factory method getPersistenceManagerFactory (Map over-
rides, Map props). The name is trimmed of leading and trailing white space before being
used.

Get by Properties file or input stream
public static

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream, ClassLoader loader);

These methods use the parameter(s) passed as arguments to construct a Properties instance, and
then delegate to the JDOHelper method getPersistenceManagerFactory that takes a
Map parameter.

Get by Name
public static

PersistenceManagerFactory getPersistenceManagerFactory

(String name);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String name, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String name, ClassLoader propsLoader,

ClassLoader pmfLoader);

These methods use either the propsLoader (if specified), the loader, or the current thread’s
context class loader to attempt to resolve the name to a Properties instance, and delegate to the
static factory method getPersistenceManagerFactory (Map props). The name is
trimmed of leading and trailing white space before being used.
public static

PersistenceManagerFactory getPersistenceManagerFactory();

Java Data Objects 2.2

 JDO 2.2 90 October 10, 2008

This method delegates to the method taking a String with the parameter set to the empty
String. The default PersistenceManagerFactory from jdoconfig.xml is obtained.

Get by Properties map
public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map props);This method delegates to the corresponding method with a class loader parameter,
using the calling thread’s current contextClassLoader as the class loader.
public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map props, ClassLoader loader);

The standard key values for the properties are found in Section 11.1.
The returned PersistenceManagerFactory is not configurable (the setXXX methods will
throw an exception). JDO implementations might manage a map of instantiated Persistence-
ManagerFactory instances based on specified property key values, and return a previously in-
stantiated PersistenceManagerFactory instance. In this case, the properties of the returned
instance must exactly match the requested properties.

Get by JNDI lookup
public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiLocation, Context context);

@deprecated public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiLocation, Context context, ClassLoader loader);

These methods look up the PersistenceManagerFactory using the naming context and
name supplied. The implementation’s factory method is not called. The behavior of this method de-
pends on the implementation of the context and its interaction with the saved PersistenceMan-
agerFactory object. As with the other factory methods, the returned
PersistenceManagerFactory is not configurable.

Java Data Objects 2.2

 JDO 2.2 91 October 10, 2008

9 JDOImplHelper

This class is a public helper class for use by JDO implementations. It contains a registry of metadata
by class. Use of the methods in this class avoids the use of reflection at runtime. Persistence-
Capable classes register metadata with this class during class initialization.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

package javax.jdo.spi;

public class JDOImplHelper {

9.1 JDOImplHelper access
public static JDOImplHelper getInstance()

throws SecurityException;

This method returns an instance of the JDOImplHelper class if the caller is authorized for
JDOPermission("getMetadata"), and throws SecurityException if not authorized.
This instance gives access to all of the other methods, except for registerClass, which is static
and does not need any authorization.

9.2 Metadata access
public String[] getFieldNames (Class pcClass);

This method returns the names of persistent and transactional fields of the parameter class. If the
class does not implement PersistenceCapable, or if it has not been enhanced correctly to reg-
ister its metadata, a JDOFatalUserException is thrown.
Otherwise, the names of fields that are either persistent or transactional are returned, in order. The
order of names in the returned array are the same as the field numbering. Relative field 0 refers to
the first field in the array. The length of the array is the number of persistent and transactional fields
in the class.
public Class[] getFieldTypes (Class pcClass);

This method returns the types of persistent and transactional fields of the parameter class. If the pa-
rameter does not implement PersistenceCapable, or if it has not been enhanced correctly to
register its metadata, a JDOFatalUserException is thrown.
Otherwise, the types of fields that are either persistent or transactional are returned, in order. The
order of types in the returned array is the same as the field numbering. Relative field 0 refers to the
first field in the array. The length of the array is the number of persistent and transactional fields in
the class.
public byte[] getFieldFlags (Class pcClass);

Java Data Objects 2.2

 JDO 2.2 92 October 10, 2008

This method returns the field flags of persistent and transactional fields of the parameter class. If the
parameter does not implement PersistenceCapable, or if it has not been enhanced correctly
to register its metadata, a JDOFatalUserException is thrown.
Otherwise, the types of fields that are either persistent or transactional are returned, in order. The
order of types in the returned array is the same as the field numbering. Relative field 0 refers to the
first field in the array. The length of the array is the number of persistent and transactional fields in
the class.
public Class getPersistenceCapableSuperclass (Class pcClass);

This method returns the PersistenceCapable superclass of the parameter class, or null if
there is none.

9.3 Persistence-capable instance factory
public PersistenceCapable newInstance (Class pcClass,

StateManager sm);

public PersistenceCapable newInstance (Class pcClass, StateManager
sm, Object oid);

If the class does not implement PersistenceCapable, or if it has not been enhanced correctly
to register its metadata, a JDOFatalUserException is thrown. If the class is abstract, a JD-
OFatalInternalException is thrown.
Otherwise, a new instance of the class is constructed and initialized with the parameter StateM-
anager. The new instance has its jdoFlags set to LOAD_REQUIRED but has no defined state.
The behavior of the instance is determined by the owning StateManager.
The second form of the method returns a new instance of PersistenceCapable that has had
its key fields initialized by the ObjectId parameter instance. If the class has been enhanced for
datastore identity, then the oid parameter is ignored.
See also PersistenceCapable.jdoNewInstance(StateManager sm) and Persis-
tenceCapable.jdoNewInstance (StateManager sm, Object oid).

9.4 Registration of PersistenceCapable classes
public static void registerClass

(Class pcClass, String[] fieldNames,

Class[] fieldTypes,

byte[] fieldFlags,

Class persistenceCapableSuperclass,

PersistenceCapable pcInstance);

This method registers a PersistenceCapable class so that the other methods can return the
correct information. The registration must be done in a static initializer for the persistence-capable
class.
public static Collection getRegisteredClasses();

This method returns a collection of classes that have been registered.

9.4.1 Notification of PersistenceCapable class registrations
addRegisterClassListener(RegisterClassListener rcl);

Java Data Objects 2.2

 JDO 2.2 93 October 10, 2008

This method registers a RegisterClassListener to be notified upon new Persistence-
Capable Class registrations. A RegisterClassEvent instance is generated for each class
registered already plus classes registered in future, which is sent to each registered listener. The
same event instance might be sent to multiple listeners.
removeRegisterClassListener(RegisterClassListener rcl);

This method removes a RegisterClassEvent from the list to be notified upon new Persis-
tenceCapable Class registrations.

RegisterClassEvent
public class RegisterClassEvent extends java.util.EventObject {

An instance of this class is generated for each class that registers itself, and is sent to each registered
listener.
public Class getRegisteredClass();

Returns the newly registered Class.
public String[] getFieldNames();

Returns the field names of the newly registered Class.
public Class[] getFieldTypes();

Returns the field types of the newly registered Class.
public byte[] getFieldFlags();

Returns the field flags of the newly registered Class.
public Class getPersistenceCapableSuperclass();

Returns the PersistenceCapable superclass of the newly registered Class.
} // class RegisterClassEvent

RegisterClassListener
public interface RegisterClassListener extends

java.util.EventListener {

This interface must be implemented by classes that register as listeners to be notified of registrations
of PersistenceCapable classes.

void registerClass (RegisterClassEvent rce);

This method is called for each PersistenceCapable class that registers itself.
} // interface RegisterClassListener

9.5 Security administration
public static void registerAuthorizedStateManagerClass

(Class smClass) throws SecurityException;

This method manages the list of classes authorized to execute replaceStateManager. During execu-
tion of this method, the security manager, if present, is called to validate that the caller is authorized
for JDOPermission(“setStateManager”). If successful, the parameter class is added to the list of au-
thorized StateManager classes.
This method provides for a fast security check during makePersistent. An implementation of State-
Manager should register itself with the JDOImplHelper to take advantage of this fast check.

Java Data Objects 2.2

 JDO 2.2 94 October 10, 2008

public static void registerAuthorizedStateManagerClasses
(Collection smClasses) throws SecurityException;

This method manages the list of classes authorized to execute replaceStateManager. During execu-
tion of this method, the security manager, if present, is called to validate that the caller is authorized
for JDOPermission(“setStateManager”). If successful, all parameter classes are added to the list of
authorized StateManager classes.
public static void checkAuthorizedStateManagerClass (Class
smClass) throws SecurityException;

This method is used internally but might be used by an implementation. If the parameter instance is
a class in the list of authorized StateManager classes, then this method returns silently. If not, then
the security manager, if present, is called to validate that the caller is authorized for JDOPermis-
sion(“setStateManager”). If successful, the method returns silently. If not, a SecurityException is
thrown.
public static void checkAuthorizedStateManager (StateManager sm)
throws SecurityException;

This method is called by enhanced persistence-capable class method replaceStateManager. If the
parameter instance is of a class in the list of authorized StateManager classes, then this method re-
turns silently. If not, then the security manager, if present, is called to validate that the caller is au-
thorized for JDOPermission(“setStateManager”). If successful, the method returns silently. If not,
a SecurityException is thrown.

9.6 Application identity handling
public Object newObjectIdInstance(Class pcClass);

This method creates a new instance of the ObjectId class for the PersistenceCapable
class. If the class uses datastore identity, then null is returned. If the class is abstract, a JDOFa-
talInternalException is thrown.
public Object newObjectIdInstance(Class pcClass, Object key);

This method creates a new instance of the ObjectId class for the PersistenceCapable
class, using the appropriate constructor of the object id class. If the class uses datastore identity, then
null is returned. If the class is abstract, a JDOFatalInternalException is thrown.
public Object newObjectIdInstance(PersistenceCapable pc);

This method returns an instance of the ObjectId class for the parameter PersistenceCa-
pable instance. If the class of the instance uses an immutable ObjectId class, then the oid in-
stance associated with the persistent instance might be returned. If the class of the instance uses
datastore identity, then null is returned.
public void copyKeyFieldsToObjectId (Class pcClass,
PersistenceCapable.ObjectIdFieldSupplier fs, Object oid);

This method copies key fields from the field manager to the ObjectId instance oid. This is in-
tended for use by the implementation to copy fields from a datastore-specific representation to the
ObjectId. If the class is abstract, a JDOFatalInternalException is thrown.
public void copyKeyFieldsFromObjectId (Class pcClass, Persistence-
Capable.ObjectIdFieldConsumer fc, Object oid);

This method copies key fields to the field manager from the ObjectId instance oid. This is in-
tended for use by the implementation to copy fields to a datastore-specific representation from the
ObjectId. If the class is abstract, a JDOFatalInternalException is thrown.public syn-
chronized void registerDateFormat(DateFormat df);

Java Data Objects 2.2

 JDO 2.2 95 October 10, 2008

This method allows the implementation to register a DateFormat for use when constructing Single-
FieldIdentity instances of type ObjectIdentity that use java.util.Date as the key field. The default in
case the implementation does not register a DateFormat is DateFormat.getDateTimeIn-
stance(). If this cannot be obtained, the default is DateFormat.getInstance(). For ex-
ample,
SimpleDateFormat usDateFormat = new SimpleDateFormat

("MMM dd, yyyy hh:mm:ss a", Locale.US);
helper.registerDateFormat(usDateFormat);
Object oid = new ObjectIdentity(Object.class,

"java.util.Date:Jan 01, 1970 00:00:00 AM");

9.7 Persistence-capable class state interrogation
For JDO implementations that do not support BinaryCompatibility, an instance of StateInterroga-
tion must be registered with JDOImplHelper to handle JDOHelper methods for instances that do not
implement PersistenceCapable.
The StateInterrogation interface is implemented by a JDO implementation class to take responsibil-
ity for determining the life cycle state and object identity, and for marking fields dirty.
package javax.jdo.spi;

public interface StateInterrogation {
Boolean isPersistent(Object pc);
Boolean isTransactional(Object pc);
Boolean isDirty(Object pc);
Boolean isNew(Object pc);
Boolean isDeleted(Object pc);
Boolean isDetached(Object pc);
PersistenceManager getPersistenceManager(Object pc);
Object getObjectId(Object pc);
Object getTransactionalObjectId(Object pc);
boolean makeDirty(Object pc, String fieldName);
Object getVersion(Object pc);

}

For methods returning Boolean, PersistenceManager, and Object, if the StateInterrogation instance
does not recognize the parameter instance, null is returned, and the next registered StateInterroga-
tion instance is called.
For makeDirty, if the StateInterrogation instance does not recognize the parameter instance, false is
returned, and the next registered StateInterrogation instance is called.
public void addStateInterrogation(StateInterrogation si);

This method of JDOImplHelper registers an instance of StateInterrogation for delegation of life cy-
cle state queries made on JDOHelper.
public void removeStateInterrogation(StateInterrogation si);

This method of JDOImplHelper removes an instance of StateInterrogation, so it is no longer called
by JDOHelper for life cycle state queries.

Java Data Objects 2.2

 JDO 2.2 96 October 10, 2008

10 InstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO instance
life cycle events. For example, classes that include non-persistent fields might use callbacks to cor-
rectly populate the values in these fields. Classes that affect the runtime environment might use call-
backs to register and deregister themselves with other objects. This interface defines the methods
executed by the StateManager for these life cycle events.
These methods will be called only on instances for which the class implements the corresponding
callback interface . For backward compatibility, InstanceCallbacks is redefined as follows:
package javax.jdo;
public interface InstanceCallbacks extends

javax.jdo.listener.LoadCallback,
javax.jdo.listener.StoreCallback,
javax.jdo.listener.ClearCallback,
javax.jdo.listener.DeleteCallback {

}

10.1 jdoPostLoad
package javax.jdo.listener;

public interface LoadCallback {

void jdoPostLoad();

}

This method is called after values have been loaded from the StateManager into the instance, if
an active fetch group has been defined with the post-load attribute set to true. Non-persistent fields
whose value depends on values of loaded fields should be initialized in this method. This method is
not modified by the enhancer. Only fields that are loaded by an active fetch group should be access-
ed by this method, as other fields are not guaranteed to be initialized. This method might register
the instance with other objects in the runtime environment.
The context in which this call is made does not allow access to other persistent JDO instances.

10.2 jdoPreStore
package javax.jdo.listener;
public interface StoreCallback {
void jdoPreStore();

}
This method is called before the values are stored from the instance to the datastore. This happens
during beforeCompletion and flush for persistent-new and persistent-dirty instances of
persistence-capable classes that implement StoreCallback. Datastore fields that might have
been affected by modified non-persistent fields should be updated in this method. This method is
modified by the enhancer so that changes to persistent fields will be reflected in the datastore.

Java Data Objects 2.2

 JDO 2.2 97 October 10, 2008

The context in which this call is made allows access to the PersistenceManager and other per-
sistent JDO instances.
This method is not called for deleted instances.

10.3 jdoPreClear
package javax.jdo.listener;

public interface ClearCallback {

void jdoPreClear();

}

This method is called before the implementation clears the values in the instance to their Java de-
fault values. This happens during an application call to evict, and in afterCompletion for com-
mit with RetainValues false and rollback with RestoreValues false. The method is called during any
state transition to hollow. Non-persistent, non-transactional fields should be cleared in this method.
Associations between this instance and others in the runtime environment should be cleared. This
method is not modified by the enhancer, so access to fields is not mediated.

10.4 jdoPreDelete
package javax.jdo.listener;

public interface DeleteCallback {

void jdoPreDelete();

}

This method is called during the execution of deletePersistent before the state transition to
persistent-deleted or persistent-new-deleted. Access to field values within this call are valid. Access
to field values after this call are disallowed. This method is modified by the enhancer so that fields
referenced can be used in the business logic of the method.
To implement a containment aggregate, the user could implement this method to delete contained
persistent instances.

10.5 jdoPreDetach and jdoPostDetach
package javax.jdo.listener;

public interface DetachCallback {

void jdoPreDetach();

This method is called during the execution of detachCopy on the persistent instance before the
copy is made.
public void jdoPostDetach(Object detached);
This method is called during the execution of detachCopy on the detached instance after the copy
is made. The parameter is the corresponding persistent instance.
}

10.6 jdoPreAttach and jdoPostAttach
package javax.jdo.listener;

Java Data Objects 2.2

 JDO 2.2 98 October 10, 2008

public interface AttachCallback {
void jdoPreAttach();

This method is called during the execution of makePersistent on the detached instance before
the copy is made.
public void jdoPostAttach(Object attached);

This method is called during the execution of makePersistent on the persistent instance after
the copy is made. The parameter is the corresponding detached instance.
}

Java Data Objects 2.2

 JDO 2.2 99 October 10, 2008

11 PersistenceManagerFactory

This chapter details the PersistenceManagerFactory, which is responsible for creating
PersistenceManager instances for application use.
package javax.jdo;

public interface PersistenceManagerFactory {

11.1 Interface PersistenceManagerFactory
A JDO vendor must provide a class that implements PersistenceManagerFactory and is
permitted to provide a PersistenceManager constructor[s].
A non-managed JDO application might choose to use a PersistenceManager constructor
(JDO vendor specific) or use a PersistenceManagerFactory (provided by the JDO vendor).
A portable JDO application must use the PersistenceManagerFactory.
In a managed environment, the JDO PersistenceManager instance is typically acquired by a
two step process: the application uses JNDI lookup to retrieve an environment-named object, which
is then cast to javax.jdo.PersistenceManagerFactory; and then calls one of the facto-
ry’s getPersistenceManager methods. Alternatively, one of the JDOHelper methods can
be used to acquire a PersistenceManagerFactory.
In a non-managed environment, the JDO PersistenceManager instance is acquired by lookup
as above; by constructing a PersistenceManager; or by constructing a PersistenceMan-
agerFactory, configuring the factory, and then calling the factory’s getPersistenceMan-
ager method. These constructors are not part of the JDO standard. However, the following is
recommended to support portable applications.
The PersistenceManagerFactory implementation class must implement a no-args con-
structor. This allows the standard Java 6 service discovery implementation to create a factory in-
stance upon which the getPersistenceManagerFactory methods can be invoked.
Configuring the PersistenceManagerFactory follows the Java Beans pattern. Supported
properties have a get method and a set method.
The following properties, if set in the PersistenceManagerFactory, are the default settings
of all PersistenceManager instances created by the factory:

• Optimistic: the transaction mode that specifies concurrency controlRetainValues:
the transaction mode that specifies the treatment of persistent instances after
commitRestoreValues: the transaction mode that specifies the treatment of persistent
instances after rollback

• IgnoreCache: the query mode that specifies whether cached instances are considered
when evaluating the filter expressionNontransactionalRead: the
PersistenceManager mode that allows instances to be read outside a
transactionNontransactionalWrite: the PersistenceManager mode that
allows instances to be written outside a transactionMultithreaded: the
PersistenceManager mode that indicates that the application will invoke methods or
access fields of managed instances from multiple

Java Data Objects 2.2

 JDO 2.2 100 October 10, 2008

threads.TransactionIsolationLevel: the Transaction mode that indicates
that the implementation should use a specific isolation level when using
connections.DetachAllOnCommit: the PersistenceManager mode that indicates
that instances will be detached when the transaction commits.

• CopyOnAttach: the PersistenceManager mode that indicates that detached
instances will be copied and not transitioned during makePersistent. The default is
true due to backward compatibility.

The following properties can only be set in the PersistenceManagerFactory:
Mapping: the name of the mapping model for object-to-datastore mappingCatalog: the name of
the catalog for object-to-relational mappingSchema: the name of the schema for object-to-relation-
al mapping
PersistenceUnitName: the name of the Persistence Unit corresponding to the Persis-
tenceManagerFactory
TransactionType: the type of transaction management used by this PersistenceMan-
agerFactory; allowable values are JTA and RESOURCE_LOCAL, corresponding to the defini-
tions of these terms in the JSR-220 specification.
ServerTimeZoneID: the time zone ID of the server to which this PersistenceManager-
Factory is connected, for use with the PersistenceManager method getServerDate

• ReadOnly: the datastore is not able to be written by the jdo implementation, and if an
attempt is made to write (via commit or flush) then JDOReadOnlyException is
thrown. Implementations may eagerly throw an exception if an instance is modified or
deleted, or an instance is made persistent.

ServerTimeZoneID
If ServerTimeZoneID is specified, the value must correspond to a valid time zone ID as returned by
TimeZone.getAvailableIDs(). The implementation uses the ServerTimeZoneID to implement the
getServerDate method. If ServerTimeZoneID is not specified, the implementation might use
proprietary methods to determine the time zone in which the server is located. If ServerTimeZoneID
is not specified, and the implementation cannot or does not use proprietary methods to determine
the server time zone, then the default time zone ID of the Java VM is used.

Transaction Isolation Level
If the transaction isolation level is specified, the implementation will set the actual isolation level to
be no less than requested, or JDOUnsupportedOptionException is thrown during freezing
of the configuration (after the first use of getPersistenceManager() or during construction
via properties, jdoconfig.xml, or persistence.xml).

Connection
The following properties are for convenience, if there is no connection pooling or other need for a
connection factory:

• ConnectionUserName: the name of the user establishing the connection

• ConnectionPassword: the password for the user

• ConnectionURL: the URL for the data source

• ConnectionDriverName: the class name of the driver

For a portable application, if any other connection properties are required, then a connection factory
must be configured.

Java Data Objects 2.2

 JDO 2.2 101 October 10, 2008

The following properties are for use when a connection factory is used, and override the connection
properties specified in ConnectionURL, ConnectionUserName, or ConnectionPass-
word.

• ConnectionFactory: the connection factory from which datastore connections are
obtained

• ConnectionFactoryName: the name of the connection factory from which datastore
connections are obtained. This name is looked up with JNDI to locate the connection
factory.

If multiple connection properties are set, then they are evaluated in order:
• if ConnectionFactory is specified (not null), all other properties are ignored;

• else if ConnectionFactoryName is specified (not null), all other properties are
ignored.

For the application server environment, connection factories always return connections that are en-
listed in the thread’s current transaction context. To use optimistic transactions in this environment
requires a connection factory that returns connections that are not enlisted in the current transaction
context. For this purpose, the following two properties are used:

• ConnectionFactory2: the connection factory from which nontransactional datastore
connections are obtained

• ConnectionFactory2Name: the name of the connection factory from which
nontransactional datastore connections are obtained. This name is looked up with JNDI to
locate the connection factory.

11.1.1 Construction by Properties

An implementation must provide two methods to construct a PersistenceManagerFactory
by a Map instance. One static method is called by the JDOHelper method getPersistence-
ManagerFactory (Map props). The other static method is called by JDOHelper method
getPersistenceManagerFactory (Map overrides, String name).

static PersistenceManagerFactory getPersistenceManagerFactory (Map
props);

static PersistenceManagerFactory getPersistenceManagerFactory (Map
overrides, Map props);

The overrides entries consist of JDO vendor-specific properties and standard property names.
The props entries consist of: "javax.jdo.PersistenceManagerFactoryClass",
whose value is the name of the implementation class; any JDO vendor-specific properties; and the
following standard property names, which correspond to the properties as documented in this chap-
ter.
• "javax.jdo.option.Optimistic"

• "javax.jdo.option.RetainValues"

• "javax.jdo.option.RestoreValues"

• "javax.jdo.option.IgnoreCache"

• "javax.jdo.option.NontransactionalRead"

• "javax.jdo.option.NontransactionalWrite"

• "javax.jdo.option.Multithreaded"

• "javax.jdo.option.DetachAllOnCommit"

• "javax.jdo.option.CopyOnAttach"

Java Data Objects 2.2

 JDO 2.2 102 October 10, 2008

• "javax.jdo.option.ConnectionUserName"

• "javax.jdo.option.ConnectionPassword"

• "javax.jdo.option.ConnectionURL"

• "javax.jdo.option.ConnectionDriverName"

• "javax.jdo.option.ConnectionFactoryName"

• "javax.jdo.option.ConnectionFactory2Name"

• "javax.jdo.option.Mapping"

• "javax.jdo.mapping.Catalog"

• "javax.jdo.mapping.Schema"

• "javax.jdo.option.TransactionType"

• "javax.jdo.option.ServerTimeZoneID"

• "javax.jdo.option.ReadOnly"

The following two properties are only used in the props, not in the overrides.
• "javax.jdo.option.Name"

• "javax.jdo.option.PersistenceUnitName"

The property "javax.jdo.PersistenceManagerFactoryClass" is the fully qualified
class name of the PersistenceManagerFactory.Properties whose key begins with the prefix
"javax.jdo.listener.InstanceLifecycleListener." have special treatment. The
part of the key following the prefix is used as the class name of a class that implements jav-
ax.jdo.listener.InstanceLifecycleListener. The implementation first attempts to
get an instance via the static method getInstance() that returns an instance that implements
the javax.jdo.listener.InstanceLifecycleListener. If this is unsuccessful, an in-
stance of this class is constructed via a no-args constructor. The value of the key is a comma-sepa-
rated list of classes to which the instantiated listener is registered to listen.
Similarly, properties whose key begins with the prefix "javax.jdo.datastore.DataS-
toreCache." have special treatment. The part of the key following the prefix is used as the class
name of a class that implements javax.jdo.datastore.DataStoreCache. The imple-
mentation first attempts to get an instance via the static method getInstance() that returns an
instance that implements the javax.jdo.datastore.DataStoreCache. If this is unsuc-
cessful, an instance of this class is constructed via a no-args constructor. The implementation reg-
isters it as the cache for the PersistenceManagerFactory.
The String type properties are taken without change from the value of the corresponding keys.
Boolean type properties treat the String value as representing true if the value of the String
compares equal, ignoring case, to "true", and false if the value of the String is anything else.
Any property not recognized by the implementation must be silently ignored. Any standard property
corresponding to an optional feature not supported by the implementation must throw JDOUnsup-
portedOptionException.
The Mapping property specifies the object-data store mapping to be used by the implementation.
The property is used to construct the names of resource files containing metadata. For more infor-
mation on the use of this property, see Chapters 15 and 18.
Default values for properties not specified in the props parameter are provided by the implementa-
tion. A portable application must specify all values for properties needed by the application.
There are properties that are provided by the JDOHelper methods in the following cases.

Java Data Objects 2.2

 JDO 2.2 103 October 10, 2008

• If the user uses the methods getPersistenceManagerFactory(File file) or
getPersistenceManagerFactory(File file, ClassLoader loader)
then the Map instance passed to the static method will contain a property with a key of
"javax.jdo.spi.PropertiesFileName", and a value equal to the result of
calling getAbsolutePath() on the file parameter. Absence of this property means that
neither of these methods was used.

• If the user uses the methods getPersistenceManagerFactory(String
resourceName) or getPersistenceManagerFactory(String
resourceName, ClassLoader loader) and the properties instance was loaded
from a resource, then the Properties instance passed to the static method will contain
a property with a key of "javax.jdo.spi.PropertiesResourceName", and a
value equal to the name of the resource. Absence of this property means that neither of
these methods was used.

• If the user uses the method getPersistenceManagerFactory(String
resourceName) and the properties instance was created from jdoconfig.xml, then
the Properties instance passed to the static method will contain a property with a key
of "javax.jdo.Name", and a value equal to the name of the persistence manager
factory in the jdoconfig.xml file.

11.1.2 Construction by jdoconfig.xml

Users can access a PersistenceManagerFactory by creating a jdoconfig.xml file and mak-
ing it available on the class path as META-INF/jdoconfig.xml. The format of the jdoconfig.xml file
is described fully in Appendix D. Any number of META-INF/jdoconfig.xml files can be used. The
element persistence-manager-factory configures the named PersistenceManagerFactory.
Each attribute and sub-element in the persistence-manager-factory corresponds to a property al-
ready discussed above.
If the user uses the JDOHelper methods getPersistenceManagerFactory (String
resourceName) or getPersistenceManagerFactory (String resourceName,
ClassLoader loader) then a Properties instance is created from the contents of the
jdoconfig.xml element that contains resourceName as the value of the element or property
called "javax.jdo.option.Name". This Properties instance is passed to the static Per-
sistenceManagerFactory method getPersistenceManagerFactory (Map
props);.

11.1.3 Access via persistence.xml

Users can access a PersistenceManagerFactory by referring to an existing persis-
tence.xml file that contains the configuration information for a PersistenceManagerFacto-
ry. If a PersistenceManagerFactory definition includes the property
PersistenceUnitName, then the PersistenceManagerFactory will use the named
PersistenceUnitName for configuration properties. Properties specified by the Proper-
ties override the properties specified by the PersistenceUnitName.

11.1.4 jdoconfg.xml

The jdoconfig.xml file can be described by the non-normative DTD:
<!--

<!DOCTYPE jdoconfig

 PUBLIC “-//Sun Microsystems, Inc.//DTD Java Data Objects Configuration 2.2//EN”

 “http://java.sun.com/dtd/jdoconfig_2_2.dtd”>

-->

<!ELEMENT jdoconfig (persistence-manager-factory+)>

<!ELEMENT persistence-manager-factory (property*, instance-lifecycle-listener*)>

Java Data Objects 2.2

 JDO 2.2 104 October 10, 2008

<!ATTLIST persistence-manager-factory class CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory persistence-unit-name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory optimistic (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory readonly (true|false) CDATA ‘false’>

<!ATTLIST persistence-manager-factory retain-values (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory restore-values (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory ignore-cache (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory nontransactional-read (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory nontransactional-write (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory multithreaded (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory transaction-isolation-level CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-driver-name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-user-name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-password CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-url CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-factory-name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory connection-factory2-name CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory mapping CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory detach-all-on-commit (true|false) CDATA #IMPLIED>

<!ATTLIST persistence-manager-factory server-time-zone-id CDATA #IMPLIED>

<!ELEMENT property EMPTY>

<!ATTLIST property name CDATA #REQUIRED>

<!ATTLIST property value CDATA #IMPLIED>

<!ELEMENT instance-lifecycle-listener EMPTY>

<!ATTLIST instance-lifecycle-listener listener CDATA #REQUIRED>

<!ATTLIST instance-lifecycle-listener classes CDATA #IMPLIED>

11.2 ConnectionFactory
For implementations that layer on top of standard Connector implementations, the configuration
will typically support all of the associated ConnectionFactory properties.
When used in a managed environment, the ConnectionFactory will be obtained from a Man-
agedConnectionFactory, which is then responsible for implementing the resource adapter
interactions with the container.
The following properties of the ConnectionFactory should be used if the data source has a
corresponding concept:

• URL: the URL for the data source

• UserName: the name of the user establishing the connection

• Password: the password for the user

• DriverName: the driver name for the connection

• ServerName: name of the server for the data source

• PortNumber: port number for establishing connection to the data source

• MaxPool: the maximum number of connections in the connection pool

• MinPool: the minimum number of connections in the connection pool

• MsWait: the number of milliseconds to wait for an available connection from the
connection pool before throwing a JDODataStoreException

• LogWriter: the PrintWriter to which messages should be sent

Java Data Objects 2.2

 JDO 2.2 105 October 10, 2008

• LoginTimeout: the number of seconds to wait for a new connection to be established to
the data source

In addition to these properties, the PersistenceManagerFactory implementation class can
support properties specific to the data source or to the PersistenceManager.
Aside from vendor-specific configuration APIs, there are these required methods for Persis-
tenceManagerFactory:

11.3 PersistenceManager access
PersistenceManager getPersistenceManager();

PersistenceManager getPersistenceManager(String userid, String
password);

Returns a PersistenceManager instance with the configured properties. The instance might
have come from a pool of instances. The default values for option settings are reset to the value spec-
ified in the PersistenceManagerFactory before returning the instance.This method will
never return the same instance as was returned by a previous invocation of the method. Note that
this implies that pooled implementations must use proxies and not return the identical pooled in-
stance.
After the first use of getPersistenceManager, none of the set methods will succeed. The
settings of operational parameters might be modified dynamically during runtime via a vendor-spe-
cific interface.
If the method with the userid and password is used to acquire the PersistenceManager, then
all accesses to the connection factory during the life of the PersistenceManager will use the
userid and password to get connections. If PersistenceManager instances are pooled, then
only PersistenceManager instances with the same userid and password will be used to satisfy
the request.

11.3.1 Access via proxy

PersistenceManager getPersistenceManagerProxy();

Returns a PersistenceManager instance that is thread-safe, for use in web and application
servers and outside servers. The instance returned can be used in a servlet init method to initialize a
static variable in a web server application. Similarly, it can be used in a session bean to initialize a
static variable in an application server application.
If this method is used with a PersistenceManagerFactory that is configured with Transaction-
Type JTA, the proxy returned will dynamically delegate to a PersistenceManager. The close
method on the proxy has no effect.

• If there is a PersistenceManager currently associated with the thread’s transaction,
the method in the proxy delegates to the corresponding method in the
PersistenceManager currently associated with the thread’s transaction.

• If there is no PersistenceManager currently associated with the thread’s transaction,
a PersistenceManager is created and associated with the thread’s transaction.

• If there is no transaction currently associated with the calling thread, a new
PersistenceManager is created with no transaction association, and no possibility of
beginning a transaction (in this case, the begin method on the Transaction instance
throws JDOUserException). Persistent instances returned as a result of queries can be
used to navigate via nontransactional access, regardless of whether a transaction is
subsequently associated with the thread. The PersistenceManager returned from
methods Query.getPersistenceManager,

Java Data Objects 2.2

 JDO 2.2 106 October 10, 2008

JDOHelper.getPersistenceManager, and
PersistenceCapable.getPersistenceManager return the actual
PersistenceManager to which the proxy delegated the original method.

If this method is used with a PersistenceManagerFactory that is configured with Transaction-
Type RESOURCE_LOCAL, the proxy returned will dynamically delegate to the Persistence-
Manager currently associated with an implementation-defined thread-local variable. The thread-
local variable is inherited by any threads created by the thread that currently has a Persistence-
Manager associated with it. The close method on the proxy clears the thread local variable to null,
and a subsequent invocation on the proxy will create a new PersistenceManager.

11.4 Close the PersistenceManagerFactory
During operation of JDO, resources might be acquired on behalf of a PersistenceManagerFactory,
e.g. connection pools, persistence manager pools, compiled queries, cached metadata, etc. If a Per-
sistenceManagerFactory is no longer needed, these resources should be returned to the system. The
close method disables the PersistenceManagerFactory and allows cleanup of resources.
Premature close of a PersistenceManagerFactory has a significant impact on the operation of the
system. Therefore, a security check is performed to check that the caller has the proper permission.
The security check is for JDOPermission("closePersistenceManagerFactory"). If the security check
fails, the close method throws SecurityException.
void close();

Close this PersistenceManagerFactory. Check for JDOPermission("closePersistenceManagerFacto-
ry") and if not authorized, throw SecurityException.
If the authorization check succeeds, check to see that all PersistenceManager instances obtained
from this PersistenceManagerFactory have no active transactions. If any PersistenceManager in-
stances have an active transaction, throw a JDOUserException, with one nested JDOUserException
for each PersistenceManager with an active Transaction.
If there are no active transactions, then close all PersistenceManager instances obtained from this
PersistenceManagerFactory and mark this PersistenceManagerFactory as closed. After close com-
pletes, disallow all methods except close, isClosed, and get methods except for getPersistenceMan-
ager. If any disallowed method is called after close, then JDOUserException is thrown.boolean
isClosed();
Return true if this PersistenceManagerFactory is closed; and false otherwise.

11.5 Non-configurable Properties
The JDO vendor might store certain non-configurable properties and make those properties avail-
able to the application via a Properties instance. This method retrieves the Properties in-
stance.
Properties getProperties();

The application is not prevented from modifying the instance.
Each key and value is a String. The keys defined for standard JDO implementations are:

• VendorName: The name of the JDO vendor.

• VersionNumber: The version number string.

Other properties are vendor-specific.

Java Data Objects 2.2

 JDO 2.2 107 October 10, 2008

11.6 Optional Feature Support
Collection<String> supportedOptions();

The JDO implementation might optionally support certain features, and will report the features that
are supported. The supported query languages are included in the returned Collection.
This method returns a Collection of String, each String instance representing an optional
feature of the implementation or a supported query language. The following are the values of the
String for each optional feature in the JDO specification:
javax.jdo.option.TransientTransactional

The JDO implementation supports the transient transactional life cycle states.
javax.jdo.option.NontransactionalRead

The JDO implementation supports reading and querying outside a transaction.
javax.jdo.option.NontransactionalWrite

The JDO implementation supports the persistent-nontransactional-dirty life cycle state.
javax.jdo.option.RetainValues

The JDO implementation supports retaining values of persistent instances after commit.
javax.jdo.option.Optimistic

The JDO implementation supports the optimistic transaction semantics.
javax.jdo.option.ApplicationIdentity

The JDO implementation supports application identity for persistent classes.
javax.jdo.option.DatastoreIdentity

The JDO implementation supports datastore identity for persistent classes.
javax.jdo.option.NonDurableIdentity

The JDO implementation supports nondurable identity for persistent classes
javax.jdo.option.ArrayList

The JDO implementation supports persistent field types of ArrayList.
javax.jdo.option.LinkedList

The JDO implementation supports persistent field types of LinkedList.
javax.jdo.option.TreeMap

The JDO implementation supports persistent field types of TreeMap.
javax.jdo.option.TreeSet

The JDO implementation supports persistent field types of TreeSet.
javax.jdo.option.Vector

The JDO implementation supports persistent field types of Vector.
javax.jdo.option.List

The JDO implementation supports persistent field types of List. This is now a requirement but the
option is for compatibility with JDO 1.0 where this support was optional.
javax.jdo.option.Array

The JDO implementation supports persistent field types of array.
javax.jdo.option.NullCollection

Java Data Objects 2.2

 JDO 2.2 108 October 10, 2008

The JDO implementation allows null collections to be stored. Most relational implementations do
not distinguish between empty and null collections, and this option will not be set for those imple-
mentations.
javax.jdo.option.ChangeApplicationIdentity

The JDO implementation supports changing of the application identity of instances.
javax.jdo.option.BinaryCompatibility

The JDO implementation supports the binary compatibility contract.
javax.jdo.option.GetDataStoreConnection

The JDO implementation supports use of a direct datastore connection.
javax.jdo.option.GetJDBCConnection

The JDO implementation supports use of a direct datastore connection that implements the ja-
va.sql.Connection interface.
javax.jdo.option.TransactionIsolationLevel.read-committed

The datastore supports the read-committed isolation level.
javax.jdo.option.TransactionIsolationLevel.read-uncommitted

The datastore supports the read-uncommitted isolation level.
javax.jdo.option.TransactionIsolationLevel.repeatable-read

The datastore supports the repeatable-read isolation level.
javax.jdo.option.TransactionIsolationLevel.serializable

The datastore supports the serializable isolation level.
javax.jdo.option.TransactionIsolationLevel.snapshot

The datastore supports the snapshot isolation level.
javax.jdo.query.SQL

The JDO implementation supports SQL for queries executed via the javax.jdo.Query interface.
javax.jdo.option.UnconstrainedQueryVariables

The JDO implementation supports JDOQL queries that contain a variable without a contains clause
to constrain the variable.
javax.jdo.option.version.DateTime

The JDO implementation supports use of a the date-time strategy for version checking.
javax.jdo.option.version.StateImage

The JDO implementation supports use of the state-image strategy for version checking.
javax.jdo.option.PreDirtyEvent

The JDO implementation supports event notifications of changes made to persistent instances be-
fore the instance is made dirty.
javax.jdo.option.mapping.HeterogeneousObjectType

The JDO implementation supports mapping a persistent field of type Object to multiple types. There
is no standard way to map this support.
javax.jdo.option.mapping.HeterogeneousInterfaceType

The JDO implementation supports mapping a persistent field of a persistent interface type to mul-
tiple types. There is no standard way to map this support.
javax.jdo.option.mapping.JoinedTablePerClass

Java Data Objects 2.2

 JDO 2.2 109 October 10, 2008

The JDO implementation supports mapping persistent class inheritance hierarchies to tables in
which each class, including abstract classes, is mapped to a table; and each table mapped to a sub-
class defines a primary key that has a foreign key relationship to the primary key of the table mapped
by the superclass.
javax.jdo.option.mapping.JoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to tables in
which each concrete class (excluding abstract classes) is mapped to a table; and each table mapped
to a subclass defines a primary key that has a foreign key relationship to the primary key of the table
mapped by the superclass.
javax.jdo.option.mapping.NonJoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to tables in
which each concrete class (excluding abstract classes) is mapped to a table; and there is not neces-
sarily any foreign key relationship among the mapped tables.
javax.jdo.option.mapping.RelationSubclassTable

The JDO implementation supports mapping persistent fields containing relationships to classes in
an inheritance relationship that use subclass-table as the field mapping strategy.
The standard JDO query must be returned as the String:
javax.jdo.query.JDOQL

Other query languages are represented by a String not defined in this specification.

11.7 Properties constructors
The following methods are used by JDOHelper to construct an instance of PersistenceMan-
agerFactory based on user-specified property overrides and the name of a resource.
public static PersistenceManagerFactory

getPersistenceManagerFactory (Map props);

This static method must be defined on the class that implements PersistenceManagerFac-
tory. It returns an instance of PersistenceManagerFactory based on the properties in the
parameter.
The method is used by JDOHelper to construct an instance of PersistenceManagerFac-
tory based on user-specified properties.
public static PersistenceManagerFactory

getPersistenceManagerFactory (Map overrides, Map props);

This static method is a method defined in the PersistenceManagerFactory interface, and
must be defined on the class that implements PersistenceManagerFactory. It returns an in-
stance of PersistenceManagerFactory based on the properties in the parameters. Properties
in overrides must be kept separate from properties in props for the purpose of serialization.
JDO implementations are permitted to define key values of their own. Any key values not recog-
nized by the implementation must be ignored. Key values that are recognized but not supported by
an implementation must result in a JDOFatalUserException thrown by the method.
The returned PersistenceManagerFactory is not configurable (the setXXX methods will
throw an exception). JDO implementations might manage a map of instantiated Persistence-
ManagerFactory instances based on specified property key values, and return a previously in-
stantiated PersistenceManagerFactory instance. In this case, the properties of the returned
instance must exactly match the requested properties.

Java Data Objects 2.2

 JDO 2.2 110 October 10, 2008

11.8 Second-level cache management
Most JDO implementations allow instances to be cached in a second-level cache, and allow direct
management of the cache by knowledgeable applications. The second-level cache is typically a sin-
gle VM cache and is used for persistent instances associated with a single PersistenceManagerFac-
tory. For the purpose of standardizing this behavior, the DataStoreCache interface is used.
To obtain a reference to the cache manager, the getDataStoreCache() method of PersistenceMan-
agerFactory is used.
DataStoreCache getDataStoreCache();

If there is no second-level cache, the returned instance silently does nothing.
package javax.jdo.datastore;

public interface DataStoreCache {

Evicting objects from the cache
void evict(Object oid);

void evictAll();

void evictAll(Object... oids);

void evictAll(Collection oids);

void evictAll(Class pcClass, boolean subclasses);

The evict methods are hints to the implementation that the instances referred to by the object ids are
stale and should be evicted from the cache. Evicting an instance does not unpin it.

Pinning objects in the cache
void pin(Object oid);

void pinAll(Collection oids);

void pinAll(Object... oids);

void pinAll(Class pcClass, boolean subclasses);

The pin methods are hints to the implementation that the instances referred to by the object ids
should be pinned in the cache (not subject to algorithm-based eviction, but subject to explicit evic-
tion). There is no requirement that an instance be in the cache in order to pin or unpin it. The pinAll
method with the Class parameter automatically pins all instances of that class, including those in-
stances already in the cache and future instances of the class. When a class is pinned, pin and unpin
methods on instances of the pinned class are ignored.

Unpinning objects in the cache
void unpin(Object oid);

void unpinAll(Collection oids);

void unpinAll(Object... oids);

void unpinAll(Class pcClass, boolean subclasses);

The unpin methods are hints to the implementation that the instances referred to by the object ids
should be unpinned (subject to eviction based on algorithm). There is no requirement that an in-
stance be in the cache in order to pin or unpin it. The unpinAll method with the Class parameter
automatically unpins all instances of that class, including those instances already in the cache and
future instances of the class. When a class is pinned, pin and unpin methods on instances of the
pinned class are ignored.

Java Data Objects 2.2

 JDO 2.2 111 October 10, 2008

}

11.9 Registering for life cycle events
void addInstanceLifecycleListener (InstanceLifecycleListener
listener, Class[] classes);

This PersistenceManagerFactory method adds the listener to the list of instance lifecycle event lis-
teners set as the initial listeners for each PersistenceManager created by this PersistenceManager-
Factory. The classes parameter identifies all of the classes of interest. If the classes parameter is
specified as null, events for all persistent classes and interfaces are generated. If the listener is al-
ready registered for life cycle events, the classes are added to the set of classes being listened to.
If the classes specified have persistence-capable subclasses, all such subclasses are registered im-
plicitly.
The listener will be called for each event for which it implements the corresponding listener inter-
face.
void removeInstanceLifecycleListener (InstanceLifecycleListener
listener);

This PersistenceManagerFactory method removes the listener from the list of event listeners set as
the initial listeners for each PersistenceManager created by this PersistenceManagerFactory.
The addInstanceLifecycleListener and removeInstanceLifecycleListener methods are considered to
be configuration methods and can only be called when the PersistenceManagerFactory is config-
urable (before the first getPersistenceManager is called).

11.10 Serialization
Serialization of a persistence manager factory allows an application to preserve a reference to the
factory via calling writeObject on it and having its state preserved by writing it to a stream in
an external form. Later, the state can be read from a stream and a functionally equivalent instance
of the factory can be restored.
When serializing the state of a persistence manager factory, the properties used to create the factory
must be serialized. Some of the properties might depend on the context of the Java VM, and so are
not able to be serialized. These properties may include the registered life cycle listener instances,
class loaders, and any other values that are not serializable.
If the persistence manager factory was created via the getPersistenceManagerFacto-
ry(Map props) method, then the serializable properties in props must be written to the stream
and upon restoration, used to construct or locate the persistence manager factory in the new context.
If the persistence manager factory was created via the javax.persistence.Persis-
tence.createEntityManagerFactory (Map overrides, String name) meth-
od, then the persistence manager factory must write the overrides and the name to the stream and
use these parameters in the new context to read the persistence.xml in the new context, use the over-
rides, and reconstruct the persistence manager factory.
If the persistence manager factory was created via the getPersistenceManagerFacto-
ry(Map overrides, Map props) method, then the serializable properties in the over-
rides must be written to the stream and upon restoration, used to establish overrides for the
persistence manager factory in the new context. The treatment of the props parameter depends on
the existence of certain entries:

Java Data Objects 2.2

 JDO 2.2 112 October 10, 2008

• If the property javax.jdo.spi.PropertiesFileName is a key in the props, then
the value of this key and the overrides must be written to the stream and used in the new
context to recreate the persistence manager factory from the file name.

• If the property javax.jdo.Name is a key in the props, then the value of this key and
the overrides must be written to the stream and used in the new context to recreate the
persistence manager factory from jdoconfig.xml.

11.11 OSGi Service Discovery
The objective of OSGi when used with JDO is to provide fewer development-time dependencies on
specific JDO vendors. Without runtime discovery, the implementation class name is required to be
put into persistence manager factory properties.
Typical usage is an application deployed in production which uses a JDO implementation A that is
not performing well. To fix the issue the user decides to replace the implementation with a different
vendor. Without runtime discovery, the procedure consists of replacing the JDO vendor jar in the
classpath and updating the persistence manager factory properties to refer to the new vendor persis-
tence manager factory class.
With runtime service discovery, this procedure would be simplified to replacing only the JDO ven-
dor jar. The new vendor would be found dynamically.

From the user perspective
There is a small change needed to deployment to use service discovery. As before, the application
uses JDOHelper.getPersistenceManagerFactory using properties or configuration
name. However there is no need to set the property javax.jdo.PersistenceManagerFac-
toryClass if there is only one JDO vendor jar in the classpath.

From the implementation perspective
In the JDO implementation jar file, add the file META-INF/services/javax.jdo.Per-
sistenceManagerFactory, which contains a single line with the fully qualified class name of
the PersistenceManagerFactory implementation.
The JDOHelper.getPersistenceManagerFactory(String) will do the service dis-
covery, by using the standard jar spec.
This service discovery is most likely to be used in Java SE environments.

Examples
An OSGi application is usually split into several jars, something like:
mycomponent1.jar (OSGi bundle)
mycomponent2.jar (OSGi bundle)
mycomponent3.jar (OSGi bundle)

Each OSGi bundle is loaded by a different classloader, with the java runtime classloader the parent
for the bundle classlaoders.
Each component can include libraries inside, for instance JDO.
mycomponent1.jar (OSGi bundle)
 - jdo.jar
 - Person.class (PersistenceCapable)
 - Company.class (PersistenceCapable)
mycomponent2.jar (OSGi bundle)
mycomponent3.jar (OSGi bundle)

Java Data Objects 2.2

 JDO 2.2 113 October 10, 2008

Only mycomponent1 currently uses the persistence-capable classes. But if mycomponent3
now needs to read Company instances, you will also need the persistence-capable classes and
jdo.jar in the classpath for mycomponent3. You might decide to duplicate the classes in both
OSGi bundles:
mycomponent1.jar (OSGi bundle)
 - jdo.jar
 - Person.class (PersistenceCapable)
 - Company.class (PersistenceCapable)
mycomponent2.jar (OSGi bundle)
mycomponent3.jar (OSGi bundle)
 - jdo.jar
 - Person.class (PersistenceCapable)
 - Company.class (PersistenceCapable)

But actually this will fail with ClassCastException at runtime, since Person of
mycomponent1 is not the same class, and instances cannot be cast to Person of
mycomponent3. The solution is to reorganize the dependencies:
mycomponent1.jar (OSGi bundle) - depends on mydomainclasses.jar and jdo.jar OSGi
bundles
mycomponent2.jar (OSGi bundle)
mycomponent3.jar (OSGi bundle) - depends on mydomainclasses.jar and jdo.jar OSGi
bundles
jdo.jar (OSGi bundle)
 - jdo.jar
mydomainclasses.jar (OSGi bundle) - depends on jdo.jar
 - Person.class (PersistenceCapable)
 - Company.class (PersistenceCapable)

This fixes the issue of ClassCastException.since both components depend on classes loaded
by the same class loader.
The jdo vendor implementation can be put anywhere, unless you also want to share instances of the
JDO vendor classes at runtime between OSGi bundles. The best choice is this:
mycomponent1.jar (OSGi bundle) - depends on mydomainclasses.jar, jdo.jar and
VENDOR_X.jar OSGi bundles
mycomponent2.jar (OSGi bundle)
mycomponent3.jar (OSGi bundle) - depends on mydomainclasses.jar, jdo.jar and
VENDOR_X.jar OSGi bundles
jdo.jar (OSGi bundle)
 - jdo.jar
mydomainclasses.jar (OSGi bundle) - depends on jdo.jar
 - Person.class (PersistenceCapable)
 - Company.class (PersistenceCapable)
VENDOR_X.jar (OSGi bundle)

Java Data Objects 2.2

 JDO 2.2 114 October 10, 2008

12 PersistenceManager

This chapter specifies the JDO PersistenceManager and its relationship to the application
components, JDO instances, and J2EE Connector.

12.1 Overview
The JDO PersistenceManager is the primary interface for JDO-aware application compo-
nents. It is the factory for the Query interface and contains methods for managing the life cycle of
persistent instances.
The JDO PersistenceManager interface is architected to support a variety of environments
and data sources, from small footprint embedded systems to large enterprise application servers. It
might be a layer on top of a standard Connector implementation such as JDBC or JMS, or itself in-
clude connection management and distributed transaction support.
J2EE Connector support is optional . If it is not supported by a JDO implementation, then a con-
structor for the JDO PersistenceManager or PersistenceManagerFactory is re-
quired. The details of the construction of the PersistenceManager or
PersistenceManagerFactory are not specified by JDO.

12.2 Goals
The architecture of the PersistenceManager has the following goals:

• No changes to application programs to change to a different vendor’s
PersistenceManager if the application is written to conform to the portability
guidelines

• Application to non-managed and managed environments with no code changes

12.3 Architecture: JDO PersistenceManager
The JDO PersistenceManager instance is visible only to certain application components:
those that explicitly manage the life cycle of JDO instances; and those that query for JDO instances.
The JDO PersistenceManager is not required to be used by JDO instances.
There are three primary environments in which the JDO PersistenceManager is architected
to work:

• non-managed (non-application server), minimum function, single transaction, single JDO
PersistenceManager where compactness is the primary metric;

• non-managed but where extended features are desired, such as multiple
PersistenceManager instances to support multiple data sources, XA coordinated
transactions, or nested transactions; and

• managed, where the full range of capabilities of an application server is required.

Java Data Objects 2.2

 JDO 2.2 115 October 10, 2008

Support for these three environments is accomplished by implementing transaction completion
APIs on a companion JDO Transaction instance, which contains transaction policy options and
local transaction support.

12.4 Threading
It is a requirement for all JDO implementations to be thread-safe. That is, the behavior of the imple-
mentation must be predictable in the presence of multiple application threads. Operations imple-
mented by the PersistenceManager directly or indirectly via access or modification of
persistent or transactional fields of persistence-capable classes must be treated as if they were seri-
alized. The implementation is free to serialize internal data structures and thus order multi-threaded
operations in any way it chooses. The only application-visible behavior is that operations might
block indefinitely (but not infinitely) while other operations complete.
Since synchronizing the PersistenceManager is a relatively expensive operation, and not
needed in many applications, the application must specify whether multiple threads might access
the same PersistenceManager or instances managed by the PersistenceManager (per-
sistent or transactional instances of persistence-capable classes; instances of Transaction or
Query; query results, etc.).
If applications depend on serializing operations, then the applications must implement the appropri-
ate synchronizing behavior, using instances visible to the application. This includes some instances
of the JDO implementation (e.g. PersistenceManager, Query, etc.) and instances of persis-
tence-capable classes.
The implementation must not use user-visible instances (instances of PersistenceManager-
Factory, PersistenceManager, Transaction, Query, etc.) as synchronization objects,
with one exception. The implementation must synchronize instances of persistence-capable classes
during state transitions that replace the StateManager. This is to avoid race conditions where the
application attempts to make the same instance persistent in multiple PersistenceManagers.

12.5 Class Loaders
JDO requires access to class instances in several situations where the class instance is not provided
explicitly. In these cases, the only information available to the implementation is the name of the
class.
To resolve class names to class instances, JDO implementations will use Class.forName
(String name, boolean initialize, ClassLoader loader) with up to three
loaders. The initialize parameter can be either true or false depending on the implementation.
These loaders will be used in this order:
1. The loader that loaded the class or instance referred to in the API that caused this class to be load-
ed.

• In case of query, this is the loader of the candidate class, or the loader of the object passed
to the newQuery method.

• In case of navigation from a persistent instance, this is the loader of the class of the instance.

• In the case of getExtent with subclasses, this is the loader of the candidate class.

• In the case of getObjectById, this is the loader of the object id instance.

• Other cases do not have an explicit loader.

2. The loader returned in the current context by Thread.getContextClassLoader().

Java Data Objects 2.2

 JDO 2.2 116 October 10, 2008

3. The loader returned by Thread.getContextClassLoader() at the time the application
calls PersistenceManagerFactory.getPersistenceManager(). This loader is
saved with the PersistenceManager and cleared when the PersistenceManager is
closed.

12.6 Interface PersistenceManager
A JDO PersistenceManager instance supports any number of JDO instances at a time. It is
responsible for managing the identity of its associated JDO instances. A JDO instance is associated
with either zero or one JDO PersistenceManager. It will be zero if and only if the JDO in-
stance is in the transient or detached state. As soon as a transient instance is made persistent or trans-
actional, it will be associated with exactly one JDO PersistenceManager.Detached instances
are never associated with a PersistenceManager.
A JDO PersistenceManager instance supports one transaction at a time, and uses one connec-
tion to the underlying data source at a time. The JDO PersistenceManager instance might use
multiple transactions serially, and might use multiple connections serially.
Therefore, to support multiple concurrent connection-oriented data sources in an application, mul-
tiple JDO PersistenceManager instances are required.
In this interface, for implementations that support BinaryCompatibility, JDO instances passed as pa-
rameters and returned as values must implement PersistenceCapable. The interface defines
these formal parameters as Object because binary compatibility is optional.
package javax.jdo;

public interface PersistenceManager {

boolean isClosed();

void close();

The isClosed method returns false upon construction of the PersistenceManager in-
stance, or upon retrieval of a PersistenceManager from a pool. It returns true only after the
close method completes successfully. After being closed, the PersistenceManager instance
might be returned to the pool or garbage collected, at the choice of the JDO implementation. Before
being used again to satisfy a getPersistenceManager request, the options will be reset to
their default values as specified in the PersistenceManagerFactory.
In a non-managed environment, if the current transaction is active, close throws JDOUserExcep-
tion.
After close completes, all methods on the PersistenceManager instance except is-
Closed(), close(), and get methods throw a JDOFatalUserException.

State Transitions for persistent instances at close
The behavior of persistent instances at close of the corresponding PersistenceManager is not further
defined in this specification.

Null management
In the APIs that follow, Object[] and Collection are permitted parameter types. As these
may contain nulls, the following rules apply.
Null arguments to APIs that take an Object parameter cause the API to have no effect. Null argu-
ments to APIs that take Object[] or Collection will cause the API to throw NullPoint-
erException. Non-null Object[] or Collection arguments that contain null elements will
have the documented behavior for non-null elements, and the null elements will be ignored.

Java Data Objects 2.2

 JDO 2.2 117 October 10, 2008

12.6.1 Cache management

Normally, cache management is automatic and transparent. When instances are queried, navigated
to, or modified, instantiation of instances and their fields and garbage collection of unreferenced in-
stances occurs without any explicit control. When the transaction in which persistent instances are
created, deleted, or modified completes, eviction is automatically done by the transaction comple-
tion mechanisms. Therefore, eviction is not normally required to be done explicitly. However, if the
application chooses to become more involved in the management of the cache, several methods are
available.
The non-parameter version of these methods applies the operation to each appropriate JDO instance
in the cache. For evictAll, these are all persistent-clean instances; for refreshAll, all transactional
instances.

Evict instances
void evict (Object pc);

void evictAll ();

void evictAll (Object... pcs);

void evictAll (Collection pcs);

void evictAll (Class pcClass, boolean subclasses);

Eviction is a hint to the PersistenceManager that the application no longer needs the parameter in-
stances in the cache. Eviction allows the parameter instances to be subsequently garbage collected.
Evicted instances will not have their values retained after transaction completion, regardless of the
settings of the retainValues or restoreValues flags.
If evictAll with no parameters is called, then all persistent-clean instances are evicted (they tran-
sition to hollow). If users wish to automatically evict transactional instances at transaction commit
time, then they should set RetainValues to false. Similarly, to automatically evict transac-
tional instances at transaction rollback time, then they should set RestoreValues to false.
If the parameter instance is detached, then JDOUserException is thrown.
For each persistent-clean and persistent-nontransactional instance that the JDO PersistenceM-
anager evicts, it:

• calls the jdoPreClear method on each instance, if the class of the instance implements
InstanceCallbacks

• clears persistent fields on each instance (sets the value of the field to its Java default value);

• changes the state of instances to hollow.

Refresh instances

void refresh (Object pc);

void refreshAll ();

void refreshAll (Object... pcs);

void refreshAll (Collection pcs);

void refreshAll (JDOException ex);

The refresh and refreshAll methods update the values in the parameter instance[s] from the
data in the datastore. The intended use is for optimistic transactions where the state of the JDO in-
stance is not guaranteed to reflect the state in the datastore, and for datastore transactions to undo
the changes to a specific set of instances instead of rolling back the entire transaction. This method

Java Data Objects 2.2

 JDO 2.2 118 October 10, 2008

can be used to minimize the occurrence of commit failures due to mismatch between the state of
cached instances and the state of data in the datastore.
When called with a transaction active, the refreshAll method with no parameters causes all
transactional instances to be refreshed. If a transaction is not in progress, then this call has no effect.
If there is a fetch plan in effect, then the fetch plan affects the results of this method. All modified
fields and all fields in the current fetch plan are unloaded and then fields in the current fetch plan
are fetched from the datastore.
Note that this method will cause loss of changes made to affected instances by the application due
to refreshing the contents from the datastore.
When used with the JDOException parameter, the JDO PersistenceManager refreshes all
instances in the exception, including instances in nested exceptions, that failed verification. Updated
and unchanged instances that failed verification are reloaded from the datastore. Datastore instances
corresponding to new instances that failed due to duplicate key are loaded from the datastore.
If the parameter instance is detached, then JDOUserException is thrown.
The JDO PersistenceManager:

• loads persistent values from the datastore into the instance;

• calls the jdoPostLoad method on each persistent instance, if the class of the instance
implements InstanceCallbacks; and

• changes the state of persistent-dirty instances to persistent-clean in a datastore transaction;
or persistent-nontransactional in an optimistic transaction.

Retrieve instances
void retrieve(Object pc);

void retrieve(Object pc, boolean useFetchPlan);

void retrieveAll(Collection pcs);

void retrieveAll(Collection pcs, boolean useFetchPlan);

void retrieveAll(Object... pcs);

void retrieveAll(Object[] pcs, boolean useFetchPlan);

void retrieveAll(boolean useFetchPlan, Object... pcs);

These methods request the PersistenceManager to load persistent fields into the parameter
instances. Subsequent to this call, the application might call makeTransient on the parameter
instances, and the fields can no longer be touched by the PersistenceManager. The Persis-
tenceManager might also retrieve related instances according to the current fetch plan or a ven-
dor-specific pre-read policy (not specified by JDO).
If the useFetchPlan parameter is false, or the method without the useFetchPlan parameter is in-
voked, all fields must be loaded from the datastore.
If the useFetchPlan parameter is true, and the fetch plan has not been modified from its default set-
ting (see 12.7.5), then this is a hint to the implementation that only the fields in the current fetch
group need to be retrieved. A compliant implementation is permitted to retrieve all fields regardless
of the setting of this parameter. After the call with the useFetchPlan parameter true, all fields in the
current fetch group must have been fetched, but other fields might be fetched lazily by the imple-
mentation.
If the useFetchPlan parameter is true, and the fetch plan has been changed, then only the fields spec-
ified by the fetch plan are loaded.
If the parameter instance or instances are detached, then JDOUserException is thrown.

Java Data Objects 2.2

 JDO 2.2 119 October 10, 2008

The method retrieveAll(Object[] pcs, boolean useFetchPlan) is deprecated
in favor of retrieveAll(boolean useFetchPlan, Object... pcs).
The JDO PersistenceManager:

• loads persistent values from the datastore into the instance;

• for hollow instances, changes the state to persistent-clean in a datastore transaction; or
persistent-nontransactional in an optimistic transaction;

• if the class of the instance implements LoadCallback calls jdoPostLoad;

• calls postLoad for all LifecycleListener instances that are registered for load
callbacks for the class of the loaded instances.

12.6.2 Transaction factory interface

Transaction currentTransaction();

The currentTransaction method returns the Transaction instance associated with the
PersistenceManager. The identical Transaction instance will be returned by all cur-
rentTransaction calls to the same PersistenceManager until close. Note that multiple
transactions can be begun and completed (serially) with this same instance.
Even if the Transaction instance returned cannot be used for transaction completion (due to ex-
ternal transaction management), it still can be used to set flags.

12.6.3 Query factory interface

The query factory methods are detailed in the Query chapter .
void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

These methods get and set the value of the IgnoreCache option for all Query instances created
by this PersistenceManager [see Query options]. The IgnoreCache option if set to
true, is a hint to the query engine that the user expects queries to be optimized to return approxi-
mate results by ignoring changed values in the cache.
The IgnoreCache option also affects the iterator obtained from Extent instances obtained from
this PersistenceManager.
The IgnoreCache option is preserved for query instances constructed from other query instances.

12.6.4 Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user operations
on collections. Extent capability is a boolean property of persistence capable classes and interfaces.
If an instance of a class or interface that has a managed extent is made persistent via reachability,
the instance is put into the extent implicitly. If an instance of a class that implements an interface
that has a managed extent is made persistent, then that instance is put into the interface’s extent.
Extent getExtent (Class persistenceCapable, boolean subclasses);

Extent getExtent (Class persistenceCapable);

The getExtent method returns an Extent that contains all of the instances in the parameter
class or interface, and if the subclasses flag is true, all of the instances of the parameter class and
its subclasses. The method with no subclasses parameter is treated as equivalent to getExtent
(persistenceCapable, true).
If the metadata does not indicate via the requires-extent attribute in the class or interface element
that an extent is managed for the parameter class or interface, then JDOUserException is thrown.

Java Data Objects 2.2

 JDO 2.2 120 October 10, 2008

The extent might not include instances of those subclasses for which the metadata indicates that an
extent is not managed for the subclass.
This method can be called whether or not a transaction is active, regardless of whether Nontransac-
tionalRead is supported. If NontransactionalRead is not supported, then the iterator method will
throw a JDOUnsupportedOptionException if called outside a transaction.
It might be a common usage to iterate over the contents of the Extent, and the Extent should be
implemented in such a way as to avoid out-of-memory conditions on iteration.
The primary use for the Extent returned as a result of this method is as a candidate collection pa-
rameter to a Query instance. For this usage, the elements in the Extent typically will not be in-
stantiated in the Java VM; it is used only to identify the prospective datastore instances.

Extents of interfaces
If the Class parameter of the getExtent method is an interface, then the interface must be identified
in the metadata as having its extent managed.

12.6.5 JDO Identity management

Object getObjectById (Object oid);

The getObjectById method attempts to find an instance in the cache with the specified JDO
identity. This method behaves exactly as the method getObjectById (Object oid,
boolean validate) with the validate flag set to true.
Object getObjectById (Object oid, boolean validate);

The getObjectById method attempts to find an instance in the cache with the specified JDO
identity. The oid parameter object might have been returned by an earlier call to getObjectId
or getTransactionalObjectId, or might have been constructed by the application.
If the PersistenceManager is unable to resolve the oid parameter to an ObjectId instance,
then it throws a JDOUserException. This might occur if the implementation does not support
application identity, and the parameter is an instance of an object identity class.

• If the validate flag is false:

• If there is already an instance in the cache with the same JDO identity as the oid parameter,
then this method returns it. There is no change made to the state of the returned instance.

• If there is not an instance already in the cache with the same JDO identity as the oid
parameter, then this method creates an instance with the specified JDO identity and returns
it. If there is no transaction in progress, the returned instance will be hollow or persistent-
nontransactional, at the choice of the implementation.

• If there is a transaction in progress, the returned instance will be hollow, persistent-
nontransactional, or persistent-clean, at the choice of the implementation.

• It is an implementation decision whether to access the datastore, if required to determine
the exact class. This will be the case of inheritance, where multiple persistence-capable
classes share the same Object Id class.

• If the instance does not exist in the datastore, then this method might not fail. It is an
implementation choice if the method fails immediately with a
JDOObjectNotFoundException. But a subsequent access of the fields of the
instance will throw a JDOObjectNotFoundException if the instance does not
exist at that time. Further, if a relationship is established to this instance, and the instance
does not exist when the instance is flushed to the datastore, then the transaction in which
the association was made will fail.

• If the validate flag is true:

Java Data Objects 2.2

 JDO 2.2 121 October 10, 2008

• If there is already a transactional instance in the cache with the same jdo identity as the oid
parameter, then this method returns it. There is no change made to the state of the returned
instance.

• If there is an instance already in the cache with the same jdo identity as the oid parameter,
the instance is not transactional, and the instance does not exist in the datastore, then a
JDOObjectNotFoundException is thrown.

• If there is not an instance already in the cache with the same jdo identity as the oid
parameter, then this method creates an instance with the specified jdo identity, verifies that
it exists in the datastore, and returns it. If the instance does not exist in the datastore, then
a JDOObjectNotFoundException is thrown. If the fetch plan has been changed
from its original value, the fetch plan governs which fields are fetched from the datastore
and which related objects are also fetched with them.

• If there is no transaction in progress, the returned instance will be hollow or persistent-
nontransactional, at the choice of the implementation.

• If there is a datastore transaction in progress, the returned instance will be persistent-clean.
• If there is an optimistic transaction in progress, the returned instance will be persistent-

nontransactional.
Object getObjectId (Object pc);

The getObjectId method returns an ObjectId instance that represents the object identity of
the specified JDO instance. The identity is guaranteed to be unique only in the context of the JDO
PersistenceManager that created the identity, and only for two types of JDO Identity: those
that are managed by the application, and those that are managed by the datastore.
If the object identity is being changed in the transaction, by the application modifying one or more
of the application key fields, then this method returns the identity as of the beginning of the trans-
action. The value returned by getObjectId will be different following afterCompletion
processing for successful transactions.
Within a transaction, the ObjectId returned will compare equal to the ObjectId returned by
only one among all JDO instances associated with the PersistenceManager regardless of the
type of ObjectId.
The ObjectId does not necessarily contain any internal state of the instance, nor is it necessarily
an instance of the class used to manage identity internally. Therefore, if the application makes a
change to the ObjectId instance returned by this method, there is no effect on the instance from
which the ObjectId was obtained.
The getObjectById method can be used between instances of PersistenceManager of
different JDO vendors only for instances of persistence capable classes using application-managed
(primary key) JDO identity. If it is used for instances of classes using datastore identity, the method
might succeed, but there are no guarantees that the parameter and return instances are related in any
way.
If the parameter pc is not persistent, or is null, then null is returned.
Object getTransactionalObjectId (Object pc);

If the object identity is being changed in the transaction, by the application modifying one or more
of the application key fields, then this method returns the current identity in the transaction. If there
is no transaction in progress, or if none of the key fields is being modified, then this method has the
same behavior as getObjectId.
To get an instance in a PersistenceManager with the same identity as an instance from a dif-
ferent PersistenceManager, use the following: aPersistenceManager.getObject-
ById(JDOHelper.getObjectId(pc), validate). The validate parameter has a value
of true or false depending on your application requirements.

Java Data Objects 2.2

 JDO 2.2 122 October 10, 2008

Getting Multiple Persistent Instances
Collection getObjectsById (Collection oids);

Object[] getObjectsById (Object... oids);

Collection getObjectsById (Collection oids, boolean validate);

Object[] getObjectsById (Object[] oids, boolean validate);

Object[] getObjectsById (boolean validate, Object... oids);

The getObjectsById method attempts to find instances in the cache with the specified JDO
identities. The elements of the oids parameter object might have been returned by earlier calls to
getObjectId or getTransactionalObjectId, or might have been constructed by the ap-
plication.
If a method with no validate parameter is used, the method behaves exactly as the corresponding
method with the validate flag set to true.
If the Object[] or Object... form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Collection form of the method is used, the iter-
ator over the returned Collection returns instances in the same order as the oids returned by an
iterator over the parameter Collection. The cardinality of the return value is the same as the car-
dinality of the oids parameter.
The method getObjectsById (Object[] oids, boolean validate) is deprecated
in favor of getObjectsById (boolean validate, Object... oids).

Getting an Object by Class and Key
<T> T getObjectById (Class<T> cls, Object key);

The getObjectById method attempts to find an instance in the cache with the derived JDO iden-
tity. The key parameter is either the string representation of the object id, or is an object represen-
tation of a single field identity key.
This is a convenience method that exactly matches the behavior of calling
pm.getObjectById (pm.newObjectIdInstance (cls, key), true).

12.6.6 Persistent instance factory

The following method is used to create an instance of a persistence-capable interface, or of a con-
crete or abstract class.
<T> T newInstance(Class<T> persistenceCapable);

The parameter must be one of the following:
• an abstract class that is declared in the metadata as persistence-capable, in which all

abstract methods are persistent properties, or

• an interface that is declared in the metadata as persistence-capable, in which all methods
are persistent properties, or

• a concrete class that is declared in the metadata as persistence-capable. In this case, the
concrete class must declare a public no-args constructor.

If the parameter does not satisfy the above requirements, JDOUserException is thrown.The returned
instance is transient, and is an “instanceof” the parameter. Applications might use the instance via
the get and set property methods and change its life cycle state exactly as if it were an instance of a
persistence-capable class.
In order for the newInstance method to be used, the parameter interface must be completely mapped.
For relational implementations, the interface must be mapped to a table and all persistent properties

Java Data Objects 2.2

 JDO 2.2 123 October 10, 2008

must be mapped to columns. Additionally, interfaces that are the targets of all relationships from
persistent properties must also be mapped. Otherwise, JDOUserException is thrown by the newIn-
stance method.
For interfaces and classes that use a SingleFieldIdentity as the object-id class, if the returned in-
stance is subsequently made persistent, the target class stored in the object-id instance is the param-
eter of the newInstance method that created it.

12.6.7 JDO Instance life cycle management

The following methods take either a single instance or multiple instances as parameters.
If a collection or array of instances is passed to any of the methods in this section, and one or more
of the instances fail to complete the required operation, then all instances will be attempted, and a
JDOUserException will be thrown which contains a nested exception array, each exception of
which contains one of the failing instances. The succeeding instances will transition to the specified
life cycle state, and the failing instances will remain in their current state.

Make instances persistent
<T> T makePersistent (T pc);

<T> T[] makePersistentAll (T... pcs);

<T> T makePersistentAll (Collection<T> pcs);

These methods make transient instances persistent and apply detached instance changes to the
cache. They must be called in the context of an active transaction, or a JDOUserException is
thrown. For a transient instance, they will assign an object identity to the instance and transition it
to persistent-new. Any transient instances reachable from this instance via persistent fields of this
instance will become provisionally persistent, transitively. That is, they behave as persistent-new
instances (return true to isPersistent, isNew, and isDirty). But at commit time, the
reachability algorithm is run again, and instances made provisionally persistent that are not current-
ly reachable from persistent instances will revert to transient.For a detached instance with the
CopyOnAttach property true, they locate or create a persistent instance with the same JDO
identity as the detached instance, and merge the persistent state of the detached instance into the per-
sistent instance. Only the state of persistent fields is merged. If non-persistent state needs to be cop-
ied, the application should use the jdoPostAttach callback or the postAttach lifecycle event listener.
Any references to the detached instances from instances in the closure of the parameter instances
are modified to refer to the corresponding persistent instance instead of to the detached instance. If
the CopyOnAttach property is false, then the instance itself is transitioned to persistent-clean
for datastore transactions or persistent-nontransactional for optimistic transactions. If there already
is an instance in the cache with the same identity, JDOUserException is thrown.
During application of changes of the detached state, if the JDO implementation can determine that
there were no changes made during detachment, then the implementation is not required to mark the
corresponding instance dirty. If it cannot determine if changes were made, then it must mark the in-
stance dirty.
No consistency checking is done during makePersistent of detached instances. If consistency
checking is required by the application, then flush or checkConsistency should be called after at-
taching the instances.
These methods have no effect on parameter persistent instances already managed by this Persis-
tenceManager. They will throw a JDOUserException if the parameter instance is managed
by a different PersistenceManager.
If an instance is of a class whose identity type (application, datastore, or none) is not sup-
ported by the JDO implementation, then a JDOUserException will be thrown for that in-
stance.The return value for instances in the transient or persistent states is the same as the parameter

Java Data Objects 2.2

 JDO 2.2 124 October 10, 2008

value. With CopyOnAttach true, the return value for detached instances is the persistent in-
stance corresponding to the detached instance; with CopyOnAttach false, the return value for
detached instances is the instance itself.
The return values for makePersistentAll methods correspond by position to the parameter in-
stances.

Delete persistent instances
void deletePersistent (Object pc);

void deletePersistentAll (Object... pcs);

void deletePersistentAll (Collection pcs);

These methods delete persistent instances from the datastore. They must be called in the context of
an active transaction, or a JDOUserException is thrown. The representation in the datastore will
be deleted when this instance is flushed to the datastore (via commit or evict).
Note that this behavior is not exactly the inverse of makePersistent, due to the transitive nature
of makePersistent. The implementation might delete dependent datastore objects depending
on implementation-specific policy options that are not covered by the JDO specification. However,
if a field is marked as containing a dependent reference, the dependent instance is deleted as well.
These methods have no effect on parameter instances already deleted in the transaction or on em-
bedded instances. Embedded instances are deleted when their owning instance is deleted.
Deleting instances involved in relationships have special handling. See “Relationship Mapping” on
page 195. for details.
Portable applications should use this method to delete instances from the datastore, and not depend
on any reachability algorithm to automatically delete instances.
If the parameter instance of deletePersistent() is a detached instance, the method applies to the as-
sociated persistent instance. Similarly, if any of the parameter instances of deletePersistentAll() is
a detached instance, the method applies to the associated persistent instances. If the class of any in-
stance to be deleted implements DeleteCallback, or if there are any InstanceLifecycleListeners reg-
istered for deletion callbacks of instances of any detached objects’ class, then the parameter
persistent instances of those classes are instantiated, the callback is executed, and/or the listeners are
called with the event, as described in section 12.15.
These methods will throw a JDOUserException if the parameter instance is managed by a dif-
ferent PersistenceManager.These methods will throw a JDOUserException if the pa-
rameter instance is transient.

Make instances transient
void makeTransient (Object pc);

void makeTransientAll (Object... pcs);

void makeTransientAll (Collection pcs);

These methods make persistent instances transient, so they are no longer associated with the Per-
sistenceManager instance. They do not affect the persistent state in the datastore. They can be
used as part of a sequence of operations to move a persistent instance to another Persistence-
Manager. The instance transitions to transient, and it loses its JDO identity. If the instance has state
(persistent-nontransactional or persistent-clean) the state in the cache is preserved unchanged. If the
instance is dirty, a JDOUserException is thrown.
The effect of these methods is immediate and not subject to rollback. Field values in the instances
are not modified. To avoid having the instances become persistent by reachability at commit, the

Java Data Objects 2.2

 JDO 2.2 125 October 10, 2008

application should update all persistent instances containing references to the parameter instances
to avoid referring to them, or make the referring instances transient.
If the parameter instance or instances are detached, then JDOUserException is thrown.
These methods will be ignored if the instance is transient.
void makeTransient (Object pc, boolean useFetchPlan);

void makeTransientAll (Object[] pcs, boolean useFetchPlan);

void makeTransientAll (boolean useFetchPlan, Object... pcs);

void makeTransientAll (Collection pcs, boolean useFetchPlan);

If the useFetchPlan parameter is false, these methods behave exactly as the corresponding makeT-
ransient methods.
If the useFetchPlan parameter is true, the current FetchPlan, including MaxFetchDepth,
DETACH_LOAD_FIELDS, and DETACH_UNLOAD_FIELDS, is applied to the pc or pcs param-
eter instance(s) to load fields and instances from the datastore. The DetachmentRoots is not affect-
ed. After the fetch plan is used to load instances, the entire graph of instances reachable via loaded
fields of the parameter instances is made transient. Transient fields are not modified by the method.
If the parameter instance or instances are detached, then JDOUserException is thrown.
The method makeTransientAll (Object[] pcs, boolean useFetchPlan) is dep-
recated in favor of makeTransientAll (boolean useFetchPlan, Object... pcs).

Make instances transactional
void makeTransactional (Object pc);

void makeTransactionalAll (Object... pcs);

void makeTransactionalAll (Collection pcs);

These methods make transient instances transactional and cause a state transition to transient-clean.
After the method completes, the instance observes transaction boundaries. If the transaction in
which this instance is made transactional commits, then the transient instance retains its values. If
the transaction is rolled back, then the transient instance takes its values as of the call to makeT-
ransactional if the call was made within the current transaction; or the beginning of the trans-
action, if the call was made prior to the beginning of the current transaction.
If the implementation does not support TransientTransactional, and the parameter in-
stance is transient, then JDOUnsupportedOptionException is thrown.
If the parameter instance or instances are detached, then JDOUserException is thrown.
These methods are also used to mark a nontransactional persistent instance as being part of the read-
consistency set of the transaction. In this case, the call must be made in the context of an active trans-
action, or a JDOUserException is thrown.
The effect of these methods is immediate and not subject to rollback.

Make instances nontransactional
void makeNontransactional (Object pc);

void makeNontransactionalAll (Object[] pcs);

void makeNontransactionalAll (Collection pcs);

These methods make transient-clean instances nontransactional and cause a state transition to tran-
sient. After the method completes, the instance does not observe transaction boundaries.
These methods make persistent-clean instances nontransactional and cause a state transition to per-
sistent-nontransactional.

Java Data Objects 2.2

 JDO 2.2 126 October 10, 2008

If the parameter instance or instances are detached, then JDOUserException is thrown.
If this method is called with a dirty parameter instance, a JDOUserException is thrown.
The effect of these methods is immediate and not subject to rollback.

12.6.8 Detaching and attaching instances

These methods provide a way for an application to identify persistent instances, obtain copies of
these persistent instances, modify the detached instances either in the same JVM or in a different
JVM, apply the changes to the same or different PersistenceManager, and commit the changes.
There are three ways to cause the creation of detached instances:

• explicitly via methods defined on PersistenceManager;

• implicitly by committing the transaction while the DetachAllOnCommit flag is true;

• or implicitly by serializing persistent instances.

NOTE: serializing for storage using the serialized, serialized-element, serialized-key, or serialized-
value metadata attributes does not create a detached instance.
Attaching detached instances (in order to commit changes made while detached) is done explicitly
via the makePersistent method.

Committing the transaction with DetachAllOnCommit
boolean getDetachAllOnCommit();

The value of the DetachAllOnCommit flag is returned.
void setDetachAllOnCommit(boolean flag);

The value of the DetachAllOnCommit flag is set to the parameter value. The flag takes effect during
the next commit after being called. This method is allowed at any time except during transaction
completion (beforeCompletion and afterCompletion).
In JDO 1.0, the behavior of persistent instances after closing the associated PersistenceManager is
undefined. JDO 2 defines a new property called DetachAllOnCommit which changes this behavior.
With this flag set to false, the state of persistent instances in the cache after commit is defined by
the retainValues flag.
With this flag set to true, during beforeCompletion all cached instances are prepared for detach-
ment according to the fetch plan in effect at commit. Loading fields and unloading fields required
by the fetch plan is done after calling the user’s beforeCompletion callback. During afterComple-
tion, before calling the user’s afterCompletion callback, all detachable persistent instances in the
cache transition to detached; non-detachable persistent instances transition to transient; and detach-
able instances can be serialized as detached instances. Transient transactional instances are unaffect-
ed by this flag.

Attaching Detached Instances with CopyOnAttach
boolean getCopyOnAttach();

The value of the CopyOnAttach flag is returned.
void setCopyOnAttach(boolean flag);

The value of the CopyOnAttach flag is set to the parameter value. The flag takes effect during
the next makePersistent method.
In JDO 2.0, makePersistent resulted in a deep copy of the parameter detached instances. The
detached instances themselves never made a state transition. With JDO 2.1, this behavior is the same
if the CopyOnAttach flag is true. But with CopyOnAttach flag set to false, detached in-

Java Data Objects 2.2

 JDO 2.2 127 October 10, 2008

stances transition from detached to persistent. This change potentially improves usability and per-
formance:

• The overhead of making a copy of the detached instance is removed;

• Transient state of detached instances is preserved, without requiring implementation of a
JDOPostAttach callback or postAttach lifecycle listener;

• In conjunction with DetachAllOnCommit, the same instances can be used for multiple
round trips using different persistence managers

For example, consider a web application where a detached instance is stored in the session. During
several interactions with the remote user, the instance can be dirtied during an incoming request.
With CopyOnAttach true, the application would need to replace the detached instance each
time a request came in. But with CopyOnAttach false, the application can simply use the de-
tached instance directly, needing only to call makePersistent on the detached instances when
a new persistence manager is obtained, and setting DetachAllOnCommit to true.
Note that for backward compatibility, the user must explicitly set CopyOnAttach to false to
obtain the new behavior. This can be done either in the persistence manager or in the persistence
manager factory.

Serializing Persistent Instances
The JDO 1.0 specification requires that serialized instances be made ready for serialization by in-
stantiating all serializable persistent fields before calling writeObject. For binary-compatible
implementations, this is done by the enhancer adding a call to the StateManager prior to invok-
ing the user's writeObject method. The behavior is the same in JDO 2.0, with the additional re-
quirement that restored detachable serialized instances are treated as detached instances.

Explicit detach
<T> T detachCopy(T pc);

<T> Collection<T> detachCopyAll(Collection<T> pcs);

<T> T[] detachCopyAll(T... pcs);

This method makes detached copies of the parameter instances and returns the copies as the result
of the method. The order of instances in the parameter Collection’s iteration corresponds to the
order of corresponding instances in the returned Collection’s iteration.Only persistent fields are
copied by the JDO implementation. If transient fields need to be copied, the application should im-
plement the jdoPreDetach callback or the preDetach lifecycle event listener.
If a detachCopy method is called with an active transaction, the parameter Collection of in-
stances is first made persistent, and the reachability algorithm is run on the instances. This ensures
that the closure of all of the instances in the parameter Collection is persistent.
If a detachCopy method is called outside an active transaction, the reachability algorithm will not
be run; if any transient instances are either in the parameter list or reachable via persistent fields of
the closure of the parameter list, a JDOUserException is thrown for each persistent instance
containing such fields. If any detached instances are in the parameter list or reachable from detached
or persistent instances in the closure of the parameter list, the corresponding persistent instance is
obtained.
If a detachCopy method is called outside an active transaction, the NontransactionalRead
property must be true or JDOUserException is thrown.
For each instance in the parameter Collection, a corresponding detached copy is returned. Each
field in the persistent instance is handled based on its type and whether the field is contained in the
fetch group for the persistence-capable class. If there are duplicates in the parameter Collection,
the corresponding detached copy is used for each such duplicate.

Java Data Objects 2.2

 JDO 2.2 128 October 10, 2008

Instances in the persistent-new and persistent-dirty state are updated with their current object iden-
tity and version (as if they had been flushed to the datastore prior to copying their state). This en-
sures that the object identity and version (if any) is properly set prior to creating the copy. The
transaction in which the flush is performed is assumed to commit; if the transaction rolls back, then
the detached instances become invalid (they no longer refer to the correct version of the datastore
instances). This situation will be detected at the subsequent attempt to commit or flush a transaction
after attaching the detached instances.
If instances in a deleted state (either persistent-deleted or persistent-new-deleted) are attempted to
be detached, a JDOUserException is thrown with nested JDOUserExceptions, one for
each such instance.
Instances to be detached that are not of a Detachable class are detached as transient instances.
The FetchPlan in effect in the PersistenceManager at the time of detachment determines the
fields to be fetched in the closure of the persistent instances. If the default fetch plan is active, in-
stances are detached in their current state. If the user has changed the fetch plan, then each instance
to be detached will have the fetch plan applied to it, including detachment options. The
DETACH_LOAD_FIELDS causes the fields in the fetch plan to be loaded before the instances are
detached. The DETACH_UNLOAD_FIELDS causes loaded fields that are not in the fetch plan to be
unloaded before detachment.
Fields in the FetchPlan of primitive and wrapper types are set to their values from the datastore.
Fields of references to persistence-capable types are set to the detached copy corresponding to the
persistent instance. Fields of Collections and Maps are set to detached SCO instances containing ref-
erences to detached copies corresponding to persistent instances in the datastore.
The result of the detachCopyAll method is a Collection or array of detached instances
whose closure contains copies of detached instances. Among the closure of detached instances there
are no references to persistent instances; all such references from the persistent instances have been
replaced by the corresponding detached instance.
There might or might not be a transaction active when the detachCopy method is called.

Behavior of Detached Instances
While detached, any field access to a field that was not loaded throws JDODetachedFieldAc-
cessException.
While detached, each detached instance has a persistent identity that can be obtained via the static
JDOHelper method getObjectId(Object pc). The version of detached instances can be
obtained by the static JDOHelper method getVersion(Object pc).
While detached, identity fields of application-identity classes might be modified by the application.
These fields are marked as modified by the detached instance, but the object id of the detached in-
stance does not change. Upon attachment, the change will be rejected if the jdo implementation does
not support application identity change. See PersistenceManagerFactory property jav-
ax.jdo.option.ChangeApplicationIdentity.
Changes made to embedded instances of mutable types including persistence-capable types are
tracked by the detached instance if they are replaced or modified. Changes are reflected by marking
the detached instance’s field as modified.
To apply changes made to instances while detached, use the makePersistent method with the
detached instance as parameter.

Java Data Objects 2.2

 JDO 2.2 129 October 10, 2008

12.7 Fetch Plan
A fetch plan defines rules for instantiating the loaded state for an object graph. It specifies fields to
be loaded for all of the instances in the graph. Using fetch plans, users can control the field fetching
behavior of many JDO APIs. A fetch plan can be associated with a PersistenceManager and, inde-
pendently, with a Query and with an Extent.
A fetch plan also defines rules for creating the detached object graph for the detach APIs and for
automatic detachment at commit with DetachAllOnCommit set to true.
A fetch plan consists of a number of fetch groups that are combined additively for each affected
class; a fetch size that governs the number of instances of multi-valued fields retrieved by queries;
a recursion-depth per field that governs the recursion depth of the object graph fetched for that field;
a maximum fetch depth that governs the depth of the object graph fetched starting with the root ob-
jects; and flags that govern the behavior of detachment.
The default fetch plan contains exactly one fetch group, "default". It has a fetch size of 0, and de-
tachment option DETACH_LOAD_FIELDS. The default fetch plan is in effect when the Persis-
tenceManager is first acquired from the PersistenceManagerFactory.
With the default fetch plan in effect, the behavior of JDO 2 is very similar to the behavior of JDO
1. That is, when instances are loaded into memory in response to queries or navigation, fields in the
default fetch group are loaded, and the jdoPostLoad callback is executed the first time an instance
is fetched from the datastore. The implementation is allowed to load additional fields, as in JDO 1.
Upon detachment, fields that are have been loaded into the detached instances are preserved, regard-
less of whether they were loaded automatically by the implementation or loaded in response to ap-
plication access; and fields that have not been loaded are marked in the detached instances as not
loaded.
This behavior is sufficient for the most basic use case for detachment, where the detached instances
are simply “data transfer objects” containing primitive fields. The detached instances can be modi-
fied in place or serialized and sent to another tier to be changed and sent back. Upon being received
back, the instances can be attached and if there are no version conflicts, the changes can be applied
to the datastore.
The most common use case for fetch groups is to restrict the fields loaded for an instance to the
primitive values and avoid loading related instances for queries. For more control over the default
behavior, the “default” fetch group can simply be redefined for specific classes. For example, a
String field that contains a typically large document can be defined as not part of the default fetch
group, and the field will be loaded only when accessed by the application. Similarly, an Order field
associated with OrderLine might be defined as part of the default fetch group of OrderLine, and que-
ries on OrderLine will always load the corresponding Order instance as well. This can easily im-
prove the performance of applications that always need the Order whenever OrderLine instances are
loaded.
For explicit detachment, the parameters of the detach method are each treated as roots for the pur-
pose of determining the detached object graph. The fetch plan is applied to each of the roots as if no
other roots were also being detached. The roots and their corresponding object graphs are combined
and the resulting object graph is detached in its entirety.

12.7.1 Fetch Groups

Fetch groups are used to identify the list of fields and their associated field recursion-depth for each
class for which the fetch plan is applied.
Fetch groups are identified by name and apply to one or more classes. Names have global scope so
the same fetch group name can be used for any number of classes. This makes it possible to specify

Java Data Objects 2.2

 JDO 2.2 130 October 10, 2008

fetch groups per PersistenceManager instead of per extent. This greatly simplifies the use of
fetch groups in an application.
The default fetch group (named "default") for each class is created by the JDO implementation
according to the rules in the JDO 1.0.1 specification. That is, it includes all fields that by default
belong to the default fetch group (i.e. single-valued fields), and causes the jdoPostLoad method
to be called the first time fields are loaded. The default fetch group may also be defined by the user
in the metadata like any other fetch group, in order to make use of JDO 2 features.
The implementation must also define another fetch group named "all" for each class. The "all"
group contains all fields in the class, but can be redefined by the user, for example to add recursion-
depth to certain fields, or to exclude some fields from being loaded.
If a fetch plan other than the default fetch plan is active for a PersistenceManager, the behavior of
several APIs changes:

• For detachCopy the JDO implementation must ensure that the graph specified by the
active fetch groups is copied, based on the DETACH_LOAD_FIELDS and
DETACH_UNLOAD_FIELDS flags.

• For refresh, after clearing fields in the instances, the JDO implementation uses the
fetch plan to determine which fields to load from the datastore.

• For retrieve with useFetchPlan true, the implementation uses the fetch plan to
determine which fields are loaded from the datastore. With useFetchPlan false, the
implementation reverts to JDO 1 behavior, which loads all fields from the datastore; in this
case, no related instances are loaded.

• When executing a query the JDO implementation loads the fields as specified in the fetch
plan associated with the Query instance.

• When the application dereferences an unloaded field, the JDO implementation uses the
current fetch plan and the load-fetch-group of the field to create the fetch strategy for the
field. The specific behavior depends on whether the unloaded field is a relation to another
persistence-capable class.

• for non-relation fields, the current fetch plan is applied to the field’s owning instance, and
the fields in the field’s load-fetch-group, plus the field itself are added to the list of fields.

• for relation fields, the fields in the owning instance are fetched as immediately above, and
additionally the instances referred by the field are loaded using the current fetch plan plus
the field’s load-fetch-group.

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the PersistenceManager. It always re-
turns the identical instance for the same PersistenceManager.
FetchGroups may be defined statically (in metadata) or dynamically (while the program is running).

12.7.2 MaxFetchDepth

When relationship fields are included in the active fetch plan, it may be possible to retrieve the entire
contents of the datastore, which might not be the desired effect. To avoid this behavior, and to allow
the application to control the amount of data retrieved from the datastore, the MaxFetchDepth prop-
erty of the fetch plan is used. The MaxFetchDepth is the depth of references (fields of relationship
types) to instantiate, starting with the root instances.
Setting MaxFetchDepth to 1 limits the instances retrieved to the root instances and instances directly
reachable from the root instances through a field in the fetch plan for the root class(es). Setting
MaxFetchDepth to 0 has no meaning, and JDOUserException will be thrown. Setting MaxFetch-

Java Data Objects 2.2

 JDO 2.2 131 October 10, 2008

Depth to -1 does not limit the instances retrieved via relationship fields in the fetch plan. Caution
should be exercised to avoid retrieving more instances than desired.
For example, assume the class Employee defines field dept of type Department, and class Depart-
ment defines field comp of type Company. When a query for Employee is executed, with a fetch
plan that includes Employee.dept and Department.comp and with MaxFetchDepth set to 1, the De-
partments referenced by Employees returned from the query are instantiated, but the Company field
is not instantiated. With the MaxFetchDepth set to 2, Departments and their corresponding Com-
panys are instantiated for the Employee instances returned by the query.

12.7.3 Root instances

Root instances are parameter instances for retrieve, detachCopy, and refresh; and result
instances for queries. Root instances for DetachAllOnCommit are defined explicitly by the user
via the FetchPlan property DetachmentRoots or DetachmentRootClasses. If not set
explicitly, the detachment roots consist of the union of all root instances of methods executed since
the last commit or rollback.
Once set explicitly, the detachment roots will not be changed until commit, at which time the de-
tachment roots will be set to the empty collection.
Detachment roots and root classes are ignored for all FetchPlans except those associated directly
with the PersistenceManager. Detachment root classes are never changed by the JDO implementa-
tion; they are completely controlled by the user. Detachment root classes is an empty Class[]
when the PersistenceManager is first acquired from the PersistenceManagerFacto-
ry.

12.7.4 Recursion-depth

For object models with bidirectional relationships or self-referencing relationships, it is useful to
limit the depth of the object graph retrieved through these relationships recursively. The recursion-
depth attribute of the field element is used for this purpose. The recursion-depth for a relationship
field specifies the number of times an instance of the same class, subclass, or superclass can be
fetched via traversing this field.
A value of negative 1 (or any negative value) means that the recursion-depth is not limited by tra-
versing this field. If a field is defined in multiple fetch groups, the recursion-depth is the largest of
the values specified, treating any negative number as a very large positive number. If not specified
in any fetch group or in the base field definition, the default is 1. A value of 0 means that this field
is not traversed at all, effectively removing the field from the fetch group.
For example, assume a class Directory with a field parent of type Directory and a field
children of type Set<Directory>, and assume the recursion-depth of the parent field is
set to negative 1 and the recursion-depth of the children field is set to 2. When a query for a Di-
rectory is executed, all parents of the selected Directory instances will be retrieved, and all of the
parents’ parents until a parent is found with a null parent. Additionally, all children of the selected
Directory will be retrieved and all children of the children of the selected Directory.

12.7.5 The FetchPlan interface

Fetch groups are activated using methods on the interface FetchPlan. PersistenceMan-
ager, Extent, and Query have getFetchPlan() methods. When a Query or Extent is cre-
ated from a persistence manager, its fetch plan is initialized to the same settings as that of the
persistence manager. Subsequent modifications of the Query or Extent fetch plan are localized (not
reflected in the fetch plan of the persistence manager). Similarly, subsequent modifications of the
fetch plan of the persistence manager are not reflected in any existing Query or Extent.
Mutating FetchPlan methods return the fetch plan instance to allow method chaining.
package javax.jdo;

Java Data Objects 2.2

 JDO 2.2 132 October 10, 2008

public interface FetchPlan {
String DEFAULT = "default";
String ALL = "all";
int FETCH_SIZE_GREEDY = -1;
int FETCH_SIZE_OPTIMAL = 0;
int DETACH_LOAD_FIELDS = 1;
int DETACH_UNLOAD_FIELDS = 2;

/** Add the fetchgroup to the set of active fetch groups. Duplicate names will be

removed.*/
FetchPlan addGroup(String fetchGroupName);
/** Remove the fetch group from the set active fetch groups. */
FetchPlan removeGroup(String fetchGroupName);
/** Remove all active groups, including the default fetch group. */
FetchPlan clearGroups();
/** Return an immutable copy of the names of all currently active fetch groups. */
Set getGroups();
/** Set a Collection of group names to replace the current groups. Duplicate names
will be removed.*/
FetchPlan setGroups(Collection fetchGroupNames);
/** Set an array of group names to replace the current groups. Duplicate names will
be removed.*/
FetchPlan setGroups(String... fetchGroupNames);
/** Set a single group to replace the current groups. */
FetchPlan setGroup(String fetchGroupName);
/** Set the roots for DetachAllOnCommit */
FetchPlan setDetachmentRoots(Collection roots);
/** Get the roots for DetachAllOnCommit */
Collection getDetachmentRoots();
/** Set the roots for DetachAllOnCommit */
FetchPlan setDetachmentRootClasses(Class... rootClasses);
/** Get the roots for DetachAllOnCommit */
Class[] getDetachmentRootClasses();
/** Set the maximum fetch depth. */
FetchPlan setMaxFetchDepth(int fetchDepth);
/** Get the maximum fetch depth. */
int getMaxFetchDepth();

/** Set the fetch size for large result set support. */

FetchPlan setFetchSize(int fetchSize);
/** Return the fetch size; 0 if not set; -1 for greedy fetching. */

int getFetchSize();

/** Set detachment options */

FetchPlan setDetachmentOptions(int options);
/** Return the detachment options */

int getDetachmentOptions();

The getGroups method returns a collection of names. After a call to clearGroups this method
returns an empty collection. It is legal to remove the default fetch group explicitly via pm.get-
FetchPlan().removeGroup("default"), or to use setGroups() with a collection that
does not contain "default". This makes it possible to have only a given fetch group active without
the default fetch group. If no fetch groups are active then a collection with no elements is returned.
In this case, loading an instance might not result in loading the default fetch group fields and the
jdoPostLoad method will only be called if there is an active fetch group that declares post-
load=”true”.
The fetch size allows users to explicitly control the number of instances retrieved from queries. A
positive value is the number of result instances to be fetched. A value of FETCH_SIZE_GREEDY
indicates that all results should be obtained immediately. A value of FETCH_SIZE_OPTIMAL in-
dicates that the JDO implementation should try to optimize the fetching of results.

Java Data Objects 2.2

 JDO 2.2 133 October 10, 2008

Note that the graph and fields specified by a FetchPlan is strictly the union of all the active fetch
groups not based on any complicated set mathematics. So, if a field f1 is in fetch groups A and B,
and both A and B are added to the FetchPlan,and subsequently B is removed from the active fetch
groups and the instance is loaded, then the field f1 will be loaded, because it is in fetch group A.
Examples:
pm = pmf.getPersistenceManager();
FetchPlan fp = pm.getFetchPlan();

fp.addGroup("detail").addGroup("list");
// prints [default, detail, list]
System.out.println(fp.getGroups());
// refreshes fields in any of default+detail+list
pm.refresh(anInstance);

fp.clearGroups();
// prints []
System.out.println(fp.getGroups());
pm.refresh(anInstance); // doesn’t do anything

fp.addGroup("list");
// prints [list]
System.out.println(fp.getGroups());
// refreshes fields in list only
pm.refresh(anInstance);

When an instance is loaded using getObjectById , a Query is executed, or an Extent is iterated, the
implementation may choose to use the active fetch groups to prefetch data. If an instance being load-
ed does not have a fetch group with the same name as any of the active groups, and the semantics
of the method allow returning a hollow instance, then it may be loaded as hollow. If it has more than
one of the active groups then the union of fields in all active groups is used.
Instances loaded through field navigation behave in the same way as for getObjectById except that
an additional fetch group may be specified for the field in the metadata using the new "load-fetch-
group" attribute. If present the load-fetch-group is considered active just for the loading of the field.
This can be used to load several fields together when one of them is touched. The field touched is
loaded even if it is not in the load-fetch-group.
For the refresh and retrieve methods, the implementation must ensure that only the graph specified
by the active fetch groups is refreshed or retrieved; i.e. these operations will recursively refresh or
retrieve the instances and fields in the graph covered by the active fetch groups. The refreshed or
retrieved graph must not contain extra instances but extra fields may be refreshed for an instance in
the graph.

12.7.6 Defining fetch groups

Fetch groups are defined in the metadata for a class or interface, or dynamically with methods on
PersistenceManager and PersistenceManagerFactory.
<!ELEMENT fetch-group (extension*,(fetch-group|field|property)*,
extension*)>

<!ATTLIST fetch-group name CDATA #REQUIRED>

<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

<!ATTLIST field recursion-depth CDATA #IMPLIED>

<!ATTLIST property recursion-depth CDATA #IMPLIED>

The post-load attribute on the fetch-group element indicates whether the jdoPostLoad
callback will be made when the fetch group is loaded. It defaults to false, for all fetch groups except

Java Data Objects 2.2

 JDO 2.2 134 October 10, 2008

the default fetch group, on which it defaults to true. The callback will be called if any field of an
instance is loaded when any fetch group is active that contains the post-load attribute set to true.
The name attribute on a field or property element contained within a fetch-group element is
the name of a member (field or property) in the enclosing type (class or interface), or a dot-separated
expression identifying a member reachable from the type by navigating a reference, a collection, or
a map. For maps of persistence-capable types "#key" or "#value" may be appended to the name
of the map member to navigate the key or value respectively (e.g. to include a member of the key
type or value type in the fetch group).
For collection and arrays of persistence-capable types, "#element" may be appended to the name
of the member to navigate the element. This is optional; if omitted for collections and arrays, #el-
ement is assumed.
Recursive fetch group references are controlled by the recursion-depth attribute on a con-
tained field or property element of a fetch-group. A recursion-depth of negative
1 (or any negative number) will fetch the whole graph of instances reachable from this member. A
value of 0 means that this member is not traversed at all, effectively removing the member from the
fetch group. The default is 1, meaning that only the instance directly reachable from this member is
fetched.
A contained fetch-group element indicates that the named group is to be included in the group
being defined. Nested fetch group elements are limited to only the name attribute and no contained
elements. That is, it is not permitted to nest entire fetch group definitions. If there are two defini-
tions for a reference, collection or map member (due to fetch groups including other fetch groups)
then the union of the fetch groups involved is used. If one or more depths have been specified then
the largest depth is used unless one of the depths has not been specified (unlimited overrides other
depth specifications).

public class Person {
 private String name;
 private Address address;
 private Set children;
}

public class Address {
 private String street;
 private String city;
 private Country country;
}

public class Country {
 private String code;
 private String name;
}

<class name="Person" ...>
...
 <!-- name + address + country code -->
 <fetch-group name="detail">
 <fetch-group name="default"/>
 <field name="address"/>
 <field name="address.country.code"/>
 </fetch-group>

 <!-- name + address + country code + same for children -->
 <fetch-group name="detail+children">
 <fetch-group name="detail"/>

Java Data Objects 2.2

 JDO 2.2 135 October 10, 2008

 <field name="children"/>
 </fetch-group>

 <!-- name + address + country code + names of children -->
 <fetch-group name="detail+children-names">
 <fetch-group name="detail"/>
 <field name="children#element.name"/>
 </fetch-group>

 <!-- name + address + country code + list fg of children -->
 <fetch-group name="detail+children-list">
 <fetch-group name="detail"/>
 <field name="children" fetch-group="list"/>
 </fetch-group>

</class>

Here is a map example:

public class Node {
 private String name;
 private Map edges; // Node -> EdgeWeight
}

public class EdgeWeight {
 private int weight;
}

<class name="Node" ...>
 ...
 <fetch-group name="neighbour-weights">
 <field name="edges#key.name"/>
 <field name="edges#value"/>
 </fetch-group>
 <fetch-group name="neighbours">
 <field name="edges"/>
 </fetch-group>
 <fetch-group name="whole-graph">
 <field name="edges" recursion-depth="-1"/>
 </fetch-group>
</class>

12.7.7 Defining Fetch Groups Dynamically

Fetch groups can be defined dynamically. Two distinct use-cases are supported:
• fetch groups that are local to a PersistenceManager and affect only operations on the

specific PersistenceManager; these are called persistence manager scope;

• fetch groups that are global to a PersistenceManagerFactory and affect operations
on all PersistenceManagers associated with the
PersistenceManagerFactory; these are called persistence manager factory
scope.

Persistence Manager Factory Scoped Fetch Groups
To support persistence manager factory scoped fetch groups, a factory method is defined on Per-
sistenceManagerFactory:
FetchGroup getFetchGroup(Class cls, String groupName);

Java Data Objects 2.2

 JDO 2.2 136 October 10, 2008

This method returns a FetchGroup instance that represents the named fetch group associated with
the persistence-capable type cls. If there is already an active fetch group with the same class and
name, a modifiable copy of the fetch group is returned. If there is not an active fetch group with the
same class and name, a new modifiable fetch group instance is returned. The returned fetch group
is not active, and any changes made to it will have no immediate effect.
The fetch group instance can be modified by adding and removing members, adding and removing
groups of members of specific categories, and setting the recursion-depth of members. In order to
make the fetch group instances active, use the method defined on PersistenceManagerFac-
tory:
void addFetchGroups(FetchGroup... groups);

This method updates the active fetch groups in the PersistenceManagerFactory. The Per-
sistenceManagerFactory maintains a set of active fetch groups. Equality of fetch groups is
determined by a combination of the persistent type and fetch group name. Parameter fetch groups
that are not already active are made active. Parameter fetch groups that have an equal active fetch
group replace the corresponding fetch group.
Fetch groups can be removed from the active set by calling another method on PersistenceM-
anagerFactory:
void removeFetchGroups(FetchGroup... groups);

This method updates the active fetch groups in the PersistenceManagerFactory. Active
fetch groups that match a parameter fetch group are removed from the persistence manager factory
scope.

Persistence Manager Scoped Fetch Groups
To support persistence manager scoped fetch groups, a factory method is defined on Persis-
tenceManager:
FetchGroup getFetchGroup(Class cls, String groupName);

This method returns a FetchGroup instance that represents the named fetch group associated with
the persistence-capable type cls. If there is already a modifiable fetch group of the same type and
name in persistence manager scope, that instance is returned. If not, a new modifiable fetch group
is created.
The fetch group instance can be modified by adding and removing members, adding and removing
groups of members of specific categories, and setting the recursion-depth of members. The returned
FetchGroup is immediately made active so changes to its state will affect operations of the Per-
sistenceManager from which it was obtained. For example, if the fetch plan includes the fetch
group extended, getting and modifying a fetch group whose class is Employee and group name
is extended will affect PersistenceManager operations involving the Employee class.

Interface FetchGroup
public interface FetchGroup {

To facilitate modifying fetch groups, categories of members are defined:
• default: the default category contains only the default fetch group members.

• relationship: the relationship category contains all relationship type fields, including
embedded relationships

• multivalued: the multivalued category includes members of all multi-valued types,
including Collection, array, and Map types of basic and relationship types

Java Data Objects 2.2

 JDO 2.2 137 October 10, 2008

• basic: the basic category includes members of all primitive and immutable object class
types as defined in section 6.4 of the specification, including String, Locale,
Currency, BigDecimal, and BigInteger; as well as Date and its jdbc subtypes;
and Enum types

• all: the all category includes all members

public static final String DEFAULT = "default";

public static final String RELATIONSHIP = "relationship";

public static final String MULTIVALUED = "multivalued";

public static final String BASIC = "basic";

public static final String ALL = "all";

int hashCode();

The hash code should combine both the class and fetch group name. The hash codes for two equal
instances (fetch group instances representing the same persistent type and the same fetch group
name) must be identical.
boolean equals(Object other);

The equals method must compare the class for identity and the fetch group name for equality.
String getName();

Get the name of this FetchGroup. The name is set only in the factory method.
Class getType();

Get the persistent type (class or interface) of this FetchGroup. The persistent type is set only in
the factory method.
boolean getPostLoad();

Get the post-load property of this FetchGroup.
FetchGroup setPostLoad(boolean postLoad);

Set the post-load property of this FetchGroup.
FetchGroup addMember(String memberName);

Add the named member (field or property) to the set of members in this FetchGroup. The param-
eter is the name of a member to add to the FetchGroup. JDOUserException is thrown if the
parameter is not the name of a member of the persistent type.
FetchGroup addMembers(String... memberNames);

Add the member (field or property) to the set of members in this FetchGroup. Duplicates are ig-
nored. The parameter is an array of names of members to add to the FetchGroup. JDOUserEx-
ception is thrown if any element of the parameter is not the name of a member.
FetchGroup removeMember(String memberName);

Remove the member (field or property) from the set of members in this FetchGroup. JDOUser-
Exception is thrown if the parameter is not the name of a member of the persistent type.
FetchGroup removeMembers(String... memberNames);

Remove the member (field or property) from the set of members in this FetchGroup. Duplicates in
the parameter list are eliminated before removing them from the membership. JDOUserExcep-
tion is thrown if any element of the parameter is not the name of a member.
FetchGroup addCategory(String categoryName);

Java Data Objects 2.2

 JDO 2.2 138 October 10, 2008

Add the members (fields or properties) of the named category to the set of members in this Fetch-
Group. This method first resolves the category name to a set of members and then adds the mem-
bers as if addMembers was called. After this method executes, the category is not remembered.
FetchGroup removeCategory(String categoryName);

Remove the members (fields or properties) of the named category from the set of members in this
FetchGroup. This method first resolves the category name to a set of members and then removes
the members as if removeMembers was called. After this method executes, the category is not
remembered.
FetchGroup setRecursionDepth(String memberName, int recursionDepth);

Set the recursion-depth for this member. The default is 1. A value of 0 means don't fetch the
member (as if the member were omitted entirely). A value of -1 means fetch all instances reachable
via this member.
int getRecursionDepth(String memberName);

Get the recursion-depth for this member.
Set getMembers();

Return an immutable Set of String containing the names of all members in the fetch group. The
Set is a copy of the currently defined members and will not change based on subsequent changes
to the membership in the FetchGroup.
FetchGroup setUnmodifiable();

Make this FetchGroup unmodifiable. If already unmodifiable, this method has no effect.
boolean isUnmodifiable();

Return whether this FetchGroup is unmodifiable. If so, methods that would modify the fetch
group throw JDOUserException.
}

12.8 Flushing instances
void flush();

This method flushes all dirty, new, and deleted instances to the datastore. It has no effect if a trans-
action is not active.
If a datastore transaction is active, this method synchronizes the cache with the datastore and reports
any exceptions.
If an optimistic transaction is active, this method obtains a datastore connection and synchronizes
the cache with the datastore using this connection. The connection obtained by this method is held
until the end of the transaction.
void checkConsistency();

This method validates the cache with the datastore. It has no effect if a transaction is not active.
If a datastore transaction is active, this method verifies the consistency of instances in the cache
against the datastore. An implementation might flush instances as if flush() were called, but it is not
required to do so.
If an optimistic transaction is active, this method obtains a datastore connection and verifies the con-
sistency of the instances in the cache against the datastore. If any inconsistencies are detected, a
JDOOptimisticVerificationException is thrown. This exception contains a nested JDOOptimis-

Java Data Objects 2.2

 JDO 2.2 139 October 10, 2008

ticVerificationException for each object that failed the consistency check. No datastore resources
acquired during the execution of this method are held beyond the scope of this method.

12.9 Transaction completion
Transaction completion management is delegated to the associated Transaction instance .

12.10 Multithreaded Synchronization
The application might require the PersistenceManager to synchronize internally to avoid cor-
ruption of data structures due to multiple application threads. This synchronization is not required
when the flag Multithreaded is set to false.
void setMultithreaded (boolean flag);

boolean getMultithreaded();

NOTE: When the Multithreaded flag is set to true, there is a synchronization issue with jd-
oFlags values READ_OK and READ_WRITE_OK. Due to out-of-order memory writes, there is a
chance that a value for a field in the default fetch group might be incorrect (stale) when accessed by
a thread that has not synchronized with the thread that set the jdoFlags value. Therefore, it is rec-
ommended that a JDO implementation not use READ_OK or READ_WRITE_OK for jdoFlags if
Multithreaded is set to true.
The application may choose to perform its own synchronization, and indicate this to the implemen-
tation by setting the Multithreaded flag to false. In this case, the JDO implementation is not
required to implement any additional synchronizations, although it is permitted to do so.

12.11 User associated objects
The application might manage PersistenceManager instances by using an associated object
for bookkeeping purposes. These methods allow the user to manage the associated object.
void setUserObject (Object o);

Object getUserObject ();

The parameter is not inspected or used in any way by the JDO implementation.For applications
where multiple users need to access their own user objects, the following methods allow user objects
to be stored and retrieved by key. The values are not examined by the PersistenceManager.
There are no restrictions on values. Keys must not be null. For proper behavior, the keys must be
immutable (e.g. java.lang.String, java.lang.Integer, etc.) or the keys’ identity (to the extent that it
modifies the behavior of equals and hashCode methods) must not change while a user object is as-
sociated with the key. This behavior is not enforced by the PersistenceManager.
Object putUserObject(Object key, Object value);

This method models the put method of Map. The current value associated with the key is returned
and replaced by the parameter value. If the parameter value is null, the implementation may remove
the entry from the table of managed key/value pairs.
Object removeUserObject(Object key);
This method models the remove method of Map. The current value associated with the key is re-
turned and removed.
Object getUserObject(Object key);

Java Data Objects 2.2

 JDO 2.2 140 October 10, 2008

This method models the get method of Map. The current value associated with the key is returned.
If the key is not found in the table, null is returned.

12.12 PersistenceManagerFactory
The application might need to get the PersistenceManagerFactory that created this Per-
sistenceManager. If the PersistenceManager was created using a constructor, then this
call returns null.
PersistenceManagerFactory getPersistenceManagerFactory();This methos
returns the PersistenceManagerFactory that created this PersistenceManager.

12.13 ObjectId class management
In order for the application to construct instances of the ObjectId class, there is a method that
returns the ObjectId class given the persistence capable class.
Class getObjectIdClass (Class pcClass);

This method returns the class of the object id for the given class. This method returns the class spec-
ified by the application for persistence capable classes that use application (primary key) JDO iden-
tity. It returns the implementation-defined class for persistence-capable classes that use datastore
identity. If the parameter class is not persistence-capable, or the parameter is null, null is re-
turned. If the object-id class defined in the metadata for the parameter class is abstract then null is
returned.
If the implementation does not support application identity, and the class is defined in the jdo meta-
data to use application identity, then null is returned.
Object newObjectIdInstance (Class pcClass, Object key);

This method returns an object id instance corresponding to the pcClass and key arguments. A
String argument might have been the result of executing toString on an object id instance. The
key argument is the value of the key field for single field identity.
This method is portable for datastore identity and application identity.

12.14 Sequence
The JDO metadata defines named sequence value object generators, or simply, sequences. A se-
quence implements the javax.jdo.datastore.Sequence interface.
The behavior of the sequence with regard to transactions and rolling over maximum values is spec-
ified in the metadata.
Note that there is no portable way for a user-defined sequence to implement the Sequence interface.
In particular, the getName method might not return the name of the sequence, and the transactional
behavior of the sequence as specified by the user in metadata might not be implemented. A future
version of the specification might add a sequence factory spi to enable portable user-defined se-
quences.
The PersistenceManager provides a method to retrieve a Sequence by name.
Sequence getSequence(String name);

If the named sequence does not exist, JDOUserException is thrown.
The name is the scoped name of the sequence , which uses the standard Java package naming. For
example, a sequence might be named “com.acme.hr.EmployeeSequence”.

Java Data Objects 2.2

 JDO 2.2 141 October 10, 2008

package javax.jdo.datastore;

public interface Sequence {

String getName();

This method returns the fully qualified name of the Sequence.
Object next();

This method returns the next sequence value object. The sequence might be protected by transac-
tional semantics, in which case the sequence value object will be reused if the transaction in which
the sequence value object was obtained rolls back.

void allocate(int additional);

This method is a hint to the implementation that the application needs the additional number of se-
quence value objects in short order. There is no externally visible behavior of this method. It is used
to potentially improve the efficiency of the algorithm of obtaining additional sequence value ob-
jects.

Object current();

This method returns the current sequence value object if it is available. It is intended to return a se-
quence value object previously used The implementation might choose to return null for all cases
or for any cases where a current sequence value object is not available.

long nextValue();

This method returns the next sequence value as a long if it is available and able to be converted to
a number. It is equivalent to ((Long)next()).longValue().

long currentValue();

This method returns the current sequence value as a long if it is available and able to be converted
to a number. It is equivalent to ((Long)current()).longValue().
}

12.15 Life-cycle callbacks
In order to minimize the impact on domain classes, the instance callbacks can be defined to use a
life-cycle listener pattern instead of having the domain class implement the callback interface(s).
package javax.jdo.listener;

public interface InstanceLifecycleListener {

}

public interface CreateLifecycleListener

extends InstanceLifecycleListener {

void postCreate(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is created, during makePersistent. It is called
after the instance transitions to persistent-new.
package javax.jdo.listener;
public interface LoadLifecycleListener

extends InstanceLifecycleListener {

void postLoad(InstanceLifecycleEvent event);

}

Java Data Objects 2.2

 JDO 2.2 142 October 10, 2008

This method is called whenever a persistent instance is loaded. It is called after the jdoPostLoad
method is invoked on the instance.
package javax.jdo.listener;

public interface StoreLifecycleListener

extends InstanceLifecycleListener {

void preStore(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or commit.
It is called before the jdoPreStore method is invoked on the instance. An object identity for a per-
sistent-new instance might not have been assigned to the instance when this callback is invoked.
void postStore(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or commit.
It is called after the jdoPreStore method is invoked on the instance. An object identity for a persis-
tent-new instance must have been assigned to the instance when this callback is invoked.
package javax.jdo.listener;

public interface ClearLifecycleListener

extends InstanceLifecycleListener {

void preClear(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is cleared, for example during afterComple-
tion. It is called before the jdoPreClear method is invoked on the instance.
void postClear(InstanceLifecycleEvent event);

This method is called whenever a persistent instance is cleared, for example during afterComple-
tion. It is called after the jdoPreClear method is invoked on the instance and the fields have been
cleared by the JDO implementation.
package javax.jdo.listener;

public interface DeleteLifecycleListener

extends InstanceLifecycleListener {

void preDelete(InstanceLifecycleEvent event);

This method is called whenever a persistent instance is deleted, during deletePersistent. It is called
before the state transition and before the jdoPreDelete method is invoked on the instance.
void postDelete(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is deleted, during deletePersistent. It is called
after the jdoPreDelete method is invoked on the instance and after the state transition.
package javax.jdo.listener;

public interface DirtyLifecycleListener

extends InstanceLifecycleListener {

void preDirty(InstanceLifecycleEvent event);

}

Java Data Objects 2.2

 JDO 2.2 143 October 10, 2008

This method is called whenever a persistent clean instance is first made dirty, during an operation
that modifies the value of a persistent or transactional field. It is called before the field value is
changed. During this method, the instance responds false to isDirty. During this method, fields in
the source instance and others might be changed, but this method will only be invoked once until
the instance is no longer dirty.
void postDirty(InstanceLifecycleEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an operation
that modifies the value of a persistent or transactional field. It is called after the field value was
changed. During this method, the instance responds true to isDirty. During this method, fields in the
source instance and others might be changed, but this method will only be invoked once until the
instance is no longer dirty.
package javax.jdo.listener;

public interface DetachLifecycleListener

extends InstanceLifecycleListener {

void preDetach(InstanceLifecycleEvent event);

}

This method is called before a persistent instance is copied for detachment. It is called before the
jdoPreDetach callback.
void postDetach(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is copied for detachment. The source instance
is the detached copy; the target instance is the persistent instance. It is called after the jdoPostDetach
callback on the detached copy.
package javax.jdo.listener;

public interface AttachLifecycleListener

extends InstanceLifecycleListener {

void preAttach(InstanceLifecycleEvent event);

}

This method is called before a detached instance is attached, via the makePersistent method. The
source instance is the detached instance. This method is called before the corresponding jdoPreAt-
tach on the detached instance.
void postAttach(InstanceLifecycleEvent event);

}

This method is called after a detached instance is attached. The source instance is the corresponding
persistent instance in the cache; the target instance is the detached instance. This method is called
after the corresponding jdoPostAttach on the persistent instance.

InstanceLifecycleEvent
This class is provided as part of the javax.jdo.listener package.
Note that although InstanceLifecycleEvent inherits Serializable interface from EventObject, it is not
intended to be Serializable. Appropriate serialization methods are implemented to throw NotSeri-
alizableException.
package javax.jdo.listener;

Java Data Objects 2.2

 JDO 2.2 144 October 10, 2008

public class InstanceLifecycleEvent

extends java.util.EventObject {

static final int CREATE = 0;

static final int LOAD = 1;

static final int STORE = 2;

static final int CLEAR = 3;

static final int DELETE = 4;

static final int DIRTY = 5;

static final int DETACH = 6;

static final int ATTACH = 7;

int getEventType();

This method returns the event type that triggered the event.
InstanceLifecycleEvent(int type, Object source);

This constructor creates an instance with the type, and source object.
InstanceLifecycleEvent(int type, Object source, Object target);

This constructor creates an instance with the type, source, and target objects.
Object getSource();

This method returns the object for which the event was triggered. This method is inherited from the
EventObject class.
Object getTarget();

This method returns the “other” object associated with the event. Specifically, the target object is
the detached instance in the case of postAttach, and the persistent instance in the case of postDetach.
The target must be null for all other cases.
Object getPersistentInstance();

This method returns the persistent instance for which the event was triggered. This method is a con-
venience method that returns the source or target depending on the event.
Object getDetachedInstance();

This method returns the detached instance for which the event was triggered. This method is a con-
venience method that returns the source or target depending on the event.
}

void addInstanceLifecycleListener (InstanceLifecycleListener
listener, Class... classes);

This PersistenceManager method adds the listener to the list of lifecycle event listeners. The classes
parameter identifies all of the classes of interest. If the classes parameter is specified as null, events
for all persistent classes and interfaces are generated. If the classes specified have persistence-capa-
ble subclasses, all such subclasses are registered implicitly.
The listener will be called for each event for which it implements the corresponding listener inter-
face.
void removeInstanceLifecycleListener (InstanceLifecycleListener
listener);

This PersistenceManager method removes the listener from the list of event listeners.

Java Data Objects 2.2

 JDO 2.2 145 October 10, 2008

12.16 Access to internal datastore connection
In order for the application to perform some datastore-specific functions, such as to execute a query
that is not directly supported by JDO, applications might need access to the datastore connection
used by the JDO implementation. This method returns a wrapped connection that can be cast to the
appropriate datastore connection and used by the application.
The capability to get the datastore connection is indicated by the optional feature string jav-
ax.jdo.option.GetDataStoreConnection.
package javax.jdo.datastore;

public interface JDOConnection {

Object getNativeConnection();

void close();

}

JDOConnection getDataStoreConnection();

If this method is called while a JDO transaction is active, it is equivalent to calling getDataS-
toreConnection(true).If this method is called outside an active JDO transaction, it is equiv-
alent to calling getDataStoreConnection(false).
JDOConnection getDataStoreConnection(boolean enlist);

With the enlist parameter false, the native connection returned by getNativeConnection will not be
enlisted in any native transaction.
With the enlist parameter true, and there is no active JDO transaction, a JDOUserException is
thrown. With the enlist parameter true, with an active JDO transaction, the native connection re-
turned by getNativeConnection will be enlisted in the native transaction being used by the JDO
transaction. There is always a native transaction in the case of a JDO datastore transaction. If there
is an active optimistic JDO transaction, and a native transaction has not yet begun, a native transac-
tion is begun before returning the JDOConnection.
An enlisted JDOConnection must be returned to the JDO implementation by the application by
calling its close method, prior to calling any JDO method or performing any action on any persistent
instance that might require the JDO implementation to use a connection. If the object has not been
returned and the JDO implementation needs a connection, a JDOUserException is thrown. The ob-
ject is returned to the JDO implementation by calling the close method on the object.
For JDOR implementations

• the JDOConnection obtained by getDataStoreConnection implements
java.sql.Connection.

• The application returns a JDBC Connection to the JDO implementation by calling its
close() method.

SQL Portability
For portability, a JDBC-based JDO implementation will return an instance that implements ja-
va.sql.Connection. The instance will throw an exception for any of the following method calls: com-
mit, getMetaData, releaseSavepoint, rollback, setAutoCommit, setCatalog, setHoldability,
setReadOnly, setSavepoint, setTransactionIsolation, and setTypeMap.

12.17 Server Date
java.util.Date getServerDate();

Java Data Objects 2.2

 JDO 2.2 146 October 10, 2008

Return a Date instance corresponding to the UTC Date as seen by the server.
Time skew is a phenomenon in which machines connected together in client/server configurations
might have clocks that are not perfectly synchronized, and the time as seen by different clients might
differ. In order for the application to avoid time skew, this method can be used to acquire a Date
instance corresponding to the UTC Date as seen by the server. Clients using this method can order
their operations according to a single time source.
The underlying implementation should return instances of java.sql.Timestamp for data-stores that
support nanosecond-precision of date-time values.
Implementations use the setting of the server time zone to prepare a Date instance that represents
UTC time on the server. See “ServerTimeZoneID” on page 100.

12.18 Serialization
Serializing or externalizing a persistence manager is an optional feature of a jdo implementation.
An implementation of PersistenceManager (including PersistenceManager proxy) is
declared as implementing Serializable or Externalizable, and the corresponding Per-
sistenceManagerFactory is also declared as implementing Serializable or Exter-
nalizable, or neither is. In this section, serialization refers to both serialization and
externalization.
Serializing a persistence manager works in conjunction with serializing other state, independent of
the persistence manager. A persistence manager whose writeObject or writeExternal
method is called must therefore not assume that it is the root object of serialization.
When serialized, a persistence manager must write out its own state as well as the state of each of
its managed instances. It must write a reference to its corresponding persistence manager factory
sufficient to locate or create it when restored. It must write the life cycle state of all instances that
have not been garbage collected. It must write the before image of dirty instances in order to restore
these instances later.
Serialization must only be done when there is no datastore transaction enlisted. That is, a datastore
transaction must not be active; and if an optimistic transaction is active, flush must not have been
called. If either of these conditions exists, JDOUserException is thrown.

Java Data Objects 2.2

 JDO 2.2 147 October 10, 2008

13 Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers, datastore
transactions, and datastore connections.

13.1 Overview
Operations on persistent JDO instances at the user’s choice might be performed in the context of a
transaction. That is, the view of data in the datastore is transactionally consistent, according to the
standard definition of ACID transactions:

• atomic --within a transaction, changes to values in JDO instances are all executed or none
is executed

• consistent -- changes to values in JDO instances are consistent with changes to other values
in the same JDO instance

• isolated -- changes to values in JDO instances are isolated from changes to the same JDO
instances in different transactions

• durable -- changes to values in JDO instances survive the end of the VM in which the
changes were made

13.2 Goals
The JDO transaction and connection contracts have the following goals.

• JDO implementations might span a range of small, embedded systems to large, enterprise
systems

• Transaction management might be entirely hidden from class developers and application
components, or might be explicitly exposed to class and application component developers.

13.3 Architecture: PersistenceManager, Transactions, and Connections
An instance of an object supporting the PersistenceManager interface represents a single us-
er’s view of persistent data, including cached persistent instances across multiple serial datastore
transactions.
There is a one-to-one relationship between the PersistenceManager and the Transaction.
The Transaction interface is isolated because of separation of concerns. The methods could
have been added to the PersistenceManager interface.
The javax.jdo.Transaction interface provides for management of transaction options and,
in the non-managed environment, for transaction completion. It is similar in functionality to jav-
ax.transaction.UserTransaction. That is, it contains begin, commit, and rollback meth-
ods used to delimit transactions.

Java Data Objects 2.2

 JDO 2.2 148 October 10, 2008

Connection Management Scenarios
• single connection: In the simplest case, the PersistenceManager directly connects to the

datastore and manages transactional data. In this case, there is no reason to expose any
Connection properties other than those needed to identify the user and the data source.
During transaction processing, the Connection will be used to satisfy data read, write, and
transaction completion requests from the PersistenceManager.

• connection pooling: In a slightly more complex situation, the
PersistenceManagerFactory creates multiple PersistenceManager
instances which use connection pooling to reduce resource consumption. The
PersistenceManagers are used in single datastore transactions. In this case, a pooling
connection manager is a separate component used by the PersistenceManager
instances to effect the pooling of connections. The PersistenceManagerFactory
will include a reference to the connection pooling component, either as a JNDI name or as
an object reference. The connection pooling component is separately configured, and the
PersistenceManagerFactory simply needs to be configured to use it.

• distributed transactions: An even more complex case is where the
PersistenceManager instances need to use connections that are involved in
distributed transactions. This case requires coordination with a Transaction Manager, and
exposure of the XAResource from the datastore Connection. JDO does not specify how
the application coordinates transactions among the PersistenceManager and the
Transaction Manager.

• managed connections: The last case to consider is the managed environment, where the
PersistenceManagerFactory uses a datastore Connection whose transaction completion is
managed by the application server. This case requires the datastore Connection to
implement the J2EE Connector Architecture and the PersistenceManager to use the
architected interfaces to obtain a reference to a Connection.

The interface between the JDO implementation and the Connection component is not specified by
JDO. In the non-managed environment, transaction completion is handled by the Connection man-
aged internally by the Transaction. In the managed environment, transaction completion is handled
by the XAResource associated with the Connection. In both cases, the PersistenceManager
implementation is responsible for setting up the appropriate interface to the Connection infrastruc-
ture.

Native Connection Management
If the JDO implementation supplies its own resource adapter implementation, this is termed native
connection management. For use in a managed environment, the association between Transac-
tion and Connection must be established using the J2EE Connector Architecture [see Appendix
A reference 4]. This is done by the JDO implementation implementing the javax.re-
source.ManagedConnectionFactory interface.
When used in a non-managed environment, with non-distributed transaction management (local
transactions) the application can use the PersistenceManagerFactory. But if distributed
transaction management is required, the application needs to supply an implementation of jav-
ax.resource.ManagedConnectionFactory interface. This interface provides the infra-
structure to enlist the XAResource with the Transaction Manager used in the application.

Non-native Connection Management
If the JDO implementation uses a third party Connection interface, then it can be used in a managed
environment only if the third party Connection supports the J2EE Connector Architecture. In this

Java Data Objects 2.2

 JDO 2.2 149 October 10, 2008

case, the PersistenceManagerFactory property ConnectionFactory is used to allow
the application server to manage connections.
In the non-managed case, non-distributed transaction management can use the PersistenceM-
anagerFactory, as above. But if distributed transaction management is required, the application
needs to supply an implementation of javax.resource.ConnectionManager interface to
be used with the application’s implementation of the Connection management.

Optimistic Transactions
There are two types of transaction management strategies supported by JDO: “datastore transaction
management”; and “optimistic transaction management”.
With datastore transaction management, all operations performed by the application on persistent
data are done using a datastore transaction. This means that between the first data access until the
commit, there is an active datastore transaction.
With optimistic transaction management, operations performed by the application on persistent data
outside a transaction or before commit are done using a short local datastore transaction. During
flush, a datastore transaction is used for the update operations, verifying that the proposed changes
do not conflict with a parallel update by a different transaction.
Optimistic transaction management is specified by the Optimistic setting on Transaction.

Figure 16.0 Transactions and Connections

13.4 Interface Transaction
package javax.jdo;

public interface Transaction {

13.4.1 PersistenceManager

PersistenceManager getPersistenceManager ();

JDO PersistenceManager

JDO PersistenceManager

Application
Transaction

Connection

Connection

XAResource

XAResource

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Manager

Transaction

Transaction

Transaction Option

Transaction
Completion

Methods

Methods

Java Data Objects 2.2

 JDO 2.2 150 October 10, 2008

This method returns the PersistenceManager associated with this Transaction instance.
boolean isActive ();

This method tells whether there is an active transaction. The transaction might be either a local
transaction or a distributed transaction. If the transaction is local, then a return value of true means
that the begin method was executed and neither commit nor rollback has been executed. If
the transaction is managed by XAResource with a TransactionManager, then this method
indicates whether there is a distributed transaction active.
This method returns true after the transaction has been started, until before the afterComple-
tion synchronization method is called. The method returns false during afterCompletion.

13.4.2 Transaction options

Transaction options are valid for both managed and non-managed environments. Flags are durable
until changed explicitly by set methods. They are not changed by transaction demarcation meth-
ods.
If any of the set methods is called during commit or rollback processing (within the beforeCom-
pletion synchronization method), a JDOUserException is thrown. These methods can be
called during afterCompletion processing.
If an implementation does not support the option, then an attempt to set the flag to an unsupported
value will throw JDOUnsupportedOptionException.

Nontransactional access to persistent values
boolean getNontransactionalRead ();

void setNontransactionalRead (boolean flag);

These methods access the flag that allows persistent instances to be read outside a transaction. If this
flag is set to true, then queries and read access (including navigation) are allowed without an ac-
tive transaction. If this flag is set to false, then queries and non-primary key field read access (in-
cluding navigation) outside an active transaction throw a JDOUserException.
boolean getNontransactionalWrite ();

void setNontransactionalWrite (boolean flag);

These methods access the flag that allows non-transactional instances to be written in the cache. If
this flag is set to true, then updates to non-transactional instances are allowed without an active
transaction. If this flag is set to false, then updates to non-transactional instances outside an active
transaction throw a JDOUserException.

Optimistic concurrency control
If this flag is set to true, then optimistic concurrency is used for managing transactions.
boolean getOptimistic ();

The optimistic setting currently active is returned.
void setOptimistic (boolean flag);

The optimistic setting passed replaces the optimistic setting currently active.

Retain values at transaction commit
If this flag is set to true, then eviction of transactional persistent instances does not take place at
transaction commit. If this flag is set to false, then eviction of transactional persistent instances takes
place at transaction commit.
This flag is only used if the PersistenceManager DetachAllOnCommit flag is false.
boolean getRetainValues ();

Java Data Objects 2.2

 JDO 2.2 151 October 10, 2008

The retainValues setting currently active is returned.
void setRetainValues (boolean flag);

The retainValues setting passed replaces the retainValues setting currently active.

Restore values at transaction rollback
If this flag is set to true, then restoration of transactional persistent instances takes place at trans-
action rollback. If this flag is set to false, then eviction of transactional persistent instances takes
place at transaction rollback.
boolean getRestoreValues ();

The restoreValues setting currently active is returned.
void setRestoreValues (boolean flag);

The restoreValues setting passed replaces the restoreValues setting currently active.

Transaction Isolation Level
This value determines some of the behavior of the implementation with regard to the connection to
the underlying datastore.
With datastore transactions, the underlying connection for the transaction will be obtained using the
specified isolation level or a higher one if the requested level is not supported. The isolation level
cannot be changed while a transaction is in progress. If the specified isolation or higher is not avail-
able, JDOUnsupportedOptionException is thrown.
With optimistic transactions, for each connection to the datastore, the underlying connection will be
obtained using the specified isolation level or a higher one if the requested level is not supported.
The isolation level can be changed while a transaction is in progress, and the new level is used for
any connections obtained during subsequent operations. If the specified isolation or higher is not
available, JDOUnsupportedOptionException is thrown.
String getIsolationLevel();

The IsolationLevel setting currently active is returned. This might be a higher isolation level
than requested.
void setIsolationLevel (String level);

The level passed replaces the IsolationLevel currently active.

13.4.3 Synchronization

The Transaction instance participates in synchronization in two ways: as a supplier of synchro-
nization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a user can register
with the Transaction instance to be notified at transaction completion. As a consumer of call-
backs, the jdo implementation will need to be notified upon transaction completion in order to flush
changes to the datastore. In a managed environment, the implementation should use one of two
mechanisms:

• the proprietary interfaces of the managed environment to be notified of externally-initiated
transaction completion events;

• the standard TransactionSynchronizationRegistry that provides for an
interposed synchronization registration.

For this latter purpose, the JDO implementation class might implement javax.transac-
tion.Synchronization or might use a delegate to be notified.

Java Data Objects 2.2

 JDO 2.2 152 October 10, 2008

Synchronization is supported for both managed and non-managed environments. A Synchroni-
zation instance registered with the Transaction remains registered until changed explicitly
by another setSynchronization.
Only one Synchronization instance can be registered with the Transaction. If the appli-
cation requires more than one instance to receive synchronization callbacks, then the application in-
stance is responsible for managing them, and forwarding callbacks to them.
void setSynchronization (javax.transaction.Synchronization sync);

The Synchronization instance is registered with the Transaction for transaction comple-
tion notifications. Any Synchronization instance already registered will be replaced. If the pa-
rameter is null, then no instance will be notified. If this method is called during commit processing
(within the user’s beforeCompletion or afterCompletion method), a JDOUserExcep-
tion is thrown.
The two Synchronization methods allow the application control over the environment in
which the transaction completion executes (for example, validate the state of the cache before com-
pletion) and to control the cache disposition once the transaction completes (for example, to change
persistent instances to persistent-nontransactional state).
The beforeCompletion method will be called during the behavior specified for the transaction
completion method commit. The beforeCompletion method will not be called before roll-
back.
During transaction completion, the environment calls the jdo implementation’s beforeComple-
tion method, which in turn calls the user’s beforeCompletion method registered by the
setSynchronization method.
During the user’s beforeCompletion method, fields in persistent and transactional instances
might be changed, persistent instances might be deleted, and instances might be made persistent.
These changes will be reflected in the current transaction.
After the user’s beforeCompletion method completes, the jdo implementation flushes the
cache to the datastore. During flush, life cycle methods declared in the persistence-capable classes
are called back, as well as methods on instances registered with the PersistenceManager via addIn-
stanceLifecycleListener.
After transaction completion, the environment calls the jdo implementation’s afterComple-
tion method, which performs state transitions of the instances in the cache. During these state tran-
sitions, life cycle methods declared in the persistence-capable classes are called back, as well as
methods on instances registered with the PersistenceManager via addInstanceLifecycleListener.
Subsequently, the jdo implementation calls the user’s afterCompletion method registered by
the setSynchronization method. The parameter for the afterCompletion(int sta-
tus) method will be either javax.transaction.Status.STATUS_COMMITTED or jav-
ax.transaction.Status.STATUS_ROLLEDBACK.
javax.transaction.Synchronization getSynchronization ();

This method returns the Synchronization currently registered.

13.4.4 Transaction demarcation

If multiple parallel transactions are required, then multiple PersistenceManager instances
must be used. If distributed transactions are required, then the Connector Architecture is used to co-
ordinate transactions among the JDO PersistenceManagers.

Java Data Objects 2.2

 JDO 2.2 153 October 10, 2008

Non-managed environment
In a non-managed environment, with a single JDO PersistenceManager per application, there
is a Transaction instance representing a local transaction associated with the Persistence-
Manager instance.
void begin();

void commit();

void rollback();

The begin, commit, and rollback methods can be used only in a non-managed environment,
or in a managed environment with Bean Managed Transactions. If one of these methods is executed
in a managed environment with Container Managed Transactions, a JDOUserException is
thrown.
If commit or rollback is called when a transaction is not active, JDOUserException is thrown. If be-
gin is called when a transaction is active, JDOUserException is thrown.
The commit method performs the following operations:

• calls the beforeCompletion method of the Synchronization instance registered
with the Transaction;

• flushes dirty persistent instances;

• notifies the underlying datastore to commit the transaction;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance registered
with the Transaction with the results of the datastore commit operation.

The rollback method performs the following operations:
• rolls back changes made in this transaction from the datastore;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance registered
with the Transaction.

Managed environment
In a managed environment, there is either a user transaction or a local transaction associated with
the PersistenceManager instance when executing method calls on JDO instances or on the
PersistenceManager. Which of the two types of transactions is active is a policy issue for the
managed environment.
If datastore transaction management is being used with the PersistenceManager instance, and
a Connection to the datastore is required during execution of the PersistenceManager or JDO
instance method, then the PersistenceManager will dynamically acquire a Connection. The
call to acquire the Connection will be made with the calling thread in the appropriate transactional
context, and the Connection acquired will be in the proper datastore transaction.
If optimistic transaction management is being used with the PersistenceManager instance,
and a Connection to the datastore is required during execution of an instance method or a non-com-
pletion PersistenceManager method, then the PersistenceManager will use a local
transaction Connection.

Java Data Objects 2.2

 JDO 2.2 154 October 10, 2008

13.4.5 RollbackOnly

At times, a component needs to mark a transaction as failed even though that component is not au-
thorized to complete the transaction. In order to mark the transaction as unsuccessful, and to deter-
mine if a transaction has been so marked, two methods are used:
void setRollbackOnly();

boolean getRollbackOnly();

Either the user application or the JDO implementation may call setRollbackOnly. There is no
way for the application to determine explicitly which component called the method.
Once a transaction has been marked for rollback via setRollbackOnly, the commit method will
always fail with JDOFatalDataStoreException. The JDO implementation must not try to make any
changes to the database during commit when the transaction has been marked for rollback.
When a transaction is not active, and after a transaction is begun, getRollbackOnly will return
false. Once setRollbackOnly has been called, it will return true until commit or rollback is
called.

13.5 Optimistic transaction management
Optimistic transactions are an optional feature of a JDO implementation. They are useful when there
are long-running transactions that rarely affect the same instances, and therefore the datastore will
exhibit better performance by deferring datastore exclusion on modified instances until commit.
In the following discussion, “transactional datastore context” refers to the transaction context of the
underlying datastore, while “transaction”, “datastore transaction”, and “optimistic transaction” refer
to the JDO transaction concepts.
With datastore transactions, persistent instances accessed within the scope of an active transaction
are guaranteed to be associated with the transactional datastore context. With optimistic transac-
tions, persistent instances accessed within the scope of an active transaction are not associated with
the transactional datastore context; the only time any instances are associated with the transactional
datastore context is during commit.
With optimistic transactions, instances queried or read from the datastore will not be transactional
unless they are modified, deleted, or marked by the application as transactional. At commit time,
the JDO implementation:

• establishes a transactional datastore context in which verification, insert, delete, and
updates will take place.

• calls the beforeCompletion method of the Synchronization instance registered
with the Transaction;

• verifies unmodified instances that have been made transactional, to ensure that the state in
the datastore is the same as the instance used in the transaction [this is done using a JDO
implementation-specific algorithm];

• verifies modified and deleted instances during flushing to the datastore, to ensure that the
state in the datastore is the same as the before image of the instance that was modified or
deleted by the transaction [this is done using a JDO implementation-specific algorithm]

• If any instance fails the verification, a JDOOptimisticVerificationException
is thrown which contains an array of JDOOptimisticVerificationException,
one for each instance that failed the verification. The optimistic transaction is failed, and

Java Data Objects 2.2

 JDO 2.2 155 October 10, 2008

the transaction is rolled back. The definition of “changed instance” is a JDO
implementation choice, but it is required that a field that has been changed to different
values in different transactions results in one of the transactions failing.

• if verification succeeds, notifies the underlying datastore to commit the transaction;

• transitions persistent instances according to the life cycle specification, based on whether
the transaction succeeds and the setting of the RetainValues and RestoreValues flags;

• calls the afterCompletion method of the Synchronization instance registered
with the Transaction with the results of the commit operation.

Details of the state transitions of persistent instances in optimistic transactions may be found in sec-
tion 5.8.

Java Data Objects 2.2

 JDO 2.2 156 October 10, 2008

14 Query

This chapter specifies the query contract between an application component and the JDO Persis-
tenceManager.
The query facility consists of two parts: the query API, and the query language. This chapter spec-
ifies the query language “JDOQL”, and includes conventions for the use of “SQL” as the language
for JDO implementations using a relational store.

14.1 Overview
An application component requires access to JDO instances so it can invoke specific behavior on
those instances. From a JDO instance, it might navigate to other associated instances, thereby oper-
ating on an application-specific closure of instances.
However, getting to the first JDO instance is a bootstrap issue. There are three ways to get an in-
stance from JDO. First, if the users have or can construct a valid ObjectId, then they can get an
instance via the persistence manager’s getObjectById method. Second, users can iterate a class
extent by calling getExtent. Third, the JDO Query interface provides the ability to acquire ac-
cess to JDO instances from a particular JDO persistence manager based on search criteria specified
by the application.
The persistent manager instance is a factory for query instances, and queries are executed in the con-
text of the persistent manager instance.
The actual query execution might be performed by the JDO PersistenceManager or might be
delegated by the JDO PersistenceManager to its datastore. The actual query executed thus
might be implemented in a very different language from Java, and might be optimized to take ad-
vantage of particular query language implementations.
For this reason, methods in the query filter have semantics possibly different from those in the Java
VM.

14.2 Goals
The JDO Query interface has the following goals:

• Query language neutrality. The underlying query language might be a relational query
language such as SQL; an object database query language such as OQL; or a specialized
API to a hierarchical database or mainframe EIS system.

• Optimization to specific query language. The Query interface must be capable of
optimizations; therefore, the interface must have enough user-specified information to
allow for the JDO implementation to exploit data source specific query features.

• Accommodation of multi-tier architectures. Queries might be executed entirely in memory,
or might be delegated to a back end query engine. The JDO Query interface must provide
for both types of query execution strategies.

Java Data Objects 2.2

 JDO 2.2 157 October 10, 2008

• Large result set support. Queries might return massive numbers of JDO instances that
match the query. The JDO Query architecture must provide for processing the results
within the resource constraints of the execution environment.

• Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to execution
time. The query interface allows for compiling queries and binding run-time parameters to
the bound queries for execution.

• Deletion by query. Deleting multiple instances in the datastore can be done efficiently if
specified as a query method instead of instantiating all persistent instances and calling the
deletePersistent method on them.

14.3 Architecture: Query
The JDO PersistenceManager instance is a factory for JDO Query instances, which imple-
ment the JDO Query interface. Multiple JDO Query instances might be active simultaneously in
the same JDO PersistenceManager instance. Multiple queries might be executed simulta-
neously by different threads, but the implementation might choose to execute them serially. In either
case, the execution must be thread safe.
There are three required elements in any query:

• the class of the candidate instances. The class is used to scope the names in the query filter.
All of the candidate instances are of this class or a subclass of this class. If the class is not
explicitly passed to the query, it is obtained from the Extent.

• the collection of candidate JDO instances. The collection of candidate instances is either a
java.util.Collection, or an Extent of instances in the datastore. Instances that
are not of the required class or subclass will be silently ignored. The Collection might
be a previous query result, allowing for subqueries. If the collection is not explicitly passed
to the query, then it is obtained from the class.

• the query filter. The query filter is a Java boolean expression that tells whether instances
in the candidate collection are to be returned in the result. If not specified, the filter defaults
to true.

Other elements in queries include:
• parameter declarations. The parameter declaration is a String containing one or more

query parameter declarations separated with commas. It follows the syntax for formal
parameters in the Java language. Each parameter named in the parameter declaration must
be bound to a value when the query is executed.

• parameter values to bind to parameters. Values are specified as Java Objects, and might
include simple wrapper types or more complex object types. The values are passed to the
execute methods and are not preserved after a query executes.

• variable declarations: Variables might be used in the filter, and these variables must be
declared with their type. The variable declaration is a String containing one or more
variable declarations. Each declaration consists of a type and a variable name, with
declarations separated by a semicolon if there are two or more declarations. It is similar to
the syntax for local variables in the Java language.

• import statements: Parameters and variables might come from a different class from the
candidate class, and the names might need to be declared in an import statement to
eliminate ambiguity. Import statements are specified as a String with semicolon-
separated statements. The syntax is the same as in the Java language import statement.

Java Data Objects 2.2

 JDO 2.2 158 October 10, 2008

• ordering specification. The ordering specification includes a list of expressions with the
ascending/descending indicator. To be portable, the expression’s type must be one of:

• primitive types except boolean;
• wrapper types except Boolean;
• BigDecimal;
• BigInteger;
• String;
• Date.

• result specification. The application might want to get results from a query that are not
instances of the candidate class. The results might be fields of persistent instances,
instances of classes other than the candidate class, or aggregates of fields.

• grouping specification. Aggregates are most useful when the application can specify the
result field by which to group the results.

• uniqueness. The application can specify that the result of a query is unique, and therefore a
single value instead of a Collection should be returned from the query.

• result class. The application may have a user-defined class that best represents the results
of a query. In this case, the application can specify that instances of this class should be
returned.

• limiting the size of the results. The application might want to limit the number of instances
returned by the query, and might want to skip over some number of instances that might
have been returned previously.

• subqueries. Some aspects of the filter might best be described by a subquery, whose result
is used as part of an expression of the outer query. The subquery might use parameters or
expressions of the outer query and might range over the extent of a class in the datastore.

The class implementing the Query interface must be serializable. The serialized fields include the
candidate class, the filter, parameter declarations, variable declarations, imports, ordering specifi-
cation, uniqueness, result specification, grouping specification, result class, and subqueries. The
candidate collection, limits on size, and number of skipped instances are not serialized. If a serial-
ized instance is restored, it loses its association with its former PersistenceManager.

14.4 Namespaces in queries
The query namespace is modeled after methods in Java:

• setClass corresponds to the class definition

• declareParameters corresponds to formal parameters of a method

• declareVariables corresponds to local variables of a method

• setFilter, setGrouping, setOrdering, and setResult correspond to the
method body and do not introduce names to the namespace

There are two namespaces in queries. Type names have their own namespace that is separate from
the namespace for fields, variables and parameters.

Keywords
Keywords must not be used as package names, class names, parameter names, or variable names in
queries. Keywords are permitted as field names only if they are on the right side of the “.” in field
access expressions as defined in the Java Language Specification second edition, section 15.11.
Keywords include the Java language keywords and the JDOQL keywords. Java keywords are as de-

Java Data Objects 2.2

 JDO 2.2 159 October 10, 2008

fined in the Java language specification section 3.9, plus the boolean literals true and false, and the
null literal. JDOQL keywords are the following:
select, SELECT, unique, UNIQUE, distinct, DISTINCT, avg, AVG, min, MIN, max, MAX, count,
COUNT, sum, SUM, as, AS, into, INTO, from, FROM, exclude, EXCLUDE, subclasses, SUB-
CLASSES, where, WHERE, order, ORDER, by, BY, ascending, ASCENDING, asc, ASC, de-
scending, DESCENDING, desc, DESC, group, GROUP, having, HAVING, parameters,
PARAMETERS, variables, VARIABLES, range, RANGE.
The method setClass introduces the name of the candidate class in the type namespace. The
method declareImports introduces the names of the imported class or interface types in the
type namespace. When used (e.g. in a parameter declaration, cast expression, etc.) a type name must
be the name of the candidate class, the name of a class or interface imported by the parameter to
declareImports, denote a class or interface from the same package as the candidate class, or
must be declared by exactly one type-import-on-demand declaration (“import <pack-
age>.*;“). It is valid to specify the same import multiple times.
The names of the public types declared in the packages java.lang and javax.jdo are auto-
matically imported as if the declaration “import java.lang.*; import javax.jdo.*;”
appeared in declareImports. It is a JDOQL-compile time error (reported during compile or ex-
ecute methods) if a used type name is declared by more than one type-import-on-demand declara-
tion.
The method setClass also introduces the names of the candidate class fields.
The method declareParameters introduces the names of the parameters. A name in the filter
preceded by “:” has the same effect. A parameter name hides the name of a candidate class field if
equal. Parameter names must be unique.
The method declareVariables introduces the names of variables. A name introduced by de-
clareVariables hides the name of a candidate class field if equal. Variable names must be
unique and must not conflict with parameter names. A name in the filter that is not a parameter name
or a field name is implicitly a variable name.
An alias definition in a subquery introduces the alias name into the namespace of the subquery for
fields, variables and parameters. In this case, the alias hides any field, variable, or parameter of the
same name from the outer query; and the alias can only be used where the keyword this would be
allowed.
A hidden field may be accessed using the this qualifier: this.fieldName.

14.5 Query Factory in PersistenceManager interface
The PersistenceManager interface contains Query factory methods.
Query newQuery();

Construct a new empty query instance.
Query newQuery (Object query);

Construct a new query instance from another query instance. JDO implementations must support a
serialized/restored Query instance from the same JDO vendor but a different execution environ-
ment, a query instance currently bound to the same PersistenceManager, and a query instance
currently bound to a PersistenceManager from the same JDO vendor. Any of the elements
Class, QueryString, IgnoreCache flag, Result, ResultClass, Import declarations, Variable declara-
tions, Parameter declarations, Grouping, and Ordering from the parameter Query are copied to the
new Query instance, but a candidate Collection or Extent element is discarded.
Query newQuery (String queryString);

Java Data Objects 2.2

 JDO 2.2 160 October 10, 2008

Construct a new query instance using the specified String as the single-string representation of
the query [see section 14.6.13].
Query newQuery (String language, Object query);

Construct a new query instance using the specified language and the specified query. The query in-
stance will be of a class defined by the query language. The language parameter for the JDO Query
language as herein documented is “javax.jdo.query.JDOQL”. In this case, the parameter is
a String representing the single-string version of the query [see section 14.6.13].
For use with SQL, the language parameter is “javax.jdo.query.SQL” and the query parame-
ter is a String containing the SQL query [see section 14.7]. Other languages’ parameter is not
specified.
Query newQuery (Class cls);

Construct a new query instance with the candidate class specified.
Query newQuery (Extent cln);

Construct a new query instance with the candidate Extent specified; the candidate class is taken
from the Extent.
Query newQuery (Class cls, Collection cln);

Construct a new query instance with the candidate class and candidate Collection specified.
Query newQuery (Class cls, String queryString);

Construct a new query instance with the candidate class and query string specified.The query string
parameter might be the filter or the single string representing the query [see section 14.6.13].
Query newQuery (Class cls, Collection cln, String queryString);

Construct a query instance with the candidate class, the candidate Collection, and query string
specified.The query string parameter might be the filter or the single string representing the query
[see section 14.6.13].
Query newQuery (Extent cln, String queryString);

Construct a new query instance with the candidate Extent and query string specified; the candi-
date class is taken from the Extent.The query string parameter might be the filter or the single
string representing the query [see section 14.6.13].
Query newNamedQuery (Class cls, String queryName);

Construct a new query instance with the given candidate class from a named query. The query name
given must be the name of a query defined in metadata. The metadata is searched for the specified
name. The extent, including subclasses, is the default for the candidate collection.
If the named query is not found in already-loaded metadata, the query is searched for using an algo-
rithm. Files containing metadata are examined in turn until the query is found. The order is based
on the metadata search order for class metadata, but includes files named based on the class name.
The file search order for a query scoped to class com.sun.nb.Bar is: META-INF/package.jdo, WEB-
INF/package.jdo, package.jdo, com/package.jdo, com/sun/package.jdo, com/sun/nb/package.jdo,
com/sun/nb/Bar.jdo. Once metadata for the class is found, no more .jdo files will be examined for
the class.
If the metadata is not found in the above, and there is a property in the PersistenceManagerFactory
javax.jdo.option.Mapping=mySQL, then the following files are searched: META-INF/package-
mySQL.orm, WEB-INF/package-mySQL.orm, package-mySQL.orm, com/package-mySQL.orm,
com/sun/package-mySQL.orm, com/sun/nb/package-mySQL.orm, com/sun/nb/Bar-mySQL.orm.
Once mapping metadata for the class is found, no more .orm files will be examined for the class.

Java Data Objects 2.2

 JDO 2.2 161 October 10, 2008

If metadata is not found in the above, then the following files are searched: META-INF/pack-
age.jdoquery, WEB-INF/package.jdoquery, package.jdoquery, com/package.jdoquery, com/sun/
package.jdoquery, com/sun/nb/package.jdoquery, com/sun/nb/Bar.jdoquery. Once the query meta-
data is found, no more .jdoquery files will be examined for the query.
If the metadata for the named query is not found in the above, a JDOUserException is thrown.
NOTE: If no class is provided as a parameter, the metadata must be in one of the top level locations
or must have already been processed during loading of metadata for a class or interface whose meta-
data has been loaded.
This resource name is loaded by one of the three class loaders used to resolve resource names (see
Section 12.5). The loaded resource must contain the metadata definition of the query name. The
schema for the loaded resource is the same as for the .jdo file.
If the unmodifiable attribute is specified as or defaults to “false”, then the Query instance returned
from this method can be modified by the application, just like any other Query instance.
Named queries must be compilable. Attempts to get a named query that cannot be compiled result
in JDOUserException.

14.6 Query Interface
package javax.jdo;

public interface Query extends Serializable {

String JDOQL = "javax.jdo.query.JDOQL";

String SQL = "javax.jdo.query.SQL";

Persistence Manager
PersistenceManager getPersistenceManager();

Return the associated PersistenceManager instance. If this Query instance was restored
from a serialized form, then null is returned.

Fetch Plan
FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the Query. It always returns the identical in-
stance for the same Query instance. Any change made to the fetch plan affects subsequent query
execution. Fetch plan is described in Section 12.7.

Query element binding
The Query interface provides methods to bind required and other elements prior to execution.
All of these methods replace the previously set query element, by the parameter. [The methods are
not additive.] For example, if multiple variables are needed in the query, all of them must be spec-
ified in the same call to declareVariables.
void setClass (Class candidateClass);

Bind the candidate class to the query instance.
void setCandidates (Collection candidateCollection);

Bind the candidate Collection to the query instance. If the user adds or removes elements from
the Collection after this call, it is not determined whether the added/removed elements take part
in the Query, or whether a NoSuchElementException is thrown during execution of the
Query.

Java Data Objects 2.2

 JDO 2.2 162 October 10, 2008

For portability, the elements in the collection must be persistent instances associated with the same
PersistenceManager as the Query instance. An implementation might support transient in-
stances in the collection. If persistent instances associated with another PersistenceManager
are in the collection, JDOUserException is thrown during execute().
If the candidates are not specified explicitly by newQuery, setCandidates(Collection), or setCandi-
dates(Extent), then the candidate extent is the extent of instances of the candidate class in the datas-
tore including subclasses. That is, the candidates are the result of
getPersistenceManager().getExtent(candidateClass, true).
void setCandidates (Extent candidateExtent);

Bind the candidate Extent to the query instance.
void setFilter (String filter);

Bind the query filter to the query instance.
void declareImports (String imports);

Bind the import statements to the query instance. All imports must be declared in the same method
call, and the imports must be separated by semicolons.
void declareVariables (String variables);

Bind the variable types and names to the query instance. This method defines the types and names
of variables that will be used in the filter but not provided as values by the execute method.
void declareParameters (String parameters);

Bind the parameter statements to the query instance. This method defines the parameter types and
names that will be used by a subsequent execute method.
void setOrdering (String ordering);

Bind the ordering statements to the query instance.
void setResult (String result);

Specify the results of the query if not instances of the candidate class.
void setGrouping (String grouping);

Specify the grouping of results for aggregates.
void setUnique (boolean unique);

Specify that there is a single result of the query.
void setResultClass (Class resultClass);

Specify the class to be used to return result instances.
setRange (long fromIncl, long toExcl);

setRange (String fromIncltoExcl);

Specify the number of instances to skip over and the maximum number of result instances to
return.void addSubquery (Query subquery, String variableDeclaration,

String candidateCollectionExpression);

void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, String
parameter);

void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, String...
parameters);

Java Data Objects 2.2

 JDO 2.2 163 October 10, 2008

void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, Map parameters);

These methods specify a subquery to become part of this query.

Query options
void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

The IgnoreCache option, when set to true, is a hint to the query engine that the user expects
queries be optimized to return approximate results by ignoring changed values in the cache. This
option is useful only for optimistic transactions and allows the datastore to return results that do not
take modified cached instances into account. An implementation may choose to ignore the setting
of this flag, and always return exact results reflecting current cached values, as if the value of the
flag were false.

Query modification
void setUnmodifiable();

boolean isUnmodifiable();

The Unmodifiable option, when set, disallows further modification of the query, except for
specifying the range, result class, and ignoreCache option.

Query evaluation
This discussion covers queries constructed by one of these methods: newQuery(String sin-
gleStringQuery); newNamedQuery(Class candidateClass, String namedQueryName); or newQue-
ry(“javax.jdo.query.JDOQL”, Object singleStringQuery).

• the candidate class cannot be overridden via setClass except where there is either an
exact match of the name in the JDOQL query and the setClass parameter, or where the
FROM clause is missing from the query string in the newQuery method.

• the single string query is first parsed to yield the result, result class, filter, variable list,
parameter list, import list, grouping, ordering, and range.

• then, the values specified in APIs setResult, setResultClass, setFilter,
declareVariables, declareParamters, declareImports,
setGrouping, setOrdering, and setRange override the corresponding
settings from the single string query.

Evaluation of implicit parameters and variable declarations is done after applying overrides from
APIs.

Query compilation
The Query interface provides a method to compile queries for subsequent execution.
void compile();

This method requires the Query instance to validate any elements bound to the query instance and
report any inconsistencies by throwing a JDOUserException. It is a hint to the Query instance
to prepare and optimize an execution plan for the query.

14.6.1 Query execution

The Query interface provides methods that execute the query based on the parameters given. By
default, they return an unmodifiable List which the user can iterate to get results. The user can
specify the class of the result of executing a query. Executing any operation on the List that might

Java Data Objects 2.2

 JDO 2.2 164 October 10, 2008

change it throws UnsupportedOperationException. The signature of the execute meth-
ods specifies that they return an Object that must be cast to the proper type by the user.
Any parameters passed to the execute methods are used only for this execution, and are not re-
membered for future execution.
For portability, parameters of persistence-capable types must be persistent or transactional instanc-
es. Parameters that are persistent or transactional instances must be associated with the same Per-
sistenceManager as the Query instance. An implementation might support transient instances
of persistence-capable types as parameters, but this behavior is not portable. If a persistent instance
associated with another PersistenceManager is passed as a parameter, JDOUserExcep-
tion is thrown during execute().
Queries may be constructed at any time before the PersistenceManager is closed, but may be
executed only at certain times. If the PersistenceManager that constructed the Query is
closed, then the execute methods throw JDOFatalUserException. If the Nontransac-
tionalRead property is false, and a transaction is not active, then the execute methods
throw JDOUserException.
Object execute ();

Object execute (Object p1);

Object execute (Object p1, Object p2);

Object execute (Object p1, Object p2, Object p3);

The execute methods execute the query using the parameters and return the result, which by de-
fault is an unmodifiable List of instances that satisfy the boolean filter. The result may be a large
List, which should be iterated or possibly passed to another Query. The size() method returns
Integer.MAX_VALUE if the actual size of the result is not known (for example, the List repre-
sents a cursored result); if the size of the result equals or exceeds Integer.MAX_VALUE; or if the
range equals or exceeds Integer.MAX_VALUE.
When using an Extent to define candidate instances, the contents of the extent are subject to the
setting of the ignoreCache flag. With ignoreCache set to false:

• if instances were made persistent in the current transaction, the instances will be considered
part of the candidate instances.

• if instances were deleted in the current transaction, the instances will not be considered part
of the candidate instances.

• modified instances will be evaluated using their current transactional values.

With ignoreCache set to true:
• if instances were made persistent in the current transaction, the new instances might not be

considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances might or might not be
considered part of the candidate instances.

• modified instances might be evaluated using their current transactional values or the values
as they exist in the datastore, which might not reflect the current transactional values.

Each parameter of the execute method(s) is an Object that is either the value of the correspond-
ing parameter or the wrapped value of a primitive parameter. The parameters associate in order with
the parameter declarations in the Query instance.
Object executeWithMap (Map parameters);

The executeWithMap method is similar to the execute method, but takes its parameters from
a Map instance. The Map contains key/value pairs, in which the key is the declared parameter name,

Java Data Objects 2.2

 JDO 2.2 165 October 10, 2008

and the value is the value to use in the query for that parameter. Unlike execute, there is no limit
on the number of parameters.If implicit parameters are used, the keys in the map do not include the
leading “:”.
Object executeWithArray (Object... parameters);

The executeWithArray method is similar to the execute method, but takes its parameters
from an array instance. The array contains Objects, in which the positional Object is the value
to use in the query for that parameter. Unlike execute, there is no limit on the number of param-
eters.

14.6.2 Filter specification

The filter specification is a String containing a boolean expression that is to be evaluated for each
of the instances in the candidate collection. If the filter is not specified, then it defaults to "true",
and the input Collection is filtered only for class type.
An element of the candidate collection is returned in the result if:

• it is assignment compatible to the candidate Class of the Query; and

• for all variables there exists a value for which the filter expression evaluates to true. The
user may denote uniqueness in the filter expression by explicitly declaring an expression
(for example, e1 != e2). For example, a filter for a Department where there exists
an Employee with more than one dependent and an Employee making more than
30,000 might be: "(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & e2.salary > 30000)". The same Employee might
satisfy both conditions. But if the query required that there be two different Employees
satisfying the two conditions, an additional expression could be added:
"(emps.contains(e1) & e1.dependents > 1) & (emps.contains(e2)
& (e2.salary > 30000 & e1 != e2))".

Rules for constructing valid expressions follow the Java language, except for these differences:
• Equality and ordering comparisons between primitives and instances of wrapper classes are

valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are valid.
The comparison is done according to an ordering not specified by JDO. This allows an
implementation to order according to a datastore-specified ordering, which might be
locale-specific.

• White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

• The assignment operators =, +=, etc. and pre- and post-increment and -decrement are not
supported.

• Methods, including object construction, are not supported, except for Collection,
String, and Map methods documented below. Implementations might choose to support
non-mutating method calls as non-standard extensions.

• Navigation through a null-valued field, which would throw NullPointerException,
is treated as if the subexpression returned false. Similarly, a failed cast operation, which
would throw ClassCastException, is treated as if the subexpression returned
false. Other subexpressions or other values for variables might still qualify the candidate
instance for inclusion in the result set.

Java Data Objects 2.2

 JDO 2.2 166 October 10, 2008

• Navigation through multi-valued fields (Collection types) is specified using a variable
declaration and the Collection.contains(Object o) method.

• The following literals are supported, as described in the Java Language Specification:
IntegerLiteral, FloatingPointLiteral, BooleanLiteral,
CharacterLiteral, StringLiteral, and NullLiteral.

• There is no distinction made between char literals and String literals. Single-character
String literals can be used wherever char literals are permitted. Char literals will be
widened if used in numerical expressions; or treated as single-character String literals if
used in String expressions.

• String literals are allowed to be delimited by single quote marks or double quote marks.
This allows String literal filters to use single quote marks instead of escaped double quote
marks.

Note that comparisons between floating point values are by nature inexact. Therefore, equality com-
parisons (== and !=) with floating point values should be used with caution.
Identifiers in the expression are considered to be in the name space of the specified class, with the
addition of declared imports, parameters and variables. As in the Java language, this is a reserved
word, and it refers to the element of the collection being evaluated.
Identifiers that are persistent field names or public final static field names are required to be sup-
ported by JDO implementations. Other identifiers might be supported but are not required. Thus,
portable queries must not use fields other than persistent or public final static field names in filter
expressions.
Navigation through single-valued fields is specified by the Java language syntax of
field_name.field_name.....field_name.
A JDO implementation is allowed to reorder the filter expression for optimization purposes.
The following are minimum capabilities of the expressions that every implementation must support:

• operators applied to all types where they are defined in the Java language:

Table 4: Query Operators

Operator Description

== equal

!= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

& boolean logical AND (not bitwise)

&& conditional AND

| boolean logical OR (not bitwise)

|| conditional OR

~ integral unary bitwise complement

Java Data Objects 2.2

 JDO 2.2 167 October 10, 2008

• exceptions to the above:

• String concatenation is supported only for String + String, not String +
<primitive>;

• parentheses to explicitly mark operator precedence

• cast operator (class)

• promotion of numeric operands for comparisons and arithmetic operations. The rules for
promotion follow the Java rules (see chapter 5.6 Numeric Promotions of the Java language
spec) extended by BigDecimal, BigInteger and numeric wrapper classes:

• if either operand is of type BigDecimal, the other is converted to BigDecimal.
• otherwise, if either operand is of type BigInteger, and the other type is a floating point

type (float, double) or one of its wrapper classes (Float, Double) both operands
are converted to BigDecimal.

• otherwise, if either operand is of type BigInteger, the other is converted to
BigInteger.

• otherwise, if either operand is of type double, the other is converted to double.
• otherwise, if either operand is of type float, the other is converted to float.
• otherwise, if either operand is of type long, the other is converted to long.
• otherwise, both operands are converted to type int.
• operands of numeric wrapper classes are treated as their corresponding primitive types. If

one of the operands is of a numeric wrapper class and the other operand is of a primitive
numeric type, the rules above apply and the result is of the corresponding numeric wrapper
class.

• equality comparison among persistent instances of persistence-capable types use the JDO
Identity comparison of the references; this includes containment methods applied to
Collection and Map types. Thus, two objects will compare equal if they have the same
JDO Identity.

• comparisons between persistent and non-persistent instances return not equal.

• equality comparison of instances of non-persistence-capable reference types uses the
equals method of the type; this includes containment methods applied to Collection
and Map types.

+ binary addition, unary plus, or String concatena-
tion

- binary subtraction or unary numeric sign inver-
sion

* times

/ divide by

! logical complement

% modulo operator

instanceof instanceof operator

Table 4: Query Operators

Operator Description

Java Data Objects 2.2

 JDO 2.2 168 October 10, 2008

• String methods startsWith and endsWith support wild card queries but not in a
portable way. JDO does not define any special semantic to the argument passed to the
method; in particular, it does not define any wild card characters. To achieve portable
behavior, applications should use matches(String).

• Null-valued fields of Collection types are treated as if they were empty if a method
is called on them. In particular, they return true to isEmpty and return false to all
contains methods. For datastores that support null values for Collection types, it
is valid to compare the field to null. Datastores that do not support null values for
Collection types, will return false if the query compares the field to null.
Datastores that support null values for Collection types should include the option
"javax.jdo.option.NullCollection" in their list of supported options
(PersistenceManagerFactory.supportedOptions()).

Methods
The following methods are supported for their specific types, with semantics as defined by the Java
language:

Table 5: Query Methods

Method Description

contains(Object) applies to Collection types

get(Object) applies to Map types

containsKey(Object) applies to Map types

containsValue(Object) applies to Map types

isEmpty() applies to Map and Collection types

size() applies to Map and Collection types

toLowerCase() applies to String type

toUpperCase() applies to String type

indexOf(String) applies to String type; 0-indexing is used

indexOf(String, int) applies to String type; 0-indexing is used

matches(String) applies to String type; only the following regular expression
patterns are required to be supported and are portable: glo-
bal “(?i)” for case-insensitive matches; and “.” and “.*” for
wild card matches. The pattern passed to matches must be a
literal or parameter.

substring(int) applies to String type

substring(int, int) applies to String type

startsWith(String) applies to String type

endsWith(String) applies to String type

Math.abs(numeric) static method in java.lang.Math, applies to types of float,
double, int, and long

Java Data Objects 2.2

 JDO 2.2 169 October 10, 2008

Subqueries
void addSubquery (Query subquery, String variableDeclaration,

String candidateCollectionExpression);

This method adds a subquery to this query. A subquery is composed as a Query and subsequently
attached to a different Query (the outer Query) by calling this method. The String parameters
are trimmed of white space.
The Query parameter instance is unmodified as a result of the addSubquery or subsequent ex-
ecution of the outer Query. Only some of the parameter query parts are copied for use as the sub-
query. The parts copied include the candidate class, filter, parameter declarations, variable
declarations, imports, ordering specification, uniqueness, result specification, and grouping specifi-
cation. The association with a PersistenceManager, the candidate collection or extent, result
class, and range limits are not used.
The variableDeclaration parameter is the name of the variable containing the results of the
subquery execution. If the same value of variableDeclaration is used to add multiple sub-
queries, the subquery replaces the previous subquery for the same named variable If the subquery
parameter is null, the variable is unset, effectively making the variable named in the variable-
Declaration unbound If the trimmed value is the empty String, or the parameter is null, then
JDOUserException is thrown.
The candidateCollectionExpression is the expression from the outer query that repre-
sents the candidates over which the subquery is evaluated. If the trimmed value is the empty
String, or the parameter is null, then the candidate collection is the extent of the candidate class.

Non-correlated subqueries
If the subquery has no references to expressions in the outer query the subquery is non-correlated.
For example, to find employees who work more than the average of all employees,
Query sub = pm.newQuery(Employee.class);
sub.setResult("avg(this.weeklyhours)");
Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyHours > averageWeeklyhours");
q.addSubquery(sub, "double averageWeeklyhours", null);

Correlated subqueries
A correlated subquery is a subquery which contains references to expressions in the outer query. If
the correlation can be expressed as a restriction of the candidate collection of the subquery, no pa-
rameters are needed.
For example, to find employees who work more than the average of their department employees:
Query sub = pm.newQuery(Employee.class);
sub.setResult("avg(this.weeklyhours)");
Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyhours> averageWeeklyhours");
q.addSubquery(sub, "double averageWeeklyhours", "this.department.employees");

Math.sqrt(numeric) static method in java.lang.Math, applies to double type

JDOHelper.getObjec-
tId(Object)

static method in JDOHelper, allows using the object identity
of an instance directly in a query.

Table 5: Query Methods

Method Description

Java Data Objects 2.2

 JDO 2.2 170 October 10, 2008

If the correlation cannot be expressed as a restriction of the candidate collection, the correlation is
expressed as one or more parameters in the subquery which are bound to expressions of the outer
query.
void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, String
parameter);

void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, String...
parameters);

void addSubquery(String variableDeclaration,

Query subquery, String candidateCollectionExpr, Map parameters);

The parameters in the above methods binds parameters in the subquery to expressions in the out-
er query. String parameters are trimmed of white space. The single String version of the meth-
od binds the named expression to the single parameter in the subquery. The String[] version of
the method binds the named expressions in turn to parameters in the order in which they are declared
in the subquery, or in the order they are found in the filter if not explicitly declared in the subquery.
The Map version of the method treats the key of each map entry as the name of the parameter in the
subquery, with or without the leading “:”, and the value as the name of the expression in the outer
query. If the trimmed expression is the empty String for either the parameter or the value of the
String..., or for any map key or value, that expression is ignored.
For example, to find employees who work more than the average of the employees in their depart-
ment having the same manager:
Query sub = pm.newQuery(Employee.class);
sub.setResult("avg(this.weeklyhours)");
sub.setFilter("this.manager == :manager");
Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyHours > averageWeeklyhours");
q.addSubquery(sub, "double averageWeeklyhours", "this.department.employees",
"this.manager");

The parameter in the subquery “:manager” is bound to the expression “this.manager” in the
context of the outer query.

14.6.3 Parameter declaration

The parameter declaration is a String containing one or more parameter type declarations sepa-
rated by commas. This follows the Java syntax for method signatures.
Parameter types for primitive values can be specified as either the primitive types or the correspond-
ing wrapper types. If a parameter type is specified as a primitive, the parameter value passed to ex-
ecute() must not be null or a JDOUserException is thrown.
Parameters must all be declared explicitly via declareParameters or all be declared implicitly in the
filter. Parameters implicitly declared (in the result, filter, ordering, grouping, or range) are identified
by prepending a ":" to the parameter everywhere it appears. All parameter types can be determined
by one of the following techniques:

• the parameter is used as the right hand side or left hand side of a boolean operator (<, <=,
==, >=, or >) and the other side is strongly typed, or

Java Data Objects 2.2

 JDO 2.2 171 October 10, 2008

• the parameter is used in a method from Table 5 on page 168 directly as either a parameter
or the object on which the method is called, and the type can be determined from the context
of the method, or

• the parameter is explicitly cast using the cast operator and the cast is identical everywhere
the parameter appears.

Implicit parameter declaration
When parameters are declared implicitly, if the query is string-based, parameters are recognized in
the order that they appear in the query string. If the query is API-based, parameters are recognized
as if declared explicitly, with the order of their first appearance in the result, filter, grouping, order-
ing, and range, in that order. This is significant if a positional form of execute or addSubquery is
used.

14.6.4 Import statements

The import statements follow the Java syntax for import statements. Import statements are separated
by semicolons. Import on demand is supported. Classes in java.lang and javax.jdo are automatically
imported.

14.6.5 Variable declaration

The type declarations follow the Java syntax for local variable declarations. Variable declarations
are separated by semicolons.
A variable that is not constrained with an explicit contains clause is constrained by the extent of the
persistence capable class (including subclasses). If the class does not manage an Extent, then no re-
sults will satisfy the query.
If the query result uses a variable, the variable must not be constrained by an extent. Further, each
side of an "OR" expression must constrain the variable using a contains clause.
A portable query will constrain all variables with a contains clause in each side of an “OR” ex-
pression of the filter where the variable is used. Further, each variable must either be used in the
query result or its contains clause must be the left expression of an “AND” expression where the
variable is used in the right expression. That is, for each occurrence of an expression in the filter
using the variable, there is a contains clause “ANDed” with the expression that constrains the
possible values by the elements of a collection.
The semantics of contains is “exists”, where the contains clause is used to filter instances. The
meaning of the expression “emps.contains(e) && e.salary < param” is “there exists an e in the emps
collection such that e.salary is less than param”. This is the natural meaning of contains in the Java
language, except where the expression is negated. If the variable is used in the result, then it need
not be constrained.
If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there does not
exist an employee e in the collection emps such that e.salary is less than param”. Another way of
expressing this is “for each employee e in the collection emps, e.salary is greater than or equal to
param”. If a variable is used in the result, then it must not be used in a negated contains clause.

Implicit variable declaration
The variable declaration is unnecessary if all variables are implicitly declared. All variables must be
explicitly declared, or all variables must be implicitly declared.
Names in the filter are treated as parameters if they are explicitly declared via declareParameters or
if they begin with “:”.
Names are treated as variable names if they are explicitly declared via declareVariables.
Names are treated as field or property names if they are fields or properties of the candidate class.

Java Data Objects 2.2

 JDO 2.2 172 October 10, 2008

Names are treated as class names if they exist in the package of the candidate class, have been im-
ported, or if they are in the java.lang package. e.g. Integer.
Otherwise, names are treated as implicitly defined variable names.
Variables must be typed. Implicitly defined variables are typed according to the following:

• if the variable is the parameter of a contains method, the type is the element type of the
collection; or

• if the variable is the parameter of a containsKey method, the type is the key type of the
map; or

• if the variable is the parameter of a containsValue method, the type is the value type
of the map; or

• if the variable is not constrained by a contains, containsKey, or containsValue
method, the variable must be typed by an explicit cast the first time the variable appears in
the filter.

14.6.6 Ordering statement

The ordering statement is a String containing one or more ordering declarations separated by
commas. Each ordering declaration is a Java expression of an orderable type:

• primitives (boolean is non-portable);

• wrappers (Boolean is non-portable);

• BigDecimal;

• BigInteger;

• String;

• Date

followed by one of the following words: “ascending”, “descending”,“asc”, or “desc”.
Ordering might be specified including navigation. The name of the field to be used in ordering via
navigation through single-valued fields is specified by the Java language syntax of
field_name.field_name....field_name.
The result of the first (leftmost) expression is used to order the results. If the leftmost expression
evaluates the same for two or more elements, then the second expression is used for ordering those
elements. If the second expression evaluates the same, then the third expression is used, and so on
until the last expression is evaluated. If all of the ordering expressions evaluate the same, then the
ordering of those elements is unspecified.
The ordering of instances containing null-valued fields specified by the ordering is not specified.
Different JDO implementations might order the instances containing null-valued fields either before
or after instances whose fields contain non-null values.
Ordering of boolean fields, if supported by the implementation, is false before true, unless descend-
ing is specified. Ordering of null-valued Boolean fields is as above.

14.6.7 Closing Query results

When the application has finished with the query results, it might optionally close the results, allow-
ing the JDO implementation to release resources that might be engaged, such as database cursors or
iterators. The following methods allow early release of these resources.
void close (Object queryResult);

This method closes the result of one execute(...) method, and releases resources associated
with it. After this method completes, the query result can no longer be used, for example to iterate

Java Data Objects 2.2

 JDO 2.2 173 October 10, 2008

the returned elements. Any elements returned previously by iteration of the results remain in their
current state. Any iterators acquired from the queryResult will return false to hasNext() and
will throw NoSuchElementException to next().
void closeAll ();

This method closes all results of execute(...) methods on this Query instance, as above. The
Query instance is still valid and can still be used.

14.6.8 Limiting the Cardinality of the Query Result

The application may want to skip some number of results that may have been previously returned,
and additionally may want to limit the number of instances returned from a query. The parameters
are modeled after String.getChars and are 0-origin. The parameters are not saved if the query is se-
rialized. The default range for query execution if this method is not called are (0,
Long.MAX_VALUE).
setRange(long fromIncl, long toExcl);
The fromIncl parameter is the number of instances of the query result to skip over before returning
the List to the user. If specified as 0 (the default), no instances are skipped.
The toExcl parameter is the last instance of the query result (before skipping) to return to the user.
The expression (toExcl - fromIncl) is the maximum number of instances in the query result to be
returned to the user. If fewer instances are available, then fewer instances will be returned. If
((toExcl - fromIncl)<= 0) evaluates to true ,

• if the result of the query execution is a List, the returned List contains no instances, and
an Iterator obtained from the List returns false to hasNext().

• if the result of the query execution is a single instance (setUnique(true)), it will have
a value of null.

setRange(String range);
When using the string form of setRange both parameter values are specified either as numbers or as
parameters. The fromIncl and toExcl values are comma separated and evaluated as either long val-
ues or as parameter names (beginning with “:”). For example, setRange(“:fromRange, :toRange”)
or setRange(“100, 130”).

14.6.9 Specifying the Result of a Query (Projections, Aggregates)

The application might want to get results from a query that are not instances of the candidate class.
The results might be single-valued fields of persistent instances, instances of classes other than the
candidate class, or aggregates of single-valued fields. Note that this means that fields of Collection
and Map types are not allowed in the projection.
void setResult(String result);
The result parameter consists of the optional keyword distinct followed by a comma-separated list
of named result expressions or a constructor expression.
A constructor expression consists of the keyword new followed by the name of a result class and a
comma-separated parenthesis-enclosed list of named result expressions. See 14.6.12 for a detailed
description of the constructor expression.

Distinct results
If distinct is specified, the query result does not include any duplicates. If the result parameter spec-
ifies more than one result expression, duplicates are those with matching values for each result ex-
pression.

Java Data Objects 2.2

 JDO 2.2 174 October 10, 2008

Queries against an extent always consider only distinct candidate instances, regardless of whether
distinct is specified. Queries against a collection might contain duplicate candidate instances; the
distinct keyword removes duplicates from the candidate collection in this case.
Result expressions begin with either an instance of the candidate class (with an explicit or implicit
"this") or an instance of a variable (using the variable name). The candidate tuples are the cartesian
product of the candidate class and all variables used in the result. The result tuples are the tuples of
the candidate class and all variables used in the result that satisfy the filter. The result is the collec-
tion of result expressions projected from the result tuples. If variables are not used in the result ex-
pression, then the filter is evaluated for all possible values for each such variable, and if the filter
evaluates to true for any combination of such variables, then the candidate tuple becomes a result
tuple.
The distinct specification requires removing duplicates from projected expressions.
If any result is a navigational expression, and a non-terminal field or variable has a null value for a
particular set of conditions (the result calculation would throw NullPointerException), then the re-
sult is null for that result expression. This is known in relational algebra as “outer join semantics”.
For example, to exclude results of “this.department.category.name” where either department or cat-
egory is null, the user must explicitly add a clause to the filter: “this.department != null && this.de-
partment.category != null”.
The result expressions include:

• “this”: indicates that the candidate instance is returned

• <field>: this indicates that a field is returned as a value; the field might be in the candidate
class or in a class referenced by a variable

• <variable>: this indicates that a variable’s value is returned as a persistent instance

• <aggregate>: this indicates that an aggregate of multiple values is returned; if null values
are aggregated, they do not participate in the aggregate result; if all of the expressions to be
aggregated evaluate to null, the result is the same as if there were no instances that match
the filter.

• count(<expression>): the count of the number of instances of the expression is returned;
the expression is preceded by an optional “distinct” and can be “this”, a navigational
expression that terminates in a single-valued field, or a variable name

• sum(<numeric field expression>): the sum of field expressions is returned; the expression
is preceded by an optional "distinct"

• min(<orderable field expression>): the minimum value of the field expression is returned
• max(<orderable field expression>): the maximum value of the field expression is returned
• avg(<numeric field expression>): the average value of all field expressions is returned; the

expression is preceded by an optional "distinct"
• <field expression>: the value of an expression using any of the operators allowed in queries

applied to fields is returned

• <navigational expression>: this indicates a navigational path through single-valued fields
or variables as specified by the Java language syntax; the navigational path starts with the
keyword “this”, a variable, a parameter, or a field name followed by field names separated
by dots.

• <parameter>: one of the parameters provided to the query.

The result expression can be explicitly cast using the (cast) operator.

Java Data Objects 2.2

 JDO 2.2 175 October 10, 2008

Named Result Expressions
<result expression> as <name>: identify the <result expression> (any of the result expressions spec-
ified above) as a named element for the purpose of matching a method or field name in the result
class.
If the name is not specified explicitly, the default for name is the expression itself.

Aggregate Types
Count returns Long.
Sum returns Long for integral types and the field’s type for other Number types (BigDecimal, Big-
Integer, Float, and Double). Sum and avg are invalid if applied to non-Number types.
Avg, min, and max return the type of the expression.
If there are no instances that match the filter,

• count returns 0;

• avg, sum, min, and max return null.

If null values are aggregated, they do not participate in the aggregate result. If all of the expressions
to be aggregated evaluate to null, the result is the same as if there were no instances that match the
filter.

Primitive Types
If a result expression has a primitive type, its value is returned as an instance of the corresponding
java wrapper class.

Null Results
If the returned value from a query specifying a result is null, this indicates that the expression spec-
ified as the result was null. Note that the semantics of this result are different from the returned value
where no instances satisfied the filter.

Default Result
If not specified, the result defaults to “distinct this as C” where C is the unqualified name of the can-
didate class. For example, the default result specification for a query where the candidate class is
com.acme.hr.Employee is “distinct this as Employee”.

Projected Second Class Result
If an SCO field is in the result, the projected field is not owned by any persistent instance, and mod-
ifying the SCO value has no effect on any persistent instance. If an FCO field is in the result, the
projected field is a persistent instance, and modifications made to the instance are reflected as
changes to the datastore per transaction requirements.

14.6.10 Grouping Aggregate Results

Aggregates are most useful if they can be grouped based on an element of the result. Grouping is
required if there are aggregate expressions in the result.
void setGrouping(String grouping);

The grouping parameter consists of one or more expressions separated by commas followed by an
optional “having” followed by one Boolean expression.
When grouping is specified, each result expression must be one of:

• an expression contained in the grouping expression; or,

• an aggregate expression evaluated once per group.

Java Data Objects 2.2

 JDO 2.2 176 October 10, 2008

When grouping is specified with ordering, each ordering expression must be one of:
• an expression contained in the grouping expression; or,

• an aggregate expression evaluated once per group.

The query groups all elements where all expressions specified in setGrouping have the same values.
The query result consists of one element per group.
When “having” is specified, the “having” expression consists of arithmetic and boolean expressions
containing expressions that are either aggregate expressions or contained in a grouping expression.

14.6.11 Specifying Uniqueness of the Query Result

If the application knows that there can be exactly zero or one instance returned from a query, the
result of the query is most conveniently returned as an instance (possibly null) instead of a List.
void setUnique(boolean unique);

When the value of the Unique flag is true, then the result of a query is a single value, with null used
to indicate that none of the instances in the candidates satisfied the filter. If more than one instance
satisfies the filter, and the range is not limited to one result, then execute throws a JDOUserExcep-
tion.

Default Unique setting
The default Unique setting is true for aggregate results without a grouping expression, and false oth-
erwise.

14.6.12 Specifying the Class of the Result

The application may have a user-defined class that best represents the results of a query. In this case,
the application can specify that instances of this class should be returned.
void setResultClass(Class resultClass);

The default result class is the candidate class if the parameter to setResult is null or not specified.
When the result is specified and not null, the default result class is the type of the expression if the
result consists of one expression, or Object[] if the result consists of more than one expression.

Result Class Requirements
• The result class may be one of the java.lang classes Character, Boolean, Byte,
Short, Integer, Long, Float, Double, String, or Object[]; or one of the
java.math classes BigInteger or BigDecimal; or the java.util class Date;
or the java.util interface Map; or one of the java.sql classes Date, Time, or
Timestamp; or a user-defined class.

• If there are multiple result expressions, the result class must be able to hold all elements of
the result specification or a JDOUserException is thrown.

• If there is only one result expression, the result class must be assignable from the type of
the result expression or must be able to hold all elements of the result specification. A single
value must be able to be coerced into the specified result class (treating wrapper classes as
equivalent to their unwrapped primitive types) or by matching. If the result class does not
satisfy these conditions, a JDOUserException is thrown.

• A constructor of a result class specified in the constructor expression of the setResult
method or in the setResultClass method will be used if the results specification
matches the parameters of the constructor by position and type. If more than one
constructor satisfies the requirements, the JDO implementation chooses one of them. If no
constructor satisfies the results requirements, the following requirements apply:

Java Data Objects 2.2

 JDO 2.2 177 October 10, 2008

• A user-defined result class must have a no-args constructor and one or more public “set” or
“put” methods or fields.

• Each result expression must match one of:
• a public field that matches the name of the result expression and is of the type (treating

wrapper types the same as primitive types) of the result expression;
• or if no public field matches the name and type, a public “set” method that returns
void and matches the name of the result expression and takes a single parameter
which is the exact type of the result expression;

• or if neither of the above applies,a public method must be found with the signature
void put(Object, Object) in which the first argument is the name of the result
expression and the second argument is the value from the query result.

• Portable result classes do not invoke any persistence behavior during their no-args
constructor or “set” methods.

14.6.13 Single-string Query element binding

The String version of Query represents all query elements using a single string. The string contains
the following structure:
select [unique] [<result>] [into <result-class-name>]
[from <candidate-class-name> [exclude subclasses]]
[where <filter>]
[variables <variables-clause>]
[parameters <parameters-clause>]
[<imports-clause>]
[group by <grouping-clause>]
[order by <ordering-clause>]
[range <from-range> ,<to-range>]
Keywords, identified in bold, are either all upper-case or all lower-case. Keywords cannot be mixed
case.
The select clause must be the first clause in the query.

Table 6: Shape of Result (C is the candidate class)

setResult setResultClass setUnique shape of result

null, or “distinct this as C” null false List<C>

null, or “distinct this as C” null true C

not null, one result expression of type T null false List<T>

not null, one result expression of type T null true T

not null, more than one result expression null false List<Object[]>

not null, more than one result expression null true Object[]

null or not null UserResult.class false List<UserResult>

null or not null UserResult.class true UserResult

Java Data Objects 2.2

 JDO 2.2 178 October 10, 2008

The order of the other clauses must be as described above.
If implicit parameters are used, their order of appearance in the query determines their order for
binding to positional parameters for execution.
<result> is the result as in 14.6.9.
<result-class-name> is the name of the result class as in 14.6.12.
<filter> is the filter as in 14.6.2. The filter in the single String version might include subqueries. A
subquery must be enclosed in parentheses, and has the following structure:
(select <subquery-result-clause> from <subquery-from-clause> [where <filter>] [variables <vari-
ables-clause>] [parameters <parameters-clause>] [<imports-clause>])
The subquery-result-clause consists of an optional keyword distinct followed by a single expres-
sion.
The subquery-from-clause may have one of two forms:

• A candidate class name followed by an optional alias definition followed by an optional
exclude subclasses

• A field access expression followed by an optional alias definition

An alias definition consists of an optional keyword as followed by an identifier.
• If the as clause is used, the identifier is used instead of this to access the candidate instances

of the subquery. In this case, fields of the outer query can be accessed from the inner query.

• If the as clause is not used, any usage of this in the subquery refers to the candidate
instances of the subquery. In this case, fields of the outer query cannot be accessed from
the inner query.

<variables-clause> is the variable declaration as in 14.6.5. As in Java, variables in the clause are sep-
arated by semicolons.
<parameters-clause> is the parameter declaration as in 14.6.3. As in Java, parameters in the clause
are separated by commas.
<imports-clause> is the imports declaration as in 14.6.4. As in Java, imports in the clause are sepa-
rated by semicolons.
<grouping-clause> is the grouping specification as in 14.6.10.
<ordering-clause> is the ordering specification as in 14.6.6.
<from-range> and <to-range> are as in 14.6.8.

14.7 SQL Queries
If the developer knows that the underlying datasource supports SQL, and knows the mapping from
the JDO domain model to the SQL schema, it might be convenient in some cases to execute SQL
instead of expressing the query as JDOQL. In this case, the factory method that takes the language
string and Object is used: newQuery (String language, Object query). The language parameter is
“javax.jdo.query.SQL” and the query parameter is the SQL query string.
The SQL query string must be well-formed. The JDO implementation must not make any changes
to the query string. The tokens “?” must be used to identify parameters in the SQL query string.
When this factory method is used, the behavior of the Query instance changes significantly. The
only methods that can be used are setClass to establish the candidate class, setUnique to declare that
there is only one result row, and setResultClass to establish the result class.

Java Data Objects 2.2

 JDO 2.2 179 October 10, 2008

• there is no filter, and the setFilter method throws JDOUserException.

• there is no ordering specification, and the setOrdering method throws
JDOUserException.

• there are no variables, and the declareVariables method throws
JDOUserException.

• the parameters are untyped, and the declareParameters method throws
JDOUserException.

• there is no grouping specification, and the setGrouping method throws
JDOUserException.

• the candidate collection can only be the Extent of instances of the candidate class,
including subclasses, and the setCandidates method throws JDOUserException.

• parameters are bound by position. If the parameter list is an Object[] then the first
element in the array is bound to the first “?” in the SQL statement, and so forth. If the
parameter list is a Map, then the keys of the Map must be instances of Integer whose
intValue is 1..n. The value in the Map corresponding to the key whose intValue is 1
is bound to the first “?” in the SQL statement, and so forth.

• there are no imports, and the declareImports method throws JDOUserException.

• for queries in which the candidate class is specified, the columns selected in the SQL
statement must at least contain the primary key columns of the mapped candidate class, and
additionally the discriminator column if defined and the version column(s) if defined.

• results are taken from the SELECT clause of the query, and the setResult method
throws JDOUserException.

• the cardinality of the result is determined by the SQL query itself, and the setRange
method throws JDOUserException.

SQL queries can be defined without a candidate class. These queries can be found by name using
the factory method newNamedQuery, specifying the class as null, or can be constructed without a
candidate class.

Table 7: Shape of Result of SQL Query

Candidate
class Selected columns setResultClass setUnique shape of result

C must include primary
key columns

null false List<C>

C must include primary
key columns

null true C

null single column of type T null false List<T>

null single column of type T null true T

null more than one result
column

null false List<Object[]>

null more than one result
column

null true Object[]

Java Data Objects 2.2

 JDO 2.2 180 October 10, 2008

14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes

There are two specified means by which columns of SQL queries can be mapped to user-specified
result classes: by name and by position.
Each labeled column in the result set is mapped according to the mapping defined in Section
14.6.12, using the result set column name as the public field or property name of the result class.
Since SQL is generally case-insensitive, matching of labels to field and property names is not case-
sensitive. Labels that differ only in case cause a JDOUserException to be thrown when the query is
executed.
A result set column is considered labeled if:

• the return value from java.sql.ResultSetMetaData.getColumnLabel (int
oneBasedColumnIndex) is non-null and of non-zero length; or,

• if getColumnLabel is null or of zero length,
java.sql.ResultSetMetaData.getColumnName (int
oneBasedColumnIndex) is non-null and of non-zero length.

Other determinations of whether a column is considered labeled are unspecified and not portable.
Each character in a column label that is not a valid character in a Java field or method identifier is
converted to an underscore character for the purposes of mapping; other name conversion strategies
are not specified and not portable.
Each unlabeled column in the result set is mapped positionally. As required by Section 14.6.12, the
result class must expose a public method with the signature void put(Object, Object) for data that
do not have a public field or set method; it is this method that is used by the implementation to map
columns positionally, using the integral position of the column, as an Integer, as the first argument,
and the column's value as the second. Positional indexes passed to the result class's void put(Object,
Object) method are zero-based; that is, the value of the Integer given is one less than the SQL col-
umn index, as SQL column indexes are one-based.

14.8 Deletion by Query
An application may want to delete a number of instances in the datastore without instantiating them
in memory. The instances to be deleted can be described by a query.
long deletePersistentAll(Object... parameters);

long deletePersistentAll(Map parameters);

long deletePersistentAll();

These methods delete the instances of affected classes that pass the filter, and all dependent instanc-
es. Affected classes are the candidate class and its persistence-capable subclasses. The number of
instances of affected classes that were deleted is returned. Embedded instances and dependent in-
stances are not counted in the return value.

null or not null UserResult.class false List<UserResult>

null or not null UserResult.class true UserResult

Table 7: Shape of Result of SQL Query

Candidate
class Selected columns setResultClass setUnique shape of result

Java Data Objects 2.2

 JDO 2.2 181 October 10, 2008

Query elements filter, parameters, imports, variables, and unique are valid in queries used for delete.
Elements result, result class, range, grouping, and ordering are invalid. If any of these elements is
set to its non-default value when one of the deletePersistentAll methods is called, a JDOUserExcep-
tion is thrown and no instances are deleted.
When the value of the Unique flag is true, then at most one instance will be deleted. If more than
one instance satisfies the filter, then deletePersistentAll throws a JDOUserException.
Dirty instances of affected classes are first flushed to the datastore. Instances already in the cache
when deleted via these methods or brought into the cache as a result of these methods undergo the
life cycle transitions as if deletePersistent had been called on them.
That is, if an affected class implements the DeleteCallback interface, the instances of that class to
be deleted are instantiated in memory and the jdoPreDelete method is called prior to deleting the
instance in the datastore. If any LifecycleListener instances are registered with affected classes,
these listeners are called for each deleted instance.
Before returning control to the application, instances of affected classes in the cache are refreshed
by the implementation so their status in the cache reflects whether they were deleted from the datas-
tore.

14.9 Extensions
Some JDO vendors provide extensions to the query, and these extensions must be set in the query
instance prior to execution.
void setExtensions(Map extensions);

This method replaces all current extensions with the extensions contained as entries in the parameter
Map. A parameter value of null means to remove all extensions. The keys are immediately evaluat-
ed; entries where the key refers to a different vendor are ignored; entries where the key prefix match-
es this vendor but where the full key is unrecognized cause a JDOUserException to be thrown. The
extensions become part of the state of the Query instance that is serialized. The parameter Map is
not used after the method returns.
void addExtension(String key, Object value);
This method adds one extension to the Query instance. This extension will remain until the next se-
tExtensions method is called, or addExtension with an equal key. Key recognition behavior is iden-
tical to setExtensions.

14.10 Examples:
The following class definitions for persistence capable classes are used in the examples:
package com.xyz.hr;
class Employee {

String name;
float salary;

Department dept;
Employee boss;
}
package com.xyz.hr;
class Department {

String name;
Collection emps;

}

Java Data Objects 2.2

 JDO 2.2 182 October 10, 2008

14.10.1 Basic query.

This query selects all Employee instances from the candidate collection where the salary is greater
than the constant 30000.
Note that the float value for salary is unwrapped for the comparison with the literal int value,
which is promoted to float using numeric promotion. If the value for the salary field in a can-
didate instance is null, then it cannot be unwrapped for the comparison, and the candidate instance
is rejected.
Query q = pm.newQuery (Employee.class, "salary > 30000");
Collection emps = (Collection) q.execute ();
<query name="basic">

[!CDATA[
select where salary > 30000
]]
</query>

14.10.2 Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary is greater
than the constant 30000, and returns a Collection ordered based on employee salary.
Query q = pm.newQuery (Employee.class, "salary > 30000");
q.setOrdering ("salary ascending");
Collection emps = (Collection) q.execute ();
<query name="ordering">

[!CDATA[
select where salary > 30000
order by salary ascending
]]
</query>

14.10.3 Parameter passing.

This query selects all Employee instances from the candidate collection where the salary is greater
than the value passed as a parameter and the name starts with the value passed as a second parame-
ter.
If the value for the salary field in a candidate instance is null, then it cannot be unwrapped for
the comparison, and the candidate instance is rejected.
Query q = pm.newQuery (Employee.class,

"salary > sal && name.startsWith(begin");
q.declareParameters ("Float sal, String begin");
Collection emps = (Collection) q.execute (new Float (30000.));
<query name="parameter">

[!CDATA[
select where salary > :sal && name.startsWith(:begin)
]]
</query>

14.10.4 Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of the name
field in the Department instance associated with the Employee instance is equal to the value passed
as a parameter.
If the value for the dept field in a candidate instance is null, then it cannot be navigated for the
comparison, and the candidate instance is rejected.
Query q = pm.newQuery (Employee.class, "dept.name == dep");
q.declareParameters ("String dep");
String rnd = "R&D";

Java Data Objects 2.2

 JDO 2.2 183 October 10, 2008

Collection emps = (Collection) q.execute (rnd);
<query name="navigate">

[!CDATA[
select where dept.name == :dep
]]
</query>

14.10.5 Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the collection
of Employee instances contains at least one Employee instance having a salary greater than the
value passed as a parameter.
String filter = "emps.contains (emp) & emp.salary > sal";
Query q = pm.newQuery (Department.class, filter);
q.declareParameters ("float sal");
q.declareVariables ("Employee emp");
Collection deps = (Collection) q.execute (new Float (30000.));
<query name="multivalue">

[!CDATA[
select where emps.contains(e)
&& e.salary > :sal
]]
</query>

14.10.6 Membership in a collection

This query selects all Department instances where the name field is contained in a parameter col-
lection, which in this example consists of three department names.
String filter = "depts.contains(name)";
Query q = pm.newQuery (Department.class, filter);
List depts =

Arrays.asList(new String [] {"R&D", "Sales", "Marketing"});
q.declareParameters ("Collection depts");
Collection deps = (Collection) q.execute (depts);
<query name="collection">

[!CDATA[
select where :depts.contains(name)
]]
</query>

14.10.7 Projection of a Single Field

This query selects names of all Employees who work in the parameter department.
Query q = pm.newQuery (Employee.class, "dept.name == deptName");
q.declareParameters ("String deptName");
q.setResult("name");
Collection names = (Collection) q.execute("R&D");
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String) it.next();
...

}
<query name="project">

[!CDATA[
select name where dept.name == :deptName
]]
</query>

14.10.8 Projection of Multiple Fields and Expressions

This query selects names, salaries, and bosses of Employees who work in the parameter department.

Java Data Objects 2.2

 JDO 2.2 184 October 10, 2008

class Info {
public String name;
public Float salary;
public Employee reportsTo;

}
Query q = pm.newQuery (Employee.class, "dept.name == deptName");
q.declareParameters ("String deptName");
q.setResult("name, salary, boss as reportsTo");
q.setResultClass(Info.class);
Collection names = (Collection) q.execute("R&D");
Iterator it = names.iterator();
while (it.hasNext()) {

Info info = (Info) it.next();
String name = info.name;
Employee boss = info.reportsTo;
...

}
<query name="resultclass">

[!CDATA[
select name, salary, boss as reportsTo into Info
where dept.name == :deptName
]]
</query>

14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance

This query selects names, salaries, and bosses of Employees who work in the parameter department,
and uses the constructor for the result class.
class Info {

public String name;
public Float salary;
public Employee reportsTo;
public Info (String name, Float salary, Employee reportsTo) {

this.name = name;
this.salary = salary;
this.reportsTo = reportsTo;

}
}
Query q = pm.newQuery (Employee.class, "dept.name == deptName");
q.declareParameters ("String deptName");
q.setResult("new Info(name, salary, boss)");
q.setResultClass(Info.class);
Collection names = (Collection) q.execute("R&D");
Iterator it = names.iterator();
while (it.hasNext()) {

Info info = (Info) it.next();
String name = info.name;
Employee boss = info.reportsTo;
...

}
<query name="construct">

[!CDATA[
select new Info (name, salary, boss)
where dept.name == :deptName
]]
</query>

14.10.10 Aggregation of a single Field

This query averages the salaries of Employees who work in the parameter department and returns a
single value.

Java Data Objects 2.2

 JDO 2.2 185 October 10, 2008

Query q = pm.newQuery (Employee.class, "dept.name == deptName");
q.declareParameters ("String deptName");
q.setResult("avg(salary)");
Float avgSalary = (Float) q.execute("R&D");
<query name="aggregate">

[!CDATA[
select avg(salary)
where dept.name == :deptName
]]
</query>

14.10.11 Aggregation of Multiple Fields and Expressions

This query averages and sums the salaries of Employees who work in the parameter department.
Query q = pm.newQuery (Employee.class, "dept.name == deptName");
q.declareParameters ("String deptName");
q.setResult("avg(salary), sum(salary)");
Object[] avgSum = Object[] q.execute("R&D");
Float average = (Float)avgSum[0];
Float sum = (Float)avgSum[1];
<query name="multiple">

[!CDATA[
select avg(salary), sum(salary)
where dept.name == :deptName
]]
</query>

14.10.12 Aggregation of Multiple fields with Grouping

This query averages and sums the salaries of Employees who work in all departments having more
than one employee and aggregates by department name.
Query q = pm.newQuery (Employee.class);
q.setResult("avg(salary), sum(salary), dept.name");
q.setGrouping("dept.name having count(dept.name) > 1");
Collection results = (Collection)q.execute();
Iterator it = results.iterator();
while (it.hasNext()) {

Object[] info = (Object[]) it.next();
Float average = (Float)info[0];
Float sum = (Float)info[1];
String deptName = (String)info[2];
...

}
<query name="group">

[!CDATA[
select avg(salary), sum(salary), dept.name from com.xyz.hr.Employee where
dept.name == :deptName group by dept.name having count(dept.name) > 1
]]
</query>

14.10.13 Selection of a Single Instance

This query returns a single instance of Employee.
Query q = pm.newQuery (Employee.class, "name == empName");
q.declareParameters ("String empName");
q.setUnique(true);
Employee emp = (Employee) q.execute("Michael");
<query name="unique">

[!CDATA[
select unique this
where dept.name == :deptName
]]

Java Data Objects 2.2

 JDO 2.2 186 October 10, 2008

</query>

14.10.14 Selection of a Single Field

This query returns a single field of a single Employee.
Query q = pm.newQuery (Employee.class, "name == empName");
q.declareParameters ("String empName");
q.setResult("salary");
q.setResultClass(Float.class);
q.setUnique(true);
Float salary = (Float) q.execute ("Michael");
<query name="single">

[!CDATA[
select unique new Float(salary)
where dept.name == :deptName
]]
</query>

14.10.15 Projection of “this” to User-defined Result Class with Matching Field

This query selects instances of Employee who make more than the parameter salary and stores the
result in a user-defined class. Since the default is “distinct this as Employee”, the field must be
named Employee and be of type Employee.
class EmpWrapper {

public Employee Employee;
}
Query q = pm.newQuery (Employee.class, "salary > sal");
q.declareParameters ("Float sal");
q.setResultClass(EmpWrapper.class);
Collection infos = (Collection) q.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {

EmpWrapper info = (EmpWrapper)it.next();
Employee e = info.Employee;
...

}
<query name="thisfield">

[!CDATA[
select into EmpWrapper
where salary > sal
]]
</query>

14.10.16 Projection of “this” to User-defined Result Class with Matching Method

This query selects instances of Employee who make more than the parameter salary and stores the
result in a user-defined class.
class EmpInfo {

private Employee worker;
public Employee getWorker() {return worker;}
public void setEmployee(Employee e) {worker = e;}

}
Query q = pm.newQuery (Employee.class, "salary > sal");
q.declareParameters ("Float sal");
q.setResultClass(EmpInfo.class);
Collection infos = (Collection) q.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {

EmpInfo info = (EmpInfo)it.next();
Employee e = info.getWorker();

Java Data Objects 2.2

 JDO 2.2 187 October 10, 2008

...
}

<query name="thismethod">
[!CDATA[

select into EmpInfo
where salary > sal
]]
</query>

14.10.17 Projection of variables

This query returns the names of all Employees of all "Research" departments:
Query q = pm.newQuery(Department.class);
q.declareVariables("Employee e");
q.setFilter("name.startsWith('Research') && emps.contains(e)");

q.setResult("e.name");
Collection names = q.execute();
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String)it.next();
...

}
<query name="variables">

[!CDATA[
select e.name
where name.startsWith('Research')
&& emps.contains((com.xyz.hr.Employee) e)
]]
</query>

14.10.18 Non-correlated subquery

This query returns names of employees who work more than the average of all employees:
// single string form
Query q = pm.newQuery(

"select name from com.xyz.hr.Employee
where this.weeklyhours >

(select avg(e.weeklyhours) from com.xyz.hr.Employee e)");
Collection names = q.execute();
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String)it.next();
...

}

// subquery instance form
Query subq = pm.newQuery(Employee.class);
subq.setFilter("select avg(weeklyhours)");
Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyhours > average_hours");
q.setResult("this.name");
q.setSubquery(subq, "double average_hours", null);
Collection names = q.execute();
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String)it.next();
...

}

Java Data Objects 2.2

 JDO 2.2 188 October 10, 2008

<query name="noncorrelated_subquery">
[!CDATA[

select name from com.xyz.hr.Employee
where this.weeklyhours >

(select avg(e.weeklyhours) from com.xyz.hr.Employee e)
]]
</query>

14.10.19 Correlated subquery

This query returns names of employees who work more than the average of employees in the same
department having the same manager. The candidate collection of the subquery is the collection of
employees in the department of the candidate employee and the parameter passed to the subquery
is the manager of the candidate employee.
// single string form
Query q = pm.newQuery(

"select name from com.xyz.hr.Employee
where this.weeklyhours >
(select AVG(e.weeklyhours) from this.department.employees as e

where e.manager == this.manager)");
Collection names = q.execute();
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String)it.next();
...

}

// subquery instance form
Query subq = pm.newQuery(Employee.class);
subq.setFilter("this.manager == :manager");
subq.setResult("avg(weeklyhours)");
Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyhours > average_hours");
q.setResult("name");
q.setSubquery(subq, "double average_hours","department.employees",

"this.manager");
Collection names = q.execute();
Iterator it = names.iterator();
while (it.hasNext()) {

String name = (String)it.next();
...

}

<query name="correlated_subquery">
[!CDATA[

select name from com.xyz.hr.Employee
where this.weeklyhours >

(select AVG(e.weeklyhours) from this.department.employees e
where e.manager == this.manager)

]]
</query>

14.10.20 Deleting Multiple Instances

This query deletes all Employees who make more than the parameter salary.

Java Data Objects 2.2

 JDO 2.2 189 October 10, 2008

Query q = pm.newQuery (Employee.class, "salary > sal");
q.declareParameters ("Float sal");
q.deletePersistentAll(new Float(30000.));

Java Data Objects 2.2

 JDO 2.2 190 October 10, 2008

15 Object-Relational Mapping

JDO is datastore-independent. However, many JDO implementations support storage of persistent
instances in relational databases, and this storage requires that the domain object model be mapped
to the relational schema. The mapping strategies for simple cases are for the most part the same from
one JDO implementation to another. For example, typically a class is mapped to one or more tables,
and fields are mapped to one or more columns.
The most common mapping paradigms are standardized, which allows users to define their mapping
once and use the mapping for multiple implementations.

Mapping Overview
Mapping between the domain object model and the relational database schema is specified from the
perspective of the object model. Each class is mapped to a primary table and possibly multiple sec-
ondary tables and multiple join tables. Fields in the class are mapped to columns in either the pri-
mary table, secondary tables, or join tables. Simple field types typically map to single columns.
Complex field types (Collections, Maps, and arrays) typically map to multiple columns.
Secondary tables represent non-normalized tables that contain zero or one row corresponding to
each row in the primary table, and contain field values for the persistent class. These tables might
be modeled as one-to-one relationships, but they can be modeled as containing nullable field values
instead.
Secondary tables might be used by a single field mapping or by multiple field mappings. If used by
a single field mapping, the join conditions linking the primary and secondary table might be speci-
fied in the field mapping itself. If used by multiple field mappings, the join conditions might be
specified in each field mapping or specified in the class mapping.
Complex field types are mapped by mapping each of the components individually. Collections map
the element and optional order components. Maps map the key and value components. Arrays map
the element and order components.

Mapping Strategies
The specification does not standardize how the mapping files are generated. Most implementations
will support one or more of the following strategies for creating mapping files:

• starting with a relational schema, generate persistence-capable classes and the mapping to
relate them (sometimes referred to as reverse mapping or class generation);

• starting with persistence-capable classes, generate the relational schema and the mapping
to relate them (sometimes called forward mapping or schema generation);

• starting with a relational schema and persistence-capable classes, create the mapping to
relate them (sometimes called meet-in-the-middle mapping).

This specification does not standardize how the mapping files are created. Implementations might
support command-line or interactive GUI-based tools to assist in the process.
There is no portable behavior for incompletely specified mappings. When a portable application
runs, the mapping is completely specified by the mapping metadata, regardless of whether the user

Java Data Objects 2.2

 JDO 2.2 191 October 10, 2008

created the mapping or the mapping was created by a tool. If the mapping is incompletely specifed,
the JDO implementation might silently use mapping defaults or throw an exception.

15.1 Column Elements
Column elements used for simple, non-relationship field value mapping specify at least the column
name. The field value is loaded from the value of the named column.
The column element might contain additional information about the column, for use in generating
schema. This might include the scale and precision for numeric types, the maximum length for vari-
able-length field types, the jdbc type of the column, or the sql type of the column. This information
is ignored for runtime use, with the following exception: if the jdbc type of the column does not
match the default jdbc type for the field's class (for example, a String field is mapped to a CLOB
rather than a VARCHAR column), the jdbc type information is required at runtime.
Column elements that contain only the column name can be omitted, if the column name is instead
contained in the enclosing element. Thus, a field element is defined to allow a column attribute if
only the name is needed, or a column element if more than the name is needed. If both column at-
tribute and column element are specified for any element, it is a user error.

Mapping enums
Mapping an enum to a fixed-precision numeric type uses the ordinal() value for storage; map-
ping to a character column type (CHAR, VARCHAR, etc.) uses the name() value for storage;
mapping to any other column type is not portable.
The default jdbc-type for columns mapped to enums is VARCHAR. This provides maximum flex-
ibility as the enum evolves, as it uses the name of the enum for storage. As more enum values are
added, the name does not change, whereas the ordinal value will change if enum values are added
anywhere except at the end.
For portability, if the mapping should use the ordinal value for storage, then the jdbc-type must be
specified in the column metadata as a fixed precision numeric type. An implementation might sup-
port floating point types for storage, and might auto-detect the column type but this behavior is not
portable.

15.1.1 Mapping single-valued fields to columns

This example demonstrates mappings between fields and value columns.

package com.xyz;
public class Address {

Java Data Objects 2.2

 JDO 2.2 192 October 10, 2008

String street;
String city;
State state;
String zip;
String deliveryInstructions;

}
package com.xyz;
public enum State {
AL("Alabama"),
...
WY("Wyoming");
}

CREATE TABLE ADDR (
 STREET VARCHAR(255) PRIMARY KEY,
 CITY VARCHAR(255),
 STATE CHAR(2),
 ZIPCODE VARCHAR(10),
 DELIV_INS CLOB
)

<orm>
 <package name="com.xyz">
 <class name="Address" table="ADDR">
 <field name="street" column="STREET"/>
 <field name="city" column="CITY"/>
 <field name="state" column="STATE"/>
 <field name="zip" column="ZIPCODE"/>
 <field name="deliveryInstructions">

 <column name="DELIV_INS" jdbc-type="CLOB"/>
 </field>
 </class>
 </package>
</orm>

15.2 Join Condition
Secondary tables and join tables are mapped using a join condition that associates a column or col-
umns in the secondary or join table with a column or columns in the primary table, typically the pri-
mary table’s primary key columns.
Column elements used for relationship mapping or join conditions specify the column name and op-
tionally the target column name. The target column name is the name of the column in the associated
table corresponding to the named column. The target column name is optional when the target col-
umn is the single primary key column of the associated table, or when the target column name is
identical to the join column name.
NOTE: This usage of column elements is fundamentally different from the usage of column el-
ements for value mapping. For value mapping, the name attribute names the column that con-
tains the value to be used. For join conditions, the name attribute names the column that contains
the reference data to be joined to the primary key column of the target.

15.2.1 Secondary Table mapping

This example demonstrates the use of join elements to represent join conditions linking a class' pri-
mary table and secondary tables used by fields.

Java Data Objects 2.2

 JDO 2.2 193 October 10, 2008

package com.xyz;
public class Address {

String street;
String city;
String state;
String zip;
String deliveryInstructions;
boolean signatureRequired;
byte[] mapJPG;

}

CREATE TABLE ADDR (
 STREET VARCHAR(255) PRIMARY KEY,
 CITY VARCHAR(255),
 STATE CHAR(2),
 ZIPCODE VARCHAR(10)
)

CREATE TABLE DELIV (
 ADDR_STREET VARCHAR(255),
 SIG_REQUIRED BIT,
 DELIV_INS CLOB
)

CREATE TABLE MAPQUEST_INFO (
 ADDR_STREET VARCHAR(255),
 MAPQUEST_IMAGE BLOB
)

<orm>
<package name="com.xyz">

<class name="Address" table="ADDR">
<!-- shared join condition used by fields in DELIV -->
<join table="DELIV" column="ADDR_STREET"/>
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE"/>
<field name="signatureRequired" table="DELIV"

column="SIG_REQUIRED"/>
<field name="deliveryInstructions" table="DELIV">

<column name="DELIV_INS" jdbc-type="CLOB"/>
</field>
<field name="mapJPG" table="MAPQUEST_INFO"

column="MAPQUEST_IMAGE">

Java Data Objects 2.2

 JDO 2.2 194 October 10, 2008

<!-- join condition defined for this field only -->
<join column="ADDR_STREET"/>

</field>
</class>

</package>
</orm>

15.2.2 Map using join table

This example uses the <join> element to map a Map<Date,String> field to a join table. Note that
in this example, the primary table has a compound primary key, requiring the use of the target at-
tribute in join conditions.

package com.xyz;
public class Address {

String street;
String city;
String state;
String zip;
String deliveryInstructions;
boolean signatureRequired;
Map<Date,String> deliveryRecords;

}

CREATE TABLE ADDR (
 STREET VARCHAR(255),
 CITY VARCHAR(255),
 STATE CHAR(2),
 ZIPCODE VARCHAR(10),
 PRIMARY KEY (STREET, ZIPCODE)
)

CREATE TABLE DELIV_RECORDS (
 ADDR_STREET VARCHAR(255),
 ADDR_ZIPCODE VARCHAR(10),
 DELIV_DATE TIMESTAMP,
 SIGNED_BY VARCHAR(255)
)

<orm>
<package name="com.xyz">

<class name="Address" table="ADDR">
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE"/>

Java Data Objects 2.2

 JDO 2.2 195 October 10, 2008

<!-- field type is Map<Date,String> -->
<field name="deliveryRecords" table="DELIV_RECORDS">

<join>
<column name="ADDR_STREET" target="STREET"/>
<column name="ADDR_ZIPCODE" target="ZIPCODE"/>

</join>
<key column="DELIV_DATE"/>
<value column="SIGNED_BY"/>

</field>
</class>

</package>
</orm>

15.3 Relationship Mapping
Column elements used for relationship mapping are contained in either the field element directly in
the case of a simple reference, or in one of the collection, map, or array elements contained in the
field element.
In case only the column name is needed for mapping, the column name might be specified in the
field, collection, or array element directly instead of requiring a column element with only a name.
If two relationships (one on each side of an association) are mapped to the same column, the field
on only one side of the association needs to be explicitly mapped.
The field on the other side of the relationship can be mapped by using the mapped-by attribute iden-
tifying the field on the side that defines the mapping. Regardless of which side changes the relation-
ship, flush (whether done as part of commit or explicitly by the user) will modify the datastore to
reflect the change and will update the memory model for consistency. There is no further behavior
implied by having both sides of the relationship map to the same database column(s). In particular,
making a change to one side of the relationship does not imply any runtime behavior by the JDO
implementation to change the other side of the relationship in memory prior to flush, and there is no
requirement to load fields affected by the change if they are not already loaded. This implies that if
the RetainValues flag or DetachAllOnCommit is set to true, and the relationship field is loaded, then
the implementation will change the field on the other side so it is visible after transaction comple-
tion.
Similarly, if one side is deleted, the other side will be updated to be consistent at flush. During flush,
each relationship in which the instance is involved is updated for consistency. These changes are
applied to the object model instances. If the relationship is marked as dependent, the related instance
is deleted. If the relationship is not marked as dependent, the corresponding field in the related in-
stance is updated to not refer to the instance being deleted:

• If the related field is a collection, then any referencing element is removed.

• If the related field is a map, then any referencing map entry is removed.

• If the related field is a reference, then it is set to null.

If the related instances are not instantiated in memory, there is no requirement to instantiate them.
Changes are applied to the second level cache upon commit.
The object model changes are synchronized to the database according to the declared mapping of
the relationships to the database. If related instances are to be deleted, and there is a foreign key de-
clared with a delete action of cascade delete, then the jdo implementation need do nothing to cause
the delete of the related instance. Similarly, if there is a foreign key declared with a delete action of
nullify, then the jdo implementation need do nothing to cause the column of the mapped relationship
to be set to null. If there is a foreign key declared to be not nullable, and the requirement is to nullify
the related field, then JDODataStoreException is thrown at flush.

Java Data Objects 2.2

 JDO 2.2 196 October 10, 2008

Conflicting changes to relationships cause a JDOUserException to be thrown at flush time. Con-
flicting changes include:

• adding a related instance with a single-valued mapped-by relationship field to more than
one one-to-many collection relationship

• setting both sides of a one-to-one relationship such that they do not refer to each other

Mapping Strategies
For single-valued relationships, there are three basic ways to map references from one persistence-
capable class (the referring class) to a related class:

• serialized: The entire related instance is serialized into a single column in the primary or
secondary table of the referring class.

• embedded: The related instance is mapped, field by field, to columns in the primary or
secondary table of the referring class.

• by reference: The related instance is in a different table, and the column in the primary or
secondary table of the referring class contains a reference (often, a foreign key) to the
primary table of the related class.

For multi-valued relationships, there are five basic ways to map references from one persistence-
capable class (the referring class) to a related class:

• serialized: The entire collection, array, or map is serialized into a single column in the
primary or secondary table of the referring class.

• serialized in a join table: A join table is used to associate multiple rows in the join table with
a single row in the primary or secondary table of the referring class, and the related
instances are serialized, one per row, into a single column in the join table.

• embedded in a join table: A join table is used to associate multiple rows in the join table
with a single row in the primary or secondary table of the referring class, and each related
instance is mapped, one per row, field by field, into multiple columns in the join table.

• by reference to the primary table of the related class: The related class has a reference
(often, a foreign key) to the primary table of the referring class.

• by reference in a join table: A join table is used to associate multiple rows in the join table
with a single row in the primary or secondary table of the referring class, and a column in
the join table contains a reference (often, a foreign key) to the primary table of the related
class.

15.3.1 Many-to-One using foreign key

A many-one mapping (Employee has a reference to Department).

Java Data Objects 2.2

 JDO 2.2 197 October 10, 2008

package com.xyz;
public class Department {

String name;
}

public class Employee {
String ssn;
Department department;

}

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 DEP_NAME VARCHAR(255)
)
CREATE TABLE DEP (
 NAME VARCHAR(255) PRIMARY KEY
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<!-- field type is Department -->
<field name="department" column="DEP_NAME"/>

</class>
<class name="Department" table="DEP">

<field name="name" column="NAME"/>
</class>

</package>
</orm>

15.3.2 One-to-Many using foreign key

A one-many mapping (Department has a collection of Employees). This example uses the same
schema as Example 4.

package com.xyz;
public class Department {

String name;
Collection<Employee> employees;

}

public class Employee {
String ssn;

Java Data Objects 2.2

 JDO 2.2 198 October 10, 2008

}

<orm>
<package name="com.xyz">

<class name="Department" table="DEP">
 <field name="name" column="NAME"/>

<!-- field type is Collection<Employee> -->
<field name="employees">

<element column="DEP_NAME"/>
</field>

</class>
<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>
</class>

</package>
</orm>

15.3.3 Many-to-One and One-to-Many using mapped-by

If both the Employee.department and Department.employees fields exist, only one needs to be
mapped explicitly; one side is specified to be “mapped-by” the other side. The Department side is
marked as using the same mapping as a field on the Employee side. This example uses the same
schema as Examples 4 and 5.

package com.xyz;
public class Department {

String name;
Collection<Employee> employees;

}

public class Employee {
String ssn;
Department department;

}

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department" column="DEP_NAME"/>

</class>
<class name="Department" table="DEP">

 <field name="name" column="NAME"/>
<field name="employees" mapped-by="department"/>

</class>

Java Data Objects 2.2

 JDO 2.2 199 October 10, 2008

</package>
</orm>

15.3.4 Many-to-One and One-to-Many using compound foreign key

This example mirrors Example 6, but now Department has a compound primary key.

package com.xyz;
public class Department {

String name;
Collection<Employee> employees;
long id;

}

public class Employee {
String ssn;
Department department;

}

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 DEP_NAME VARCHAR(255),
 DEP_ID BIGINT
)

CREATE TABLE DEP (
 NAME VARCHAR(255),
 ID BIGINT,
 PRIMARY KEY (NAME, DEP_ID)
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department">

<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>

</field>
</class>
<class name="Department" table="DEP">

<field name="name" column="NAME"/>
<field name="id" column="ID"/>
<field name="employees" mapped-by="department"/>

</class>

Java Data Objects 2.2

 JDO 2.2 200 October 10, 2008

</package>
</orm>

15.3.5 Many-to-One and One-to-Many using Map<Department, String>

Employee has a Map<Department, String> mapping each department the employee is a member of
to her position within that department. Department still has a compound primary key.
The Map uses a join table that contains one row for each entry in the Map. The columns in the join
table refer to the Employee, the Department, and the position.

package com.xyz;
public class Department {

String name;
long id;

}

public class Employee {
String ssn;
Map<Department,String> positions;

}

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY
)

CREATE TABLE DEP (
 NAME VARCHAR(255),
 ID BIGINT,
 PRIMARY KEY (NAME, ID)
)

CREATE TABLE EMP_POS (
 EMP_SSN CHAR(10),
 DEP_NAME VARCHAR(255)
 DEP_ID BIGINT,
 POS VARCHAR(255)
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<!-- field type is Map<Department, String> -->
<field name="positions" table="EMP_POS">

Java Data Objects 2.2

 JDO 2.2 201 October 10, 2008

<join column="EMP_SSN"/>
<key>

<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>

</key>
<value column="POS"/>

</field>
</class>
<class name="Department" table="DEP">

<field name="name" column="NAME"/>
<field name="id" column="ID"/>

</class>
</package>

</orm>

15.3.6 Many-to-One and One-to-Many using Map<String, Employee>

Department has a Map<String, Employee> mapping the role in the department to the employee. De-
partment still has a compound primary key.
The Map uses the employee’s table that contains the role as well as other employee information.
The mapping on the Department side uses the mapped-by attribute naming the field in the Employee
that refers to Department. The key uses the mapped-by attribute naming the field in Employee that
contains the key for the map.
package com.xyz;
public class Department {

String name;
long id;
Map<String, Employee> roles;

}

public class Employee {
String ssn;
Department dept;
String role;

}

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
DEPT BIGINT,
ROLE VARCHAR

)

CREATE TABLE DEP (
 NAME VARCHAR(255),
 ID BIGINT,
 PRIMARY KEY (NAME, ID)
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="dept" column="DEP"/>
<field name="role" column="ROLE"/>

</class>
<class name="Department" table="DEP">

<field name="name" column="NAME"/>
<field name="id" column="ID"/>
<!-- field type is Map<String, Employee> -->
<field name="roles" mapped-by="dept">

Java Data Objects 2.2

 JDO 2.2 202 October 10, 2008

<key mapped-by="role"/>
</field>

</class>
</package>

</orm>

15.4 Embedding
Some of the columns in a table might be mapped as a separate Java class to better match the object
model. Embedding works to arbitrary depth.

15.4.1 Mapping relationships using embedded, referenced, and join table

Employee has a reference to a business address, which is a standard many-one. Employee also has
a primary Address, whose data is embedded within the Employee record. Finally, Employee has a
List<Address> of secondary Address references, whose data is embedded in the join table.

package com.xyz;
public class Address {

String street;
String city;
String state;
String zip;

}

public class Employee {
String ssn;
Address businessAddress;
Address primaryAddress;
List<Address> secondaryAddresses;

}

CREATE TABLE ADDR (
 STREET VARCHAR(255) PRIMARY KEY,
 CITY VARCHAR(255),
 STATE CHAR(2),
 ZIPCODE VARCHAR(10)
)

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 BUSADDR_STREET VARCHAR(255),
 PADDR_STREET VARCHAR(255),

Java Data Objects 2.2

 JDO 2.2 203 October 10, 2008

 PADDR_CITY VARCHAR(255),
 PADDR_STATE CHAR(2),
 PADDR_ZIPCODE VARCHAR(10)
)

CREATE TABLE EMP_ADDRS (
 EMP_SSN CHAR(10),
 IDX INTEGER,
 SADDR_STREET VARCHAR(255),
 SADDR_CITY VARCHAR(255),
 SADDR_STATE CHAR(2),
 SADDR_ZIPCODE VARCHAR(10)
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<!-- field type is Address -->
<field name="businessAddress" column="BUSADDR_STREET"/>
<!-- field type is Address -->
<field name="primaryAddress">

<embedded null-indicator-column="PADDR_STREET">
<field name="street" column="PADDR_STREET"/>
<field name="city" column="PADDR_CITY"/>
<field name="state" column="PADDR_STATE"/>
<field name="zip" column="PADDR_ZIPCODE"/>

</embedded>
</field>
<!-- field type is List<Address> -->
<field name="secondaryAddresses" table="EMP_ADDRS">

<join column="EMP_SSN"/>
<element>

<embedded>
<field name="street" column="SADDR_STREET"/>
<field name="city" column="SADDR_CITY"/>
<field name="state" column="SADDR_STATE"/>
<field name="zip" column="SADDR_ZIPCODE"/>

</embedded>
</element>
<order column="IDX"/>

</field>
</class>

</package>
</orm>

15.5 Foreign Key Constraints
Foreign keys in metadata serve two quite different purposes. First, when generating schema, the for-
eign key element identifies foreign keys to be generated. Second, when using the database, foreign
key elements identify foreign keys that are assumed to exist in the database. This is important for
the runtime to properly order insert, update, and delete statements to avoid constraint violations.
Foreign keys are part of ORM metadata and are probably meaningless in non-relational implemen-
tations.
Foreign key constraints can be generated in three ways:

• Most elements that can include nested column elements can define delete-action or
update-action attributes.

Java Data Objects 2.2

 JDO 2.2 204 October 10, 2008

• Most elements that can contain nested column elements can define a nested foreign-
key element. This element has the following attributes:

• name: the name of the generated constraint
• deferred: boolean attribute describing whether the constraint evaluation is deferred until

datastore commit
• delete-action: the foreign key delete action; see below. In this case, the "none" value is not

allowed.
• update-action: the foreign key update action; see below.

• The class element can define foreign-key elements. A class-level foreign-key
element has the name, deferred, delete-action, and update-action
attributes as above.

Note that regardless of which side of a relationship in the object model is mapped, the meaning of
delete action and update action refer to the columns in the datastore, not to the fields in the object
model.

Delete Action, Update Action
The delete-action and update-action attributes have the following permitted values:

• “none”: no foreign key is generated and none is assumed to exist; no special action is
required of the implementation

• “restrict” (the default): a foreign key with the “restrict” delete action is generated or is
assumed to exist; the implementation will require update and delete statements to be
executed in proper sequence

• “cascade”: a foreign key with the “cascade” delete action is generated or is assumed to
exist; the database will automatically delete all rows that refer to the row being deleted

• “null”: a foreign key with the “null” delete action is generated or is assumed to exist; a
referring key will be nullified if the target key is updated or deleted

• “default”: a foreign key with the “default” delete action is generated or is assumed to exist

15.5.1 Many-to-One with foreign key constraint

A many-one relation from Employee to Department, represented by a standard restrict-action data-
base foreign key.

package com.xyz;
public class Department {

String name;
long id;

}

Java Data Objects 2.2

 JDO 2.2 205 October 10, 2008

public class Employee {
String ssn;
Department department;

}

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 DEP_NAME VARCHAR(255),
 DEP_ID BIGINT,
 FOREIGN KEY EMP_DEP_FK (DEP_NAME, DEP_ID) REFERENCES DEP (NAME, ID)
)

CREATE TABLE DEP (
 NAME VARCHAR(255),
 ID BIGINT,
 PRIMARY KEY (NAME, DEP_ID)
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department">

<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>
<foreign-key name="EMP_DEP_FK"/>

</field>
</class>
<class name="Department" table="DEP">

<field name="name" column="NAME"/>
<field name="id" column="ID"/>

</class>
</package>

</orm>

15.6 Indexes
Index definitions are used for schema generation and are not used at runtime. In relational imple-
mentations, they are part of the ORM metadata because their names and extensions might differ for
each database. In non-relational implementations, indexes are part of the JDO metadata.
Indexes can be defined in three ways:

• Most elements that can include nested column elements can define an indexed
attribute. This attribute has three possible values:

• true: generate a standard index on the datastore representation of the element
• false: do not generate an index on the element
• unique: generate a unique index on the element

• Most elements that can contain nested column elements can define a nested index
element. The element does not contain any elements (aside from possible extensions). The
index is generated on the datastore representation of the parent element. This element has
the following attributes:

• name: the name of the generated index
• unique: boolean attribute describing whether to generate a unique index

Java Data Objects 2.2

 JDO 2.2 206 October 10, 2008

• The class element can define nested index elements. A class-level index element has
the attributes outlined above. It can contain column and/or field elements, each of
which is limited to a name attribute referencing a column or field defined elsewhere. Field
names can use <superclass-name>.<field-name> syntax to reference superclass
fields, <field-name>.<embedded-field-name> to reference embedded relation
fields, and the #key, #value, and #element suffixes defined for fetch groups to
reference parts of a field.

Unique Constraints
Unique constraints are used during schema generation, and may be used at runtime to order datas-
tore operations. Like indexes, they are part of ORM metadata in relational implementations, and
part of JDO metadata in non-relational implementations.
Unique constraints can be defined in the same three general ways as indexes:

• Most elements that can include nested column elements can define an unique attribute.
Possible values are true and false.

• Most elements that can contain nested column elements can define a nested unique
element. This element has the following attributes:

• name: the name of the generated constraint
• deferred: boolean attribute describing whether the constraint evaluation is deferred until

datastore commit
• The class element can contain unique elements. A class-level unique element has

the attributes outlined above. It contains the same possible elements as a class-level index.

15.6.1 Single-field and Compound Indexes

This example demonstrates single-field and compound indexes.

package com.xyz;
public class Address {

String street;
String city;
String state;
String zip;

}

CREATE TABLE ADDR (
 STREET VARCHAR(255) PRIMARY KEY,
 CITY VARCHAR(255),
 STATE CHAR(2),
 ZIPCODE VARCHAR(10)

Java Data Objects 2.2

 JDO 2.2 207 October 10, 2008

)

<orm>
<package name="com.xyz">

<class name="Address" table="ADDR">
<index name="ADDR_CITYSTATE_IDX">

<column name="CITY"/>
<column name="STATE"/>

</index>
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE">

<index name="ADDR_ZIP_IDX"/>
</field>

</class>
</package>

</orm>

15.7 Inheritance
Each class can declare an inheritance strategy. Three strategies are supported by standard metadata:
new-table, superclass-table, and subclass-table.

• new-table creates a new table for the fields of the class.

• superclass-table maps the fields of the class into the superclass table.

• subclass-table forces subclasses to map the fields of the class to their own table.

Using these strategies, standard metadata directly supports several common inheritance patterns, as
well as combinations of these patterns within a single inheritance hierarchy.
One common pattern uses one table for an entire inheritance hierarchy. A column called the discrim-
inator column is used to determine to which class each row belongs. This pattern is achieved by a
strategy of new-table for the base class, and superclass-table for all subclasses. These are the default
strategies for base classes and subclasses when no explicit strategy is given.
Another pattern uses multiple tables joined by their primary keys. In this pattern, the existence of a
row in a table determines the class of the row. A discriminator column is not required, but may be
used to increase the efficiency of certain operations. This pattern is achieved by a strategy of new-
table for the base class, and new-table for all subclasses. In this case, the join element specifies the
columns to be used for associating the columns in the table mapped by the subclass(es) and the table
mapped by the superclass.
A third pattern maps fields of superclasses and subclasses into subclass tables. This pattern is
achieved by a strategy of subclass-table for the base class, and new-table for direct subclasses.

15.8 Versioning
Three common strategies for versioning instances are supported by standard metadata. These in-
clude state-comparison, timestamp, and version-number.
State-comparison involves comparing the values in specific columns to determine if the database
row was changed.
Timestamp involves comparing the value in a date-time column in the table. The first time in a trans-
action the row is updated, the timestamp value is updated to the current time.

Java Data Objects 2.2

 JDO 2.2 208 October 10, 2008

Version-number involves comparing the value in a numeric column in the table. The first time in a
transaction the row is updated, the version-number column value is incremented.

15.8.1 Inheritance with superclass-table and version

Mapping a subclass to the base class table, and using version-number optimistic versioning. Note
that in this example, the inheritance strategy attribute is not needed, because this is the default in-
heritance pattern. The version strategy attribute is also using the default value, and could have been
omitted. These attributes are included for clarity.

package com.xyz;
public class Employee {

String ssn;
}
public class PartTimeEmployee extends Employee {

double hourlyWage;
}
public class FullTimeEmployee extends Employee {

double salary;
}

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 TYPE CHAR(1),
 WAGE FLOAT,
 SALARY FLOAT,
 VERS INTEGER
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<inheritance strategy="new-table">

<discriminator value="E" column="TYPE"/>
</inheritance>
<version strategy="version-number" column="VERS"/>
<field name="ssn" column="SSN"/>

</class>
<class name="PartTimeEmployee">

<inheritance strategy="superclass-table">
<discriminator value="P"/>

</inheritance>
<field name="hourlyWage" column="WAGE"/>

</class>
<class name="FullTimeEmployee">

Java Data Objects 2.2

 JDO 2.2 209 October 10, 2008

<inheritance strategy="superclass-table">
<discriminator value="F"/>

</inheritance>
<field name="salary" column="SALARY"/>

</class>
</package>

</orm>

15.8.2 Inheritance with new-table and version

Mapping each class to its own table, and using state-image versioning. Though a discriminator is
not required for this inheritance pattern, this mapping chooses to use one to make some actions more
efficient. It stores the full Java class name in each row of the base table.

CREATE TABLE EMP (
 SSN CHAR(10) PRIMARY KEY,
 JAVA_CLS VARCHAR(255)
)

CREATE TABLE PART_EMP (
 EMP_SSN CHAR(10) PRIMARY KEY,
 WAGE FLOAT
)

CREATE TABLE FULL_EMP (
 EMP_SSN CHAR(10) PRIMARY KEY,
 SALARY FLOAT
)

<orm>
<package name="com.xyz">

<class name="Employee" table="EMP">
<inheritance strategy="new-table">

<discriminator strategy="class-name" column="JAVA_CLS"/>
</inheritance>
<version strategy="state-comparison"/>
<field name="ssn" column="SSN"/>

</class>
<class name="PartTimeEmployee" table="PART_EMP">

<inheritance strategy="new-table">
<join column="EMP_SSN"/>

</inheritance>
<field name="hourlyWage" column="WAGE"/>

</class>
<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table">
<join column="EMP_SSN"/>

Java Data Objects 2.2

 JDO 2.2 210 October 10, 2008

</inheritance>
<field name="salary" column="SALARY"/>

</class>
</package>

</orm>

15.8.3 Inheritance with subclass-table

This example maps superclass fields to each subclass table.

CREATE TABLE PART_EMP (
 EMP_SSN CHAR(10) PRIMARY KEY,
 WAGE FLOAT
)

CREATE TABLE FULL_EMP (
 EMP_SSN CHAR(10) PRIMARY KEY,
 SALARY FLOAT
)

<orm>
<package name="com.xyz">

<class name="Employee">
<inheritance strategy="subclass-table"/>

</class>
<class name="PartTimeEmployee" table="PART_EMP">

<inheritance strategy="new-table"/>
<field name="Employee.ssn" column="EMP_SSN"/>
<field name="hourlyWage" column="WAGE"/>

</class>
<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table"/>
<field name="Employee.ssn" column="EMP_SSN"/>
<field name="salary" column="SALARY"/>

</class>
</package>

</orm>

Java Data Objects 2.2

 JDO 2.2 211 October 10, 2008

16 Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment of dis-
tributed business applications. Java Data Objects is a suitable component for integration with EJB
in these scenarios:

• Session Beans with JDO persistence-capable classes used to implement dependent objects;

• Entity Beans with JDO persistence-capable classes used as delegates for both Bean
Managed Persistence and Container Managed Persistence.

16.1 Session Beans
A session bean should be associated with an instance of PersistenceManagerFactory that
is established during a session life cycle event, and each business method should use an instance of
PersistenceManager obtained from the PersistenceManagerFactory. The timing of
when the PersistenceManager is obtained will vary based on the type of bean.
The bean class should contain instance variables that hold the associated PersistenceManager
and PersistenceManagerFactory.
During activation of the bean, the PersistenceManagerFactory should be found via JNDI
lookup. The PersistenceManagerFactory should be the same instance for all beans sharing
the same datastore resource. This allows for the PersistenceManagerFactory to manage an
association between the distributed transaction and the PersistenceManager.
When appropriate during the bean life cycle, the PersistenceManager should be acquired by
a call to the PersistenceManagerFactory. The PersistenceManagerFactory
should look up the transaction association of the caller, and return a PersistenceManager with
the same transaction association. If there is no PersistenceManager currently enlisted in the
caller’s transaction, a new PersistenceManager should be created and associated with the
transaction. The PersistenceManager should be registered for synchronization callbacks with
the TransactionManager. This provides for transaction completion callbacks asynchronous to
the bean life cycle.
The instance variables for a session bean of any type include:

• a reference to the PersistenceManagerFactory, which should be initialized by the
method setSessionContext. This method looks up the
PersistenceManagerFactory by JNDI access to the named object
"java:comp/env/jdo/<persistence manager factory name>".

• a reference to the PersistenceManager, which should be acquired by each business
method, and closed at the end of the business method; and

• a reference to the SessionContext, which should be initialized by the method
setSessionContext.

Java Data Objects 2.2

 JDO 2.2 212 October 10, 2008

16.1.1 Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods. They are
created as needed by the container and are not associated with any one user. A business method in-
vocation on a remote reference to a stateless session bean might be dispatched by the container to
any of the available beans in the ready pool.
Each business method must acquire its own PersistenceManager instance from the Per-
sistenceManagerFactory. This is done via the method getPersistenceManager on
the PersistenceManagerFactory instance. This method must be implemented by the JDO
vendor to find a PersistenceManager associated with the instance of javax.transac-
tion.Transaction of the executing thread.
At the end of the business method, the PersistenceManager instance must be closed. This al-
lows the transaction completion code in the PersistenceManager to free the instance and re-
turn it to the available pool in the PersistenceManagerFactory.

16.1.2 Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may have state
between business methods. A business method invocation on a remote reference to a stateful session
bean will be dispatched to the specific instance created by the user.
The behavior of stateful session beans with container managed transactions is otherwise the same
as for stateless session beans. All business methods in the remote interface must acquire a Per-
sistenceManager at the beginning of the method, and close it at the end, since the transaction
context is managed by the container.

16.1.3 Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with additional
complexity. Transaction boundaries are established by the bean developer, but the state (including
the PersistenceManager) cannot be retained across business method boundaries. Therefore,
the PersistenceManager must be acquired and closed by each business method.
The alternative techniques for transaction boundary demarcation are:
• javax.transaction.UserTransaction

If the bean developer directly uses UserTransaction, then the PersistenceManager must be acquired
from the PersistenceManagerFactory only after establishing the correct transaction con-
text of UserTransaction. During the getPersistenceManager method, the Persis-
tenceManager will be enlisted in the UserTransaction. How to test?(JDO must know
JTA..) For example, if non-transactional access is required, a PersistenceManager must be ac-
quired when there is no UserTransaction active. After beginning a UserTransaction, a
different PersistenceManager must be acquired for transactional access. The user must keep
track of which PersistenceManager is being used for which transaction.
• javax.jdo.Transaction

If the bean developer chooses to use the same PersistenceManager for multiple transactions,
then transaction completion must be done entirely by using the javax.jdo.Transaction in-
stance associated with the PersistenceManager. In this case, acquiring a PersistenceM-
anager without beginning a UserTransaction results in the PersistenceManager being
able to manage transaction boundaries via begin, commit, and rollback methods on jav-
ax.jdo.Transaction. The PersistenceManager will automatically begin the User-
Transaction during javax.jdo.Transaction.begin How to test? and automatically
commit the UserTransaction during javax.jdo.Transaction.commit. How to test?

Java Data Objects 2.2

 JDO 2.2 213 October 10, 2008

16.1.4 Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part of the con-
versational state of the bean. Thus, it is no longer required to acquire a PersistenceManager
in each business method. Instead, the PersistenceManager can be managed over a longer pe-
riod of time, and it might be stored as an instance variable of the bean.
The behavior of stateful session beans is otherwise the same as for stateless session beans. The user
has the choice of using javax.transaction.UserTransaction or jav-
ax.jdo.Transaction for transaction completion.

16.2 Entity Beans
While it is possible for container-managed persistence entity beans to be implemented by the con-
tainer using JDO, the implementation details are beyond the scope of this document.
It is possible for users to implement bean-managed persistence entity beans using JDO, but imple-
mentation details are container-specific and no recommendations for the general case are given.

Java Data Objects 2.2

 JDO 2.2 214 October 10, 2008

17 JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This preserves the
transparency of the interface to the degree possible, allowing the user to choose to catch specific
exceptions only when required by the application.
JDO implementations will often be built as layers on an underlying datastore interface, which itself
might use a layered protocol to another tier. Therefore, there are many opportunities for components
to fail that are not under the control of the application.
Exceptions thus fall into several broad categories, each of which is treated separately:

• user errors that can be corrected and retried;

• user errors that cannot be corrected because the state of underlying components has been
changed and cannot be undone;

• internal logic errors that should be reported to the JDO vendor’s technical support;

• errors in the underlying datastore that can be corrected and retried;

• errors in the underlying datastore that cannot be corrected due to a failure of the datastore
or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Collection in-
terfaces, are used without modification by JDO. JDO exceptions that reflect underlying datastore
exceptions will wrap the underlying datastore exceptions. JDO exceptions that are caused by user
errors will contain the reason for the exception.
JDO Exceptions must be serializable.

17.1 JDOException
This is the base class for all JDO exceptions. It is a subclass of RuntimeException, and need
not be declared or caught. It includes a descriptive String, an optional nested Exception array, and
an optional failed Object.
Methods are provided to retrieve the nested exception array and failed object. If there are multiple
nested exceptions, then each might contain one failed object. This will be the case where an opera-
tion requires multiple instances, such as commit, makePersistentAll, etc.
If the JDO PersistenceManager is internationalized, then the descriptive string should be in-
ternationalized.
public Throwable[] getNestedExceptions();
This method returns an array of Throwable or null if there are no nested exceptions.
public Object getFailedObject();
This method returns the failed object or null if there is no failed object for this exception.
public Throwable getCause();
This method returns the first nested Throwable or null if there are no nested exceptions.

Java Data Objects 2.2

 JDO 2.2 215 October 10, 2008

17.1.1 JDOFatalException
This is the base class for errors that cannot be retried. It is a derived class of JDOException. This
exception generally means that the transaction associated with the PersistenceManager has
been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException
This is the base class for errors that can be retried. It is a derived class of JDOException.

17.1.3 JDOUnsupportedOptionException
This class is a derived class of JDOUserException. This exception is thrown by an implemen-
tation to indicate that it does not implement a JDO optional feature.

17.1.4 JDOUserException
This is the base class for user errors that can be retried. It is a derived class of JDOCanRetryEx-
ception. Some of the reasons for this exception include:

• Object not persistence-capable. This exception is thrown when a method requires an
instance of PersistenceCapable and the instance passed to the method does not
implement PersistenceCapable. The failed Object has the failed instance.

• Extent not managed. This exception is thrown when getExtent is called with a class that
does not have a managed extent.

• Object exists. This exception is thrown during flush of a new instance or an instance whose
primary key changed where the primary key of the instance already exists in the datastore.
It might also be thrown during makePersistent if an instance with the same primary
key is already in the PersistenceManager cache. The failed Object is the failed
instance.

• Object owned by another PersistenceManager. This exception is thrown when
calling makePersistent, makeTransactional, makeTransient, evict,
refresh, or getObjectId where the instance is already persistent or transactional in
a different PersistenceManager. The failed Object has the failed instance.

• Non-unique ObjectId not valid after transaction completion. This exception is thrown when
calling getObjectId on an object after transaction completion where the ObjectId is
not managed by the application or datastore.

• Unbound query parameter. This exception is thrown during query compilation or execution
if there is an unbound query parameter.

• Query filter cannot be parsed. This exception is thrown during query compilation or
execution if the filter cannot be parsed.

• Transaction is not active. This exception is thrown if the transaction is not active and
makePersistent, deletePersistent, commit, or rollback is called.

• Object deleted. This exception is thrown if an attempt is made to access any fields of an
instance that was deleted in this transaction (except to read key fields). This is not the
exception thrown if the instance does not exist in the datastore (see
JDOObjectNotFoundException).

• Primary key contains null values. This exception is thrown if the application identity
parameter to getObjectById contains any key field whose value is null.

Java Data Objects 2.2

 JDO 2.2 216 October 10, 2008

17.1.5 JDOFatalUserException
This is the base class for user errors that cannot be retried. It is a derived class of JDOFatalEx-
ception.

• PersistenceManager was closed. This exception is thrown after close() was
called, when any method except isClosed() is executed on the
PersistenceManager instance, or any method is called on the Transaction
instance, or any Query instance, Extent instance, or Iterator instance created by the
PersistenceManager.

• Metadata unavailable. This exception is thrown if a request is made to the
JDOImplHelper for metadata for a class, when the class has not been registered with the
helper.

17.1.6 JDOFatalInternalException
This is the base class for JDO implementation failures. It is a derived class of JDOFatalExcep-
tion. This exception should be reported to the vendor for corrective action. There is no user action
to recover.

17.1.7 JDODataStoreException
This is the base class for datastore errors that can be retried. It is a derived class of JDOCanRe-
tryException.

17.1.8 JDOFatalDataStoreException
This is the base class for fatal datastore errors. It is a derived class of JDOFatalException.
When this exception is thrown, the transaction has been rolled back.

• Transaction rolled back. This exception is thrown when the datastore rolls back a
transaction without the user asking for it. The cause may be a connection timeout, an
unrecoverable media error, an unrecoverable concurrency conflict, or other cause outside
the user’s control.

17.1.9 JDOObjectNotFoundException
This exception is to notify the application that an object does not exist in the datastore. It is a derived
class of JDODataStoreException. When this exception is thrown during a transaction, there
has been no change in the status of the transaction in progress. If this exception is a nested exception
thrown during commit, then the transaction is rolled back. This exception is never the result of ex-
ecuting a query. The failedObject contains a reference to the failed instance. The failed instance is
in the hollow state, and has an identity which can be obtained by calling getObjectId with the in-
stance as a parameter. This might be used to determine the identity of the instance that cannot be
found.
This exception is thrown when a hollow instance is being fetched and the object does not exist in
the datastore. This exception might result from the user executing getObjectById with the validate
parameter set to true, or from navigating to an object that no longer exists in the datastore.

17.1.10 JDOOptimisticVerificationException
This exception is the result of a user flush operation in an optimistic transaction where the verifica-
tion of new, modified, or deleted instances fails the verification. It is a derived class of JDOFatal-
DataStoreException. This exception contains an array of nested exceptions, each of which contains
an instance that failed verification. The user will never see this exception except as a result of flush,
which occurs as a result of commit or explicit flush.

Java Data Objects 2.2

 JDO 2.2 217 October 10, 2008

17.1.11 JDODetachedFieldAccessException
This exception is the result of a user accessing a field of a detached instance, where the field was
not copied to the detached instance. It is a derived class of JDOUserException.

17.1.12 JDOUserCallbackException
This exception is the result of an exception thrown during execution of a user-defined callback
method. It is a derived class of JDOUserException.

Java Data Objects 2.2

 JDO 2.2 218 October 10, 2008

18 XML Metadata

This chapter specifies the metadata that describes a persistence-capable class, optionally including
its mapping to a relational database. The metadata is stored in XML format. For implementations
that support binary compatibility, the information must be available when the class is enhanced, and
might be cached by an implementation for use at runtime. If the metadata is changed between en-
hancement and runtime, the behavior is unspecified.
NOTE: J2SE 5 introduced standard elements for defining the types of collections and maps. Be-
cause of these features, programs compiled with suitable type information might not need a separate
file to describe type information.
Metadata files must be available via resources loaded by the same class loader as the class. These
rules apply both to enhancement and to runtime. Hereinafter, the term "metadata" refers to the ag-
gregate of all XML data for all packages, classes, and mappings, regardless of their physical pack-
aging.
The metadata associated with each persistence capable class must be contained within one or more
files, and its format is defined by the DTD or xsd. If the metadata in a file is for only one class, then
its file name is <class-name>.jdo. If the metadata is for a package, or a number of packages, then its
file name is package.jdo. In this case, the file is located in one of several directories: “META-INF”;
“WEB-INF”; <none>, in which case the metadata file name is "package.jdo" with no directory;
“<package>/.../<package>”, in which case the metadata directory name is the partial or full package
name with “package.jdo” as the file name.
Metadata for all classes and interfaces found while processing metadata for any class or interface
must be remembered by the implementation.
Metadata for relational mapping might be contained in the same file as the persistence information,
in which case the naming convention above is used. The mapping metadata might be contained in
a separate file, in which case the metadata file name suffix must be specified in the Persis-
tenceManagerFactory property javax.jdo.option.Mapping. This property is used to
construct the file names for the mapping.
NOTE: If the javax.jdo.option.Mapping property is set, then mapping metadata contained
in the .jdo file is not used.
The extension .orm refers to “object repository metadata”. If the mapping is to a repository type oth-
er than relational, the document type will be different, but the file naming conventions are the same.
For example, if the value of javax.jdo.option.Mapping is “mySQL”, then the file name for
the metadata is <class-name>-mySQL.orm or package-mySQL.orm. Similar to package.jdo, the
package-mySQL.orm file is located in one of the following directories: “META-INF”; “WEB-
INF”; <none>, in which case the metadata file name is "package-mySQL.orm" with no directory;
“<package>/.../<package>”, in which case the metadata directory name is the partial or full package
name with “package-mySQL.orm” as the file name. If mapping metadata is for only one class, the
name of the file is <package>/.../<package>/<class-name>-mySQL.orm.
When metadata information is needed for a class, and the metadata for that class has not already
been loaded, the metadata is searched for as follows: META-INF/package.jdo, WEB-INF/pack-
age.jdo, package.jdo, <package>/.../<package>/package.jdo, and <package>/<class>.jdo. Once

Java Data Objects 2.2

 JDO 2.2 219 October 10, 2008

metadata for a class has been loaded, the metadata will not be replaced in memory as long as the
class is not garbage collected. Therefore, metadata contained higher in the search order will always
be used instead of metadata contained lower in the search order.
Similarly, when mapping metadata information is needed for a class, and the mapping metadata for
that class has not already been loaded, the mapping metadata is searched for as follows: META-
INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-mySQL.orm, <package>/.../
<package>/package-mySQL.orm, and <package>/.../<package>/<class-name>-mySQL.orm. Once
mapping metadata for a class has been loaded, it will not be replaced as long as the class is not gar-
bage collected. Therefore, mapping metadata contained higher in the search order will always be
used instead of metadata contained lower in the search order.
For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "META-INF/
package.jdo" containing xml for this class, then its definition is used. If there is no such file, but
there is a file "WEB-INF/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "package.jdo" containing metadata for com.xyz.Wombat, then
it is used. If there is no such file, but there is a file "com/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there is a file
"com/xyz/Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.
Note that this search order is optimized for implementations that cache metadata information as
soon as it is encountered so as to optimize the number of file accesses needed to load the metadata.
Further, if metadata is not in the natural location, it might override metadata that is in the natural
location. For example, while looking for metadata for class com.xyz.Wombat, the file com/pack-
age.jdo might contain metadata for class org.acme.Grumpy. In this case, subsequent search of meta-
data for org.acme.Grumpy will find the cached metadata and none of the usual locations for
metadata will be searched.
The metadata must declare all persistence-capable classes. If any field or property declarations are
missing from the metadata, then field or property metadata is defaulted for the missing declarations.
The JDO implementation is able to determine based on the metadata whether a class is persistence-
capable or not. Any class not known to be persistence-capable by the JDO specification (for exam-
ple, java.lang.Integer) and not explicitly named in the metadata is not persistence-capable.
Classes and interfaces used in metadata follow the Java rules for naming. If the class or interface
name is unqualified, the package name is the name of the enclosing package. Inner classes are iden-
tified by the "$" marker.
For compatibility with installed applications, a JDO implementation might first use the search order
as specified in the JDO 1.0 or 1.0.1 releases. In this case, if metadata is not found, then the search
order as specified in JDO 2.0 must be used. Refer to Chapter 25 for details.
For convenience, the metadata allows for the same information to be declared in multiple places. It
is an error if conflicting information is declared in more than one place. For example, the name of
the column for a field might be declared either in the column attribute on the field element, or in the
name attribute in the column element contained in the field. If declared in both places, the informa-
tion must be identical or an error must be reported by the JDO implementation.

Mapping to Relational Databases
Mapping is done by specifying associations from classes and interfaces to tables, and fields to col-
umns.
Tables are generally specified by name. Table names can be declared as "<database>.<cata-
log>.<schema>.<table-name>", where database, catalog, and schema are optional. If not specified
in any metadata, catalog and schema are taken from the PersistenceManagerFactory prop-

Java Data Objects 2.2

 JDO 2.2 220 October 10, 2008

erties catalog and schema. If not specified in PersistenceManagerFactory, they are
defaulted by the JDBC connection.
Catalog and schema attributes apply to jdo, orm, package, class, and interface elements, and specify
the catalog and schema to be used when defining and using schema. If declared at the jdo, orm,
package, class or interface level, it specifies the catalog and/or schema to be used as the default for
tables contained therein.

18.1 ELEMENT jdo
This element is the highest level element in the xml document. It is used to allow multiple packages
to be described in the same document. It contains multiple package and query elements and optional
extension elements.

18.2 ELEMENT package
This element includes all classes in a particular package. The complete qualified package name de-
faults to the empty package, but it is highly recommended to specify it. It contains multiple class
and interface elements and optional extension elements.

18.3 ELEMENT interface
The interface element declares a persistence-capable interface. Instances of a vendor-specific
type that implement this interface can be created using the newInstance(Class persis-
tenceCapable) method in PersistenceManager, and these instances may be made persis-
tent.
The JDO implementation must maintain an extent for persistent instances of persistence-capable
classes that implement this interface.
The requires-extent attribute is optional. If set to "false", the JDO implementation does
not need to support extents of factory-made persistent instances. It defaults to "true".
The attribute name is required, and is the name of the interface.
The attribute table is optional, and is the name of the table to be used to store persistent instances
of this interface.
The detachable attribute specifies whether persistent instances of this interface can be detached
from the persistence context and later attached to the same or a different persistence context. The
default is false.
Persistent properties declared in the interface are defined as those that have both a get and a set
method or both an is and a set method, named according to the JavaBeans naming conventions,
and of a type supported as a persistent type.
The implementing class will provide a suitable implementation for all property access methods.
This element might contain property elements to specify the mapping to relational columns.
Interface inheritance is supported.

18.4 ELEMENT column
The column element identifies a column in a mapped table. This element is used for mapping
fields, collection elements, array elements, keys, values, datastore identity, application identity, and
properties.

Java Data Objects 2.2

 JDO 2.2 221 October 10, 2008

NOTE: Any time an element can contain a column element that is only used to name the column,
a column attribute can be used instead.
The name attribute declares the name of the column in the database. The name might be fully qual-
ified as <table-name>.<column-name> and <table-name> might be defaulted in context.
The target attribute declares the name of the primary key column for the referenced table. For
columns contained in join elements, this is the name of the primary key column in the primary table.
For columns contained in field, element, key, value, or array elements, the target attribute is the
name of the primary key column of the primary table of the other side of the relationship.
The target-field attribute might be used instead of the target attribute to declare the name
of the field to which the column refers. This is useful in cases where there are different mappings of
the referenced field in different subclasses.
The jdbc-type attribute is used to determine the type of the column in the database. This type is
defaulted based on the type of the field being mapped. Valid types are all upper-case or all lower-
case CHAR, VARCHAR, LONGVARCHAR, NUMERIC, DECIMAL, BIT, TINYINT, SMALL-
INT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE, BINARY, VARBINARY, LONGVARBI-
NARY, DATE, TIME, and TIMESTAMP, and others as may be defined by future versions of the
JDBC specification. This attribute is only needed if the default type is not suitable.
The jdbc-type is also used when mapping element, key, value, and order elements of
collections, arrays, and maps. The java type for the column mapped to an order element is as-
sumed to be int.
For example, when mapping a Map<Integer, Employee> to a join table, the jdbc-type for the
column mapped to the key (Integer) will default to INTEGER, whereas there is no default jdbc-type
for the column mapped to the value (Employee).

Java Data Objects 2.2

 JDO 2.2 222 October 10, 2008

Table 8: Default jdbc-type

Java type Default jdbc-type Comments

boolean BIT

java.lang.Boolean BIT

char CHAR

java.lang.Character CHAR

byte TINYINT

java.lang.Byte TINYINT

short SMALLINT

java.lang.Short SMALLINT

int INTEGER

java.lang.Integer INTEGER

long BIGINT

java.lang.Long BIGINT

float FLOAT

java.lang.Float FLOAT

double DOUBLE

enum VARCHAR

java.lang.Double DOUBLE

java.util.Date TIMESTAMP

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.lang.Object none

java.lang.String VARCHAR

java.util.Locale VARCHAR

java.util.Currency VARCHAR

java.math.BigInteger NUMERIC

java.math.BigDecimal DECIMAL

Java Data Objects 2.2

 JDO 2.2 223 October 10, 2008

In many cases, the default for the jdbc-type attribute based on the field type is sufficient. For
cases where this information is used to create datastore schema, the jdo implementation is free to
map the column type suitable for the datastore being used based on the specified jdbc-type ,
length, and scale.
The sql-type attribute declares the type of the column in the database. This type is database-spe-
cific and should only be used where the user needs more explicit control over the mapping. Normal-
ly, the combination of jdbc-type. length, and scale are sufficient for the JDO
implementation to calculate the sql-type.
The length attribute declares the number of characters in the datastore representation of numeric,
char[], and Character[] types; and the maximum number of characters in the datastore rep-
resentation of String types. The default is 256.
The scale attribute declares the scale of the numeric representation in the database. The default is
0.
The allows-null attribute specifies whether null values are allowed in the column, and is de-
faulted based on the type of the field being mapped. The default is "true" for reference field types
and "false" for primitive field types.
The insert-value attribute specifies the value to be inserted into the datastore in case a column
is not mapped to any field in the object model. In this case, the column element must be directly
contained in a class element, and the column must not be mapped to a field.
The default-value attribute specifies the database-assigned default value for the column if no
value is explicitly assigned to the column on insert. Implementations might use the value of this
attribute to set the appropriate column default when generating schema.

18.5 ELEMENT class
The class element includes field elements declared in a persistence-capable class, and optional
vendor extensions.
The name attribute of the class is required. It specifies the unqualified class name of the class. The
class name is scoped by the name of the package in which the class element is contained.
The persistence-modifier attribute specifies whether this class is
persistence-capable, persistence-aware, or non-persistent. Persis-
tence-aware and non-persistent classes must not include any attributes or elements except for the
name and persistence-modifier attributes. Declaring persistence-aware and non-persistent
classes might provide a performance improvement for enhancement and runtime, as the search al-
gorithm for metdata need not be exhaustive.
The detachable attribute specifies whether instances of this class can be detached from the per-
sistence context and later attached to the same or a different persistence context. If a class is declared
as detachable, then all its persistence-capable subclasses are also detachable. The default is false.

interfaces none

mapped as serialized LONG VARBI-
NARY

persistence-capable types none

Table 8: Default jdbc-type

Java type Default jdbc-type Comments

Java Data Objects 2.2

 JDO 2.2 224 October 10, 2008

The embedded-only attribute declares whether instances of this class are permitted to exist as
first-class instances in the datastore. A value of “true” means that instances can only be embedded
in other first-class instances., and precludes mapping this class to its own table.
The identity type of the least-derived persistence-capable class defines the identity type for all per-
sistence-capable classes that extend it.
The identity type of the least-derived persistence-capable class is defaulted to application if
any field declares the primary-key attribute to be true; and datastore, if not. If the identity
type is application, the object-id class is not specified, and there is one primary key field that match-
es the type of a single field identity class, then the object-id class defaults to that single field identity
class.
The requires-extent attribute specifies whether an extent must be managed for this class. The
PersistenceManager.getExtent method can be executed only for classes whose metadata
attribute requires-extent is specified or defaults to true. If the PersistenceMan-
ager.getExtent method is executed for a class whose metadata specifies requires-ex-
tent as false, a JDOUserException is thrown. If requires-extent is specified or
defaults to true for a class, then requires-extent must not be specified as false for any
subclass.
The persistence-capable-superclass attribute is deprecated for this release. The at-
tribute will be ignored so metadata files from previous releases can be used.A number of join el-
ements might be contained in the class element. Each join element defines a table and associated
join conditions that can be used by multiple fields in the mapping.
The objectid-class attribute identifies the name of the objectid class. If not specified, there
must be only one primary key field, and the objectid-class defaults to the appropriate simple
identity class.
The objectid-class attribute is required only for abstract classes and classes with multiple key
fields. If the objectid-class attribute is defined in any concrete persistence-capable class, then
the objectid class itself must be concrete, and no subclass of the persistence-capable class may in-
clude the objectid-class attribute. If the objectid-class attribute is defined for any ab-
stract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass of the
objectid class of the most immediate abstract persistence-capable superclass that defines an
objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass of the
objectid class of the most immediate subclasses that define an objectid class; and

• if the objectid class is concrete, no subclass of this persistence-capable class may define an
objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the inher-
itance hierarchy of the persistence-capable classes. Associated with every concrete persistence-ca-
pable class is exactly one objectid class.
The objectid class must declare fields identical in name and type to fields declared in this class.
The table attribute names the primary table to which fields declared in this class metadata are
mapped.
Foreign keys, indexes, and join tables can be specified at the class level. If they are specified at this
level, column information might only be the names of the columns.
Column elements can be added to the class element to describe columns that are not mapped to
fields. In this case, the insert-value attribute can be used to specify the value to insert into the column
when a new instance is inserted into the datastore.

Java Data Objects 2.2

 JDO 2.2 225 October 10, 2008

18.5.1 ELEMENT datastore-identity

The datastore-identity element declares the strategy for implementing datastore identity
for the class, including the mapping of the identity columns of the relational table.
The strategy attribute identifies the strategy for mapping.

• The value "native" allows the JDO implementation to pick the most suitable strategy
based on the underlying database.

• The value "sequence" specifies that a named database sequence is used to generate key
values for the table. If sequence is used, then the sequence attribute is required.

• The value "identity" specifies that the column identified as the key column is managed
by the database as an identity type.

• The value "increment" specifies a strategy that simply finds the largest key already in
the database and increments the key value for new instances. It can be used with integral
column types when the JDO application is the only database user inserting new instances.

• The value "uuid-string" specifies a strategy that generates a 128-bit UUID unique
within a network (the IP address of the machine running the application is part of the id)
and represents the result as a 16-character String.

• The value "uuid-hex" specifies a strategy that generates a 128-bit UUID unique within
a network (the IP address of the machine running the application is part of the id) and
represents the result as a 32-character String.

The sequence attribute names the sequence used to generate key values. This must correspond to
a named sequence in the JDO metadata. If this attribute is used, the strategy defaults to “se-
quence”.
The column elements identify the primary key columns for the table in the database.

18.5.2 ELEMENT version

The version element is contained in the class element, and declares the version strategy and
optionally the column(s) used for the version strategy.
The strategy attribute defines the strategy for managing the version of an instance. Four
strategy attribute values are standard:

• none: no version checking is done; changed values overwrite values in the datastore

• version-number: a rolling number is used as the version number

• state-image: the values of fields are used in aggregate as the version

• date-time: a clock timestamp (date-plus-time) value is used as the version

The column attribute declares the name of the column to hold the version. It is used instead of the
contained column element in case only the column name is needed.
The version element might contain one or more column elements that declare the columns to
use to hold the version.

18.6 ELEMENT primary-key
The primary-key element provides the mapping for the primary key constraint for the table as-
sociated with the enclosing element (class, join, or interface). Its primary use is to specify
the name of the primary key constraint in case of Java-to-database mapping. In this case, the element
is typically specified as:
<primary-key name="EMP_PK"/>

Java Data Objects 2.2

 JDO 2.2 226 October 10, 2008

It is also optionally used to specify the column to be used for surrogate primary key with application
identity. In this case, the primary key fields do not provide the primary key of the database. This
mapping is not required to be supported by the JDO implementation. For example:
<class name="Employee" identity-type="application">
 <primary-key name="EMP_PK" column="SURR_PK"/>
...
</class>

It is also optionally used to specify the constraint name and column names of a primary key con-
straint for tables associated with the class, such as join tables or secondary tables. To specify the
primary key constraint for a join table, the primary-key element is contained within the join
element. For example:
<field name="projects" table="EMP_PROJ">
<collection element-type="Project"/>
<join>
<primary-key name="EMP_PROJ_PK">
<column name="EMPID"/>
<column name="PROJID"/>
</primary-key>
<column name="EMPID" target="ID"/>
</join>
<element>
<column name="PROJID" target="ID"/>
</element>
</field>

If used to specify the primary key for a subclass using new-table inheritance strategy with a join to
the superclass table, the primary-key element is put at the class level and not in the join element of
the inheritance element.

18.7 ELEMENT join
The join element declares the table to be used in the mapping and the join conditions to associate
rows in the joined table to the primary table.
The table attribute specifies the name of the table in the case of secondary table mappings (at least
one table in addition to the primary table contain columns mapped to fields). In this case, the join
element is nested in the class element.
For join elements nested inside field elements, the table attribute is not allowed. The table
attribute from the field element specifies the table to which the join applies.
One or more column elements are contained within the join element. The column elements
name the columns used to join to the primary key columns of the primary table. If there are multiple
key columns, then the target attribute is required in each column element, and each names the
corresponding primary key column of the primary table.
The table being joined might not have a row for each row in the referring table; in order to access
rows in this table, an outer join is needed. The outer attribute indicates that an outer join is needed.
The default is false.

18.8 ELEMENT inheritance
The inheritance element declares the mapping for inheritance.
The strategy attribute declares the strategy for mapping:

Java Data Objects 2.2

 JDO 2.2 227 October 10, 2008

• The value "subclass-table” means that this class does not have its own table. All of
its fields are mapped by subclasses.

• The value "new-table" means that this class has its own table into which by default all
of its fields are mapped. There might be a table attribute specified in the class element. This
is the default for the topmost (least derived) class in an inheritance hierarchy.

• The value "superclass-table" means that this class does not have its own table. All
of its fields by default are mapped into tables of its superclass(es). This is the default for all
classes except for the topmost class in an inheritance hierarchy.

18.9 ELEMENT discriminator
The discriminator element is used when a column is used to identify what class is associated
with the primary key value in a table mapped to a superclass.
In the least-derived class in the hierarchy that uses the discriminator strategy, declare the discrimi-
nator element with a strategy and column. If the strategy is "value-map", then for each concrete
subclass, define the discriminator element with a value attribute. If the strategy is "class-name"
then subclasses do not need a discriminator element; the name of the class is stored as the value for
the row in the table. If the value attribute is given, then the strategy defaults to “value-map”.
The strategy “none” declares that there is no discriminator column.

18.10 ELEMENT implements
The implements element declares a persistence-capable interface implemented by the persis-
tence-capable class that contains this element. An extent of persistence-capable classes that imple-
ment this interface is managed by the JDO implementation. The extent can be used for queries or
for iteration just like an extent of persistence-capable instances.
The attribute name is required, and is the name of the interface. The java class naming rules apply:
if the interface name is unqualified, the package is the name of the enclosing package.

18.11 ELEMENT foreign-key
The foreign-key element specifies characteristics of a foreign key associated with the contain-
ing join, field, key, value, or element.
To specify that there is a foreign key associated with the containing element, without specifying the
name of the foreign key, the foreign-key element can be used with no attributes or contained
elements.
If this element is specified at the class level, then column elements contained in the foreign-
key element might contain only the name attribute.

18.11.1 ATTRIBUTE update-action

The update-action attribute specifies the generated or assumed foreign key constraint defined
in the datastore. The implementation might optimize its behavior based on these constraints but they
do not affect the object model. The permitted values restrict, cascade, default, null, and
none correspond to the meaning of these terms in SQL.

18.11.2 ATTRIBUTE delete-action

The delete-action attribute specifies the generated or assumed foreign key constraint defined
in the datastore. The implementation might optimize its behavior based on these constraints but they

Java Data Objects 2.2

 JDO 2.2 228 October 10, 2008

do not affect the object model. The permitted values restrict, cascade, default, null, and
none correspond to the meaning of these terms in SQL.

18.11.3 ATTRIBUTE deferred

The deferred attribute specifies whether constraint checking on the containing element is defined in
the database as being deferred until commit. This allows an optimization by the JDO implementa-
tion, and might allow certain operations to succeed where they would normally fail. For example,
to exchange unique references between pairs of objects requires that the unique constraint columns
temporarily contain duplicate values.
Possible values are “true” and “false”. The default is “false”.

18.11.4 ATTRIBUTE name

The name attribute specifies the name of the foreign key constraint to generate for this mapping.
This attribute is used if the name of the foreign key needs to be specified.

18.12 ELEMENT unique
The unique element specifies characteristics of a unique key associated with the containing join,
field, key, value, or element.
To specify that there is a unique key associated with the containing element, without specifying the
name of the unique key, the unique element can be used with no attributes or contained elements.
Alternatively, the unique attribute can be used.
If this element is specified at the class level, then column elements contained in the unique ele-
ment might contain only the name attribute.

18.13 ELEMENT index
The index element specifies characteristics of an index associated with the containing join, field,
key, value, or element.
To specify that there is an index associated with the containing element, without specifying the
name of the index, the index element can be used with no attributes or contained elements. Alter-
natively, the indexed attribute can be used.
If this element is specified at the class level, then column elements contained in the foreign-
key element might contain only the name attribute.

18.14 ELEMENT property
When contained in a class element,

• the property element declares the mapping between a virtual field of an implemented
interface and the corresponding persistent field of the persistence-capable class.

• the name attribute is required, and declares the name for the property. The naming
conventions for JavaBeans property names is used: the property name is the same as the
corresponding get method for the property with the get or is removed and the resulting
name lower-cased.

• the mapped-by attribute specifies that the field is mapped to the same database column(s)
as the named field in the other class and that the fields are managed such that changes made
to one side of the pair of fields are reflected in the other side.

Java Data Objects 2.2

 JDO 2.2 229 October 10, 2008

• the field-name attribute is required; it associates a persistent field with the named
property.

When contained in an interface element,
• property elements declare the mapping for persistent properties of the interface.

• The name attribute is required and must match the name of a property in the interface.

• This element might contain column elements to specify the mapping to relational
columns.

• the mapped-by attribute specifies that the property is mapped to the same database
column(s) as the named property in the other interface.

• The element might contain collection, map, or array elements to specify the
characteristics of the property.

18.15 ELEMENT field
The field element is optional, and the name attribute is the field name as declared in the class. If
the field declaration is omitted in the xml, then the values of the attributes are defaulted.
The persistence-modifier attribute specifies whether this field is persistent, transactional,
or none of these. The persistence-modifier attribute can be specified only for fields de-
clared in the Java class, and not fields inherited from superclasses. There is special treatment for
fields whose persistence-modifier is persistent or transactional.

Default persistence-modifier
The default for the persistence-modifier attribute is based on the Java type and modifiers
of the field:

• Fields with modifier static: none. No accessors or mutators will be generated for these
fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be generated for
these fields during enhancement, but they will not delegate to the StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields during
enhancement, but they will not delegate to the StateManager.

• Fields of a type declared to be persistence-capable: persistent.

• Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float,
double;

• enums;
• java.lang wrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Currency, Date, Locale, ArrayList, HashMap, HashSet,
Hashtable, LinkedHashMap, LinkedHashSet, LinkedList, TreeMap,
TreeSet, Vector, Collection, Set, List, and Map;

• Arrays of primitive types, java.util.Date, java.util.Locale, java.lang
and java.math types specified immediately above, and persistence-capable types.

• Fields of types of user-defined classes and interfaces not mentioned above: none. No
accessors or mutators will be generated for these fields.

Java Data Objects 2.2

 JDO 2.2 230 October 10, 2008

The null-value attribute specifies the treatment of null values for persistent fields during stor-
age in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a JDOUserException
if null values cannot be stored by the datastore.

• "exception": always throw a JDOUserException if this field contains a null
value at runtime when the instance must be stored;

• "default": convert the value to the datastore default value if this field contains a null
value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a group with
other fields. It defaults to "true" for non-key fields of primitive types, java.util.Date, and
fields of java.lang, java.math types specified above.
The load-fetch-group attribute specifies the name of the fetch group to be used when this
field is loaded due to being referenced when unloaded. It does not apply to queries, navigation, or
getObjectById of instances of the declaring class.

• The load-fetch-group is added to the fetch groups in the
PersistenceManager’s FetchPlan to create the effective fetch groups for loading
the unloaded field. The unloaded field is also added to the fields in the effective fetch
groups in case the unloaded field is not already defined in the effective fetch groups.

• The effective fetch groups are used to retrieve unloaded fields into the instance containing
the unloaded field.

• If any relationship fields are included in the effective fetch groups, then the referred
instances are loaded according to the effective fetch groups.

Embedded
The embedded attribute specifies whether the field should be stored as part of the containing in-
stance instead of as its own instance in the datastore. It must be specified or default to "true" for
fields of primitive types, wrappers, java.lang, java.math, java.util, collection, map, and
array types specified above; and "false" for other types including persistence-capable types, in-
terface types and the Object type. Thus, specifying this attribute is not usually necessary. While
a compliant implementation is permitted to support these types as first class instances in the datas-
tore, the semantics of embedded="true" imply containment. That is, the embedded instances
have no independent existence in the datastore and have no Extent representation.
For relational mapping, the embedded attribute is not used for collection, map, and array types, but
is only used for persistence-capable types, interface types, and the Object type. For other datas-
tores, it only applies to the structure of the type, not to the elements, keys, and values. That is, the
collection instance itself is considered separate from its contents. The contents of these types may
separately be specified to be embedded or not, using embedded-element, embedded-key,
and embedded-value attributes of the collection, array, and map elements.
Embedded-element, embedded-key, and embedded-value apply to the storage of the el-
ement, key, and value instances contained in the collection, array, or map. Similar to the embedded
attribute, for relational mapping these are only applicable to persistence-capable types, interface
types, and the Object type. For other datastores, these attributes default to “true” for elements,
keys, and values of wrapper types, java.lang types, java.math types and for the types explic-
itly mapped using the embedded element contained in the element, key, and value elements.
Like the embedded attribute, usually embedded-element, embedded-key, and embed-
ded-value will default appropriately and need not be specified.
The embedded attribute applied to a field of a persistence-capable type specifies that the imple-
mentation will treat the field as a Second Class Object.

Java Data Objects 2.2

 JDO 2.2 231 October 10, 2008

The serialized attribute indicates that the field is to be serialized for storage using writeOb-
ject, and cannot be queried.
The attributes serialized="true" and embedded="true"are mutually exclusive.
A portable application must not assign instances of mutable classes to multiple embedded fields, and
must not compare values of these fields using Java identity (“f1==f2”).
The embedded element is used to specify the field mappings for embedded persistence-capable
types.
The dependent attribute specifies that the field contains a reference to a referred instance that is
to be deleted from the datastore if the instance in which the field is declared is deleted, or if the re-
ferring field is nullified. If the field is a multi-valued type such as Array, Collection, or Map, then
the referred instance is deleted when the referring element is removed from the Array, Collection,
or Map.
Dependent defaults to true if either serialized="true" or embedded="true" is speci-
fied.
The field-type attribute is used to specify a more restrictive type than the field definition in the
class. This might be required in order to map the field to the datastore. To be portable, specify the
name of a single type that is itself able to be mapped to the datastore (e.g. a field of type Object
can specify field-type="Integer"). To specify multiple types that the field might contain,
use a comma-separated list of types, although this cannot be portably mapped. Rules for type names
are as specified in collection element-type.

Column Mapping
Non-relationship fields are mapped to one or more columns in the primary table, a secondary table,
or a join table. Relationship fields can additionally be mapped to columns in the primary or second-
ary table of the associated class. The table attribute in the field element identifies one of the three
tables. If not specified, the table attribute defaults to the primary table.
Secondary tables are used for mapping single-valued types (primitive, wrapper, ja-
va.util.Date, String, etc.). There is one row in the secondary table for each row in the pri-
mary table. The column or columns to which the field is mapped refers to a column or columns in
the secondary table.
Join tables can be used for mapping multi-valued types (collection, array, and map types). There are
multiple rows in the join table for each row in the primary table. The column or columns to which
the field is mapped refers to a column or columns in the join table.
A portable mapping for arrays, collections, and maps will include a primary key on the join table.
A special case involves self-referencing fields, in which the type of a field is the same as its class
(or the element, key, or value type is the same). A column mapped to a self-referencing field is in
the primary table of the class, and contains a reference to the primary key of the primary table.
If a join element is specified as part of the field mapping, the join column (or columns) provide the
join condition to relate the primary table of the class to the table specified in the field. In this case
the table attribute in the join element is not used.
The following field declarations are mutually exclusive; it is a user error to specify more than one
mutually exclusive declaration:
• default-fetch-group = "true"

• primary-key = "true"

• persistence-modifier = "transactional" or "none"

Java Data Objects 2.2

 JDO 2.2 232 October 10, 2008

If default-fetch-group is specified as true, then primary-key is set to false and
persistence-modifier is set to persistent.
If primary-key is specified as true, then default-fetch-group is set to false and
persistence-modifier is set to persistent.
If persistence-modifier is specified as transactional or none, default-fetch-
group is set to false and primary-key is set to false.
The table attribute specifies the name of the table mapped to this field. It defaults to the table de-
clared in the enclosing class element.
The column elements specify the column(s) mapped to this field. Normally, only one column is
mapped to a field. If multiple columns are mapped, then the behavior is implementation-specific.
The mapped-by attribute specifies that the field is mapped to the same database column(s) as the
named field in the other class.
The value-strategy attribute specifies the strategy used to generate values for the field. This
attribute has the same values and meaning as the strategy attribute in datastore-identity.
If the value-strategy is sequence, the sequence attribute specifies the name of the se-
quence to use to automatically generate a value for the field. This value is used only for persistent-
new instances at the time makePersistent is called.
Subclasses might map fields of their superclasses. In this case, the field name is specified as <su-
perclass>.<superclass-field-name>.

Foreign key
The delete-action, update-action, indexed, and unique attributes specify the char-
acteristics of a constraint to be generated or assumed to exist in the database, corresponding to the
mapped column or columns.

18.15.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collection
typed fields are persistent, and the element type is Object.
The element-type attribute specifies the type of the elements. The type name uses Java lan-
guage rules for naming: if no package is included in the name, the package name is assumed to be
the same package as the persistence-capable class. Inner classes are identified by the "$" marker.
Classes Boolean, Byte, Character, Double, Float, Integer, Long, Number, Object,
Short, String, and StringBuffer are treated exactly as in the Java language: they are first
checked to see if they are in the package in which they are used, and if not, assumed to be in the
java.lang package. To be portable, specify the name of a single type that is itself able to be
mapped to the datastore (e.g. an element of type Object can specify element-type="Inte-
ger"). To specify multiple types that the field might contain, use a comma-separated list of types,
although this cannot be portably mapped.
The embedded-element attribute specifies whether the values of the elements should be stored
as part of the containing instance instead of as their own instances in the datastore. It defaults to
"false" for persistence-capable types, the Object type, interface types and multi-valued types;
and "true" for primitive types, wrapper types, and single-valued Object types including
String, Date, and Locale. It also defaults to true if the element element contains the em-
bedded element specifying the embedded mapping of the element.
The embedded treatment of the collection instance itself is governed by the embedded attribute of
the field element.

Java Data Objects 2.2

 JDO 2.2 233 October 10, 2008

The dependent-element attribute indicates that the collection’s element contains a reference
to a referred instance that is to be deleted if the referring instance is deleted, the collection is re-
placed, or the reference is nullified or removed from the collection. The default is “false”.
The element element contained in the field element specifies the mapping of elements in the
collection.
The serialized-element attribute indicates that the array element is to be serialized for stor-
age using writeObject, and cannot be queried.
The attributes serialized-element="true" and embedded-element="true"are mu-
tually exclusive.

18.15.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is map
typed fields are persistent, and the key and value types are Object.
The key-type and value-type attributes specify the types of the key and value, respectively.
They follow the same rules as element-type in element collection.
The embedded-key and embedded-value attributes specify whether the key and value should
be stored as part of the containing instance instead of as their own instances in the datastore. They
default to "false" for persistence-capable types, the Object type, interface types and multi-val-
ued types; and "true" for primitive types, wrapper types, and single-valued Object types in-
cluding String, Date, and Locale. They also default to "true" if the key or value
elements contain the embedded element specifying the embedded mapping of the key or value.
The serialized-key attribute indicates that the map key is to be serialized for storage using
writeObject, and cannot be queried.
The attributes serialized-key="true" and embedded-key="true"are mutually exclu-
sive.
The embedded treatment of the map instance itself is governed by the embedded attribute of the
field element.
The dependent-key attribute indicates that the collection’s key contains references that are to
be deleted if the referring instance is deleted, the map is replaced, or the key is removed from the
map. The default is “false”.
The dependent-value attribute indicates that the collection’s value contains references that are
to be deleted if the referring instance is deleted, the map is replaced, or the value is removed from
the map. The default is “false”.
The serialized-value attribute indicates that the map value is to be serialized for storage us-
ing writeObject, and cannot be queried.
The attributes serialized-value="true" and embedded-value="true"are mutually
exclusive.

18.15.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier for array
typed fields is based on the Java type of the component and modifiers of the field, according to the
rules in section 18.10.
The element-type attribute is used to specify a more restrictive type than the field definition in
the class. This might be required in order to map the field to the datastore. It follows the same rules
as element-type in element collection.
The embedded-element attribute specifies whether the values of the components should be
stored as part of the containing instance instead of as their own instances in the datastore. It defaults

Java Data Objects 2.2

 JDO 2.2 234 October 10, 2008

to "false" for persistence-capable types, the Object type, interface types and multi-valued
types; and "true" for primitive types, wrapper types, and single-valued Object types including
String, Date, and Locale. It also defaults to true if the element element contains the em-
bedded element specifying the embedded mapping of the element.
The dependent-element attribute indicates that the array element contains a reference that is
to be deleted if the referring instance is deleted, the array is replaced, or the reference is nullified.
The serialized-element attribute indicates that the array element is to be serialized for stor-
age using writeObject, and cannot be queried.
The attributes serialized-element="true" and embedded-element="true"are mu-
tually exclusive.
The embedded treatment of the array instance itself is governed by the embedded attribute of the
field element.

18.15.4 ELEMENT embedded

The embedded element specifies the mapping for an embedded type. It contains multiple field and
property elements, one for each field and property in the type.
The null-indicator-column attribute optionally identifies the name of the column used to
indicate whether the embedded instance is null. By default, if the value of this column is null, then
the embedded instance is null. This column might be mapped to a field or property of the embedded
instance but might be a synthetic column for the sole purpose of indicating a null reference.
The null-indicator-value attribute specifies the value to indicate that the embedded in-
stance is null. This is only used for non-nullable columns.
If null-indicator-column is omitted, then the embedded instance is assumed always to ex-
ist.
The owner-field attribute specifies the name of the field or property in the embedded type that
should contain a reference to the owning instance. This field or property is automatically instantiat-
ed by the implementation, and is not mapped to anything in the data store.

18.15.5 ELEMENT key

This element specifies the mapping for the key component of a Map field.
If only one column is mapped, and no additional information is needed for the column, then the
column attribute can be used. Otherwise, the column element(s) are used.
If the Map field is mapped using the mapped-by attribute in the field metadata, then the key can
be mapped to a field in the same class. In this case, use the mapped-by attribute in the key meta-
data to name the field containing the key data.
The mapped-by attribute specifies that the field is mapped to the same database column(s) as the
named field in the other class.
The delete-action, update-action, indexed, and unique attributes specify the
characteristics of a constraint to be generated.

18.15.6 ELEMENT value

This element specifies the mapping for the value component of a Map field.
If only one column is mapped, and no additional information is needed for the column, then the col-
umn attribute can be used. Otherwise, the column element(s) are used.
If the Map field is mapped using the mapped-by attribute in the field metadata, then the value can
be mapped to a field in the same class. In this case, use the mapped-by attribute in the value meta-
data to name the field containing the value data.

Java Data Objects 2.2

 JDO 2.2 235 October 10, 2008

The mapped-by attribute specifies that the field is mapped to the same database column(s) as the
named field in the other class.
The delete-action, update-action, indexed, and unique attributes specify the char-
acteristics of a constraint to be generated.

18.15.7 ELEMENT element

This element specifies the mapping for the element component of arrays and collections.
If only one column is mapped, and no additional information is needed for the column, then the col-
umn attribute can be used. Otherwise, the column element(s) are used.
The mapped-by attribute specifies that the field is mapped to the same database column(s) as the
named field in the other class.
The delete-action, update-action, indexed, and unique attributes specify the char-
acteristics of a constraint to be generated.

18.15.8 ELEMENT order

This element specifies the mapping for the ordering component of arrays and lists.
If no additional information is needed for the ordering column except for the name, then the column
attribute can be used. Otherwise, the column element(s) are used.
If the array or list field is mapped using the mapped-by attribute in the field metadata, then the
ordering can be mapped to a field in the same class. In this case, use the mapped-by attribute in
the order metadata to name the field containing the ordering data.
The field named in the mapped-by attribute in the order element must refer to a field or property
of an integral type. This field is managed by the JDO implementation at flush time.
If an instance of the target type is created and not explicitly added to the array or list on the other
side, at flush time the instance is added to the array or list at the end.

18.16 ELEMENT query
This element specifies the serializable components of a query. Queries defined using metadata are
used with the newNamedQuery method of PersistenceManager.
The name attribute specifies the name of the query, and is required.
The language attribute specifies the language of the query. The default is "javax.jdo.que-
ry.JDOQL". To specify SQL, use "javax.jdo.query.SQL". Names for languages other
than these are not standard.
The unmodifiable attribute specifies whether the query can be modified by the program.
The body of the query element specifies the text of the query. This is the single-string query as
defined in section 14.6.13. For convenience, single quotes can be used to delimit string constants in
the filter.
For SQL queries, in which it is not possible to specify uniqueness and the result class in the query
itself, the attributes unique and result-class can be used.

18.17 ELEMENT sequence
The sequence element identifies a sequence number generator that can be used for several pur-
poses:

• by the JDO implementation to generate application identity primary key values;

Java Data Objects 2.2

 JDO 2.2 236 October 10, 2008

• by the JDO implementation to generate datastore identity primary key values;

• by the JDO implementation to generate non-key field values;

• by an application to generate unique identifiers for application use.

The name attribute specifies the name for the sequence number generator.
The strategy attribute specifies the strategy for generating sequence numbers. Standard values
are:

• nontransactional: values are obtained outside of the transaction

• transactional: values are obtained in a transaction; if the transaction rolls back, gaps
might occur in the sequence numbers

• contiguous: values are obtained in a transaction; all sequence numbers are guaranteed
to be used. This implies that use of the sequence is serialized by transactions.

The datastore-sequence attribute names the sequence used to generate key values. This must
correspond to a named sequence in the database schema.
The factory-class attribute names the user-defined class of the factory for the sequence. The
class must have a static method newInstance() that returns an instance of Sequence. This
method will be invoked once per named sequence per PersistenceManagerFactory and the
same instance will be used for every reference to the same named sequence in the context of that
PersistenceManagerFactory.
This element is used in conjunction with the getSequence(String name) method in Per-
sistenceManager. The name parameter is the fully qualified name of the sequence.

18.18 ELEMENT extension
This element specifies JDO vendor extensions. The vendor-name attribute is required. The ven-
dor name "JDORI" is reserved for use by the JDO reference implementation. The key and value
attributes are optional, and have vendor-specific meanings. They may be ignored by any JDO im-
plementation.

18.19 ELEMENT orm
This element specifies mapping information. It is the top-level element in a mapping file whose ex-
tension is .orm. Many of the same elements in the jdo document are valid for orm.

18.20 ELEMENT jdoquery
This element specifies named query information separate from the persitence and mapping metada-
ta. It is the top-level element in a file whose extension is .jdoquery. Many of the same elements in
the jdo document are valid for jdoquery.

18.21 The jdo Schema Descriptor
This describes files stored as .jdo files.
Note: The document type descriptors are descriptive, not normative. The xml schema in the binary
distribution is normative. [see Appendix E].
JDO vendors must support XSD and might support DTD. If using XSD, the declaration of the jdo
element must include the following:

Java Data Objects 2.2

 JDO 2.2 237 October 10, 2008

<?xml version="1.0" encoding="UTF-8" ?>

<jdo xmlns="http://java.sun.com/xml/ns/jdo/jdo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/jdo

http://java.sun.com/xml/ns/jdo/jdo_2_2.xsd">

The document type descriptor is referred by the xml, and must be identified with a DOCTYPE so
that the parser can validate the syntax of the metadata file. Either the SYSTEM or PUBLIC form of
DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might optimize
access for the URI "http://java.sun.com/dtd/jdo_2_2.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//DTD
Java Data Objects Metadata 2.2//EN"; a jdo implementation might optimize
access for this id.

<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!-- The DOCTYPE should be as follows for metadata documents.
<!DOCTYPE jdo
 PUBLIC “-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 2.2//EN”
 “http://java.sun.com/dtd/jdo_2_2.dtd”>
-->
<!ELEMENT jdo (extension*, (package|query|fetch-plan)+, extension*)>
<!ATTLIST jdo catalog CDATA #IMPLIED>
<!ATTLIST jdo schema CDATA #IMPLIED>

<!ELEMENT package (extension*, (interface|class|sequence)+, extension*)>
<!ATTLIST package name CDATA ‘’>
<!ATTLIST package catalog CDATA #IMPLIED>
<!ATTLIST package schema CDATA #IMPLIED>

<!ELEMENT interface (extension*, datastore-identity?, primary-key?, inheritance?,
version?, join*, foreign-key*, index*, unique*, property*, query*, fetch-group*,
extension*)>
<!ATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface table CDATA #IMPLIED>
<!ATTLIST interface identity-type (datastore|application|nondurable) #IMPLIED>
<!ATTLIST interface objectid-class CDATA #IMPLIED>
<!ATTLIST interface requires-extent (true|false) ‘true’>
<!ATTLIST interface detachable (true|false) ‘false’>
<!ATTLIST interface embedded-only (true|false) #IMPLIED>
<!ATTLIST interface catalog CDATA #IMPLIED>
<!ATTLIST interface schema CDATA #IMPLIED>
<!ATTLIST interface cacheable (true|false) ‘true’>

Java Data Objects 2.2

 JDO 2.2 238 October 10, 2008

<!ELEMENT property (extension*, (array|collection|map)?, join?, embedded?,
element?, key?, value?, order?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property persistence-modifier (persistent|transactional|none) #IMPLIED>
<!ATTLIST property default-fetch-group (true|false) #IMPLIED>
<!ATTLIST property load-fetch-group CDATA #IMPLIED>
<!ATTLIST property null-value (default|exception|none) ‘none’>
<!ATTLIST property dependent (true|false) #IMPLIED>
<!ATTLIST property embedded (true|false) #IMPLIED>
<!ATTLIST property primary-key (true|false) ‘false’>
<!ATTLIST property value-strategy CDATA #IMPLIED>
<!ATTLIST property sequence CDATA #IMPLIED>
<!ATTLIST property serialized (true|false) #IMPLIED>
<!ATTLIST property field-type CDATA #IMPLIED>
<!ATTLIST property table CDATA #IMPLIED>
<!ATTLIST property column CDATA #IMPLIED>
<!ATTLIST property delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST property indexed (true|false|unique) #IMPLIED>
<!ATTLIST property unique (true|false) #IMPLIED>
<!ATTLIST property mapped-by CDATA #IMPLIED>
<!ATTLIST property recursion-depth CDATA #IMPLIED>
<!ATTLIST property field-name CDATA #IMPLIED>
<!ATTLIST property cacheable (true|false) ‘true’>

<!ELEMENT class (extension*, implements*, datastore-identity?, primary-key?,
inheritance?, version?, join*, foreign-key*, index*, unique*, column*, field*,
property*, query*, fetch-group*, extension*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable) #IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class table CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) ‘true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ATTLIST class detachable (true|false) ‘false’>
<!ATTLIST class embedded-only (true|false) #IMPLIED>
<!ATTLIST class persistence-modifier (persistence-capable|persistence-aware|non-
persistent) #IMPLIED>
<!ATTLIST class catalog CDATA #IMPLIED>
<!ATTLIST class schema CDATA #IMPLIED>
<!ATTLIST class cacheable (true|false) ‘true’>

<!ELEMENT primary-key (extension*, column*, extension*)>
<!ATTLIST primary-key name CDATA #IMPLIED>
<!ATTLIST primary-key column CDATA #IMPLIED>

<!ELEMENT join (extension*, primary-key?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST join table CDATA #IMPLIED>
<!ATTLIST join column CDATA #IMPLIED>
<!ATTLIST join outer (true|false) ‘false’>
<!ATTLIST join delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST join indexed (true|false|unique) #IMPLIED>
<!ATTLIST join unique (true|false) #IMPLIED>

<!ELEMENT version (extension*, column*, index?, extension*)>
<!ATTLIST version strategy CDATA #IMPLIED>
<!ATTLIST version column CDATA #IMPLIED>
<!ATTLIST version indexed (true|false|unique) #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 239 October 10, 2008

<!ELEMENT datastore-identity (extension*, column*, extension*)>
<!ATTLIST datastore-identity column CDATA #IMPLIED>
<!ATTLIST datastore-identity strategy CDATA ‘native’>
<!ATTLIST datastore-identity sequence CDATA #IMPLIED>

<!ELEMENT implements (extension*, property*, extension*)>
<!ATTLIST implements name CDATA #REQUIRED>

<!ELEMENT inheritance (extension*, join?, discriminator?, extension*)>
<!ATTLIST inheritance strategy CDATA #IMPLIED>

<!ELEMENT discriminator (extension*, column*, index?, extension*)>
<!ATTLIST discriminator column CDATA #IMPLIED>
<!ATTLIST discriminator value CDATA #IMPLIED>
<!ATTLIST discriminator strategy CDATA #IMPLIED>
<!ATTLIST discriminator indexed (true|false|unique) #IMPLIED>

<!ELEMENT column (extension*)>
<!ATTLIST column name CDATA #IMPLIED>
<!ATTLIST column target CDATA #IMPLIED>
<!ATTLIST column target-field CDATA #IMPLIED>
<!ATTLIST column jdbc-type CDATA #IMPLIED>
<!ATTLIST column sql-type CDATA #IMPLIED>
<!ATTLIST column length CDATA #IMPLIED>
<!ATTLIST column scale CDATA #IMPLIED>
<!ATTLIST column allows-null (true|false) #IMPLIED>
<!ATTLIST column default-value CDATA #IMPLIED>
<!ATTLIST column insert-value CDATA #IMPLIED>

<!ELEMENT field (extension*, (array|collection|map)?, join?, embedded?, element?,
key?, value?, order?, column*, foreign-key?, index?, unique?, extension*)>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transactional|none) #IMPLIED>
<!ATTLIST field field-type CDATA #IMPLIED>
<!ATTLIST field table CDATA #IMPLIED>
<!ATTLIST field column CDATA #IMPLIED>
<!ATTLIST field primary-key (true|false) ‘false’>
<!ATTLIST field null-value (exception|default|none) ‘none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ATTLIST field serialized (true|false) #IMPLIED>
<!ATTLIST field dependent (true|false) #IMPLIED>
<!ATTLIST field value-strategy CDATA #IMPLIED>
<!ATTLIST field delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST field indexed (true|false|unique) #IMPLIED>
<!ATTLIST field unique (true|false) #IMPLIED>
<!ATTLIST field sequence CDATA #IMPLIED>
<!ATTLIST field load-fetch-group CDATA #IMPLIED>
<!ATTLIST field recursion-depth CDATA #IMPLIED>
<!ATTLIST field mapped-by CDATA #IMPLIED>
<!ATTLIST field cacheable (true|false) ‘true’>

<!ELEMENT foreign-key (extension*, (column* | field* | property*), extension*)>
<!ATTLIST foreign-key table CDATA #IMPLIED>
<!ATTLIST foreign-key deferred (true|false) #IMPLIED>
<!ATTLIST foreign-key delete-action (restrict|cascade|null|default|none)
‘restrict’>
<!ATTLIST foreign-key update-action (restrict|cascade|null|default|none)
‘restrict’>
<!ATTLIST foreign-key unique (true|false) #IMPLIED>
<!ATTLIST foreign-key name CDATA #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 240 October 10, 2008

<!ELEMENT collection (extension*)>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ATTLIST collection dependent-element (true|false) #IMPLIED>
<!ATTLIST collection serialized-element (true|false) #IMPLIED>

<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map dependent-key (true|false) #IMPLIED>
<!ATTLIST map serialized-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ATTLIST map dependent-value (true|false) #IMPLIED>
<!ATTLIST map serialized-value (true|false) #IMPLIED>

<!ELEMENT key (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST key column CDATA #IMPLIED>
<!ATTLIST key table CDATA #IMPLIED>
<!ATTLIST key delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST key update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST key indexed (true|false|unique) #IMPLIED>
<!ATTLIST key unique (true|false) #IMPLIED>
<!ATTLIST key mapped-by CDATA #IMPLIED>

<!ELEMENT value (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST value column CDATA #IMPLIED>
<!ATTLIST value table CDATA #IMPLIED>
<!ATTLIST value delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST value update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST value indexed (true|false|unique) #IMPLIED>
<!ATTLIST value unique (true|false) #IMPLIED>
<!ATTLIST value mapped-by CDATA #IMPLIED>

<!ELEMENT array (extension*)>
<!ATTLIST array element-type CDATA #IMPLIED>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ATTLIST array dependent-element (true|false) #IMPLIED>
<!ATTLIST array serialized-element (true|false) #IMPLIED>

<!ELEMENT element (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST element column CDATA #IMPLIED>
<!ATTLIST element table CDATA #IMPLIED>
<!ATTLIST element delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST element update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST element indexed (true|false|unique) #IMPLIED>
<!ATTLIST element unique (true|false) #IMPLIED>
<!ATTLIST element mapped-by CDATA #IMPLIED>

<!ELEMENT order (extension*, column*, index?, extension*)>
<!ATTLIST order column CDATA #IMPLIED>
<!ATTLIST order mapped-by CDATA #IMPLIED>

<!ELEMENT fetch-group (extension*, (fetch-group|field|property)*, extension*)>
<!ATTLIST fetch-group name CDATA #REQUIRED>
<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 241 October 10, 2008

<!ELEMENT fetch-plan (fetch-group*)>
<!ATTLIST fetch-plan name CDATA #REQUIRED>
<!ATTLIST fetch-plan max-fetch-depth CDATA #IMPLIED>
<!ATTLIST fetch-plan fetch-size CDATA #IMPLIED>

<!ELEMENT embedded (extension*, (field|property)*, extension*)>
<!ATTLIST embedded owner-field CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-column CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-value CDATA #IMPLIED>

<!ELEMENT sequence (extension*)>
<!ATTLIST sequence name CDATA #REQUIRED>
<!ATTLIST sequence datastore-sequence CDATA #IMPLIED>
<!ATTLIST sequence factory-class CDATA #IMPLIED>
<!ATTLIST sequence strategy (nontransactional|contiguous|noncontiguous) #REQUIRED>

<!ELEMENT index (extension*, (column* | field* | property*), extension*)>
<!ATTLIST index name CDATA #IMPLIED>
<!ATTLIST index table CDATA #IMPLIED>
<!ATTLIST index unique (true|false) ‘false’>

<!ELEMENT query (#PCDATA|extension)*>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query unmodifiable (true|false) ‘false’>
<!ATTLIST query unique (true|false) #IMPLIED>
<!ATTLIST query result-class CDATA #IMPLIED>
<!ATTLIST query fetch-plan CDATA #IMPLIED>

<!ELEMENT unique (extension*, (column* | field* | property*), extension*)>
<!ATTLIST unique name CDATA #IMPLIED>
<!ATTLIST unique table CDATA #IMPLIED>
<!ATTLIST unique deferred (true|false) ‘false’>

<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

18.22 The orm Schema Descriptor
This describes files stored as .orm files.
Note: The document type descriptors are descriptive, not normative. The xml schema in the binary
distribution is normative. [see Appendix F].
JDO vendors must support XSD and might support DTD. If using XSD, the declaration of the orm
element must include the following:
<?xml version="1.0" encoding="UTF-8" ?>

<orm xmlns="http://java.sun.com/xml/ns/jdo/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/orm

http://java.sun.com/xml/ns/jdo/orm_2_2.xsd">

Java Data Objects 2.2

 JDO 2.2 242 October 10, 2008

The document type descriptor is referred by the xml, and must be identified with a DOCTYPE so
that the parser can validate the syntax of the metadata file. Either the SYSTEM or PUBLIC form of
DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might optimize
access for the URI "http://java.sun.com/dtd/orm_2_2.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//DTD
Java Data Objects Mapping Metadata 2.2//EN"; a jdo implementation
might optimize access for this id.

<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!-- The DOCTYPE should be as follows for metadata documents.
<!DOCTYPE orm
 PUBLIC “-//Sun Microsystems, Inc.//DTD Java Data Objects Mapping Metadata 2.2/
/EN”
 “http://java.sun.com/dtd/orm_2_2.dtd”>
-->
<!ELEMENT orm (extension*, (package|query)+, extension*)>
<!ATTLIST orm catalog CDATA #IMPLIED>
<!ATTLIST orm schema CDATA #IMPLIED>

<!ELEMENT package (extension*, (interface|class|sequence)+, extension*)>
<!ATTLIST package name CDATA ‘’>
<!ATTLIST package catalog CDATA #IMPLIED>
<!ATTLIST package schema CDATA #IMPLIED>

<!ELEMENT interface (extension*, datastore-identity?, primary-key?, inheritance?,
version?, join*, foreign-key*, index*, unique*, property*, query*, extension*)>
<!ATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface table CDATA #IMPLIED>
<!ATTLIST interface catalog CDATA #IMPLIED>
<!ATTLIST interface schema CDATA #IMPLIED>

<!ELEMENT property (extension*, join?, embedded?, element?, key?, value?, order?,
column*, foreign-key?, index?, unique?, extension*)>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property value-strategy CDATA #IMPLIED>
<!ATTLIST property sequence CDATA #IMPLIED>
<!ATTLIST property table CDATA #IMPLIED>
<!ATTLIST property column CDATA #IMPLIED>
<!ATTLIST property delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST property indexed (true|false|unique) #IMPLIED>
<!ATTLIST property unique (true|false) #IMPLIED>
<!ATTLIST property mapped-by CDATA #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 243 October 10, 2008

<!ELEMENT class (extension*, datastore-identity?, primary-key?, inheritance?,
version?, join*, foreign-key*, index*, unique*, column*, field*, property*, query*,
extension*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class table CDATA #IMPLIED>
<!ATTLIST class catalog CDATA #IMPLIED>
<!ATTLIST class schema CDATA #IMPLIED>

<!ELEMENT primary-key (extension*, column*, extension*)>
<!ATTLIST primary-key name CDATA #IMPLIED>
<!ATTLIST primary-key column CDATA #IMPLIED>

<!ELEMENT join (extension*, primary-key?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST join table CDATA #IMPLIED>
<!ATTLIST join column CDATA #IMPLIED>
<!ATTLIST join outer (true|false) ‘false’>
<!ATTLIST join delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST join indexed (true|false|unique) #IMPLIED>
<!ATTLIST join unique (true|false) #IMPLIED>

<!ELEMENT version (extension*, column*, index?, extension*)>
<!ATTLIST version strategy CDATA #IMPLIED>
<!ATTLIST version column CDATA #IMPLIED>
<!ATTLIST version indexed (true|false|unique) #IMPLIED>

<!ELEMENT datastore-identity (extension*, column*, extension*)>
<!ATTLIST datastore-identity column CDATA #IMPLIED>
<!ATTLIST datastore-identity strategy CDATA ‘native’>
<!ATTLIST datastore-identity sequence CDATA #IMPLIED>

<!ELEMENT implements (extension*, property*, extension*)>
<!ATTLIST implements name CDATA #REQUIRED>

<!ELEMENT inheritance (extension*, join?, discriminator?, extension*)>
<!ATTLIST inheritance strategy CDATA #IMPLIED>

<!ELEMENT discriminator (extension*, column*, index?, extension*)>
<!ATTLIST discriminator column CDATA #IMPLIED>
<!ATTLIST discriminator value CDATA #IMPLIED>
<!ATTLIST discriminator strategy CDATA #IMPLIED>
<!ATTLIST discriminator indexed (true|false|unique) #IMPLIED>

<!ELEMENT column (extension*)>
<!ATTLIST column name CDATA #IMPLIED>
<!ATTLIST column target CDATA #IMPLIED>
<!ATTLIST column target-field CDATA #IMPLIED>
<!ATTLIST column jdbc-type CDATA #IMPLIED>
<!ATTLIST column sql-type CDATA #IMPLIED>
<!ATTLIST column length CDATA #IMPLIED>
<!ATTLIST column scale CDATA #IMPLIED>
<!ATTLIST column allows-null (true|false) #IMPLIED>
<!ATTLIST column default-value CDATA #IMPLIED>
<!ATTLIST column insert-value CDATA #IMPLIED>

<!ELEMENT field (extension*, join?, embedded?, element?, key?, value?, order?,
column*, foreign-key?, index?, unique?, extension*)>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field table CDATA #IMPLIED>
<!ATTLIST field column CDATA #IMPLIED>
<!ATTLIST field value-strategy CDATA #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 244 October 10, 2008

<!ATTLIST field delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST field indexed (true|false|unique) #IMPLIED>
<!ATTLIST field unique (true|false) #IMPLIED>
<!ATTLIST field sequence CDATA #IMPLIED>
<!ATTLIST field mapped-by CDATA #IMPLIED>

<!ELEMENT foreign-key (extension*, (column* | field* | property*), extension*)>
<!ATTLIST foreign-key table CDATA #IMPLIED>
<!ATTLIST foreign-key deferred (true|false) #IMPLIED>
<!ATTLIST foreign-key delete-action (restrict|cascade|null|default|none)
‘restrict’>
<!ATTLIST foreign-key update-action (restrict|cascade|null|default|none)
‘restrict’>
<!ATTLIST foreign-key unique (true|false) #IMPLIED>
<!ATTLIST foreign-key name CDATA #IMPLIED>

<!ELEMENT key (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST key column CDATA #IMPLIED>
<!ATTLIST key table CDATA #IMPLIED>
<!ATTLIST key delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST key update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST key indexed (true|false|unique) #IMPLIED>
<!ATTLIST key unique (true|false) #IMPLIED>
<!ATTLIST key mapped-by CDATA #IMPLIED>

<!ELEMENT value (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST value column CDATA #IMPLIED>
<!ATTLIST value table CDATA #IMPLIED>
<!ATTLIST value delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST value update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST value indexed (true|false|unique) #IMPLIED>
<!ATTLIST value unique (true|false) #IMPLIED>
<!ATTLIST value mapped-by CDATA #IMPLIED>

<!ELEMENT element (extension*, embedded?, column*, foreign-key?, index?, unique?,
extension*)>
<!ATTLIST element column CDATA #IMPLIED>
<!ATTLIST element table CDATA #IMPLIED>
<!ATTLIST element delete-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST element update-action (restrict|cascade|null|default|none) #IMPLIED>
<!ATTLIST element indexed (true|false|unique) #IMPLIED>
<!ATTLIST element unique (true|false) #IMPLIED>
<!ATTLIST element mapped-by CDATA #IMPLIED>

<!ELEMENT order (extension*, column*, index?, extension*)>
<!ATTLIST order column CDATA #IMPLIED>
<!ATTLIST order mapped-by CDATA #IMPLIED>

<!ELEMENT embedded (extension*, (field|property)*, extension*)>
<!ATTLIST embedded owner-field CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-column CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-value CDATA #IMPLIED>

<!ELEMENT sequence (extension*)>
<!ATTLIST sequence name CDATA #REQUIRED>
<!ATTLIST sequence datastore-sequence CDATA #IMPLIED>
<!ATTLIST sequence factory-class CDATA #IMPLIED>
<!ATTLIST sequence strategy (nontransactional|contiguous|noncontiguous) #REQUIRED>

Java Data Objects 2.2

 JDO 2.2 245 October 10, 2008

<!ELEMENT index (extension*, (column* | field* | property*), extension*)>
<!ATTLIST index name CDATA #IMPLIED>
<!ATTLIST index table CDATA #IMPLIED>
<!ATTLIST index unique (true|false) ‘false’>

<!ELEMENT query (#PCDATA|extension)*>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query unmodifiable (true|false) ‘false’>
<!ATTLIST query unique (true|false) #IMPLIED>
<!ATTLIST query result-class CDATA #IMPLIED>

<!ELEMENT unique (extension*, (column* | field* | property*), extension*)>
<!ATTLIST unique name CDATA #IMPLIED>
<!ATTLIST unique table CDATA #IMPLIED>
<!ATTLIST unique deferred (true|false) ‘false’>

<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

18.23 The jdoquery Schema Descriptor
This describes files stored as .jdoquery files.
Note: The document type descriptors are descriptive, not normative. The xml schema in the binary
distribution is normative.
JDO vendors must support XSD and might support DTD. If using XSD, the declaration of the
jdoquery element must include the following:
<?xml version="1.0" encoding="UTF-8" ?>

<jdoquery xmlns="http://java.sun.com/xml/ns/jdo/jdoquery"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/jdoquery

http://java.sun.com/xml/ns/jdo/jdoquery_2_2.xsd">

The document type descriptor is referred by the xml, and must be identified with a DOCTYPE so
that the parser can validate the syntax of the metadata file. Either the SYSTEM or PUBLIC form of
DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might optimize
access for the URI "http://java.sun.com/dtd/jdoquery_2_2.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//DTD
Java Data Objects Query Metadata 2.2//EN"; a jdo implementation might
optimize access for this id.

<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

Java Data Objects 2.2

 JDO 2.2 246 October 10, 2008

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!-- The DOCTYPE should be as follows for jdoquery documents.
<!DOCTYPE jdoquery
 PUBLIC “-//Sun Microsystems, Inc.//DTD Java Data Objects Query Metadata 2.2//EN”
 “http://java.sun.com/dtd/jdoquery_2_2.dtd”>
-->
<!ELEMENT jdoquery (extension*, (package|query)+, (extension)*)>

<!ELEMENT package (extension*, (interface|class)+, (extension)*)>
<!ATTLIST package name CDATA ‘’>

<!ELEMENT interface (extension*, query+, extension*)>
<!ATTLIST interface name CDATA #REQUIRED>

<!ELEMENT class (extension*, query+, extension*)>
<!ATTLIST class name CDATA #REQUIRED>

<!ELEMENT query (#PCDATA|extension)*>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query unmodifiable (true|false) ‘false’>
<!ATTLIST query unique (true|false) #IMPLIED>
<!ATTLIST query result-class CDATA #IMPLIED>

<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

18.24 Example XML file
An example XML file for the query example classes follows. Note that all fields of both classes are
persistent, which is the default for fields. The emps field in Department contains a collection of
elements of type Employee, with a relationship to the dept field in Employee.
In directory com/xyz, a file named hr.jdo contains:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name="com.xyz.hr">
<class name="Employee" identity-type="application">
<field name="name" primary-key="true">
<extension vendor-name="sunw" key="index" value="btree"/>
</field>
<field name="salary" default-fetch-group="true"/>
<field name="dept">
<extension vendor-name="sunw" key="inverse" value="emps"/>
</field>
<field name="boss"/>
</class>
<class name="Department" identity-type="application" objectid-
class="DepartmentKey">

Java Data Objects 2.2

 JDO 2.2 247 October 10, 2008

<field name="name" primary-key="true"/>
<field name="emps">
<collection element-type="Employee">
<extension vendor-name="sunw" key="element-inverse" value="dept"/>
</collection>
</field>
</class>
</package>
</jdo>

Java Data Objects 2.2

 JDO 2.2 248 October 10, 2008

19 Annotations

This chapter specifies the annotations that describe a persistence-capable class or interface, option-
ally including its mapping to a relational database. The metadata is stored in the Java class mixed
with the definition of the class. For implementations that support binary compatibility, the informa-
tion must be available when the class is enhanced, and might be cached by an implementation for
use at runtime. If the metadata is changed between enhancement and runtime, the behavior is un-
specified.
The annotations described herein support the entire range of metadata that can be expressed using
the xml format. Annotations have identical semantics to the corresponding xml metadata.
All annotations are defined in the package javax.jdo.annotations. Annotations apply to classes,
fields, or methods, depending on their purpose. If xml metadata is defined for annotated classes,
fields, or methods, xml metadata overrides the annotation.
Annotations can be applied to classes and interfaces; and within classes and interfaces, to fields and
methods. Annotations applied to methods identify properties, and are applied to the getXXX meth-
od of a getXXX/setXXX pair or the isXXX method of a isXXX/setXXX pair in which the return
type of the method is the same type as the parameter of the setXXX method.
To the extent possible, mapping from the xml metadata to the annotation metadata is done by trans-
lating the xml elements to annotation interfaces and xml attributes to annotation elements. Annota-
tion interfaces and enums follow the Java class naming convention: upper case the first character
and camel case compound words. Annotation element names follow the Java field naming conven-
tion: lower case the first character and camel case compound words.
Annotations differ from xml metadata in the richness of usage. The differences become significant
in several areas:

• Multiple annotations of the same interface type cannot be applied to a class, interface, field,
or method. Therefore, where multiple xml elements are permitted, the corresponding
annotation has an additional annotation for multiple instances. For example, @Index can
appear only once so there is an @Indices that contains an array of @Index annotations.

• Annotations cannot have null defaults. Therefore, boolean element types are not used.
Instead, elements that have boolean values are declared to have String type, and the
default is the empty String. This allows identical semantics between xml and
annotations. For example, @Persistent has an element primaryKey() which
defaults to the empty String, and if unspecified, defaults to true if the @PrimaryKey
annotation is used, and to false if not.

• Annotation elements of annotation types cannot have default values, since there is no way
to construct an instance of an annotation type to use as the default. When translating xml
metadata to annotations, where annotation elements would need to be of an annotation type,
the element is instead promoted to directly annotate the class, interface, field, or method.
For example, xml element key is a contained element of xml element field but in
annotations it is a separate @Key annotation applied to the field or property directly.

Java Data Objects 2.2

 JDO 2.2 249 October 10, 2008

Java Persistence API Annotations
A JDO implementation that supports jdo annotations must also support Java Persistence API anno-
tations.

Overrides
Metadata can be specified by the user in several places, and at runtime there must be a single meta-
data model that governs the behavior of the system. Metadata specified in .orm files override meta-
data specified in .jdo files, which override metadata specified in Java Persistence API orm files,
which override metadata specified in jdo annotations, which override metadata specified in Java
Persistence API annotations.
The following describes each jdo annotation, in alphabetical order.

19.1 Cacheable Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Cacheable
{

String value() default “true”;
}

19.2 Column Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Column
{
 /**
 * Name of the column.
 * @return the name of the column
 */
 String name() default ““;

 /**
 * Target column for this column in the other table when part of a
 * foreign key relation.
 * @return the target column in the other table for this column
 * when part of a foreign key relation.
 */
 String target() default ““;

 /**
 * Target member in the other class or interface for this column
 * when part of a bidirectional relation.
 * @return the target member for this column when part of
 * a bidirectional relation.
 */
 String targetMember() default ““;

 /**
 * JDBC Type for this column.
 * @return JDBC type for this column
 */
 String jdbcType() default ““;

 /**

Java Data Objects 2.2

 JDO 2.2 250 October 10, 2008

 * SQL Type for this column.
 * @return SQL type for this column
 */
 String sqlType() default ““;

 /**
 * Maximum length of data stored in this column.
 * @return the maximum length of data stored in this column
 */
 int length() default -1;

 /**
 * Scale for the column when handling floating point values.
 * @return the scale for the column when handling floating point values
 */
 int scale() default -1;

 /**
 * Whether the column allows null values to be inserted.
 * @return whether the column allows null values to be inserted
 */
 String allowsNull() default ““;

 /**
 * Default value for this column.
 * @return the default value for this column
 */
 String defaultValue() default ““;

 /**
 * Value to be inserted when this is an “unmapped” column
 * @return the value to be inserted when this is an “unmapped” column
 */
 String insertValue() default ““;

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.3 Columns Annotation
@Target({ElementType.FIELD, ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface Columns
{
 /** The columns annotation information.
 * @return the columns
 */
 Column[] value();
}

19.4 DatastoreIdentity Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface DatastoreIdentity

Java Data Objects 2.2

 JDO 2.2 251 October 10, 2008

{
 /**
 * Strategy to use when generating datastore identities
 * @return Strategy to use when generating datastore identities
 */
 IdGeneratorStrategy strategy() default IdGeneratorStrategy.UNSPECIFIED;

 /** Custom strategy to use to generate the value for the identity.
 * If customStrategy is non-empty, then strategy must be UNSPECIFIED.
 * @return the custom strategy
 */
 String customStrategy() default ““;

 /**
 * Name of sequence to use when the strategy involves sequences
 * @return Name of sequence to use when the strategy involves sequences
 */
 String sequence() default ““;

 /**
 * Name of the column for the datastore identity
 * @return Name of the column for the datastore identity
 */
 String column() default ““;

 /**
 * The column(s) making up the datastore identity.
 * @return The column(s) making up the datastore identity.
 */
 Column[] columns() default {};

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.5 Discriminator Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Discriminator
{
 /**
 * Strategy to use for the discriminator. The discriminator determines
 * the class associated with a row in the datastore.
 * @return the strategy to use for the discriminator
 */
 DiscriminatorStrategy strategy()
 default DiscriminatorStrategy.UNSPECIFIED;

 /** Custom strategy to use for the discriminator.
 * If customStrategy is non-empty, then strategy must be UNSPECIFIED.
 * @return the custom strategy
 */
 String customStrategy() default ““;

 /**
 * Whether the discriminator is indexed.
 * @return whether the discriminator is indexed

Java Data Objects 2.2

 JDO 2.2 252 October 10, 2008

 */
 String indexed() default ““;

 /**
 * Name of the column for the discriminator
 * @return the name of the column for the discriminator
 */
 String column() default ““;

 /**
 * The value for the discriminator for objects of this class
 * when using “value-map” strategy.
 * @return The value for the discriminator for objects of this class
 * when using “value-map” strategy
 */
 String value() default ““;

 /**
 * The column(s) making up the discriminator.
 * @return the column(s) making up the discriminator
 */
 Column[] columns() default {};
}

19.6 DiscriminatorStrategy Enum

public enum DiscriminatorStrategy
{
 UNSPECIFIED,
 NONE,
 VALUE_MAP,
 CLASS_NAME
}

19.7 Element Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Element
{
 /**
 * Types of the elements. This can be determined if using JDK1.5 generics
 * but is required otherwise. Multiple types can be specified if the
 * implementation supports multiple types.
 * @return the types of elements
 */
 Class[] types() default {};

 /**
 * Whether the element is to be stored serialized (into a join table)
 * @return whether the element is to be stored serialized
 * (into a join table)
 */
 String serialized() default ““;

 /** Whether this element is embedded.
 * @return whether this element is embedded

Java Data Objects 2.2

 JDO 2.2 253 October 10, 2008

 */
 String embedded() default ““;

 /**
 * The embedded mapping for the element.
 * @return the embedded mapping for the element
 */
 Embedded[] embeddedMapping() default {};

 /**
 * Whether the element is dependent on the owner, and will be deleted
 * when the owner is deleted.
 * @return whether the element is dependent on the owner, and will be
 * deleted when the owner is deleted
 */
 String dependent() default ““;

 /**
 * Name of the table for the element.
 * @return name of the table for the element
 */
 String table() default ““;

 /**
 * Name of the column to store the element in.
 * @return name of the column to store the element in
 */
 String column() default ““;

 /**
 * Delete action to apply to any foreign key for the element.
 * @return delete action to apply to any foreign key for the element
 */
 ForeignKeyAction deleteAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Update action to apply to any foreign key for the element
 * @return update action to apply to any foreign key for the element
 */
 ForeignKeyAction updateAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Whether the value column(s) should be indexed.
 * @return whether the value column(s) should be indexed.
 */
 String indexed() default ““;

 /** The name of the index to generate.
 * @return the name of the index
 */
 String index() default ““;

 /**
 * Whether a unique constraint should be generated or assumed.
 * @return whether a unique constraint should be generated or assumed
 */
 String unique() default ““;

 /**
 * The name of the unique key constraint to generate.
 * @return the name of the unique key constraint

Java Data Objects 2.2

 JDO 2.2 254 October 10, 2008

 */
 String uniqueKey() default ““;

 /**
 * Name of the member in the target class that forms a bidirectional
 * relationship with this member.
 * @return name of the member in the target class that forms a bidirectional
 * relationship with this member
 */
 String mappedBy() default ““;

 /**
 * The column(s) for the element.
 * @return the column(s) for the element
 */
 Column[] columns() default {};

 /** Generate or assume a foreign key constraint exists on the column
 * or columns associated with this join. Specify “true” or “false”.
 * @return whether to generate or assume a primary key constraint
 */
 String generateForeignKey() default ““;

 /** Name for a generated foreign key constraint.
 * @return the name of the generated foreign key constraint
 */
 String foreignKey() default ““;

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.8 Embedded Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Embedded
{
 /** The member in the embedded object that links back to the owning object
 * where it has a bidirectional relationship.
 * @return the member that refers to the owner
 */
 String ownerMember() default ““;

 /** The column in the embedded object used to judge if the embedded object
 * is null.
 * @return the null indicator column
 */
 String nullIndicatorColumn() default ““;

 /** The value in the null column to interpret the object as being null.
 * @return the null indicator value
 */
 String nullIndicatorValue() default ““;

 /** Members for this embedding.
 * @return the members embedded in the field or property being annotated
 */

Java Data Objects 2.2

 JDO 2.2 255 October 10, 2008

 Persistent[] members() default {};
}

19.9 EmbeddedOnly Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface EmbeddedOnly
{
}

19.10 Extension Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Extension
{
 /** Vendor that the extension applies to (required).
 * @return the vendor
 */
 String vendorName();

 /** The key for the extension (required).
 * @return the key
 */
 String key();

 /** The value for the extension (required).
 * @return the value
 */
 String value();
}

19.11 Extensions Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Extensions
{
 /**
 * The extensions.
 * @return the extensions
 */
 Extension[] value();
}

19.12 FetchGroup Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface FetchGroup
{
 /**
 * Name of the fetch group.

Java Data Objects 2.2

 JDO 2.2 256 October 10, 2008

 * @return the name of the fetch group
 */
 String name() default ““;

 /**
 * Whether we should load this group as part of the post load process.
 * @return whether we should load this group as part of the post load
 * process.
 */
 String postLoad() default ““;

 /**
 * Members (fields and properties) of the fetch group. The members
 * should contain only name and recursionDepth.
 * @return members for the fetch group
 */
 Persistent[] members();

 /**
 * Fetch groups to be nested (included) in this fetch group.
 */
 String[] fetchGroups() default {};
}

19.13 FetchGroups Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface FetchGroups
{
 /**
 * The Fetch Groups
 * @return The Fetch Groups
 */
 FetchGroup[] value();
}

19.14 FetchPlan Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface FetchPlan
{
 /**
 * Name of the fetch plan.
 * @return the name of the fetch plan
 */
 String name() default ““;

 /**
 * The fetch groups in this fetch plan.
 * @return the fetch groups
 */
 String[] fetchGroups() default {};

 /**
 * The depth of references to instantiate, starting with the root object.
 * @return the maxium fetch depth

Java Data Objects 2.2

 JDO 2.2 257 October 10, 2008

 */
 int maxFetchDepth() default 1;

 /**
 * The number of instances of multi-valued fields retrieved by queries.
 * @return the fetch size
 */
 int fetchSize() default 0;
}

19.15 FetchPlans Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface FetchPlans
{
 /**
 * The Fetch Plans
 * @return The Fetch Plans
 */
 FetchPlan[] value();
}

19.16 ForeignKey Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface ForeignKey
{
 /** Name of the foreign key.
 * @return the name of the foreign key
 */
 String name() default ““;

 /** Table for the foreign key. This is needed iff annotating a type where
 * the foreign key is not defined on the primary table for the type.
 * @return the table on which the foreign key is defined
 */
 String table() default ““;

 /** Whether this foreign key is deferred
 * (constraint is checked only at commit).
 * @return whether this foreign key is deferred
 */
 String deferred() default ““;

 /** Whether this foreign key is unique.
 * @return whether this foreign key is unique
 */
 String unique() default ““;

 /** The delete action of this foreign key.
 * @return the delete action of this foreign key
 */
 ForeignKeyAction deleteAction() default ForeignKeyAction.RESTRICT;

 /** The update action of this foreign key.
 * @return the update action of this foreign key

Java Data Objects 2.2

 JDO 2.2 258 October 10, 2008

 */
 ForeignKeyAction updateAction() default ForeignKeyAction.RESTRICT;

 /** Member (field and property) names that compose this foreign key.
 * @return the member names that compose this foreign key
 */
 String[] members() default {};

 /** Columns that compose this foreign key.
 * @return the columns that compose this foreign key
 */
 Column[] columns() default {};
}

19.17 ForeignKeyAction Enum

public enum ForeignKeyAction
{
 UNSPECIFIED,
 RESTRICT,
 CASCADE,
 NULL,
 DEFAULT,
 NONE
}

19.18 ForeignKeys Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface ForeignKeys
{
 /**
 * The foreign keys.
 * @return The foreign keys
 */
 ForeignKey[] value();
}

19.19 IdGeneratorStrategy Enum

public enum IdGeneratorStrategy
{
 UNSPECIFIED,
 NATIVE,
 SEQUENCE,
 IDENTITY,
 INCREMENT,
 UUIDSTRING,
 UUIDHEX
}

Java Data Objects 2.2

 JDO 2.2 259 October 10, 2008

19.20 IdentityType Enum

public enum IdentityType
{
 UNSPECIFIED,
 APPLICATION,
 DATASTORE,
 NONDURABLE
}

19.21 Index Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Index
{
 /** Name of the index
 * @return the name of the index
 */
 String name() default ““;

 /** Table for the index. This is needed iff annotating a type where
 * the index is not defined on the primary table for the type.
 * @return the table on which the index is defined
 */
 String table() default ““;

 /** Whether this index is unique
 * @return whether this index is unique
 */
 String unique() default ““;

 /** Member (field and property) names that compose this index.
 * @return member names that compose this index
 */
 String[] members() default {};

 /** Columns that compose this index.
 * @return columns that compose this index
 */
 Column[] columns() default {};
}

19.22 Indices Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Indices
{
 /**
 * The indices
 * @return The indices
 */
 Index[] value();
}

Java Data Objects 2.2

 JDO 2.2 260 October 10, 2008

19.23 Inheritance Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Inheritance
{
 /** Strategy to use for inheritance. Specifies in which table(s)
 * the members for the class are stored.
 * @return the inheritance strategy
 */
 InheritanceStrategy strategy() default InheritanceStrategy.UNSPECIFIED;

 /** Custom inheritance strategy. If customStrategy is non-empty, then
 * strategy must be UNSPECIFIED.
 * @return the custom inheritance strategy
 */
 String customStrategy() default ““;
}

19.24 InheritanceStrategy Enum

public enum InheritanceStrategy
{
 UNSPECIFIED,
 NEW_TABLE,
 SUBCLASS_TABLE,
 SUPERCLASS_TABLE
}

19.25 Join Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Join
{
 /** Table to join to (used when joining to secondary tables).
 * @return the table
 */
 String table() default ““;

 /** Name of the column in the join table.
 * @return the name of the column in the join table
 */
 String column() default ““;

 /** Whether the join column is indexed.
 * @return whether the join column(s) is(are) indexed
 */
 String indexed() default ““;

 /** The name of the index to generate.
 * @return the name of the index
 */
 String index() default ““;

 /** Whether the join column is unique.

Java Data Objects 2.2

 JDO 2.2 261 October 10, 2008

 * @return whether the join column(s) is(are) is unique
 */
 String unique() default ““;

 /**
 * The name of the unique key constraint to generate.
 * @return the name of the unique key constraint
 */
 String uniqueKey() default ““;

 /** Whether to use an outer join.
 * @return whether to use an outer join
 */
 String outer() default ““;

 /** Delete action to be applied to any ForeignKey on this join.
 * @return the delete action
 */
 ForeignKeyAction deleteAction() default ForeignKeyAction.UNSPECIFIED;

 /** Detail definition of the join column(s). This is needed for
 * more than one join column.
 * @return the join columns
 */
 Column[] columns() default {};

 /** Generate or assume a primary key constraint exists on the column
 * or columns associated with this join. Specify “true” or “false”.
 * @return whether to generate or assume a primary key constraint
 */
 String generatePrimaryKey() default ““;

 /** Name for a generated primary key constraint.
 * @return the name of the generated primary key constraint
 */
 String primaryKey() default ““;

 /** Generate or assume a foreign key constraint exists on the column
 * or columns associated with this join. Specify “true” or “false”.
 * @return whether to generate or assume a foreign key constraint
 */
 String generateForeignKey() default ““;

 /** Name for a generated foreign key constraint.
 * @return the name of the generated foreign key constraint
 */
 String foreignKey() default ““;

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.26 Joins Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Joins
{

Java Data Objects 2.2

 JDO 2.2 262 October 10, 2008

 /**
 * The join definitions used for the mapping of this type. Joins for
 * secondary tables are usually defined at the type level and not the
 * field or property level. This allows multiple fields and properties
 * to share the same join definition and avoid redundancies.
 * @return the join definitions
 */
 Join[] value();
}

19.27 Key Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Key
{
 /**
 * Types of the keys. This can be determined if using JDK1.5 generics
 * but is required otherwise. Multiple types can be specified if the
 * implementation supports multiple types.
 * @return the types of keys
 */
 Class[] types() default {};

 /**
 * Whether the key is to be stored serialized (into a single column of a
 * join table).
 * @return whether the key is to be stored serialized
 */
 String serialized() default ““;

 /** Whether this key is embedded.
 * @return whether this key is embedded
 */
 String embedded() default ““;

 /**
 * The embedded mapping for the key.
 * @return the embedded mapping for the key
 */
 Embedded[] embeddedMapping() default {};

 /**
 * Whether the key is dependent on the owner (and will be deleted
 * when the owner is deleted).
 * @return whether the key is dependent on the owner
 */
 String dependent() default ““;

 /**
 * Name of the table for the key.
 * @return name of the table for the key
 */
 String table() default ““;

 /**
 * Name of the column to store the key in.
 * @return name of the column to store the key in
 */
 String column() default ““;

Java Data Objects 2.2

 JDO 2.2 263 October 10, 2008

 /**
 * Delete action to apply to the foreign key for the key.
 * @return delete action to apply to the foreign key for the key
 */
 ForeignKeyAction deleteAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Update action to apply to the foreign key for the key.
 * @return update action to apply to the foreign key for the key
 */
 ForeignKeyAction updateAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Whether the value column(s) should be indexed.
 * @return whether the value column(s) should be indexed.
 */
 String indexed() default ““;

 /** The name of the index to generate.
 * @return the name of the index
 */
 String index() default ““;

 /**
 * Whether the element column(s) contents should be considered unique
 * @return whether the element column(s) contents should be considered unique
 */
 String unique() default ““;

 /**
 * The name of the unique key constraint to generate.
 * @return the name of the unique key constraint
 */
 String uniqueKey() default ““;

 /**
 * Name of a member in the value class where this key is stored.
 * @return the name of a member in the value class where this key is stored
 */
 String mappedBy() default ““;

 /**
 * The column(s) for the key
 * @return the column(s) for the key
 */
 Column[] columns() default {};

 /** Generate or assume a foreign key constraint exists on the column
 * or columns associated with this join. Specify “true” or “false”.
 * @return whether to generate or assume a foreign key constraint
 */
 String generateForeignKey() default ““;

 /** Name for a generated foreign key constraint.
 * @return the name of the generated foreign key constraint
 */
 String foreignKey() default ““;

 /** Vendor extensions.
 * @return the vendor extensions

Java Data Objects 2.2

 JDO 2.2 264 October 10, 2008

 */
 Extension[] extensions() default {};
}

19.28 NotPersistent Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface NotPersistent
{
}

19.29 NullValue Enum

public enum NullValue
{
 NONE,
 EXCEPTION,
 DEFAULT
}

19.30 Order Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Order
{
 /** The name of the column to use for ordering the elements of the member.
 * @return the name of the ordering column
 */
 String column() default ““;

 /** Name of a field or property in the target class that acts as the
 * ordering field or property for this member.
 * Return the name of the field or property in the target class
 */
 String mappedBy() default ““;

 /** The definition of the column(s) to use for ordering.
 * @return the columns to use for ordering
 */
 Column[] columns() default {};
}

19.31 PersistenceAware Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface PersistenceAware
{
}

Java Data Objects 2.2

 JDO 2.2 265 October 10, 2008

19.32 PersistenceCapable Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface PersistenceCapable
{
 /** Member declarations. Annotations for persistent members of this
 * class or interface can be specifed either here or on each member.
 * Annotations for inherited members can only be specified here.
 * @return member declarations
 */
 Persistent[] members() default {};

 /** Table to use for persisting this class or interface.
 */
 String table() default ““;

 /** Catalog to use for persisting this class or interface.
 */
 String catalog() default ““;

 /** Schema to use for persisting this class or interface.
 */
 String schema() default ““;

 /** Whether this class or interface manages an extent.
 */
 String requiresExtent() default ““;

 /** Whether objects of this class or interface can only be embedded.
 */
 String embeddedOnly() default ““;

 /** Whether this class or interface is detachable.
 */
 String detachable() default ““;

 /** Type of identity for this class or interface.
 */
 IdentityType identityType() default IdentityType.UNSPECIFIED;

 /** Primary key class when using application identity and using own PK.
 */
 Class objectIdClass() default void.class;

 /** Whether this class is cacheable in a Level2 cache.
 * @since 2.2
 */
 String cacheable() default “true”;

 /** Any vendor extensions.
 */
 Extension[] extensions() default {};
}

19.33 PersistenceModifier Enum

public enum PersistenceModifier

Java Data Objects 2.2

 JDO 2.2 266 October 10, 2008

{
 UNSPECIFIED,
 PERSISTENT,
 TRANSACTIONAL,
 NONE
}

19.34 Persistent Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Persistent
{
 /** Modifier for this field. This is normally not specified, and the
 * defaults are used, or the @Transactional or @NotPersistent
 * annotation is specified directly on the member. One possible use
 * for specifying persistenceModifier is for embedded instances in which
 * a member is not persistent but in the non-embedded instances the
 * member is persistent. Note that it is not portable to specify a
 * member to be not persistent in the non-embedded case and persistent
 * in the embedded usage.
 * @return the persistence modifier
 */
 PersistenceModifier persistenceModifier()
 default PersistenceModifier.UNSPECIFIED;

 /** Table to use for persisting this member.
 * @return the table to use for persisting this member
 */
 String table() default ““;

 /** Whether this member is in the default fetch group.
 * @return whether this member is in the default fetch group
 */
 String defaultFetchGroup() default ““;

 /** Behavior when this member contains a null value.
 * @return the behavior when this member contains a null value
 */
 NullValue nullValue() default NullValue.NONE;

 /** Whether this member is embedded.
 * @return whether this member is embedded
 */
 String embedded() default ““;

 /** Whether the elements of this member are embedded.
 * @return whether the elements of this member are embedded
 */
 String embeddedElement() default ““;

 /** Whether the keys of this member are embedded.
 * @return whether the keys of this member are embedded
 */
 String embeddedKey() default ““;

 /** Whether the values of this member are embedded.
 * @return whether the values of this member are embedded
 */
 String embeddedValue() default ““;

Java Data Objects 2.2

 JDO 2.2 267 October 10, 2008

 /** Whether this member is serialized into a single column.
 * @return whether this member is serialized into a single column
 */
 String serialized() default ““;

 /** Whether the elements of this member are serialized.
 * @return whether the elements of this member are serialized
 */
 String serializedElement() default ““;

 /** Whether the keys of this member are serialized.
 * @return whether the keys of this member are serialized
 */
 String serializedKey() default ““;

 /** Whether the values of this member are serialized.
 * @return whether the values of this member are serialized
 */
 String serializedValue() default ““;

 /** Whether related object(s) of this member are dependent
 * and so deleted when this object is deleted.
 * @return whether the related object(s) of this member
 * are dependent
 */
 String dependent() default ““;

 /** Whether the elements of this member are dependent.
 * @return whether the elements of this member are dependent
 */
 String dependentElement() default ““;

 /** Whether the keys of this member are dependent.
 * @return whether the keys of this member are dependent
 */
 String dependentKey() default ““;

 /** Whether the values of this member are dependent.
 * @return whether the values of this member are dependent
 */
 String dependentValue() default ““;

 /** Whether this member is part of the primary key for application
 * identity. This is equivalent to specifying @PrimaryKey as
 * a separate annotation on the member.
 * @return whether this member is part of the primary key
 */
 String primaryKey() default ““;

 /** Value strategy to use to generate the value for this field
 * or property (if any).
 * @return the generated value strategy
 */
 IdGeneratorStrategy valueStrategy() default IdGeneratorStrategy.UNSPECIFIED;

 /** Custom value strategy to use to generate the value for this field
 * or property (if any). If customValueStrategy is non-empty, then
 * valueStrategy must be UNSPECIFIED.
 * @return the custom value strategy
 */

Java Data Objects 2.2

 JDO 2.2 268 October 10, 2008

 String customValueStrategy() default ““;

 /** Name of the sequence to use with particular value strategies.
 * @return the name of the sequence
 */
 String sequence() default ““;

 /** Name of the fetch-group to use when this member is loaded
 * due to being referenced when not already loaded.
 * @return the name of the load fetch group
 */
 String loadFetchGroup() default ““;

 /** Types of the member. Used when the declared
 * member type is a supertype of the actual type that is stored in the
 * member. For example, the declared member type might be an interface type
 * that must contain an object of a concrete type when used
 * for persistence.
 * @return the types
 */
 Class[] types() default {};

 /** Name of the related member in the other class
 * where this value is mapped (bidirectional relationship).
 * @return the related member in the other class
 */
 String mappedBy() default ““;

 /** Column definition(s) for this member. Used for mapping
 * multiple columns
 * to the same member, for example relationships with
 * multiple column foreign keys.
 * @return the columns for this member
 */
 Column[] columns() default {};

 /** Column name where the values are stored for this member.
 * @return the name of the column
 */
 String column() default ““;

 /** Null indicator column for this member. Used for nested
 * embedded fields or properties to indicate whether the embedded
 * instance should have a null value.
 * @return the null indicator column
 */
 String nullIndicatorColumn() default ““;

 /** Name of the member when this is embedded in another object.
 * The fully-qualified member name is used. For example,
 * “line.point1.x” refers to the member x in class Point
 * that is embedded as member point1 in class Line that is embedded
 * in a member called line.
 * @return the name of the member
 */
 String name() default ““;

 /** Recursion depth for this member. Used only when
 * the annotation is used within the definition of a FetchGroup.
 * @return the recursion depth
 */

Java Data Objects 2.2

 JDO 2.2 269 October 10, 2008

 int recursionDepth() default 1;

 /** Whether this field/property is cacheable in a Level2 cache.
 * @since 2.2
 */
 String cacheable() default “true”;

 /** Vendor extensions for this member.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.35 PrimaryKey Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface PrimaryKey
{
 /**
 * Name of the primary key constraint
 * @return the name of the primary key constraint
 */
 String name() default ““;

 /**
 * Name of the column to use for the primary key
 * @return the name of the column to use for the primary key
 */
 String column() default ““;

 /**
 * The column(s) for the primary key
 * @return the column(s) for the primary key
 */
 Column[] columns() default {};
}

19.36 Queries Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Queries
{
 /**
 * The named queries
 * @return The named queries
 */
 Query[] value();
}

19.37 Query Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Query

Java Data Objects 2.2

 JDO 2.2 270 October 10, 2008

{
 /** Name of the query (mandatory)
 * @return the name of the query
 */
 String name();

 /** The query string (mandatory)
 * @return the query string
 */
 String value();

 /** The query language
 * @return the query language
 */
 String language() default “JDOQL”;

 /** Whether the query is unmodifiable.
 * @return whether the query is unmodifiable
 */
 String unmodifiable() default ““;

 /** Whether the query returns a single unique result.
 * @return whether the query returns a single unique result
 */
 String unique() default ““;

 /** Result class into which to put the results.
 * @return the class of the result
 */
 Class resultClass() default void.class;

 /** The name of the fetch plan used by this query
 * @return the fetch plan
 */
 String fetchPlan() default ““;

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.38 Sequence Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Sequence
{
 /** The symbolic name of the datastore sequence.
 * @return the name of the sequence
 */
 String name();

 /** Strategy for the sequence.
 * @return the strategy for the sequence
 */
 SequenceStrategy strategy();

 /** Name of the sequence in the datastore.
 * @return the name of the datastore sequence

Java Data Objects 2.2

 JDO 2.2 271 October 10, 2008

 */
 String datastoreSequence() default ““;

 /** Name of a factory class for generating the sequence values.
 * @return the name of the factory class for the sequence
 */
 Class factoryClass() default void.class;

 /** Vendor extensions for this sequence.
 * @return vendor extensions
 */
 Extension[] extensions() default {};
}

19.39 SequenceStrategy Enum

public enum SequenceStrategy
{
 NONTRANSACTIONAL,
 CONTIGUOUS,
 NONCONTIGUOUS
}

19.40 Serialized Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Serialized
{
}

19.41 Transactional Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Transactional
{
}

19.42 Unique Annotation
@Target({ElementType.TYPE, ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Unique
{
 /** Name of the unique constraint.
 * @return the name of the unique constraint
 */
 String name() default ““;

 /** Table for the unique constraint. This is needed iff annotating a type
 * where this unique constraint is not for the primary table for
 * the persistent class or interface.

Java Data Objects 2.2

 JDO 2.2 272 October 10, 2008

 * @return the table on which the unique constraint is defined
 */
 String table() default ““;

 /** Whether this unique constraint is deferred until commit.
 * @return whether this unique constraint is deferred until commit
 */
 String deferred() default ““;

 /** Member (field and property) names that compose this unique constraint.
 * @return member names that compose this unique constraint
 */
 String[] members() default {};

 /** Columns that compose this unique constraint.
 * @return columns that compose this unique constraint
 */
 Column[] columns() default {};
}

19.43 Uniques Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Uniques
{
 /**
 * The unique constraints.
 * @return The unique constraints
 */
 Unique[] value();
}

19.44 Value Annotation
@Target({ElementType.FIELD, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Value
{
 /**
 * Types of the values. This can be determined if using JDK1.5 generics
 * but is required otherwise. Multiple types can be specified if the
 * implementation supports multiple types.
 * @return the types of values
 */
 Class[] types() default {};

 /**
 * Whether the value is to be stored serialized (into a single column of a
 * join table).
 * @return Whether the value is to be stored serialized (into a join table)
 */
 String serialized() default ““;

 /** Whether this value is embedded.
 * @return whether this value is embedded
 */
 String embedded() default ““;

Java Data Objects 2.2

 JDO 2.2 273 October 10, 2008

 /**
 * The embedded mapping for the value.
 * @return the embedded mapping for the value
 */
 Embedded[] embeddedMapping() default {};

 /**
 * Whether the value is dependent on the owner (and will be deleted
 * when the owner is deleted).
 * @return whether the value is dependent on the owner
 */
 String dependent() default ““;

 /**
 * Name of the table for the value.
 * @return the name of the table for the value
 */
 String table() default ““;

 /**
 * Name of the column to store the value in.
 * @return the name of the column to store the value in
 */
 String column() default ““;

 /**
 * Delete action to apply to any foreign key for the value.
 * @return delete action to apply to any foreign key for the value
 */
 ForeignKeyAction deleteAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Update action to apply to any foreign key for the value.
 * @return update action to apply to any foreign key for the value
 */
 ForeignKeyAction updateAction() default ForeignKeyAction.UNSPECIFIED;

 /**
 * Whether the value column(s) should be indexed.
 * @return whether the value column(s) should be indexed.
 */
 String indexed() default ““;

 /** The name of the index to generate.
 * @return the name of the index
 */
 String index() default ““;

 /**
 * Whether the element column(s) contents should be considered unique
 * @return whether the element column(s) contents should be considered unique
 */
 String unique() default ““;

 /**
 * The name of the unique key constraint to generate.
 * @return the name of the unique key constraint
 */
 String uniqueKey() default ““;

Java Data Objects 2.2

 JDO 2.2 274 October 10, 2008

 /**
 * Name of a member in the key class where this value is stored.
 * @return the name of a member in the key class where this value is stored
 */
 String mappedBy() default ““;

 /**
 * The column(s) for the value.
 * @return the column(s) for the value
 */
 Column[] columns() default {};

 /** Generate or assume a foreign key constraint exists on the column
 * or columns associated with this join. Specify “true” or “false”.
 * @return whether to generate or assume a foreign key constraint
 */
 String generateForeignKey() default ““;

 /** Name for a generated foreign key constraint.
 * @return the name of the generated foreign key constraint
 */
 String foreignKey() default ““;

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.45 Version Annotation
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Version
{
 /**
 * Strategy for versioning of objects of this class.
 * @return the strategy for versioning objects of this class
 */
 VersionStrategy strategy() default VersionStrategy.UNSPECIFIED;

 /**
 * Custom strategy for versioning of objects of this class.
 * If customStrategy is non-empty, strategy must be UNSPECIFIED.
 * @return the custom strategy for versioning objects of this class
 */
 String customStrategy() default ““;

 /**
 * Name of the column for the version.
 * @return the name of the column for the version
 */
 String column() default ““;

 /**
 * Whether the version column(s) is(are) indexed.
 * @return whether the version column(s) is(are) indexed
 */
 String indexed() default ““;

Java Data Objects 2.2

 JDO 2.2 275 October 10, 2008

 /**
 * The column(s) making up the version.
 * @return the column(s) making up the version
 */
 Column[] columns() default {};

 /** Vendor extensions.
 * @return the vendor extensions
 */
 Extension[] extensions() default {};
}

19.46 VersionStrategy Enum

public enum VersionStrategy
{
 UNSPECIFIED,
 NONE,
 STATE_IMAGE,
 DATE_TIME,
 VERSION_NUMBER
}

Table 9: Annotation correspondence to xml metadata

Annotation xml Comments

Column element
column

Columns element
column

Used for multiple Column annotations on
the same field or method

DatastoreIdentity element
datastore-identity

Discriminator element
discriminator

DiscriminatorStrategy attribute strategy

Element element
element

Cacheable attribute
cacheable

Embedded element
embedded

EmbeddedOnly attribute
embedded-only

Java Data Objects 2.2

 JDO 2.2 276 October 10, 2008

Extension element
extension

Extensions element
extension

Used for multiple Extensions on the same
class, interface, field, or method

FetchGroup element fetch-
group

FetchGroups element fetch-
group

Used for multiple FetchGroups

FetchPlan element fetch-
plan

FetchPlans element fetch-
plan

Used for multiple FetchPlans on the same
class or interface

ForeignKey element foreign-
key

ForeignKeyAction attributes
update-action,
delete-action

ForeignKeys element foreign-
key

IdGeneratorStrategy element data-
store-identity,
attribute value-
strategy

IdentityType attribute identity-
type

Index element index

Indices element index

Inheritance element inherit-
ance

InheritanceStrategy element inherit-
ance, attribute
strategy

Join element join

Table 9: Annotation correspondence to xml metadata

Annotation xml Comments

Java Data Objects 2.2

 JDO 2.2 277 October 10, 2008

JoinTable element join,
attribute table

Joins element join

Key element key

NullValue attribute null-
value

Order element order

PersistenceAware attribute persis-
tence-modifier

PersistenceCapable elements class,
interface

Persistent elements field,
property

PrimaryKey element primary-
key

Queries element query

Query element query

Sequence element
sequence

SequenceStrategy element
sequence,
attribute strategy

Serialized elements field,
property,
attribute serial-
ized

Transactional elements field,
property;
attribute persis-
tence-modifier

Unique element unique

Uniques element unique

Value element value

Table 9: Annotation correspondence to xml metadata

Annotation xml Comments

Java Data Objects 2.2

 JDO 2.2 278 October 10, 2008

Version element version

VersionStrategy element version;
attribute strategy

Table 9: Annotation correspondence to xml metadata

Annotation xml Comments

Java Data Objects 2.2

 JDO 2.2 279 October 10, 2008

20 Java Persistence API (JSRs 220, 317) Alignment

JPA (Java Persistence API) specifies annotations and interfaces for Java persistence, similar to the
goals of JDO. In order to facilitate interoperation of applications in both JPA and JDO, several com-
patibility items have been implemented:

• Persistence-capable classes can be specified using JPA annotations, JDO annotations, JPA
metadata in xml document format (e.g. orm.xml), or JDO metadata in xml document
format(e.g. package.jdo).

• Bootstrapping using JDOHelper can define the properties of the
PersistenceManagerFactory using a Map of properties, a JDO configuration file
META-INF/jdoconfig.xml, or a JPA configuration file (META-INF/
persistence.xml).

• A PersistenceManagerFactory from a JDO implementation that supports the JPA
EntityManagerFactory can also implement JDOEntityManagerFactory,
which is an interface that extends both JDO PersistenceManagerFactory and JPA
EntityManagerFactory; some methods are overloaded to return more specific types.

• A PersistenceManager from a JDO implementation that supports the JPA
EntityManager can also implement JDOEntityManager, which is an interface that
extends both JDO PersistenceManager and JPA EntityManager.

20.1 JDOEntityManagerFactory
This interface extends both JDO PersistenceManagerFactory and JPA EntityMan-
agerFactory. Certain methods overload the corresponding methods in PersistenceMan-
agerFactory to return the more specific type JDOEntityManager.
public interface JDOEntityManagerFactory
 extends EntityManagerFactory, PersistenceManagerFactory {

JDOEntityManager getPersistenceManager();
JDOEntityManager getPersistenceManagerProxy();
JDOEntityManager getPersistenceManager(String userid, String password);

}

20.2 JDOEntityManager
This interface extends both JDO PersistenceManager and JPA EntityManager.
public interface JDOEntityManager
 extends EntityManager, PersistenceManager {

JDOEntityManagerFactory getPersistenceManagerFactory();
}

This method overloads the corresponding method in PersistenceManager to return the more
specific type JDOEntityManagerFactory.

Java Data Objects 2.2

 JDO 2.2 280 October 10, 2008

21 Extent

This chapter specifies the Extent contract between an application component and the JDO imple-
mentation.

21.1 Overview
An application needs to provide a candidate collection of instances to a query. If the query filtering
is to be performed in the datastore, then the application must supply the collection of instances to
be filtered. This is the primary function of the Extent interface.
An Extent instance is logically a holder for information:

• the class of instances;

• whether subclasses are part of the Extent; and

• a collection of active iterators over the Extent.

Thus, no action is taken at the time the Extent is constructed. The contents of the Extent are
calculated at the point in time when a query is executed and when an iterator is obtained via the it-
erator() method.
A query may be executed against either a Collection or an Extent. The Extent is used when
the query is intended to be filtered by the datastore, not by in-memory processing. There are no
Collection methods in Extent except for iterator(). Thus, common Collection be-
haviors are not possible, including determining whether one Extent contains another, determining
the size of the Extent, or determining whether a specific instance is contained in the Extent.
Any such operations must be performed by executing a query against the Extent.
If the Extent is large, then an appropriate iteration strategy should be adopted by the JDO imple-
mentation.
The Extent for classes of embedded instances is not affected by changes to fields in referencing
class instances.

21.2 Goals
The extent interface has the following goals:

• Large result set support. Queries might return massive numbers of JDO instances that
match the query. The JDO Query architecture must provide for processing the results
within the resource constraints of the execution environment.

• Application resource management. Iterating an Extent might use resources that should
be released when the application has finished an iteration. The application should be
provided with a means to release iterator resources.

• Language support for Java 5 iteration. Extent extends the Iterable interface so that the
native Java iteration using the for... operator works transparently with Extent. For
example,

Java Data Objects 2.2

 JDO 2.2 281 October 10, 2008

• for (Employee e: pm.getExtent(Employee.class) {// do
something}

21.3 Interface Extent
package javax.jdo;

public interface Extent<E> extends Iterable<E> {

Iterator<E> iterator();

This method returns an Iterator over all the instances in the Extent. If NontransactionalRead
property is set to false, this method will throw a JDOUserException if called outside a transaction.
If the IgnoreCache option is set to true in the PersistenceManager at the time that this
Iterator instance is obtained, then new and deleted instances in the current transaction might be
ignored by the Iterator at the option of the implementation. That is, new instances might not be
returned; and deleted instances might be returned.
If the IgnoreCache option is set to false in the PersistenceManager at the time that this
Iterator instance is obtained, then:

• If instances were made persistent in the transaction prior to the execution of this method,
the returned Iterator will contain the instances.

• If instances were deleted in the transaction prior to the execution of this method, the
returned Iterator will not contain the instances.

The above describes the behavior of an extent-based query at query execution.
If any mutating method, including the remove method, is called on the Iterator returned by
this method, a UnsupportedOperationException is thrown.If an iterator is acquired by the
compiled for... operator, the iterator has no explicit reference from application code. Therefore,
the implementation must not hold a strong reference to an iterator, allowing it to be garbage collect-
ed once the iterator goes out of scope.
boolean hasSubclasses();

This method returns an indicator of whether the extent includes subclasses.
Class<E> getCandidateClass();

This method returns the class of the instances contained in it.
FetchPlan getFetchPlan();

This method returns the fetch plan associated with the Extent. The fetch plan originally is a copy
of the fetch plan that is active at the time the Extent is obtained from the PersistenceMan-
ager, and thereafter can be changed independent of the fetch plan of the PersistenceMan-
ager.
The fetch plan settings affect iterators obtained from the Extent. When instances are retrieved
from the datastore, the fetch plan settings that are current in the Extent affect the retrieval. Note
that this means that portable applications do not change the fetch plan of an Extent while an iter-
ator is active.
PersistenceManager getPersistenceManager();

This method returns the PersistenceManager that created it.
void close(Iterator i);

This method closes an Iterator acquired from this Extent. After this call, the parameter It-
erator will return false to hasNext(), and will throw NoSuchElementException to
next(). The Extent itself can still be used to acquire other iterators and can be used as the Ex-

Java Data Objects 2.2

 JDO 2.2 282 October 10, 2008

tent for queries.Iterators must be automatically closed by the jdo implementation if iterated to
completion.
void closeAll ();

This method closes all iterators acquired from this Extent. After this call, all iterators acquired
from this Extent will return false to hasNext(), and will throw NoSuchElementExcep-
tion to next().
Any change made to the fetch plan of the associated PersistenceManager affects instance re-
trievals via next(). Only instances not already in memory are affected by the PersistenceMan-
ager’s fetch plan. Fetch plan is described in Section 12.7.

Java Data Objects 2.2

 JDO 2.2 283 October 10, 2008

22 Portability Guidelines

One of the objectives of JDO is to allow an application to be portable across multiple JDO imple-
mentations. This Chapter summarizes portability rules that are expressed elsewhere in this docu-
ment. If all of these programming rules are followed, then the application will work in any JDO
compliant implementation.

22.1 Optional Features
These features may be used by the application if the JDO vendor supports them. Since they are not
required features, a portable application must not use them.

22.1.1 Optimistic Transactions

Optimistic transactions are enabled by the PersistenceManagerFactory or Transac-
tion method setOptimistic(true). JDO implementations that do not support optimistic
transactions throw JDOUnsupportedOptionException.

22.1.2 Nontransactional Read

Nontransactional read is enabled by the PersistenceManagerFactory or Transaction
method setNontransactionalRead(true). JDO implementations that do not support non-
transactional read throw JDOUnsupportedOptionException.

22.1.3 Nontransactional Write

Nontransactional write is enabled by the PersistenceManagerFactory or Transaction
method setNontransactionalWrite(true). JDO implementations that do not support
nontransactional write throw JDOUnsupportedOptionException.

22.1.4 Transient Transactional

Transient transactional instances are created by the PersistenceManager makeTransac-
tional(Object). JDO implementations that do not support transient transactional throw
JDOUnsupportedOptionException.

22.1.5 RetainValues

A portable application should run the same regardless of the setting of the retainValues flag.

22.1.6 IgnoreCache

A portable application should set this flag to false. The results of iterating Extents and execut-
ing queries might be different among different implementations.

22.2 Object Model
References among persistence-capable classes must be defined as First Class Objects in the model.
SCO instances must not be shared among multiple persistent instances.
Arrays must not be shared among multiple persistent instances.

Java Data Objects 2.2

 JDO 2.2 284 October 10, 2008

If arrays are passed by reference outside the defining class, the owning persistent instance must be
notified via jdoMakeDirty.
The application must not depend on any sharing semantics of immutable class objects.
The application must not depend on knowing the exact class of an SCO instance, as they may be
substituted by a subclass of the type.
Persistence-capable classes must not contain final non-static fields or methods or fields that start
with "jdo".Persistence-capable classes must not contain final or static persistent fields.

22.3 JDO Identity
Applications must be aware that support for application identity and datastore identity are optional,
and some implementations might support only one of these identity types. The supported identity
type(s) of the implementation should be checked by using the supportedOptions method of
PersistenceManagerFactory.
Applications must construct only ObjectId instances for classes that use application-defined JDO
identity, or use the PersistenceManager getObjectIdClass to obtain the ObjectId
class.
Classes that use application identity must only use key field types of primitive, String, Date, Byte,
Short, Integer, Long, Float, Double, BigDecimal, or BigInteger.
Applications must only compare ObjectId instances from different JDO implementations for
classes that use application-defined JDO identity.
The equals and hashCode methods of any persistence-capable class using application identity
must depend on all of the key fields.
Key fields can be defined only in the least-derived persistence-capable class in an inheritance hier-
archy. All of the classes in the hierarchy use the same key class.
A JDO implementation might not support changing primary key field values (which has the effect
of changing the primary key of the underlying datastore instance). Portable applications do not
change primary key fields.

22.4 PersistenceManager
To be portable, instances of PersistenceManager must be obtained from a Persistence-
ManagerFactory, and not by construction. The recommended way to instantiate a Persis-
tenceManagerFactory is to use the
JDOHelper.getPersistenceManagerFactory(Map) method.

22.5 Query
Using a query language other than JDOQL is not portable.
A query must constrain all variables used in any expressions with a contains clause referencing a
persistent field of a persistence-capable class.
Not all datastores allow storing null-valued collections. Portable queries on these collections should
use isEmpty() instead of comparing to null.
Portable queries must only use persistent or public final static field names in filter expressions.
Portable queries must pass persistent or transactional instances as parameters of persistence-capable
types.

Java Data Objects 2.2

 JDO 2.2 285 October 10, 2008

Wild card queries must use “matches” with a regular expression including only “(?i)” for case-in-
sensitivity, “.” for matching a single characters, and “.*” for matching multiple characters.

22.6 XML metadata
Portable applications will define all persistence-capable classes in the XML metadata.

22.7 Life cycle
Portable applications will not depend on requiring instances to be hollow or persistent-nontransac-
tional, or to remain non-transactional in a transaction.

22.8 JDOHelper
Portable applications will use JDOHelper for state interrogations of instances of persistence-capable
classes and for determining if an instance is of a persistence-capable class.

22.9 Transaction
Portable applications must not depend on isolation levels stronger than read-committed provided by
the underlying datastore. Some fields might be read at different times by the JDO implementation,
and there is no guarantee as to read consistency compared to previously read data. A JDO persis-
tence-capable instance might contain fields instantiated by multiple datastore accesses, with no
guarantees of consistency (read-committed isolation level).

22.10 Binary Compatibility
Portable applications must not use the PersistenceCapable interface. Compliant implementations
might use persistence-capable classes that do not implement the PersistenceCapable interface. In-
stances can be queried as to their state by using the methods in JDOHelper.
Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 25 – JDOPermission.

Java Data Objects 2.2

 JDO 2.2 286 October 10, 2008

23 JDO Reference Enhancer

This chapter specifies the JDO Reference Enhancement, which specifies the contract between JDO
persistence-capable classes and JDO StateManager in the binary-compatible runtime environment.
The JDO Reference Enhancer modifies persistence-capable classes to run in the JDO environment
and implement the required contract. The resulting classes, hereinafter referred to as enhanced class-
es, implement a contract used by the JDOHelper, the JDOImplHelper, and the StateMan-
ager classes.
The JDO Reference Enhancer is just one possible implementation of the JDO Reference Enhance-
ment contract. Tools may instead preprocess or generate source code to create classes that imple-
ment this contract.
Enhancement is just one possible strategy for JDO implementations. If a JDO implementation sup-
ports BinaryCompatibility, it must support the PersistenceCapable contract. Otherwise, it need only
support the rest of the user-visible contracts (e.g. PersistenceManagerFactory, PersistenceManager,
Query, Transaction, and Extent).

 NOTE: This chapter is not intended to be used by application programmers. It
is for use only by implementations. Applications should use the methods defined
in class JDOHelper instead of these methods and fields.

23.1 Overview
The JDO Reference Enhancer will be used to modify each persistence-capable class before using
that persistence-capable class with the Reference Implementation PersistenceManager in the
Java VM. It might be used before class loading or during the class loading process.
The JDO Reference Enhancer transforms the class by making specific changes to the class defini-
tion to enable the state of any persistent instances to be synchronized with the representation of the
data in the datastore.
Tools that generate source code or modify the Java source code files must generate classes that meet
the defined contract in this chapter.
The Reference Enhancer provides an implementation for the PersistenceCapable interface.

23.2 Goals
The following are the goals for the JDO Reference Enhancer:

• Binary compatibility and portability of application classes among JDO vendor
implementations

• Binary compatibility between application classes enhanced by different JDO vendors at
different times.

• Minimal intrusion into the operation of the class and class instances

Java Data Objects 2.2

 JDO 2.2 287 October 10, 2008

• Provide metadata at runtime without requiring implementations to be granted reflect
permission for non-private fields

• Values of fields can be read and written directly without wrapping code with accessors or
mutators (field1 += 13 is allowed, instead of requiring the user to code
setField1(getField1() + 13))

• Navigation from one instance to another uses natural Java syntax without any requirement
for explicit fetching of referenced instances

• Automatically track modification of persistent instances without any explicit action by the
application or component developer

• Highest performance for transient instances of persistence-capable classes

• Support for all class and field modifiers

• Transparent operation of persistent and transient instances as seen by application
components and persistence-capable classes

• Shared use of persistence-capable classes (utility components) among multiple JDO
PersistenceManager instances in the same Java VM

• Preservation of the security of instances of PersistenceCapable classes from
unauthorized access

• Support for debugging enhanced classes by line number

23.3 Enhancement: Architecture
The reference enhancement of persistence-capable classes has the primary objective of preserving
transparency for the classes. Specifically, accesses to fields in the JDO instance are mediated to al-
low for initializing values of fields from the associated values in the datastore and for storing the
values of fields in the JDO instance into the associated values in the datastore at transaction bound-
aries.
To avoid conflicts in the name space of the persistence-capable classes, all methods and fields added
to the persistence-capable classes have the “jdo” prefix.
Enhancement might be performed at any time prior to use of the class by the application. During
enhancement, special JDO class metadata must be available if any non-default actions are to be tak-
en. The metadata is in XML format .
Specifically, the following will require access to special class metadata at class enhancement time,
because these are not the defaults:

• classes are to use primary key or non-managed object identity;

• fields declared as transient in the class definition are to be persistent in the datastore;

• fields not declared as transient in the class definition are to be non-persistent in the
datastore;

• fields are to be transactional non-persistent;

• fields with domains of references to persistence-capable classes are to be part of the default
fetch group;

• fields with domains of primitive types (boolean, char, byte, short, int, long,
float, double) or primitive wrapper types (Boolean, Char, Byte, Short,
Integer, Long, Float, Double) are not to be part of the default fetch group;

• fields with domains of String are not to be part of the default fetch group;

Java Data Objects 2.2

 JDO 2.2 288 October 10, 2008

• fields with domains of array types are to be part of the default fetch group.

Enhancement makes changes to two categories of classes: persistence-capable and persistence-
aware. Persistence-capable classes are those whose instances are allowed to be stored in a JDO-
managed datastore. Persistence aware classes are those that while not necessarily persistence-capa-
ble themselves, contain references to managed fields of classes that are persistence-capable. Thus,
persistence-capable classes may also be persistence-aware.
Enhancement also treats Detachable classes specially, by adding fields and methods needed to man-
age the detached state of the instance.
To preserve the security of instances of PersistenceCapable classes, access restrictions to
fields before enhancement will be propagated to accessor methods after enhancement. Further, to
become the delegate of field access (StateManager) the caller must be authorized for JDOPer-
mission.
A JDO implementation must interoperate with classes enhanced by the Reference Enhancer and
with classes enhanced with other Vendor Enhancers. Additionally, classes enhanced by any Vendor
Enhancers must interoperate with the Reference Implementation.
Name scope issues are minimized because the Reference Enhancement contract adds methods and
fields that begin with “jdo”, while methods and fields added by Vendor Enhancers must not begin
with “jdo”. Instead, they may begin with “sunwjdo”, “exlnjdo” or other string that includes a
vendor-identifying name and the “jdo” string.
Debugging by source line number must be preserved by the enhancement process. If any code mod-
ification within a method body changes the byte code offsets within the method, then the line num-
ber references of the method must be updated to reflect the change.
The Reference Enhancer makes the following changes to the least-derived (topmost) persistence-
capable classes:

• adds a field named jdoStateManager, of type javax.jdo.spi.StateManager
to associate each instance with zero or one instance of JDO StateManager;

• adds a synchronized method jdoReplaceStateManager (to replace the value of the
jdoStateManager), which invokes security checking for declared JDOPermission;

• adds a field named jdoFlags of type byte in the least-derived persistence capable class,
to distinguish readable and writable instances from non-readable and non-writable
instances;

• adds a method jdoReplaceFlags to require the instance to request an updated value
for the jdoFlags field from the StateManager;

• adds methods to implement status query methods by delegating to the StateManager;

• adds method jdoReplaceFields(int[]) to obtain values of specified fields from
the StateManager and cache the values in the instance;

• adds method jdoProvideFields(int[]) to supply values of specific fields to the
StateManager;

• adds a method void jdoCopyFields(Object other, int[]
fieldNumbers) to allow the StateManager to manage multiple images of the
persistence capable instance;

• adds a method void jdoCopyField(Object other, int fieldNumber) to
allow the StateManager to manage multiple images of the persistence capable instance;

• adds a method jdoPreSerialize to load all non-transient fields into the instance prior
to serialization;

Java Data Objects 2.2

 JDO 2.2 289 October 10, 2008

The Reference Enhancer makes the following changes to least-derived (topmost) persistence-capa-
ble classes and classes that declare an objectid-class in their xml:

• adds methods jdoCopyKeyFieldsToObjectId(PersistenceCapable pc,
Object oid) and
jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier fs, Object
oid).

• adds methods jdoCopyKeyFieldsFromObjectId(Object oid) and
jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid).

• adds a method jdoNewObjectIdInstance() which creates an instance of the jdo
ObjectId for this class.

The Reference Enhancer makes the following changes to the least-derived class marked as Detach-
able:

• adds “implements javax.jdo.spi.Detachable” to the class definition;

• adds a serializable field “Object[] jdoDetachedState” to the class definition;

• adds a method “void jdoReplaceDetachedState()” to the class definition.

The Reference Enhancer makes the following changes to all classes:
• adds “implements javax.jdo.spi.PersistenceCapable” to the class

definition;

• adds two methods jdoNewInstance, one of which takes a parameter of type
StateManager, to be used by the implementation when a new persistent instance is
required (this method allows a performance optimization), and the other takes a parameter
of type StateManager and a parameter of an ObjectId for key field
initialization;adds two methods, makeDirty(String fieldName) and
makeDirty(int fieldNumber), to manage making fields dirty.

• adds method jdoReplaceField(int) to obtain values of specified fields from the
StateManager and cache the values in the instance;

• adds method jdoProvideField(int) to supply values of specific fields to the
StateManager;

• adds an accessor method and mutator method for each field declared in the class, which
delegates to the StateManager for values;

• leaves the modifiers of all persistent fields the same as the unenhanced class to allow the
enhanced classes to be used for compilation of other classes;

• adds a method jdoCopyField(<class> other, int fieldNumber) to allow
the StateManager to manage multiple images of the persistence capable instance;

• adds a method jdoGetManagedFieldCount() to manage the numbering of fields
with respect to inherited managed fields.

• adds a field jdoInheritedFieldCount, which is set at class initialization time to the
returned value of super.jdoGetManagedFieldCount().

• adds fields jdoFieldNames, jdoFieldTypes, and jdoFieldFlags, which
contain the names, types, and flags of managed fields.

• adds field Class jdoPersistenceCapableSuperclass, which contains the
Class of the PersistenceCapable superclass.

• adds a static initializer to register the class with the JDOImplHelper.

Java Data Objects 2.2

 JDO 2.2 290 October 10, 2008

• adds a field serialVersionUID if it does not already exist, and calculates its initial
value based on the non-enhanced class definition.

Enhancement makes the following changes to persistence aware classes:
• modifies executable code that accesses fields of PersistenceCapable classes not

known to be not managed, replacing getfield and putfield calls with calls to the
generated accessor and mutator methods.

23.4 Inheritance
Enhancement allows a class to manage the persistent state only of declared fields. It is a future ob-
jective to allow a class to manage fields of a non-persistence capable superclass.
Fields that hide inherited fields (because they have the same name) are fully supported. The enhanc-
er delegates accesses of inherited hidden fields to the appropriate class by referencing the appropri-
ate method implemented in the declaring class.
All persistence capable classes in the inheritance hierarchy must use the same kind of JDO identity.

23.5 Field Numbering
Enhancement assigns field numbers to all managed (transactional or persistent) fields. Generated
methods and fields that refer to fields (jdoFieldNames, jdoFieldTypes, jdoField-
Flags, jdoGetManagedFieldCount, jdoCopyFields, jdoMakeDirty,
jdoProvideField, jdoProvideFields, jdoReplaceField, and jdoReplace-
Fields) are generated to include both transactional and persistent fields.
Relative field numbers are calculated at enhancement time. For each persistence capable class the
enhancer determines the declared managed fields. To calculate the relative field number, the de-
clared fields array is sorted by field name. Each managed field is assigned a relative field number,
starting with zero.
Absolute field numbers are calculated at runtime, based on the number of inherited managed fields,
and the relative field number. The absolute field number used in method calls is the relative field
number plus the number of inherited managed fields.
The absolute field number is used in method calls between the StateManager and Persis-
tenceCapable; and in the reference implementation, between the StateManager and
StoreManager.

23.6 Serialization
Serialization of a transient instance results in writing an object graph of objects connected via non-
transient fields. The explicit intent of JDO enhancement of serializable classes is to permit serial-
ization of transient instances or persistent instances to a format that can be deserialized by either an
enhanced or non-enhanced class.
Classes marked as Detachable are not serialization-compatible with un-enhanced classes. This is in-
tentional, and requires that the enhanced version of the class be used wherever the instance might
be instantiated. If a Detachable class were used in an environment where the un-enhanced class was
not used, then access to unloaded fields would not be restricted, and field modifications could not
be tracked.
When the writeObject method is called on a class to serialize it, all fields not declared as tran-
sient must be loaded into the instance. This function is performed by the enhancer-generated method
jdoPreSerialize. This method simply delegates to the StateManager to ensure that all per-

Java Data Objects 2.2

 JDO 2.2 291 October 10, 2008

sistent non-transient fields are loaded into the instance. [Fields not declared as transient and not de-
clared as persistent must have been loaded by the PersistenceCapable class an application-
specific way.]
For Detachable classes, the jdoPreSerialize method must also initialize the jdoDetachedState in-
stance so that the detached state is serialized along with the instance.
The jdoPreSerialize method need be called only once for a persistent instance. Therefore, the
writeObject method in the least-derived pc class that implements Serializable in the in-
heritance hierarchy needs to be modified or generated to call it.
If a standard serialization is done to an enhanced class instance, the fields added by the enhancer
will not be serialized because they are declared to be transient.
To allow a non-enhanced class to deserialize the stream, the serialVersionUID for the en-
hanced and non-enhanced classes must be identical. If the serialVersionUID field does not al-
ready exist in the non-enhanced class, the enhancer will calculate it (excluding any enhancer-
generated fields or methods) and add it to the enhanced class.
If a PersistenceCapable class is assignable to java.io.Serializable but its persis-
tence-capable superclass is not, then the enhancer will modify the class in the following way:

• if the class does not contain implementations of writeObject, or writeReplace,
then the enhancer will generate writeObject. Fields that are required to be present
during serialization operations will be explicitly instantiated by the generated method
jdoPreSerialize, which will be called by the enhancer-generated writeObject.

• if the class contains an implementation of writeObject or writeReplace, it will be
changed to call jdoPreSerialize prior to any user-written code in the method.

If a PersistenceCapable class is assignable to java.io.Serializable, then the non-
transient fields might be instantiated prior to serialization. However, the closure of instances reach-
able from this instance might include a large part of instances in the datastore.
For non-Detachable classes, the results of restoring a serialized persistent instance graph is a graph
of interconnected transient instances. The method readObject is not enhanced, as it deals only
with transient instances.
For Detachable classes, the results of restoring a serialized persistent instance graph is a graph of
interconnected detached instances that might be attached via the makePersistent methods.

23.7 Cloning
If a standard clone is made of a persistent instance, the jdoFlags and jdoStateManager
fields will also be cloned. The clone will eventually invoke the StateManager if the source of
the cloned instance is not transient. This condition will be detected by the runtime, but disconnecting
the clone is a convoluted process. To avoid this situation where possible, the enhancer modifies the
cloning behavior by modifying certain methods that invoke clone, setting these two fields to in-
dicate that the clone is a transient instance. Otherwise, all of the fields in the clone contain the stan-
dard shallow copy of the fields of the cloned instance.
The reference enhancement will modify the clone() method in the persistence-capable root class
(the least-derived (topmost) PersistenceCapable class) to reset these two fields immediately
after returning from super.clone(). This caters for the normal case where clone methods in
subclasses call super.clone() and the clone is disconnected immediately after being cloned.
The clone method is also modified to copy the jdoDetachedState field of an instance of a Detachable
class to the clone if the instance is detached. The effect of this is that while detached, the clone is

Java Data Objects 2.2

 JDO 2.2 292 October 10, 2008

also a detached object. While attached, the detached state will not be cloned, and the clone will
therefore be transient.
This technique does not address these cases:

• A non-persistence-capable superclass clone method calls a runtime method (for example,
makePersistent) on the newly created clone. In this case, the makePersistent
will succeed, but the clone method in the persistence-capable subclass will disconnect the
clone, thereby undoing the makePersistent. Thus, calling any life cycle change
methods with the clone as an argument is not permitted in clone methods.

• Where there is no clone method declared in the persistence-capable root class, the clone
will not be disconnected, and the runtime will disconnect the clone the first time the
StateManager is called by the clone.

23.8 Introspection (Java core reflection)
No changes are made to the behavior of introspection. The current state of all fields is exposed to
the reflection APIs.
This is not at all what some users might expect. It is a future objective to more gracefully support
introspection of fields in persistent instances of persistence capable classes.

23.9 Field Modifiers
Fields in persistence-capable classes are treated by the enhancer in one of several ways, based on
their modifiers as declared in the Java language and their enhanced modifiers as declared by the per-
sistence-capable MetaData.
These modifiers are orthogonal to the modifiers defined by the Java language. They have default
values based on modifiers defined in the class for the fields. They may be specified in the XML
metadata used at enhancement time.

23.9.1 Non-persistent

Non-persistent fields are ignored by the enhancer. They are assumed to lie outside the domain of
persistence. They might be changed at will by any method based only on the private/protected/pub-
lic modifiers. There is no enhancement of accesses to non-persistent fields.
The default modifier is non-persistent for fields identified as transient in the class declaration.

23.9.2 Transactional non-persistent

Transactional non-persistent fields are non-persistent fields whose values are saved and restored
during rollback. Their values are not stored in the datastore. There is no enhancement of read ac-
cesses to transactional non-persistent fields. Write accesses are always mediated (the StateMan-
ager is called on write).

23.9.3 Persistent

Persistent fields are fields whose values are synchronized with values in the datastore. The synchro-
nization is performed transparent to the methods in the persistence-capable class.
The default persistence-modifier for fields is based on their modifiers and type, as detailed in the
XML metadata chapter.
The modification to the class by the enhancer depends on whether the persistent field is a member
of the default fetch group.

Java Data Objects 2.2

 JDO 2.2 293 October 10, 2008

If the persistent field is a member of the default fetch group, then the enhanced code behaves as fol-
lows. The constant values READ_OK, READ_WRITE_OK, and LOAD_REQUIRED are defined in
interface PersistenceCapable.

• for read access, jdoFlags is checked for READ_OK or READ_WRITE_OK. If it is then
the value in the field is retrieved. If it is not, then the StateManager instance is
requested to load the value of the field from the datastore, which might cause the
StateManager to populate values of all default fetch group fields in the instance, and
other values as defined by the JDO vendor policy. This behavior is not required, but
optional. If the StateManager chooses, it may simply populate the value of the specific
field requested. Upon conclusion of this process, the jdoFlags value might be set by the
StateManager to READ_OK and the value of the field is retrieved. If not all fields in the
default fetch group were populated, the StateManager must not set the jdoFlags to
be READ_OK.

• for write access, jdoFlags is checked for READ_WRITE_OK. If it is READ_WRITE_OK,
then the value is stored in the field. If it is not READ_WRITE_OK, then the
StateManager instance is requested to load the state of the values from the datastore,
which might cause the StateManager to populate values of all default fetch group fields
in the instance. Upon conclusion of the load process, the jdoFlags value might be set by
the StateManager to READ_WRITE_OK and the value of the field is stored.

If the persistent field is not a member of the default fetch group, then each read and write access to
the field is delegated to the StateManager. For read, the value of the field is obtained from the
StateManager, stored in the field, and returned to the caller. For write, the proposed value is giv-
en to the StateManager, and the returned value from the StateManager is stored in the field.
The enhanced code that fetches or modifies a field that is not in the default fetch group first checks
to see if there is an associated StateManager instance and if not (the case for transient instances)
the access is allowed without intervention.

23.9.4 PrimaryKey

Primary key fields are not part of the default fetch group; all changes to the field can be intercepted
by the StateManager. This allows special treatment by the implementation if any primary key
fields are changed by the application.
Primary key fields are always available in the instance, regardless of the state. Therefore, read ac-
cess to these fields is never mediated.

23.9.5 Embedded

Fields identified as embedded in the XML metadata are treated as containing embedded instances.
The default for Array, Collection, and Map types is embedded. This is to allow JDO implemen-
tations to map persistence-capable field types to embedded objects (aggregation by containment
pattern).

23.9.6 Null-value

Fields of Object types might be mapped to datastore elements that do not allow null values. The
default behavior “none” is that no special treatment is done for null-valued fields. In this case, null-
valued fields throw a JDOUserException when the instance is flushed to the datastore and the
datastore does not support null values.
However, the treatment of null-valued fields can be modified by specifying the behavior in the
XML metadata. The null-value setting of “default” is used when the default value for the datastore
element is to be used for null-valued fields.

Java Data Objects 2.2

 JDO 2.2 294 October 10, 2008

If the application requires non-null values to be stored in this field, then the setting should be “ex-
ception”, which throws a JDOUserException if the value of the field is null at the time the in-
stance is stored in the datastore.
For example, if a field of type Integer is mapped to a datastore int value, committing an instance
with a field value of null where the null-value setting is “default” will result in a zero written to
the datastore element. Similarly, a null-valued String field would be written to the datastore as
an empty (zero length) String where the null-value setting is “default”.

23.10 Treatment of standard Java field modifiers
23.10.1 Static

Static fields are ignored by the enhancer. They are not initialized by JDO; accesses to values are not
mediated.

23.10.2 Final

Final fields are treated as non-persistent and non-transactional by the enhancer. Final fields are ini-
tialized only by the constructor, and their values cannot be changed after construction of the in-
stance. Therefore, their values cannot be loaded or stored by JDO; accesses are not mediated.
This treatment might not be what users expect; therefore, final fields are not supported as persistent
or transactional instance fields, final static fields are supported by ignoring them.

23.10.3 Private

Private fields are accessed only by methods in the class itself. JDO handles private fields according
to the semantic that values are stored in private fields by the enhancement-generated jdoSetXXX
methods or jdoReplaceField, which become part of the class definition. The enhancement-
generated jdoGetXXX or jdoProvideField methods, which become part of the class defini-
tion, load values from private fields.

23.10.4 Public, Protected

Public fields are not recommended to be persistent in persistence capable classes. Classes that make
reference to persistent public fields (persistence aware) must be enhanced themselves prior to exe-
cution. Protected fields and fields without an explicit access modifier (commonly referred to as
package access) may be persistent.
Users must enhance all classes, regardless of package, that reference any persistent or transactional
field.

23.11 Fetch Groups
Fetch groups represent a grouping of fields that are retrieved from the datastore together. Typically,
a datastore associates a number of data values together and efficiently retrieves these values. Other
values require extra method calls to retrieve.
For example, in a relational database, the Employee table defines columns for Employee id, Name,
and Position. These columns are efficiently retrieved with one data transfer request. The corre-
sponding fields in the Employee class might be part of the default fetch group.
Continuing this example, there is a column for Department dept, defined as a foreign key from the
Employee table to the Department table, which corresponds to a field in the Employee class named
dept of type Department. The runtime behavior of this field depends on the mapping to the Depart-
ment table. The reference might be to a derived class and it might be expensive to determine the
class of the Department instance. Therefore, the dept field will not be defined as part of the default

Java Data Objects 2.2

 JDO 2.2 295 October 10, 2008

fetch group, even though the foreign key that implements the relationship might be fetched when
the Employee is fetched. Rather, the value for the dept field will be retrieved from the StateMan-
ager every time it is requested. Similarly, the StateManager will be called for each modifica-
tion of the value of dept.
The jdoFlags field is the indicator of the state of the default fetch group.

23.12 jdoFlags Definition
The value of the jdoFlags field is entirely determined by the StateManager. The StateM-
anager calls the jdoReplaceFlags method to inform the persistence capable class to retrieve
a new value for the jdoFlags field. The values permitted are constants defined in the interface
PersistenceCapable: READ_OK, READ_WRITE_OK, and LOAD_REQUIRED.
During the transition from transient to a managed life cycle state, the jdoFlags field is set to
LOAD_REQUIRED by the persistence capable instance, to indicate that the instance is not ready.
During the transition from a managed state to transient, the jdoFlags field is set to
READ_WRITE_OK by the persistence capable instance, to indicate that the instance is available for
read and write of any field.
The jdoFlags field is a byte with these possible values and associated meanings:

• 0 - READ_WRITE_OK: the values in the default fetch group can be read or written without
intermediation of the associated StateManager instance.

• -1 - READ_OK: the values in the default fetch group can be read but not written without
intermediation of the associated StateManager instance.

• 1 - LOAD_REQUIRED: the values in the default fetch group cannot be accessed, either for
read or write, without intermediation of the associated StateManager instance.

Regardless of the jdoFlags setting, detached instances will disallow access to non-key fields that are
not marked as loaded in the detached state.

23.13 Exceptions
Generated methods validate the state of the persistence-capable class and the arguments to the meth-
od.
If an argument is illegal, then IllegalArgumentException is thrown. For example, an illegal
field number argument is less than zero or greater than the number of managed fields.
Some methods require a non-null state manager. In these cases, if the jdoStateManager is
null, then JDOFatalInternalException is thrown.

23.14 Modified field access
The enhancer modifies field accesses to guarantee that the values of fields are retrieved from the
datastore prior to application usage.
For any field access that reads the value of a field, the getfield byte code is replaced with a call to a
generated local method, jdoGetXXX, which determines based on the kind of field (default fetch
group or not) and the state of the jdoFlags whether to call the StateManager with the field
number needed.
For any field access that stores the new value of a field, the putfield byte code is replaced with a call
to a generated local method, jdoSetXXX, which determines based on the kind of field (default
fetch group or not) and the state of the jdoFlags whether to call the StateManager with the

Java Data Objects 2.2

 JDO 2.2 296 October 10, 2008

field number needed. A JDO implementation might perform field validation during this operation
and might throw a JDOUserException if the value of the field does not meet the criterion.
The following table specifies the values of the jdoFieldFlags for each type of mediated field.

not checked: access is always granted
checked: the condition of jdoFlags is checked to see if access should be mediated
mediated: access is always mediated (delegated to the StateManager)
flags: the value in the jdoFieldFlags field
The flags are defined in PersistenceCapable and may be combined only as in the above table
(SERIALIZABLE may be combined with any other flags):
1 - CHECK_READ

2 - MEDIATE_READ

4 - CHECK_WRITE

8 - MEDIATE_WRITE

16 - SERIALIZABLE

23.15 Generated fields in least-derived PersistenceCapable class
These fields are generated only in the least-derived (topmost) class in the inheritance hierarchy of
persistence-capable classes.
protected transient javax.jdo.spi.StateManager jdoStateManager;

This field contains the managing StateManager instance, if this instance is being managed.
protected transient byte jdoFlags;

This field contains the detached state, if this instance is detached.
protected Object[] jdoDetachedState;

23.16 Generated fields in all PersistenceCapable classes
The following fields are generated in all persistence-capable classes.
private final static int jdoInheritedFieldCount;

This field is initialized at class load time to be the number of fields managed by the superclasses of
this class, or to zero if there is no persistence capable superclass.
private final static String[] jdoFieldNames;

Table 10: Field access mediation

field type read access write access flags

transient transactional not checked checked CHECK_WRITE

primary key not checked mediated MEDIATE_WRITE

default fetch group checked checked CHECK_READ +
CHECK_WRITE

non-default fetch group mediated mediated MEDIATE_READ +
MEDIATE_WRITE

Java Data Objects 2.2

 JDO 2.2 297 October 10, 2008

This field is initialized at class load time to an array of names of persistent and transactional fields.
The position in the array is the relative field number of the field.
private final static Class[] jdoFieldTypes;

This field is initialized at class load time to an array of types of persistent and transactional fields.
The position in the array is the relative field number of the field.
private final static byte[] jdoFieldFlags;

This field is initialized at class load time to an array of flags indicating the characteristics of each
persistent and transactional field.
private final static Class jdoPersistenceCapableSuperclass;

This field is initialized at class load time to the class instance of the PersistenceCapable su-
perclass, or null if there is none.
private final static long serialVersionUID;

This field is declared only if it does not already exist, and it is initialized to the value that would
obtain prior to enhancement.

Generated static initializer
The generated static initializer uses the values for jdoFieldNames, jdoFieldTypes, jdoField-
Flags, and jdoPersistenceCapableSuperclass, and calls the static registerClass
method in JDOImplHelper to register itself with the runtime environment. If the class is abstract,
then it does not register a helper instance. If the class is not abstract, it registers a newly constructed
instance.
The generated static initialization code is placed after any user-defined static initialization code.

23.17 Generated methods in least-derived PersistenceCapable class
These methods are declared in interface PersistenceCapable.
public final boolean jdoIsPersistent();

public final boolean jdoIsTransactional();

public final boolean jdoIsNew();

public final boolean jdoIsDeleted();

These methods check if the jdoStateManager field is null. If so, they return false. If not,
they delegate to the corresponding method in StateManager.
public final boolean jdoIsDetached();

This method checks if the instance is detached. If so, it returns true.
public final boolean jdoIsDirty();

This method checks if the instance is detached. If so, it returns the modified state of the field from
the detached state. If not, it checks if the jdoStateManager field is null. If so, it returns
false. If not, it delegates to the corresponding method in StateManager.
public final void jdoMakeDirty (String fieldName);

public final void jdoMakeDirty (int fieldNumber);

This method checks if the jdoStateManager field is null. If so, it returns silently. If not, it
delegates to the makeDirty method in StateManager.
public final PersistenceManager jdoGetPersistenceManager();

Java Data Objects 2.2

 JDO 2.2 298 October 10, 2008

This method checks if the jdoStateManager field is null. If so, it returns null. If not, it del-
egates to the getPersistenceManager method in StateManager.
public final Object jdoGetObjectId();

public final Object jdoGetVersion();
public final Object jdoGetTransactionalObjectId();

These methods check if the instance is detached. If so, they return the appropriate element of the
detached state. If not detached, the methods check if the jdoStateManager field is null. If so,
they return null. If not, they delegate to the corresponding method in StateManager.
public synchronized final void jdoReplaceStateManager (StateManger
sm);

NOTE: This method will be called by the StateManager on state changes when transitioning an
instance from transient to a managed state, and from a managed state to transient.
This method is implemented as synchronized to resolve race conditions, if more than one State-
Manager attempts to acquire ownership of the same PersistenceCapable instance.
If the current jdoStateManager is not null, this method replaces the current value for
jdoStateManager with the result of calling jdoStateManager.replacingStateMan-
ager(this, sm). If successful, the method ends. If the change was not requested by the
StateManager, then the StateManager throws a JDOUserException.
If the current jdoStateManager field is null, then a security check is performed by calling
JDOImplHelper.checkAuthorizedStateManager with the StateManager parameter sm passed as the
parameter to the check. Thus, only StateManager instances in code bases authorized for JDOPer-
mission("setStateManager") are allowed to set the StateManager. If the security
check succeeds, the jdoStateManager field is set to the value of the parameter sm, and the jd-
oFlags field is set to LOAD_REQUIRED to indicate that mediation is required.
public final void jdoReplaceFlags ();

NOTE: This method will be called by the StateManager on state changes when transitioning an
instance from a managed state to transient.
If the current jdoStateManager field is null, then this method silently returns with no effect.
If the current jdoStateManager is not null, this method replaces the current value for jd-
oFlags with the result of calling jdoStateManager.replacingFlags(this).
public final void jdoReplaceFields (int[] fields);

For each field number in the fields parameter, jdoReplaceField method is called.
public final void jdoProvideFields (int[] fields);

For each field number in the fields parameter, jdoProvideField method is called.
protected final void jdoPreSerialize();

This method is called by the generated or modified writeObject to allow the instance to fully
populate serializable fields. This method delegates to the StateManager method preSerial-
ize so that fields can be fetched by the JDO implementation prior to serialization. If the
jdoStateManager field is null, this method returns with no effect.

23.18 Generated methods in PersistenceCapable root classes
These methods are generated for PersistenceCapable root classes and all classes that declare
objectid-class in xml metadata.

Java Data Objects 2.2

 JDO 2.2 299 October 10, 2008

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier fs,
Object oid)

This method is called by the JDO implementation (or implementation helper) to populate key fields
in object id instances. If this class is not the persistence-capable root class, it first calls the method
of the same name in the root class. Then, for each key field declared in the metadata, this method
calls the object id field supplier and stores the result in the oid instance.
If the oid parameter is not assignment compatible with the object id class of this instance, then
ClassCastException is thrown. If this class does not use application identity, then this method
silently returns.
public void jdoCopyKeyFieldsToObjectId (Object oid)

This method is called by the JDO implementation (or implementation helper) to populate key fields
in object id instances from persistence-capable instances. This might be used to implement getO-
bjectId or getTransactionalObjectId. If this class is not the persistence-capable root
class, it first calls the method of the same name in the root class. Then, for each key field declared
in the metadata, this method copies the value of the key field to the oid instance.
If the oid parameter is not assignment compatible with the object id class of this instance, then
ClassCastException is thrown. If this class does not use application identity, then this method
silently returns.
public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid)

This method is called by the JDO implementation (or implementation helper) to export key fields
from object id instances. If this class is not the persistence-capable root class, it first calls the method
of the same name in the root class. Then, for each key field declared in the metadata, this method
passes the value of the key field in the oid instance to the store method of the object id field con-
sumer.
If the oid parameter is not assignment compatible with the object id class of this instance, then
ClassCastException is thrown. If this class does not use application identity, then this method
silently returns.
protected void jdoCopyKeyFieldsFromObjectId (Object oid)

This method is called by the jdoNewInstance(Object oid) method. If this class is not the
persistence-capable root class, it first calls the method of the same name in the root class. Then, for
each key field declared in the metadata, this method copies the value of the key field in the oid in-
stance to the key field in this instance.
If the oid parameter is not assignment compatible with the object id class of this instance, then
ClassCastException is thrown. If this class does not use application identity, then this method
silently returns.
public Object jdoNewObjectIdInstance();

public Object jdoNewObjectIdInstance(Object obj);

In the case of single field identity, the parameter is an instance of one of the following:
• Number: the parameter is converted to the appropriate type and passed to the constructor

of the single-field identity class

• String: the parameter is converted to the appropriate type and passed to the constructor
of the single-field identity class

• ObjectIdFieldSupplier: the parameter is used to fetch the value of the object id
field which is passed to the constructor of the single-field identity class

Java Data Objects 2.2

 JDO 2.2 300 October 10, 2008

• Object: for ObjectIdentity only, the parameter is passed to the constructor of
ObjectIdentity

NOTE: This method is called by the JDO implementation (or implementation helper) to populate
key fields in object id instances.
If this class uses application identity, then this method returns a new instance of the ObjectId class.
Otherwise, null is returned.

23.19 Generated method in least-derived Detachable classes
public void jdoReplaceDetachedState();

This method delegates to the jdoStateManager method replacingDetachedState, passing the current
value of the detached state and replacing the detached state with the result of the method call.

23.20 Generated methods in all PersistenceCapable classes
public PersistenceCapable jdoNewInstance(StateManager sm);

This method uses the default constructor, assigns the sm parameter to the jdoStateManager
field, and assigns LOAD_REQUIRED to the jdoFlags field. If the class is abstract, a JDOFa-
talInternalException is thrown.
public PersistenceCapable jdoNewInstance(StateManager sm, Object
objectid);

This method uses the default constructor, assigns the StateManager parameter to the
jdoStateManager field, assigns LOAD_REQUIRED to the jdoFlags field, and copies the key
fields from the objectid parameter. If the class is abstract, a JDOFatalInternalExcep-
tion is thrown. If the objectid parameter is not of the correct class, then ClassCastExcep-
tion is thrown.
protected static int jdoGetManagedFieldCount();

This method returns the number of managed fields declared by this class plus the number inherited
from all superclasses. This method is generated in the class to allow the class to determine at runtime
the number of inherited fields, without having introspection code in the enhanced class.
final static mmm ttt jdoGet<field>(<class> instance);

The generated jdoGet methods have exactly the same stack signature as the byte code get-
field. They return the value of one specific field. The field returned was either cached in the in-
stance or retrieved from the StateManager.
The name of the generated method is constructed from the field name. This allows for hidden fields
to be supported explicitly, and for classes to be enhanced independently.
The modifier mmm is the same access modifier as the corresponding field in the unenhanced class.
The return type ttt is the same type as the corresponding field in the unenhanced class.
The generated code depends on the type of field and whether the class is marked as Detachable:

• If the instance is detached, the method checks to see if the field is marked as loaded in the
detached state. If the field is not loaded ,then
JDODetachedFieldAccessException is thrown.

• If the field is CHECK_READ, then the method first checks to see if jdoFlags field is
anything except LOAD_REQUIRED. If so, the value of the field is returned. If not, then the
value of jdoStateManager is checked. If it is null, the value of the field is returned.
If non-null, then method isLoaded is called on the jdoStateManager. If the result

Java Data Objects 2.2

 JDO 2.2 301 October 10, 2008

of isLoaded is true, then the value of the field is returned. If the result of isLoaded
is false, then the result of method getXXXField on the jdoStateManager is
returned.

• If the field is MEDIATE_READ, then the value of jdoStateManager is checked. If it is
null, the value of the field is returned. If non-null, then method isLoaded is called
on the jdoStateManager. If the result of isLoaded is true, then the value of the
field is returned. If the result of isLoaded is false, then the result of method
getXXXField on the jdoStateManager is returned.

• If the field is neither of the above, then the value of the field is returned.

final static mmm void jdoSet<field> (<class> instance, ttt
newValue);

The generated jdoSet methods have exactly the same stack signature as the byte code put-
field. They set the value of one specific field. The field might be provided to the StateMan-
ager.
The name of the generated method is constructed from the field name. This allows for hidden fields
to be supported explicitly, and for classes to be enhanced independently.
The modifier mmm is the same access modifier as the corresponding field in the unenhanced class.
The type ttt is the same type as the corresponding field in the unenhanced class.
The generated code depends on the type of field and whether the class is marked as Detachable:

• If the instance is detached, the method checks to see if the field is marked as loaded in the
detached state. If the field is not loaded, then
JDODetachedFieldAccessException is thrown. If the field is loaded, then the
field is marked as modified in the detached state.

• If the field is CHECK_WRITE, then the method first checks to see if the jdoFlags field
is READ_WRITE_OK. If so, then the field is set to the new value. If not, then the value of
jdoStateManager is checked. If it is null, the value of the field is set to the new
value. If non-null, then method setXXXField is executed on the
jdoStateManager, passing the new value.

• If the field is MEDIATE_WRITE, then the value of jdoStateManager is checked. If it
is null, then the field is set to the parameter. If non-null, then method setXXXField
is executed on the jdoStateManager, passing the new value.

• If the field is neither of the above, then the value of the field is set to the new value.

public void jdoReplaceField (int field);

NOTE: This method is used by the StateManager to store values from the datastore into the in-
stance. If there is no StateManager (the jdoStateManager field is null), then this method
throws JDOFatalInternalException.
This method calls the StateManager replacingXXXField to get a new value for one field
from the StateManager.
The field number is examined to see if it is a declared field or an inherited field. If it is inherited,
then the call is delegated to the superclass. If it is declared, then the appropriate StateManager
replacingXXXField method is called, which retrieves the new value for the field.
If the field is out of range (less than zero or greater than the number of managed fields in the class)
then a JDOFatalInternalException is thrown.
public void jdoReplaceFields (int[] fields);

This method internally calls jdoReplaceField for each field number in the parameter.

Java Data Objects 2.2

 JDO 2.2 302 October 10, 2008

public void jdoProvideField (int field);

NOTE: This method is used by the StateManager to retrieve values from the instance, during
flush to the datastore or for in-memory query processing. If there is no StateManager (the
jdoStateManager field is null), then this method throws JDOFatalInternalExcep-
tion.
This method calls the StateManager providedXXXField method to supply the value of the
specified field to the StateManager.
The field number is examined to see if it is a declared field or an inherited field. If it is inherited,
then the call is delegated to the superclass. If it is declared, then the appropriate StateManager
providedXXXField method is called, which provides the StateManager with the value for
the field.
If the field is out of range (less than zero or greater than the number of managed fields in the class)
then a JDOFatalInternalException is thrown.
public void jdoProvideFields (int[] fields);

This method internally calls jdoProvideField for each field number in the parameter.
public void jdoCopyFields (Object other, int[] fieldNumbers);

This method is called by the StateManager to create before images of instances for the purpose
of rollback.This method copies the specified fields from the other instance, which must be the same
class as this instance, and owned by the same StateManager.
If the other instance is not assignment compatible with this instance, then ClassCastExcep-
tion is thrown. If the other instance is not owned by the same StateManager, then JDOFa-
talInternalException is thrown.
public final void jdoCopyField (<class> other, int fieldNumber);

This method is called by the jdoCopyFields method to copy the specified field from the other
instance. If the field number corresponds to a field in a persistence-capable superclass, this method
delegates to the superclass method. If the field is out of range (less than zero or greater than the num-
ber of managed fields in the class) then a JDOFatalInternalException is thrown.
private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

If no user-written method writeObject exists, then one will be generated. The generated writ-
eObject makes sure that all persistent and transactional serializable fields are loaded into the in-
stance, by calling jdoPreSerialize(), and then the default output behavior is invoked on the
output stream.
If the class is serializable (either by explicit declaration or by inheritance) then this code will guar-
antee that the fields are loaded prior to standard serialization. If the class is not serializable, then this
code will never be executed.
Note that there is no modification of a user’s readObject. During the execution of readOb-
ject, a new transient instance is created. This instance might be made persistent later, but while it
is being constructed by serialization, it remains transient.

23.21 Example class: Employee
The following class definitions for persistence capable classes are used in the examples. The Em-
ployee class is enhanced for application identity using IntIdentity as the object id class.
package com.xyz.hr;
import javax.jdo.spi.*; // generated by enhancer...

Java Data Objects 2.2

 JDO 2.2 303 October 10, 2008

class Employee
implements Detachable // generated by enhancer...
{
Employee boss; // relative field 0
Department dept; // relative field 1
int empid; // relative field 2, key field
String name; // relative field 3

23.21.1 Generated fields
protected transient javax.jdo.spi.StateManager jdoStateManager = null;
protected transient byte jdoFlags =

javax.jdo.spi.PersistenceCapable.READ_WRITE_OK;
// if no superclass, the following:
private final static int jdoInheritedFieldCount = 0;
/* otherwise,
private final static int jdoInheritedFieldCount =

<persistence-capable-superclass>.jdoGetManagedFieldCount();
*/
private final static String[] jdoFieldNames = {"boss", "dept", "empid", "name"};
private final static Class[] jdoFieldTypes = {Employee.class, Department.class,
int.class, String.class};
private final static byte[] jdoFieldFlags = {

MEDIATE_READ+MEDIATE_WRITE,
MEDIATE_READ+MEDIATE_WRITE,
MEDIATE_WRITE,
CHECK_READ+CHECK_WRITE

};
// if no PersistenceCapable superclass, the following:
private final static Class jdoPersistenceCapableSuperclass = null;
/* otherwise,
private final static Class jdoPersistenceCapableSuperclass = <pc-super>;
private final static long serialVersionUID = 1234567890L;
*/

23.21.2 Generated static initializer

static {
javax.jdo.spi.JDOImplHelper.registerClass (

Employee.class,
jdoFieldNames,
jdoFieldTypes,
jdoFieldFlags,
jdoPersistenceCapableSuperclass,
new Employee());

}

23.21.3 Generated interrogatives

public final boolean jdoIsPersistent() {
return jdoStateManager==null?false:

jdoStateManager.isPersistent(this);
}
public final boolean jdoIsTransactional(){

return jdoStateManager==null?false:
jdoStateManager.isTransactional(this);

}
public final boolean jdoIsNew(){

return jdoStateManager==null?false:
jdoStateManager.isNew(this);

Java Data Objects 2.2

 JDO 2.2 304 October 10, 2008

}
public final boolean jdoIsDirty(){

return jdoStateManager==null?false:
jdoStateManager.isDirty(this);

}
public final boolean jdoIsDeleted(){

return jdoStateManager==null?false:
jdoStateManager.isDeleted(this);

}
public final boolean jdoIsDetached(){

return jdoStateManager==null?false:
jdoStateManager.isDetached(this);

}
public final void jdoMakeDirty (String fieldName){

if (jdoStateManager==null) return;
jdoStateManager.makeDirty(this, fieldName);

}
public final PersistenceManager jdoGetPersistenceManager(){

return jdoStateManager==null?null:
jdoStateManager.getPersistenceManager(this);

}
public final Object jdoGetObjectId(){

return jdoStateManager==null?null:
jdoStateManager.getObjectId(this);

}
public final Object jdoGetTransactionalObjectId(){

return jdoStateManager==null?null:
jdoStateManager.getTransactionalObjectId(this);

}

23.21.4 Generated jdoReplaceStateManager

The generated method asks the current StateManager to approve the change or validates the
caller’s authority to set the state.
public final synchronized void jdoReplaceStateManager

(javax.jdo.spi.StateManager sm) {
// throws exception if current sm didn’t request the change
if (jdoStateManager != null) {

jdoStateManager = jdoStateManager.replacingStateManager (this, sm);
} else {

// the following will throw an exception if not authorized
JDOImplHelper.checkAuthorizedStateManager(sm);
jdoStateManager = sm;
this.jdoFlags = LOAD_REQUIRED;

}
}

23.21.5 Generated jdoReplaceFlags

public final void jdoReplaceFlags () {
if (jdoStateManager != null) {

jdoFlags = jdoStateManager.replacingFlags (this);
}

}

23.21.6 Generated jdoNewInstance helpers

The first generated helper assigns the value of the passed parameter to the jdoStateManager
field of the newly created instance.

Java Data Objects 2.2

 JDO 2.2 305 October 10, 2008

public PersistenceCapable jdoNewInstance(StateManager sm) {
// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;
pc.jdoFlags = LOAD_REQUIRED;
return pc;

}

/* The second generated helper assigns the value of the passed parameter to the jdoStateMan-
ager field of the newly created instance, and initializes the values of the key fields from the oid
parameter.
*/
public PersistenceCapable jdoNewInstance(StateManager sm, Object oid) {
// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;
pc.jdoFlags = LOAD_REQUIRED;

// now copy the key fields into the new instance
jdoCopyKeyFieldsFromObjectId (oid);
return pc;

}

23.21.7 Generated jdoGetManagedFieldCount

The generated method returns the number of managed fields in this class plus the number of inher-
ited managed fields. This method is expected to be executed only during class loading of the sub-
classes.
The implementation for topmost classes in the hierarchy:
protected static int jdoGetManagedFieldCount () {

return <enhancer-generated constant>;
}

The implementation for subclasses:
protected static int jdoGetManagedFieldCount () {

return <pc-superclass>.jdoGetManagedFieldCount() +
<enhancer-generated constant>;

}

23.21.8 Generated jdoGetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore, access to
the method is controlled by the same policy as for the corresponding field.
final static String
jdoGetname(Employee x) {

// this field is in the default fetch group (CHECK_READ)
if (x.jdoFlags <= READ_WRITE_OK) {

 // ok to read
 return x.name;

}
// field needs to be fetched from StateManager
// this call might result in name being stored in instance
StateManager sm = x.jdoStateManager;
if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 3))
return x.name;

 return sm.getStringField(x, jdoInheritedFieldCount + 3,
 x.name);

} else {

Java Data Objects 2.2

 JDO 2.2 306 October 10, 2008

return x.name;
}

}

final static com.xyz.hr.Department
jdoGetdept(Employee x) {
 // this field is not in the default fetch group (MEDIATE_READ)

StateManager sm = x.jdoStateManager;
if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 1))
return x.dept;

return (com.xyz.hr.Department)
sm.getObjectField(x,
jdoInheritedFieldCount + 1,

x.dept);
} else {

return x.dept;
}

}

23.21.9 Generated jdoSetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore, access to
the method is controlled by the same policy as for the corresponding field.

final static void jdoSetname(Employee x, String newValue) {
// this field is in the default fetch group
if (x.jdoFlags == READ_WRITE_OK) {

 // ok to read, write
 x.name = newValue;
 return;

}
StateManager sm = x.jdoStateManager;
if (sm != null) {

sm.setStringField(x,
jdoInheritedFieldCount + 3,

x.name,
newValue);

} else {
x.name = newValue;

}
}

final static void jdoSetdept(Employee x, com.xyz.hr.Department newValue) {
// this field is not in the default fetch group
StateManager sm = x.jdoStateManager;
if (sm != null) {

sm.setObjectField(x,
jdoInheritedFieldCount + 1,

x.dept, newValue);
} else {

x.dept = newValue;
}

}

23.21.10 Generated jdoReplaceField and jdoReplaceFields

The generated jdoReplaceField retrieves a new value from the StateManager for one spe-
cific field based on field number. This method is called by the StateManager whenever it wants

Java Data Objects 2.2

 JDO 2.2 307 October 10, 2008

to update the value of a field in the instance, for example to store values in the instance from the
datastore.
This may be used by the StateManager to clear fields and handle cleanup of the objects currently
referred to by the fields (e.g., embedded objects).

public void jdoReplaceField (int fieldNumber) {
int relativeField = fieldNumber - jdoInheritedFieldCount;
switch (relativeField) {

case (0): boss = (Employee)
jdoStateManager.replacingObjectField (this,
fieldNumber);
break;
case (1): dept = (Department)

jdoStateManager.replacingObjectField (this,
fieldNumber);

break;
case (2): empid =

jdoStateManager.replacingIntField (this,
fieldNumber);
break;

case (3): name =
jdoStateManager.replacingStringField (this,

fieldNumber);
break;

default:
/* if there is a pc superclass, delegate to it
if (relativeField < 0) {

super.jdoReplaceField (fieldNumber);
} else {

throw new IllegalArgumentException("fieldNumber");
}
*/
// if there is no pc superclass, throw an exception
throw new IllegalArgumentException("fieldNumber");

} // switch
}
public final void jdoReplaceFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {
int fieldNumber = fieldNumbers[i];
jdoReplaceField (fieldNumber);

}
}

23.21.11 Generated jdoProvideField and jdoProvideFields

The generated jdoProvideField gives the current value of one field to the StateManager.
This method is called by the StateManager whenever it wants to get the value of a field in the
instance, for example to store the field in the datastore.

public void jdoProvideField (int fieldNumber) {
int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {
case (0): jdoStateManager.providedObjectField(this,

fieldNumber, boss);
break;
case (1): jdoStateManager.providedObjectField(this,

fieldNumber, dept);
break;

Java Data Objects 2.2

 JDO 2.2 308 October 10, 2008

case (2): jdoStateManager.providedIntField(this,
fieldNumber, empid);
break;

case (3): jdoStateManager.providedStringField(this,
fieldNumber, name);
break;

default:
/* if there is a pc superclass, delegate to it
if (relativeField < 0) {

super.jdoProvideField (fieldNumber);
} else {

throw new IllegalArgumentException("fieldNumber");
}
*/
// if there is no pc superclass, throw an exception
throw new IllegalArgumentException("fieldNumber");

} // switch
}
public final void jdoProvideFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {
int fieldNumber = fieldNumbers[i];
jdoProvideField (fieldNumber);

}
}

23.21.12 Generated jdoCopyField and jdoCopyFields methods

The generated jdoCopyFields copies fields from another instance to this instance. This method
might be used by the StateManager to create before images of instances for rollback, or to re-
store instances in case of rollback.
This method delegates to method jdoCopyField to copy values for all fields requested.
To avoid security exposure, jdoCopyFields can be invoked only when both instances are owned
by the same StateManager. Thus, a malicious user cannot use this method to copy fields from a
managed instance to a non-managed instance, or to an instance managed by a malicious StateM-
anager.

public void jdoCopyFields (Object pc, int[] fieldNumbers){
// the other instance must be owned by the same StateManager
// and our StateManager must not be null!
if (((PersistenceCapable)other).jdoStateManager

!= this.jdoStateManager)
throw new IllegalArgumentException("this.jdoStateManager !=

other.jdoStateManager");
if (this.jdoStateManager == null)

throw new IllegalStateException("this.jdoStateManager == null");

// throw ClassCastException if other class is the wrong class
Employee other = (Employee) pc;
for (int i = 0; i < fieldNumbers.length; ++i) {

jdoCopyField (other, fieldNumbers[i]);
} // for loop

} // jdoCopyFields

protected void jdoCopyField (Employee other, int fieldNumber) {
int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {
case (0): this.boss = other.boss;

break;

Java Data Objects 2.2

 JDO 2.2 309 October 10, 2008

case (1): this.dept = other.dept;
break;

case (2): this.empid = other.empid;
break;

case (3): this.name = other.name;
break;

default: // other fields handled in superclass
// this class has no superclass, so throw an exception

throw new IllegalArgumentException("fieldNumber");
/* if it had a superclass, it would handle the field as follows:

super.jdoCopyField (other, fieldNumber);
 */

break;
} // switch

} // jdoCopyField

23.21.13 Generated writeObject method

If no user-written method writeObject exists, then one will be generated. The generated writ-
eObject makes sure that all persistent and transactional serializable fields are loaded into the in-
stance, and then the default output behavior is invoked on the output stream.

private void writeObject(java.io.ObjectOutputStream out)
throws java.io.IOException{

jdoPreSerialize();
out.defaultWriteObject ();

}

23.21.14 Generated jdoPreSerialize method

The generated jdoPreSerialize method makes sure that all persistent and transactional seri-
alizable fields are loaded into the instance by delegating to the corresponding method in StateM-
anager.

private final void jdoPreSerialize() {
if (jdoStateManager != null)

jdoStateManager.preSerialize(this);
}

23.21.15 Generated jdoNewObjectIdInstance

The generated methods create and return a new instance of the object id class.

public Object jdoNewObjectIdInstance() {
return new IntIdentity(Employee.class, empid);

}
public Object jdoNewObjectIdInstance(Object obj) {

if (obj instanceof String) {
return new IntIdentity(Employee.class, (String)str);

} else if (obj instanceof Integer) {
return new IntIdentity(Employee.class, (Integer)obj);

} else if (obj instanceof ObjectIdFieldSupplier) {
return new IntIdentity(Employee.class,

((ObjectIdFieldSupplier)obj).fetchIntField(2));
} else

throw new JDOUserException("illegal object id type");
}

Java Data Objects 2.2

 JDO 2.2 310 October 10, 2008

23.21.16 Generated jdoCopyKeyFieldsToObjectId

The generated methods copy key field values from the PersistenceCapable instance or from
the ObjectIdFieldSupplier.

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier fs, Object oid) {
throw new JDOFatalInternalException("Object id is immutable");

}
public void jdoCopyKeyFieldsToObjectId (Object oid) {

throw new JDOFatalInternalException("Object id is immutable");
}

23.21.17 Generated jdoCopyKeyFieldsFromObjectId

The generated methods copy key fields from the object id instance to the PersistenceCapable
instance or to the ObjectIdFieldConsumer.
public void jdoCopyKeyFieldsFromObjectId (ObjectIdFieldConsumer fc, Object oid) {

 fc.storeIntField (2, ((IntIdentity)oid).getKey());
}

This method is part of the PersistenceCapable contract. It copies key fields from the object id in-
stance to the ObjectIdFieldConsumer.
protected void jdoCopyKeyFieldsFromObjectId (Object oid) {

empid = ((IntIdentity)oid).getKey());
}

This method is used internally to copy key fields from the object id instance to a newly created
PersistenceCapable instance.

23.21.18 Generated Detachable methods
public void jdoReplaceDetachedState() {

jdoDetachedState = sm.replacingDetachedState(this,
jdoDetachedState);

}
} // end class definition

Java Data Objects 2.2

 JDO 2.2 311 October 10, 2008

24 Interface StateManager

This chapter specifies the StateManager interface, which is responsible for managing the state
of fields of persistence-capable classes in the JDO environment.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

24.1 Overview
A class that implements the JDO StateManager interface must be supplied by the JDO imple-
mentation. There is no user-visible behavior for this implementation; its only caller from the user’s
perspective is the PersistenceCapable class.Goals
This interface allows the JDO implementation to completely control the behavior of the Persis-
tenceCapable classes under management. In particular, the implementation may choose to ex-
ploit the caching capabilities of PersistenceCapable or not.
The architecture permits JDO implementations to have a singleton StateManager for all Per-
sistenceCapable instances; a StateManager for all PersistenceCapable instances
associated with a particular PersistenceManager or PersistenceManagerFactory; a
StateManager for all PersistenceCapable instances of a particular class; or a StateM-
anager for each PersistenceCapable instance. This list is not intended to be exhaustive, but
simply to identify the cases that might be typical.

Clone support
Note that any of the methods in this interface might be called by a clone of a persistence-capable
instance, and the implementation of StateManager must disconnect the clone upon detecting it.
Disconnecting the clone requires setting the clone’s jdoFlags to READ_WRITE_OK; setting the
clone’s jdoStateManager to null; and then returning from the method as if the clone were
transient. For example, in response to isLoaded, the StateManager calls
clone.jdoReplaceFlags(READ_WRITE_OK); clone.jdoReplaceStateMan-
ager(null); return true.
package javax.jdo.spi;

public interface StateManager {

24.2 StateManager Management
The following methods provide for updating the corresponding PersistenceCapable fields.
These methods are intended to be called only from the PersistenceCapable instance.
It is possible for these methods to be called from a cloned instance of a persistent instance (between
the time of the execution of clone() and the enhancer-generated reset of the jdoStateMan-
ager and jdoFlags fields). In this case, the StateManager is not managing the clone. The
StateManager must detect this case and disconnect the clone from the StateManager. The

Java Data Objects 2.2

 JDO 2.2 312 October 10, 2008

end result of disconnecting is that the jdoFlags field is set to READ_WRITE_OK and the
jdoStateManager field is set to null.
public StateManager replacingStateManager (PersistenceCapable pc,
StateManager sm);

When the current StateManager is not null, it should be the only caller of Persistence-
Capable.jdoReplaceStateManager, which calls this method. This method should be
called when the current StateManager wants to set the jdoStateManager field to null to
transition the instance to transient.
The jdoFlags are completely controlled by the StateManager. The meaning of the values are
the following:
0: READ_WRITE_OK

any negative number: READ_OK

1: LOAD_REQUIRED

2: DETACHED

public byte replacingFlags(PersistenceCapable pc);

This method is called by the PersistenceCapable in response to the StateManager calling
jdoReplaceFlags. The PersistenceCapable will store the returned value into its jd-
oFlags field.

24.3 PersistenceManager Management
The following method provides for getting the PersistenceManager. This method is intended
to be called only from the PersistenceCapable instance.
public PersistenceManager getPersistenceManager
(PersistenceCapable pc);

24.4 Dirty management
The following methods provide for marking the PersistenceCapable instance dirty:
public void makeDirty (PersistenceCapable pc, String fieldName);

public void makeDirty (PersistenceCapable pc, int fieldNumber);

24.5 State queries
The following methods are delegated from the PersistenceCapable class, to implement the
associated behavior of PersistenceCapable.
public boolean isPersistent (PersistenceCapable pc);

public boolean isTransactional (PersistenceCapable pc);

public boolean isNew (PersistenceCapable pc);

public boolean isDirty (PersistenceCapable pc);

public boolean isDeleted (PersistenceCapable pc);

Java Data Objects 2.2

 JDO 2.2 313 October 10, 2008

24.6 JDO Identity
public Object getObjectId (PersistenceCapable pc);

This method returns the JDO identity of the instance.
public Object getTransactionalObjectId (PersistenceCapable pc);

This method returns the transactional JDO identity of the instance.

24.7 Serialization support
public void preSerialize (PersistenceCapable pc);

This method loads all non-transient persistent fields in the PersistenceCapable instance, as
a precursor to serializing the instance. It is called by the generated jdoPreSerialize() method
in the PersistenceCapable class.

24.8 Field Management
The StateManager completely controls the behavior of the PersistenceCapable with re-
gard to whether fields are loaded or not. Setting the value of the jdoFlags field in the Persis-
tenceCapable directly affects the behavior of the PersistenceCapable with regard to
fields in the default fetch group.

• The StateManager might choose to never cache any field values in the
PersistenceCapable, but rather to retrieve the values upon request. To implement
this strategy, the StateManager will always use the LOAD_REQUIRED value for the
jdoFlags, and will always return false to any call to isLoaded.

• The StateManager might choose to selectively retrieve and cache field values in the
PersistenceCapable. To implement this strategy, the StateManager will always
use the LOAD_REQUIRED value for jdoFlags, and will return true to calls to
isLoaded that refer to fields that are cached in the PersistenceCapable.

• The StateManager might choose to retrieve at one time all field values for fields in the
default fetch group, and to take advantage of the performance optimization in the
PersistenceCapable. To implement this strategy, the StateManager will use the
LOAD_REQUIRED value for jdoFlags only when the fields in the default fetch group
are not cached. Once all of the fields in the default fetch group are cached in the
PersistenceCapable, the StateManager will set the value of the jdoFlags to
READ_OK. This will probably be done during the call to isLoaded made for one of the
fields in the default fetch group, and before returning true to the method, the
StateManager will call jdoReplaceFields with the field numbers of all fields in
the default fetch group, and will call jdoReplaceFlags to set jdoFlags to
READ_OK.

• The StateManager might choose to manage updates of fields in the default fetch group
individually. To implement this strategy, the StateManager will not use the
READ_WRITE_OK value for jdoFlags. This will result in the
PersistenceCapable always delegating to the StateManager for any change to
any field. In this way, the StateManager can reliably tell when any field changes, and
can optimize the writing of data to the store.

The following method is used by the PersistenceCapable to determine whether the value of
the field is already cached in the PersistenceCapable instance. If it is cached (perhaps during

Java Data Objects 2.2

 JDO 2.2 314 October 10, 2008

the execution of this method) then the value of the field is returned by the PersistenceCa-
pable method without further calls to the StateManager.
boolean isLoaded (PersistenceCapable pc, int field);

24.8.1 User-requested value of a field

The following methods are used by the PersistenceCapable instance to inform the State-
Manager of a user-initiated request to access the value of a persistent field.
The pc parameter is the instance of PersistenceCapable making the call; the field param-
eter is the field number of the field; and the currentValue parameter is the current value of the
field in the instance.
The current value of the field is passed as a parameter to allow the StateManager to cache values
in the PersistenceCapable. If the value is cached in the PersistenceCapable, then the
StateManager can simply return the current value provided with the method call.
public boolean getBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public char getCharField (PersistenceCapable pc, int field, char
currentValue);

public byte getByteField (PersistenceCapable pc, int field, byte
currentValue);

public short getShortField (PersistenceCapable pc, int field, short
currentValue);

public int getIntField (PersistenceCapable pc, int field, int
currentValue);

public long getLongField (PersistenceCapable pc, int field, long
currentValue);

public float getFloatField (PersistenceCapable pc, int field, float
currentValue);

public double getDoubleField (PersistenceCapable pc, int field,
double currentValue);

public String getStringField (PersistenceCapable pc, int field,
String currentValue);

public Object getObjectField (PersistenceCapable pc, int field,
Object currentValue);

24.8.2 User-requested modification of a field

The following methods are used by the PersistenceCapable instance to inform the State-
Manager of a user-initiated request to modify the value of a persistent field.
The pc parameter is the instance of PersistenceCapable making the call; the field param-
eter is the field number of the field; the currentValue parameter is the current value of the field
in the instance; and the newValue parameter is the value of the field given by the user method.
public void setBooleanField (PersistenceCapable pc, int field,
boolean currentValue, boolean newValue);

public void setCharField (PersistenceCapable pc, int field, char
currentValue, char newValue);

public void setByteField (PersistenceCapable pc, int field, byte
currentValue, byte newValue);

Java Data Objects 2.2

 JDO 2.2 315 October 10, 2008

public void setShortField (PersistenceCapable pc, int field, short
currentValue, short newValue);

public void setIntField (PersistenceCapable pc, int field, int
currentValue, int newValue);

public void setLongField (PersistenceCapable pc, int field, long
currentValue, long newValue);

public void setFloatField (PersistenceCapable pc, int field, float
currentValue, float newValue);

public void setDoubleField (PersistenceCapable pc, int field,
double currentValue, double newValue);

public void setStringField (PersistenceCapable pc, int field,
String currentValue, String newValue);

public void setObjectField (PersistenceCapable pc, int field,
Object currentValue, Object newValue);

24.8.3 StateManager-requested value of a field

The following methods inform the StateManager of the value of a persistent field requested by
the StateManager.
The pc parameter is the instance of PersistenceCapable making the call; the field param-
eter is the field number of the field; and the currentValue parameter is the current value of the
field in the instance.
public void providedBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public void providedCharField (PersistenceCapable pc, int field,
char currentValue);

public void providedByteField (PersistenceCapable pc, int field,
byte currentValue);

public void providedShortField (PersistenceCapable pc, int field,
short currentValue);

public void providedIntField (PersistenceCapable pc, int field, int
currentValue);

public void providedLongField (PersistenceCapable pc, int field,
long currentValue);

public void providedFloatField (PersistenceCapable pc, int field,
float currentValue);

public void providedDoubleField (PersistenceCapable pc, int field,
double currentValue);

public void providedStringField (PersistenceCapable pc, int field,
String currentValue);

public void providedObjectField (PersistenceCapable pc, int field,
Object currentValue);

24.8.4 StateManager-requested modification of a field

The following methods ask the StateManager for the value of a persistent field requested to be
modified by the StateManager.

Java Data Objects 2.2

 JDO 2.2 316 October 10, 2008

The pc parameter is the instance of PersistenceCapable making the call; and the field pa-
rameter is the field number of the field.
public boolean replacingBooleanField (PersistenceCapable pc, int field);

public char replacingCharField (PersistenceCapable pc, int field);

public byte replacingByteField (PersistenceCapable pc, int field);

public short replacingShortField (PersistenceCapable pc, int field);

public int replacingIntField (PersistenceCapable pc, int field);

public long replacingLongField (PersistenceCapable pc, int field);

public float replacingFloatField (PersistenceCapable pc, int field);

public double replacingDoubleField (PersistenceCapable pc, int field);

public String replacingStringField (PersistenceCapable pc, int field);

public Object replacingObjectField (PersistenceCapable pc, int field);

24.9 Detached instance support
public Object[] replacingDetachedState (

Detached pc, Object[] loaded);

This method is called by a detachable instance in response to the StateManager calling replace-
DetachedState. It provides the Detachable and the detached state to the StateManager.

Java Data Objects 2.2

 JDO 2.2 317 October 10, 2008

25 JDOPermission

A permission represents access to a system resource. For a resource access to be allowed for an ap-
plet (or an application running with a security manager), the corresponding permission must be ex-
plicitly granted to the code attempting the access.
The JDOPermission class provides a marker for the security manager to grant access to a class
to perform privileged operations necessary for JDO implementations.
Thefollowing JDO permissions are defined:

• setStateManager: this permission allows an instance to manage an instance of
PersistenceCapable, which allows the instance to access and modify any fields
defined as persistent or transactional. This permission is similar to but allows access to only
a subset of the broader ReflectPermission ("suppressAccessChecks").
This permission is checked by the
PersistenceCapable.jdoReplaceStateManager method.

• getMetadata: this permission allows an instance to access the metadata for any
registered PersistenceCapable class. This permission allows access to a subset of
the broader RuntimePermission("accessDeclaredMembers"). This
permission is checked by the JDOImplHelper.getJDOImplHelper method.

• closePersistenceManagerFactory: this permission allows a caller to close a
PersistenceManagerFactory, thereby releasing resources. This permission is
checked by the close() method of
PersistenceManagerFactory.manageMetadata: this permission allows a caller
to unload metadata for a class or a class loader, thereby releasing resources. This
permission is checked by the unregisterClass() and unregisterClasses()
methods of JDOImplHelper.

These permissions are defined in the JDOPermission class.
package javax.jdo.spi;
public final class JDOPermission extends

java.security.BasicPermission {
...

public static final javax.jdo.spi.JDOPermission
CLOSE_PERSISTENCE_MANAGER_FACTORY = "closePersistenceManagerFactory";

public static final javax.jdo.spi.JDOPermission GET_METADATA = "getMetadata";
public static final javax.jdo.spi.JDOPermission MANAGE_METADATA =

"manageMetadata";
public static final javax.jdo.spi.JDOPermission SET_STATE_MANAGER =

"setStateManager";
}

Use of JDOPermission allows the security manager to restrict potentially malicious classes from
accessing information contained in instances of PersistenceCapable.
A sample policy file entry granting code from the /home/jdoImpl directory permission to get
metadata, manage PersistenceCapable instances, and close PersistenceManagerFactory in-
stances is
grant codeBase "file:/home/jdoImpl/" {

Java Data Objects 2.2

 JDO 2.2 318 October 10, 2008

permission javax.jdo.spi.JDOPermission "getMetadata";
permission javax.jdo.spi.JDOPermission "setStateManager";
permission javax.jdo.spi.JDOPermission

"closePersistenceManagerFactory";
permission javax.jdo.spi.JDOPermission "manageMetadata";

};

Java Data Objects 2.2

 JDO 2.2 319 October 10, 2008

26 JDOQL BNF

Grammar Notation

The grammar notation is taken from the Java Language Specification, section 2.4 Grammar Notation.

• Terminal symbols are shown in bold fixed width font in the productions of the lexical and syntactic grammars, and
throughout this specification whenever the text is directly referring to such a terminal symbol. These are to appear
in a program exactly as written.

• Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by a colon. One or more alternative right-hand sides for the nonterminal then
follow on succeeding lines.

• The subscripted suffix "opt", which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional ele-
ment and one that includes it.

• When the words "one of" follow the colon in a grammar definition, they signify that each of the terminal symbols
on the following line or lines is an alternative definition.

26.1 Single-String JDOQL
This section describes the syntax of single-string JDOQL.

SingleStringJDOQL:
Select Fromopt Whereopt Decls Groupingopt Orderingopt Rangeopt

Select:
select uniqueopt ResultClauseopt IntoClauseopt

IntoClause:
into ResultClassName

From:
from CandidateClassName ExcludeClauseopt

ExcludeClause:
exclude subclasses

Where:
where Expression

Decls:
Variablesopt Parametersopt Importsopt

Variables:
variables VariableList

Java Data Objects 2.2

 JDO 2.2 320 October 10, 2008

Parameters:
parameters ParameterList

Imports:
ImportList

Grouping:
group by GroupingClause

Ordering:
order by OrderingClause

Range:
range Expression , Expression

26.2 Filter Specification

This section describes the syntax of the setFilter argument.

Basically, the query filter expression is a Java boolean expression, where some of the Java operators are not permit-
ted. Specifically, pre- and post- increment and decrement (++ and - -), shift (>> and <<) and assignment expressions
(+=, -=, etc.) are not permitted.

The Nonterminal InfixOp lists the valid operators for binary expressions in decreasing precedence. Operators one
the same line have the same precedence. As in Java operators require operands of appropriate types. See the Java
Language Specification for more information.

Plase note, the grammar allows arbitrary method calls (see MethodInvocation), where JDO only permits the fol-
lowing methods:

Expression:
UnaryExpression
Expression InfixOp UnaryExpression

InfixOp: one of
* / %
+ -

 > >= < <= instanceof
 == !=
&
|

Collection methods contains(Object), isEmpty(), size()
Map methods containsKey(Object), containsValue(Object),

isEmpty(), size(), get()
String methods startsWith(String), endsWith(String),

matches(String),
toLowerCase(), toUpperCase(),
indexOf(String), indexOf(String, int),
substring(int), substring(int, int)

Math methods Math.abs(numeric), Math.sqrt(numeric)
JDOHelper methods getObjectId(Object)

Java Data Objects 2.2

 JDO 2.2 321 October 10, 2008

&&
||

UnaryExpression:
PrefixOp UnaryExpression
(Type) UnaryExpression
Primary

PrefixOp: one of
+ - ~ !

Primary:
Literal
VariableName
ParameterName
this
FieldAccess
MethodInvocation
ClassOrInterfaceName
(Expression)
(Subquery)
AggregateExpression 1

FieldAccess:
FieldName

 Primary . FieldName

MethodInvocation:
Primary . MethodName (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

AggregateExpression:
count (distinctopt CountArgument)
sum (distinctopt Expression)
min (Expression)
max (Expression)
avg (distinctopt Expression)

CountArgument:
this
FieldAccess
VariableName

1 Please note, an AggregateExpression is only allowed as part of a result specification or a having specifica-
tion.

26.3 Subqueries

This section describes the syntax of subqueries in JDOQL.

Java Data Objects 2.2

 JDO 2.2 322 October 10, 2008

Subquery:
SubquerySelect SubqueryFrom Whereopt Decls

SubquerySelect:
select SubqueryResultClause

SubqueryResultClause:
distinctopt Expression ,opt

SubqueryFrom:
from CandidateClassName Aliasopt ExcludeClauseopt

 from FieldAccess Aliasopt

Alias:
asopt Identifier

26.4 Parameter Declaration

This section describes the syntax of the declareParameters argument.

ParameterList:
Parameters ,opt

ParameterDecls:
ParameterDecl
ParameterDecls , ParameterDecl

ParameterDecl:
Type ParameterName

Please note, as a usability feature ParameterList supports an optional trailing comma (in addition to what the Java
syntax allows in a parameter declaration).

26.5 Variable Declaration

This section describes the syntax of the declareVariables argument.

VariableList:
VariableDecls ;opt

VariableDecls:
VariableDecl
VariableDecls ; VariableDecl

VariableDecl:
Type ParameterName

Please note, as a usability feature VariableList defines the trailing semicolon as optional (in addition to what the
Java syntax allows in a variable declaration).

Java Data Objects 2.2

 JDO 2.2 323 October 10, 2008

26.6 Import Declaration

This section describes the syntax of the declareImports argument.

ImportList:
ImportDecls ;opt

ImportDecls:
ImportDecl
ImportDecls ; ImportDecl

ImportDecl:
import QualifiedIdentifier
import QualifiedIdentifier . *

Please note, as a usability feature ImportList defines the trailing semicolon as optional (in addition to what the
Java syntax allows in an import statement).

26.7 Ordering Specification

This section describes the syntax of the setOrdering argument.

OrderingClause:
OrderingSpecs ,opt

OrderingSpecs:
OrderingSpec
OrderingSpecs , OrderingSpec

OrderingSpec:
Expression Ascending
Expression Descending

Ascending: one of
asc ascending

Descending: one of
desc descending

Please note, as a usability feature OrderingClause supports an optional trailing comma.

26.8 Result Specification

This section describes the syntax of the setResult argument.

ResultClause:
distinctopt ResultSpecs ,opt

ResultSpecs:
ResultSpec
ResultSpecs , ResultSpec

Java Data Objects 2.2

 JDO 2.2 324 October 10, 2008

ResultSpec:
Expression ResultNamingopt

ResultNaming:
as Identifier

Please note, a result specification expression may be an aggregate expression. As a usability feature Result-
Clause supports an optional trailing comma.

26.9 Grouping Specification

This section describes the syntax of the setGrouping argument.

GroupingClause:
GroupingSpecs ,opt HavingSpecopt

GroupingSpecs:
Expression

 GroupingSpecs , Expression

HavingSpec:
having Expression

Please note, a having specification expression may include an aggregate expression. As a usability feature Group-
ingClause supports an optional trailing comma.

26.10 Types

This section describes a type specification, used in a parameter or variable declaration or in a cast expression.

Type
PrimitiveType
ClassOrInterfaceName

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

Java Data Objects 2.2

 JDO 2.2 325 October 10, 2008

26.11 Literals

A literal is the source code representation of a value of a primitive type, or the String type. Please refer to the Java
Language Specification for the lexical structure of Integer-, Floating Point-, and String-Literals. JDOQL allows
String-Literals being enclosed in either single quotes or double quotes. A single character enclosed in either single or
double quotes is considered to a be both: a char and a string literal.

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
StringLiteral
NullLiteral

IntegerLiteral: ...

FloatingPointLiteral: ...

BooleanLiteral: one of
true false

StringLiteral: ...

NullLiteral:
null

26.12 Names

A name is a possibly qualified identifier. Please refer to the Java Language Specification for the lexical structure of
identifiers.

QualifiedIdentifier:
Identifier
QualifiedIdentifier . Identifier

CandidateClassName:
QualifiedIdentifier

ResultClassName:
QualifiedIdentifier

ClassOrInterfaceName:
QualifiedIdentifier

VariableName:
Identifier

ParameterName:
Identifier
ColonPrefixedIdentifier

Java Data Objects 2.2

 JDO 2.2 326 October 10, 2008

FieldName:
Identifier

MethodName:
Identifier

26.13 Keywords

Keywords must not be used as package names, class names, parameter names, or variable names in queries. Key-
words are permitted as field names only if they are on the right side of the “.” in field access expressions as defined in
the Java Language Specification second edition, section 15.11. Keywords include the Java language keywords and
the JDOQL keywords. Java keywords are as defined in the Java language specification section 3.9, plus the boolean
literals true and false, and the null literal. JDOQL keywords maybe written in all lower case or all upper case.

JDOQLKeyword: one of
as AS asc ASC
ascending ASCENDING avg AVG
by BY count COUNT
desc DESC descending DESCENDING
distinct DISTINCT exclude EXCLUDE
from FROM group GROUP
having HAVING into INTO
max MAX min MIN
order ORDER parameters PARAMETERS
range RANGE select SELECT
subclasses SUBCLASSES sum SUM
unique UNIQUE variables VARIABLES
where WHERE

Java Data Objects 2.2

 JDO 2.2 327 October 10, 2008

27 Items Deferred to the Next Release

This chapter contains the list of items that were raised during the development of JDO but were not
resolved.

27.1 Nested Transactions
Define the semantics of nested transactions.
This proposal is still pending as of JDO 2.0.

27.2 Savepoint, Undosavepoint
Related to nested transactions, savepoints allow for making changes to instances and then undoing
those changes without making any datastore changes. It is a single-child nested transaction.
This proposal is still pending as of JDO 2.0.

27.3 Inter-PersistenceManager References
Explain how to establish and maintain relationships between persistent instances managed by dif-
ferent PersistenceManagers.
This proposal is still pending as of JDO 2.0.

27.4 Enhancer Invocation API
A standard interface to call the enhancer will be defined.
This proposal is still pending as of JDO 2.0.

27.5 Prefetch API
A standard interface to specify prefetching of instances by policy will be defined. The intended use
it to allow the application to specify a policy whereby instances of persistence capable classes will
be prefetched from the datastore when related instances are fetched. This should result in improved
performance characteristics if the prefetch policy matches actual application access patterns.
This functionality is now part of JDO 2.0.

27.6 BLOB/CLOB datatype support
JDO implementations can choose to implement mapping from java.sql.Blob datatype to byte arrays,
and java.sql.Clob to String or other java type; but these mappings are not standard, and may not have
the performance characteristics desired.
This functionality is now part of JDO 2.0.

Java Data Objects 2.2

 JDO 2.2 328 October 10, 2008

27.7 Managed (inverse) relationship support
In order for JDO implementations to be used for container managed persistence entity beans, rela-
tionships among persistent instances need to be explicitly managed. See the EJB Specification 2.0,
sections 9.4.6 and 9.4.7 for requirements. The intent is to support these semantics when the relation-
ships are identified in the metadata as inverse relationships.
This proposal has been rejected. If this is valuable for persistent instances, it is just as valuable for
transient instances. To have the behavior change when making an instance persistent is probably in-
appropriate.
This proposal should become an independent Java Specification Request.

27.8 Case-Insensitive Query
Use of String.toLowerCase() as a supported method in query filters would allow case-insensitive
queries.
This functionality is now part of JDO 2.0.

27.9 String conversion in Query
Supported String constructors String(<integer expression>) and String(<floating-point expres-
sion>) would make queries more flexible.
This proposal is still pending as of JDO 2.0.

27.10 Read-only fields
Support (probably marking the fields in the XML metadata) for read-only fields would allow better
support for databases where modification of data elements is proscribed. The metadata annotation
would permit earlier detection of incorrect modification of the corresponding fields.

27.11 Enumeration pattern
The enumeration pattern is a powerful technique for emulating enums. The pattern in summary al-
lows for fields to be declared as:
class Foo {

Bar myBar = Bar.ONE;
Bar someBar = new Bar("illegal"); // doesn’t compile

}
class Bar {

private String istr;
private Bar(String s) {

istr = s;
}
public static Bar ONE = new Bar("one");
public static Bar TWO = new Bar("two");

}

The advantage of this pattern is that fields intended to contain only certain values can be constrained
to those values. Supporting this pattern explicitly allows for classes that use this pattern to be sup-
ported as persistence-capable classes.

Java Data Objects 2.2

 JDO 2.2 329 October 10, 2008

27.12 Non-static inner classes
Allow non-static inner classes to be persistence-capable. The implication is that the enclosing class
must also be persistence-capable, and there is a one-many relationship between the enclosing class
and the inner class.

27.13 Projections in query
Currently the only return value from a JDOQL query is a Collection of persistent instances. Many
applications need values returned from queries, not instances. For example, to properly support
EJBQL, projections are required. One way to provide projections is to model what EJBQL has al-
ready done, and add a method setResult (String projection) to javax.jdo.Query. This method would
take as a parameter a single-valued navigation expression. The result of execute for the query would
be a Collection of instances of the expression.
This functionality is now part of JDO 2.0.

27.14 LogWriter support
Currently, there is no direct support for writing log messages from an implementation, although
there is a connection factory property that can be used for this purpose. A future revision could de-
fine how an implementation should use a log writer.

27.15 New Exceptions
Some exceptions might be added to more clearly define the cause of an exception. Candidates in-
clude JDODuplicateObjectIdException, JDOClassNotPersistenceCapable-
Exception, JDOExtentNotManagedException,
JDOConcurrentModificationException, JDOQueryException, JDOQue-
rySyntaxException, JDOUnboundQueryParameterException, JDOTransac-
tionNotActiveException, JDODeletedObjectFieldAccessException.

27.16 Distributed object support
Provide for remote object graph support, including instance reconciliation, relationship graph man-
agement, instance insertion ordering, etc.
This functionality is now part of JDO 2.0.

27.17 Object-Relational Mapping
Extend the current xml metadata to include optional O/R mapping information. This could include
tables to map to classes, columns to map to fields, and foreign keys to map to relationships.
Other O/R mapping issues include sequence generation for primary key support.
This functionality is now part of JDO 2.0.

Java Data Objects 2.2

 JDO 2.2 330 October 10, 2008

28 JDO 1.0.1 Metadata

This chapter specifies the metadata that describes a persistence-capable class. The metadata is
stored in XML format. The information must be available when the class is enhanced, and might be
cached by an implementation for use at runtime. If the metadata is changed between enhancement
and runtime, the behavior is unspecified.
Metadata files must be available via resources loaded by the same class loader as the class. These
rules apply both to enhancement and to runtime. Hereinafter, the term "metadata" refers to the ag-
gregate of all XML data for all packages and classes, regardless of their physical packaging.
The metadata associated with each persistence capable class must be contained within a file, and its
format is defined by the DTD. If the metadata is for only one class, then its file name is <class-
name>.jdo. If the metadata is for a package, or a number of packages, then its file name is pack-
age.jdo. In this case, the file is located in one of several directories: “META-INF”; “WEB-INF”;
<none>, in which case the metadata file name is "package.jdo" with no directory; “<package>/.../
<package>”, in which case the metadata directory name is the partial or full package name with
“package.jdo” as the file name.
When metadata information is needed for a class, and the metadata for that class has not already
been loaded, the metadata is searched as follows: META-INF/package.jdo, WEB-INF/package.jdo,
package.jdo, <package>/.../<package>/package.jdo, and <package>/<class>.jdo. Once metadata
for a class has been loaded, the metadata will not be replaced in memory. Therefore, metadata con-
tained higher in the search order will always be used instead of metadata contained lower in the
search order.
For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "META-INF/
package.jdo" containing xml for this class, then its definition is used. If there is no such file, but
there is a file "WEB-INF/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "package.jdo" containing metadata for com.xyz.Wombat, then
it is used. If there is no such file, but there is a file "com/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there is a file
"com/xyz/Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.
Note that this search order is optimized for implementations that cache metadata information as
soon as it is encountered so as to optimize the number of file accesses needed to load the metadata.
Further, if metadata is not in the natural location, it might override metadata that is in the natural
location. For example, while looking for metadata for class com.xyz.Wombat, the file com/pack-
age.jdo might contain metadata for class org.acme.Foo. In this case, subsequent search of metadata
for org.acme.Foo will find the cached metadata and none of the usual locations for metadata will be
searched.
The metadata must declare all persistence-capable classes. If any field declarations are not provided
in the metadata, then field metadata is defaulted for the missing field declarations. Therefore, the
JDO implementation is able to determine based on the metadata whether a class is persistence-ca-
pable or not. And any class not known to be persistence-capable by the JDO specification (for ex-
ample, java.lang.Integer) and not explicitly named in the metadata is not persistence-capable.

Java Data Objects 2.2

 JDO 2.2 331 October 10, 2008

For compatibility with installed applications, an implementation might first use the search order as
specified in the JDO 1.0 release. In this case, if metadata is not found, then the search order as spec-
ified in JDO 1.0.1 must be used.

28.1 ELEMENT jdo
This element is the highest level element in the xml document. It is used to allow multiple packages
to be described in the same document.

28.2 ELEMENT package
This element includes all classes in a particular package. The complete qualified package name is
required.

28.3 ELEMENT class
This element includes fields declared in a particular class, and optional vendor extensions. The
name of the class is required. The name is relative to the package name of the enclosing package.
Only persistence-capable classes may be declared. Non-persistence-capable classes must not be in-
cluded in the metadata.
The identity type of the least-derived persistence-capable class defines the identity type for all per-
sistence-capable classes that extend it.
The identity type of the least-derived persistence-capable class is defaulted to application if
objectid-class is specified, and datastore, if not.
The objectid-class attribute is required only for application identity. The objectid class name
uses Java rules for naming: if no package is included in the name, the package name is assumed to
be the same package as the persistence-capable class. Inner classes are identified by the “$” marker.
If the objectid-class attribute is defined in any concrete class, then the objectid class itself
must be concrete, and no subclass of the class may include the objectid-class attribute. If the
objectid-class attribute is defined for any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass of the
objectid class of the most immediate abstract persistence-capable superclass that defines an
objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass of the
objectid class of the most immediate subclasses that define an objectid class; and

• if the objectid class is concrete, no subclass of this persistence-capable class may define an
objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the inher-
itance hierarchy of the persistence-capable classes. Associated with every concrete persistence-ca-
pable class is exactly one objectid class.
The objectid class must declare fields identical in name and type to fields declared in this class.
The requires-extent attribute specifies whether an extent must be managed for this class. The
PersistenceManager.getExtent method can be executed only for classes whose metadata
attribute requires-extent is specified or defaults to true. If the PersistenceMan-
ager.getExtent method is executed for a class whose metadata specifies requires-ex-
tent as false, a JDOUserException is thrown. If requires-extent is specified or defaults
to true for a class, then requires-extent must not be specified as false for any subclass.

Java Data Objects 2.2

 JDO 2.2 332 October 10, 2008

The persistence-capable-superclass attribute is deprecated for this release. It is ig-
nored so metadata files from previous releases can be used.

28.4 ELEMENT field
The element field is optional, and the name attribute is the field name as declared in the class. If
the field declaration is omitted in the xml, then the values of the attributes are defaulted.
The persistence-modifier attribute specifies whether this field is persistent, transactional,
or none of these. The persistence-modifier attribute can be specified only for fields de-
clared in the Java class, and not fields inherited from superclasses. There is special treatment for
fields whose persistence-modifier is persistent or transactional.

Default persistence-modifier
The default for the persistence-modifier attribute is based on the Java type and modifiers
of the field:

• Fields with modifier static: none. No accessors or mutators will be generated for these
fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be generated for
these fields during enhancement, but they will not delegate to the StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields during
enhancement, but they will not delegate to the StateManager.

• Fields of a type declared to be persistence-capable: persistent.

• Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float, double;
• java.lang wrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Currency, Date, Locale, ArrayList, HashMap, HashSet,
Hashtable, LinkedHashMap, LinkedHashSet, LinkedList, TreeMap,
TreeSet, Vector, Collection, Set, List, and Map;

• Arrays of primitive types, java.util.Date, java.util.Locale, java.lang
and java.math types specified immediately above, and persistence-capable types.

• Fields of types of user-defined classes and interfaces not mentioned above: none. No
accessors or mutators will be generated for these fields.

The primary-key attribute is used to identify fields that have special treatment by the enhancer
and by the runtime. The enhancer generates accessor methods for primary key fields that always
permit access, regardless of the state of the instance. The mutator methods always delegate to the
jdoStateManager, if it is non-null, regardless of the state of the instance.
The null-value attribute specifies the treatment of null values for persistent fields during stor-
age in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a JDOUserException
if null values cannot be stored by the datastore.

• "exception": always throw a JDOUserException if this field contains a null
value at runtime when the instance must be stored;

Java Data Objects 2.2

 JDO 2.2 333 October 10, 2008

• "default": convert the value to the datastore default value if this field contains a null
value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a group with
other fields. It defaults to "true" for non-key fields of primitive types, java.util.Date, and
fields of java.lang, java.math types specified above.
The embedded attribute specifies whether the field should be stored as part of the containing in-
stance instead of as its own instance in the datastore. It must be specified or default to "true" for
fields of primitive types, wrappers, java.lang, java.math, java.util, collection, map, and
array types specified above; and "false" otherwise. While a compliant implementation is permit-
ted to support these types as first class instances in the datastore, the semantics of embedded=”true”
imply containment. That is, the embedded instances have no independent existence in the datastore
and have no Extent representation.
If the embedded attribute is "true" the field values are stored as persistent references to the re-
ferred instances in the datastore.
The embedded attribute applied to a field of a persistence-capable type is a hint to the implemen-
tation to treat the field as if it were a Second Class Object. But this behavior is not further specified
and is not portable.
A portable application must not assign instances of mutable classes to multiple embedded fields, and
must not compare values of these fields using Java identity (“f1==f2”).
The following field declarations are mutually exclusive; only one may be specified:
• default-fetch-group = "true"

• primary-key = "true"

• persistence-modifier = "transactional"

• persistence-modifier = "none"

28.4.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collection
typed fields are persistent, and the element type is Object.
The element-type attribute specifies the type of the elements. The type name uses Java rules
for naming: if no package is included in the name, the package name is assumed to be the same pack-
age as the persistence-capable class. Inner classes are identified by the "$" marker.
The embedded-element attribute specifies whether the values of the elements should be stored
as part of the containing instance instead of as their own instances in the datastore. It defaults to
"false" for persistence-capable types, Object types, and interface types; and "true" for other
types.
The embedded treatment of the collection instance itself is governed by the embedded attribute of
the field element.

28.4.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is map
typed fields are persistent, and the key and value types are Object.
The key-type and value-type attributes specify the types of the key and value, respectively.
The type names use Java rules for naming: if no package is included in the name, the package name
is assumed to be the same package as the persistence-capable class. Inner classes are identified by
the "$" marker.
The embedded-key and embedded-value attributes specify whether the key and value should
be stored as part of the containing instance instead of as their own instances in the datastore. They

Java Data Objects 2.2

 JDO 2.2 334 October 10, 2008

default to "false" for persistence-capable types, Object types, and interface types; and "true"
for other types.
The embedded treatment of the map instance itself is governed by the embedded attribute of the
field element.

28.4.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier for array
typed fields is based on the Java type of the component and modifiers of the field, according to the
rules in 18.4 Default persistence-modifier.
The embedded-element attribute specifies whether the values of the components should be
stored as part of the containing instance instead of as their own instances in the datastore. It defaults
to "false" for persistence-capable types, Object types, interface types, and concrete implemen-
tation classes of map and collection types. It defaults to "true" for other types.
The embedded treatment of the array instance itself is governed by the embedded attribute of the
field element.

28.5 ELEMENT extension
This element specifies JDO vendor extensions. The vendor-name attribute is required. The ven-
dor name "JDORI" is reserved for use by the JDO reference implementation. The key and value
attributes are optional, and have vendor-specific meanings. They may be ignored by any JDO im-
plementation.

28.6 The Document Type Descriptor
The document type descriptor is referred by the xml, and must be identified with a DOCTYPE so
that the parser can validate the syntax of the metadata file. Either the SYSTEM or PUBLIC form of
DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might optimize
access for the URI "file:/javax/jdo/jdo.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//DTD
Java Data Objects Metadata 1.0//EN"; a jdo implementation might optimize
access for this id.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<!ELEMENT jdo ((package)+, (extension)*)>
<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>
<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable) #IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) 'true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transactional|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) 'false’>
<!ATTLIST field null-value (exception|default|none) 'none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 335 October 10, 2008

<!ATTLIST field embedded (true|false) #IMPLIED>
<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

28.7 Example XML file
An example XML file for the query example classes follows. Note that all fields of both classes are
persistent, which is the default for fields. The emps field in Department contains a collection of
elements of type Employee, with an inverse relationship to the dept field in Employee.
In directory com/xyz, a file named hr.jdo contains:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name="com.xyz.hr">
<class name="Employee" identity-type="application" objectid-class="IntIdentity">
<field name="name" primary-key="true">
<extension vendor-name="sunw" key="index" value="btree"/>
</field>
<field name="salary" default-fetch-group="true"/>
<field name="dept">
<extension vendor-name="sunw" key="inverse" value="emps"/>
</field>
<field name="boss"/>
</class>
<class name="Department" identity-type="application" objectid-
class="DepartmentKey">
<field name="name" primary-key="true"/>
<field name="emps">
<collection element-type="Employee">
<extension vendor-name="sunw" key="element-inverse" value="dept"/>
</collection>
</field>
</class>
</package>
</jdo>

Java Data Objects 2.2

 JDO 2.2 336 October 10, 2008

Appendix A: References
[1] Enterprise JavaBeans (EJB) specification:

http://java.sun.com/products/ejb/docs.html

[2] Java Transaction API (JTA) specification - version 1.0
http://java.sun.com/products/jta/

[3] Java 2 Platform Enterprise Edition (J2EE), Platform specification:
http://java.sun.com/j2ee/docs.html

[4] Java 2 Platform Enterprise Edition (J2EE), Connector Architecture:
http://java.sun.com/j2ee/apidocs/

http://java.sun.com/j2ee/download.html#connectorspec

Java Data Objects 2.2

 JDO 2.2 337 October 10, 2008

Appendix B: Design Decisions
This appendix outlines some of the design decisions that were considered and not taken, along with
the rationale.

B.1 Enhancer
With JDO 2.0, enhancement is now no longer required. Reflection techniques for examining persis-
tent instances at transaction commit can be used instead, and proxies can be used to fault in refer-
enced instances.
The enhancer could generate code that would delegate to the associated StateManager every access
(read or write) for every field. This design was rejected because of several factors.

• Code bloat: the enhanced code would add an extra method call to every access to a
persistent field.

• Performance: the calls to the StateManager would add extra cycles to every access to a
persistent field, even if the field were already fetched into the persistent instance.

The enhancer could require complete metadata descriptions for all persistence-capable classes and
persistent and transactional fields, and further require that all classes be available during enhance-
ment of any class.
This would allow the enhancer to generate the most efficient code, but imposes an extra burden on
the user to keep the metadata and class definition absolutely in sync. If a field were declared in a
class after the metadata was defined, the user would have to update the metadata to add the new
field.
Requiring access to all classes during enhancement of any class was also seen as an extra burden on
the user, who would have to execute the enhancement in an environment that did not necessarily
reflect the runtime environment. There is also a performance penalty and additional complexity for
the enhancer.
The decision that was taken was that the enhancer must be able to determine the persistence-modi-
fier (persistent or none) from the Java modifiers and type of a field. Further, the information needed
to enhance a class is only the class file for the class being enhanced, plus the metadata for the class
and classes directly reachable (via references or inheritance) from the class.
The java byte codes generated in a class for a field in another class do not contain much information
about the modifiers (final or transient) of the field. They do have the field name and the field type,
and whether the field is static. There is an implied access control that permits the generated access
(package, protected, or public) but no distinction among the choices.
Therefore, a field that is not declared in the metadata must be enhanced to generate an accessor and
mutator even though the field is not persistent. For example, for a final int field declared in a class,
the field is not persistent, so it is not included in the list of persistent/transactional fields, but an ac-
cessor is generated for it. This accessor will be used only by other classes’ accesses, and access will
not be mediated (the StateManager will never be called). Accesses within the class are not enhanced.

Java Data Objects 2.2

 JDO 2.2 338 October 10, 2008

Appendix C: Revision History
This appendix outlines the significant changes during the evolution of the specification.

C.1 Changes since Draft 0.1
Added Appendix for revision history
Added Appendix for design decisions not taken

C.2 Changes since Draft 0.2
Changed the description for the persistent state (cached non-transactional values)
Added JDO instance state transition diagram and descriptions of state transitions.
Enhanced description of non-datastore JDO identity.
Added persistent-new-dirty and persistent-new-clean states to the life cycle.
Removed the checkpoint method from the Transaction interface. This functionality is now done
by the TRANSACTION_RETAIN_VALUES Transaction flag.
Added jdoCopy to the PersistenceCapable interface.
Added Query interface.

C.3 Changes since Draft 0.3
Changed Query signatures for setVars and setParams.
Changed all “set” Query signatures to return void instead of “Query”.
Added description of key (JDO identity) change semantics.
Added life cycle description for deletePersistent, a new interrogatory jdoIsDeleted, and two
new states persistent-new-deleted and persistent-deleted.
Added Chapter 6 Persistent Object Model, which specifies the field types for persistent fields, in-
cluding the required Collection types.
Added descriptions of enhancement to Chapter 13 JDO Enhancer, including serialization, cloning,
and reflection.
Added multiple object versions of makePersistent, makeTransactional, makeNontransac-
tional.

C.4 Changes since Draft 0.4

C.4.1 PersistenceManager
Removed flush and postCompletion from the API.
Changed refresh to indicate it is effective only in optimistic transactions.
Removed getFlags and setFlags, substituting getXXX and setXXX for all options.
Added getProperties, which returns VendorName, VersionNumber, etc.
Added get/setUserObject, which allow a user-specified object to be remembered by the Persistence-
Manager.
Required the implementation to support PersistenceManagerFactory and specified the interface for
it.

Java Data Objects 2.2

 JDO 2.2 339 October 10, 2008

Associated the concept of Extent with makePersistent and deletePersistent. Only classes with a
managed Extent can be parameters of these methods.
Added getObjectIdClass to allow the application to get the ObjectId class for a class.

C.4.2 Query
Added newQuery (Class cls, String filter).
Changed signature of compile to return void. This is not required to do anything but validate query
elements.
Made the Query implementation class serializable. A serialized and restored query instance can be
bound to a PersistenceManager by newQuery (Object).
Removed execute methods with four, five, and six parameters.
Allowed Date comparisons for equality and range queries.
Allowed String comparisons for equality and range queries.
Added “this” as a valid keyword in filters.
Added a query option to indicate faster queries that don’t execute the filter on cached instances.
Clarified that portable applications require all variables to be scoped by a contains clause.
Defined that variables not scoped by a contains clause are scoped by the Extent of the class.

C.4.3 Object Model
Changed the name of “Tracked SCO” to “SCO”.
Required a transaction to be in effect to execute makePersistent and deletePersistent.
Allowed an implementation to treat all reference types as First Class Objects.
Sharing of SCOs is permitted but the semantics are not guaranteed to be portable.

C.4.4 Life Cycle
Removed state persistent-new-clean and changed the name of persistent-new-dirty to persistent-
new.
Updated life cycle state diagram to simplify state transition descriptions.
Added section describing optimistic transaction state changes.

C.4.5 PersistenceCapable
Removed methods jdoIsReadReady and jdoIsWriteReady. None of the application’s business,
these.
Changed the semantics of jdoIsTransactional to return false if an instance is read in an opti-
mistic transaction. In an optimistic transaction, only new, deleted, modified instances and instances
made transactional return true.
Added jdoGetPersistenceManager, jdoGetObjectId, and jdoMakeDirty.

C.5 Changes since Draft 0.5
Clarified NontransactionalRead, Optimistic, and RetainValues flag dependencies.
Added a table and diagrams of life cycle transitions.
Changed datastore ObjectId to allow primitive wrapper classes to be used.

Java Data Objects 2.2

 JDO 2.2 340 October 10, 2008

Added failed object array and methods to JDOException, JDOCanRetryException, JDODataStore-
Exception, and JDOUserException.
Added a Chapter on Application Portability Guidelines.
Added a Chapter on XML Metadata.
Added two collection factories to PersistenceManager.
Added connection factory to PersistenceManagerFactory.

C.6 Changes since Draft 0.6 (Participant Review Draft)
Updated life cycle table to match transition descriptions for persistent-nontransactional instances.
Clarified that all data accessed while a datastore transaction is in progress will be transactional.
Added a discussion on inheritance issues for persistence capable classes.
Added class JDOHelper with static methods to avoid calling JDO specific methods on Persistence-
Capable classes.
Added a discussion on using the life cycle methods of PersistenceManager to clarify that the correct
method must be called if an instance that implements a Collection interface is to be a parameter.
Query use of operator = was extended to include pre- and post-increment and -decrement operators.
Query variables need not be unique; if they need to be unique, then uniqueness can be specified with
an additional query term.
Query examples were clarified as to their intent.
The terms persistent, non-persistent, transient were made consistent throughout the document. “Per-
sistent field” and “non-persistent field” refer to fields as declared in the JDO metadata. “Transient
field” refers to the field modifiers (orthogonal to persistent/non-persistent) and “transient instance”
refers to an instance of a persistence capable class that is not persistent. “Persistent instance” refers
to an instance of a persistence capable class that is persistent.
Derived fields were removed. These fields were supposed to be non-persistent fields whose values
depended on values of persistent fields. For example, age depends on birthdate. The application will
have to have a method age() instead of an instance variable age.
Transactional non-persistent fields were added. These fields have their values saved and restored
during rollback transitions along with persistent fields.
More details were added on use of JDO in the EJB environment.

C.7 Changes since Draft 0.7
Binary compatibility table was added to 2.1.1.
Optional features were added to Portability Guidelines.
Section 5.5.2 was clarified to require that the JDO identity instance can be obtained immediately
after the transition from transient to persistent-new.
The treatment of marking fields dirty for hidden fields was changed.
A table of arithmetic operators was added to the Query section.

C.8 Changes since Draft 0.8
Query filter defaults to “true” if not specified.
Added java.lang.BigInteger, java.lang.BigDecimal to object model.
Added cast operator (class) to query filter syntax.

Java Data Objects 2.2

 JDO 2.2 341 October 10, 2008

Added bitwise invert operator to query filter syntax.
Added unary + to query filter syntax.
Added parentheses to query filter syntax.
Added String methods beginsWith and endsWith to query filter syntax.
Added chapter for StateManager interface.
Rewrote entire chapter on Reference Enhancer.
Updated PersistenceCapable interface to match Reference Enhancer.
Removed PersistenceManager.setObjectId.
Updated XML to conform to xml4j DOM and Apache/Xerces verifying parsers.
Added second-class XML attribute to field element.
Added null-value XML attribute to field element. This attribute specifies the behavior of the runtime
system when a null-valued field mapped to a non-nullable datastore element is stored. The user can
choose to throw an exception or to convert the null value to a default datastore value.
Changed the description of life cycle states and enhancer to indicate that primary key field access is
always permitted, regardless of the life cycle state.
Added Extent chapter. The Extent interface was defined to be the result type of PersistenceMan-
ager.getExtent. The interface does not have the methods of Collection, so it can be used only for
iteration or for specifying the candidate instances for Query.
Fields in an inherited class may not be managed by a persistence capable class. It is a future objec-
tive to allow a class to manage the state of inherited fields if it directly derives from a non-persis-
tence capable class.
Clarified the behavior of null parameters in calls to PersistenceManager. Null values are permitted
as parameters for PersistenceCapable instances, and permitted as elements of Collection and Ob-
ject[] parameters, but are not permitted as parameters for Collection and Object[].
Added JDOPermission class to allow security management to enable jdo implementations without
requiring ReflectPermission, which is too permissive.

C.9 Changes since Draft 0.9
Updated XML Metadata

• Added xml version number

• Changed definition of class element to allow multiple field, vendor elements

• Added jdo element, which contains multiple package elements

• Added key-type to field element for Map types.

• Changed key-type in class element to identity-type

• Changed key-class in class element to objectid-class

• Added inverse to field element for managed relationships

• Added has-extent to class element

Fixed missing “static” in generated jdoInheritedFieldCount.
Fixed jdoGetXXX/jdoSetXXX in enhanced code for non-dfg fields. Transient instances would have
thrown null pointer exception.
Fixed missing generated method in PersistenceCapable: PersistenceCapable jdoNewInstance(State-
Manager sm)

Java Data Objects 2.2

 JDO 2.2 342 October 10, 2008

Fixed the reference to the Connector Architecture in Appendix A.
Updated ordering to include expressions and restrict the types of ordering expressions to primitives
except boolean, wrappers except Boolean, BigDecimal, BigInteger, and Date.
Removed bitwise AND, OR, and XOR from query operators.
Changed signatures of PersistenceManager methods getObjectById and getTransactionalInstance
to include a boolean flag indicating whether to validate that the instance exists in the datastore.
Clarified that getObjectId returns the identity as of the beginning of the transaction, in case the iden-
tity is being modified in the transaction.

C.10 Changes since draft 0.91
Changed xml has-extent to requires-extent
Corrected the signature of replacingIntField in StateManager.
Corrected the example code generated for PersistenceCapable jdoReplaceField.
Corrected the name of the verify parameter to validate in the signature of getObjectById.
Removed getTransactionalInstance in favor of overloading the meaning of getObjectById.
Changed the requirement to expose the hollow state to the application. A JDO implementation
might perform a state transition of a hollow instance as if the application had read a field.
Changed inheritance rules to allow non-persistence-capable classes to have persistence-capable su-
perclasses and subclasses.
Corrected the description of the field name in the markDirty method so an unqualified name refers
to the field in the most-derived class.
Corrected the signature of the newInstance method in JDOHelper to return Object.
Updated the instance callback description to include the rationale and environment for callbacks.
Updated makePersistent and deletePersistent to remove the restriction that the class of the instances
must have an Extent.
The behavior of failing instances in the life cycle methods was clarified to specify that all instances
will be attempted, and all failing instances will be included in the exception.
The newCollectionInstance was modified to include an initialContents parameter.
A new method newMapInstance was created to allow construction of a second class map instance.
Optimistic transaction management was clarified to specify that instances accessed during an opti-
mistic transaction are not enlisted in any datastore transaction until commit.
The ordering specification was modified to include String.
The isEmpty method was added to the allowed Collection methods in query.
The treatment of null-valued collection fields was specified to be identical to fields containing emp-
ty collections.
Specified the behavior of the iterator of an Extent if there are deleted or newly persistent instances
in the Extent.
The chapter on EJB has been substantially redone.
Exceptions were updated as to the contents of the failed object array.
The meaning of JDOHelper.getObjectId versus PersistenceManager.getObjectId was clarified with
regard to change of identity within a transaction.
Fixed (removed) all references to reference parameter in StateManager.

Java Data Objects 2.2

 JDO 2.2 343 October 10, 2008

Changed interface in PersistenceCapable for creating new instances, registering the PersistenceCa-
pable class with the runtime, and managing minimal “reflective” metadata for the runtime (managed
field names and types).
Added chapters for JDOHelper and JDOImplHelper.

C.11 Changes since draft 0.92
PersistenceManager methods that take a collection or array of instances have been changed to in-
clude All in their names.
Text throughout the document has been clarified to refer to the specific exception thrown.
Corrected sample code generated by the enhancer.
Added PersistenceManagerFactory methods getPersistenceManager(String userid, String pass-
word).
Static fields for values of jdoFlags were added to the PersistenceCapable interface.
A new ELEMENT array was added to the XML metadata to specify for array types whether the el-
ements are embedded or not.
Clarified the possible treatment of jdoFlags by the StateManager, and the handling of isLoaded.
Added methods PersistenceManager.getTransactionalObjectId, PersistenceCapable.jdoGetTrans-
actionalObjectId, and JDOHelper.getTransactionalObjectId to cover the case of changing primary
key in a transaction.
Changed the requirement for a compliant implementation to support all Collection types. The be-
havior of all Collection types is specified, but only Collection, Set, and HashSet are required.
Clarified the semantics of getObjectId with the validate flag set to true when the instance is in the
cache, for the cases of transactional v. nontransactional instances.
Changed failedObjectArray to failedObject, and nestedException to nestedExceptionArray in
JDOException.

C.12 Changes since draft 0.93
Removed the requirement for application identity key classes to implement equals for all object
types that include the correct name and type fields.
Changed the state transition of persistent-deleted to be unchanged by refresh.
Added a generated constructor jdoNewObjectIdInstance to facilitate key class handling.
Added a generated constructor jdoNewInstance (StateManager sm, Object oid) to facilitate key
class handling.
Added generated jdoCopyKeyFieldsToObjectId methods to facilitate key class handling.
Added nested interface ObjectIdFieldManager to facilitate key class handling.
Added PersistenceManagerFactory properties ConnectionFactory2 and ConnectionFactory2Name
for application server optimistic transaction support.
Added loadFactor to the newCollectionInstance method.
Clarified handling of getObjectId, getObjectById, and validate.
Added methods close(Iterator) and closeAll() to Extent.
Added methods close (Object queryResult) and closeAll() to Query.
Updated EJB chapter to clarify life cycle changes.
Removed inverse from XML metadata.

Java Data Objects 2.2

 JDO 2.2 344 October 10, 2008

Corrected some code examples in reference enhancer.
Added methods to support different query languages: PersistenceManager.newQuery (String lan-
guage, Object query) and Set supportedQueryLanguages().
Added nested extensions, and package extensions to xml.

C.13 Changes since draft 0.94
Added PersistenceManager and PersistenceManagerFactory methods to support the Multithreaded
property. This property indicates that the application is multithreaded (multiple threads will access
instances managed by the PersistenceManager).
Removed the PersistenceCapable constructor that takes StateManager as an argument. The helper
methods newInstance will use the default constructor instead, and will create protected default con-
structor if none exists.
Removed jdoVersionUID and replaced it with explicit byte[] jdoFieldFlags and Class jdoPersis-
tenceCapableSuperclass.
Added static fields to define values for jdoFieldFlags elements.
Added a chapter on JDOPermission.
Added optional extension element to xml elements array, collection, and map.
Added Multithreaded property to PersistenceManager, which indicates whether the PersistenceM-
anager must synchronize accesses from multiple application threads.
Added allowNulls parameter to PersistenceManager newMapInstance.
Changed the name of the method getJDOImplHelper to getInstance.
Clarified the handling of abstract classes, which might be PersistenceCapable (for the benefit of
concrete subclasses).
Removed the requirement for implementations to track modifications made to arrays.
Removed method getProperties from PersistenceManager. This method now is in PersistenceMan-
agerFactory only.
Removed supportedQuery from PersistenceManager. This method has been replaced by supporte-
dOptions, from which supported query languages should be available.
Added a method supportedOptions to PersistenceManagerFactory for the application to determine
which optional features are supported by an implementation.
Added query BNF chapter.

C.14 Changes since draft 0.95 (Proposed Final Draft)
Defined the term “Managed Fields” to mean persistent or transactional fields.
Clarified the treatment of non-managed identity if multiple instances are changed or deleted.
Removed the requirement that a transaction be active to make an instance transactional or nontrans-
actional.
Reorganized the State Transitions table to indicate that some state transitions are impossible (e.g.
without a transaction active, there can be no new instances).
Clarified the requirement for a no-args constructor in PersistenceCapable classes and superclasses.
Fixed bug in PersistenceCapable.jdoReplaceStateManager code generation.
Removed properties minPool, maxPool, msWait, and ConnectionDriverName from the interface.
These can be specified by PersistenceManagerFactory implementations as needed.

Java Data Objects 2.2

 JDO 2.2 345 October 10, 2008

Reorganized sections 20.14 through 20.16 for clarity.
Changed jdoFieldFlags to be independent flags, allowing for identification of non-transient (serial-
izable) fields.
Reworded the transaction synchronization sections for clarity.
Reworded the optimistic transaction section for clarity.
Modified the String concatenation operator (+) to allow only String + String, not String + primitive.
Clarified that String comparisons are lexicographical (not Locale-specific).
Added descriptions of JDOUserException for transaction not active and object deleted.

C.15 Changes since draft 0.96
Changed to specify that String comparisons in queries are based on an ordering not specified by
JDO, allowing for locale-specific orderings by JDO implementations.
Added a portability requirement for object id classes to have a toString() method and a public con-
structor that takes a String argument. Added newObjectIdInstance (Class, String) to PersistenceCa-
pable, jdoNewObjectIdInstance(String) to PersistenceCapable and newObjectIdInstance(Class,
String) to JDOImplHelper.
Split PersistenceCapable.ObjectIdFieldManager into two interfaces: PersistenceCapable.ObjectId-
FieldSupplier to supply values and PersistenceCapable.ObjectIdFieldConsumer to receive values.
Added the ability to construct a PersistenceManagerFactory from a Properties instance containing
keys and values of properties. Added a convenience method to JDOHelper getPersistenceManager-
Factory(Properties) to call the method in the implementation class.
Changed SCO factory name to newTrackedInstance, and removed the simultaneous setting of the
field value in the persistence-capable instance. The user must assign the newly created instance to
a field directly.
Added a parameter to newTrackedInstance to allow the user to specify a comparator for Collection
or Map.
Modified the behavior of makePersistent with regard to reachable instances. The newly reachable
instances have the characteristics of persistent-new until transaction end, at which time they either
become persistent or revert to transient.
Made support for application changes to application object identity an optional feature.
Methods retrieve and retrieveAll were added to PersistenceManager to allow the application to give
the implementation a hint that the instances are going to be used by the application, and the imple-
mentation can perform some optimized fetching of the instances.
Introduced the notion of provisional persistence. Instances that are reachable by persistent fields
from instances made persistent become provisionally persistent. They behave like persistent in-
stances until commit, at which time if they are no longer reachable from persistent instances they
revert to transient.
Type-import-on-demand (import <package-name>.*) has been added to query declareImports. The
Java rules for determining the package for an unqualified name are followed by query.
The newQuery methods that take both Extent and Class have been changed to eliminate the Class
argument. The Class is taken from the Extent.
The Reference Enhancement chapter was reorganized to make it easier to determine: changes to
PersistenceCapable root classes; changes to non-root classes; and changes to non-PersistenceCa-
pable classes.

Java Data Objects 2.2

 JDO 2.2 346 October 10, 2008

Changed the signatures of StateManager interface methods to take PersistenceCapable as the first
argument, to avoid a cast operation.
Defined a new method to be enhanced into the least-derived PersistenceCapable class to handle
copying key fields from oid into the instance: jdoCopyKeyFieldsFromObjectId (Object oid).
Removed that makeDirty in JDOHelper throws an exception in the case that the instance is not tran-
sient and the field is not managed. This is only one case that throws an exception; the other cases
silently ignore the condition. To be consistent, this condition will also silently return.

C.16 Changes since draft 0.97
Clarified comparisons in JDOQL for wrapped types and promotion of numeric types.
Made static method getPersistenceManagerFactory(Properties) mandatory for JDO implementa-
tions.
Added PersistenceManagerFactory property ConnectionDriverName.
Added vendor-specific global configuration data in the first part of a XXX.jdo file. For this, the
DTD was changed from <!ELEMENT jdo (package)+> to <!ELEMENT jdo (package)+ (exten-
sion)*>.
Clarified that the class of a persistent instance must be preserved, unless some outside change is
made to the datastore.
Clarified that parameters to query must be persistent, associated with the same PersistenceManager
as the Query.
Clarified that for portability, the instances in a candidate collection must be persistent, associated
with the same PersistenceManager as the Query.
Changed the semantics of retrieve and retrieveAll to require that the PersistenceManager load all
fields of the parameter instances, so a subsequent call to makeTransient can operate on a valid in-
stance (all persistent fields loaded).
Added description of class loaders to the PersistenceManager chapter 12.5.
Clarified that there are no default values for flags in getPersistenceManager.
Added transaction flag restoreValues, which determines the treatment of persistent instances at
transaction rollback.
Changed the specification of application identity key classes to require (instead of recommend) that
the class override the toString method and provide a public constructor that takes only a String pa-
rameter.
Clarified query comparisons for persistent and transient parameters and candidate instances.

C.17 Changes since Approved Draft
Changed 3.2.1 to correct the interface name from javax.jdo.PersistenceCapable to javax.jdo.spi.Per-
sistenceCapable.
Fixed typo in 5.5.6. Changed “The instance loses its JDO Identity and its association with the Per-
sistenceManager.” to “The instance retains its JDO Identity and its association with the Per-
sistenceManager.”

In 5.4.1 changed the wording regarding field types of application identity key fields to require por-
table applications to use only primitive, String, Date, and Number types.
In 5.4.1 added a restriction that application object id instances must not have any key fields with a
value of null.

Java Data Objects 2.2

 JDO 2.2 347 October 10, 2008

Added to 5.6.1 that the PersistenceManager must not hold a strong reference to a persistent-non-
transactional instance, so that it may be garbage collected.
In 5.8, clarified that a before image might be created on update depending on the implementation of
optimistic verification.
Corrected table 2 for rollback entries; changed the flag that affects the operation from retainValues
to restoreValues.
In Figure 13 Note 23, fixed “A persistent-dirty instance transitions to persistent-nontransactional...
at rollback when RestoreValues set to true.”
In Figure 13 Note 18 fixed from “The instance is cleared of values.” to ”No changes are made to the
values.”
Clarified 6.3 to discuss the treatment of Second Class Objects embedded in First Class Objects. SCO
instances of PersistenceCapable types have no standard treatment.
In 8.5, fixed missing property javax.jdo.option.ConnectionDriverName in JDOHelper list of stan-
dard properties for getPersistenceManagerFactory.
Added new section 9.5 for new security checking for StateManager. The new authorization strategy
does not require that the persistence-capable classes be authorized for JDOPermission(“setStateM-
anager”).
Fixed 10.3 the description of jdoPreClear does not include deleted instances, as these instances do
not transition to hollow.
Fixed typos in 11.2, 12.6.5: changed “JDODatastoreException” to “JDODataStoreException”
Inserted new 11.4 to add PersistenceManagerFactory close method.
Added to 12.6 “In a non-managed environment, if the current transaction is active, close() throws
JDOUserException.”
In 12.6.1, added new methods retrieveAll (Collection, boolean) and retrieveAll (Object[], boolean).
In 12.6.1, clarified the description of retrieve.
In 12.6.4, clarified the description of getExtent to throw JDOUserException if the metadata does not
require an extent to be maintained.
In 12.6.5, changed code example from aPersistenceManager.getObjectById (pc.getPersistenceM-
anager().getObjectId(pc), validate) to aPersistenceManager.getObjectById (JDOHelper.getObjec-
tId(pc), validate). This avoids using the PersistenceCapable interface from user code.
In 12.6.5, changed the exception thrown by getObjectById to JDOObjectNotFoundException.
In 12.6.6, clarified description of makeTransient to make clear that the persistence manager is not
responsible for clearing references to parameter instances to avoid making them persistent by reach-
ability at commit.
In 12.6.6, clarified description of makeTransactional to include throwing JDOUnsupportedOption-
Exception if a parameter is transient but TransientTransactional is not supported.
Fixed typo in 13.4.2. Changed “The retainValues setting currently active is returned.“ to “The
restoreValues setting currently active is returned.“
Fixed typo in 13.4.2. Changed “If this flag is set to true, then restoration of persistent instances
does not take place after transaction rollback.” to “If this flag is set to true, then restoration of per-
sistent instances takes place after transaction rollback.”
Corrected 13.4.3 to remove the requirement that Transaction must implement javax.transac-
tion.Synchronization.

Java Data Objects 2.2

 JDO 2.2 348 October 10, 2008

In 13.5, changed the behavior of failed optimistic transactions. The commit method throws a
JDOOptimisticVerificationException and automatically rolls back the transaction.
Clarified 14.3 that variable declarations each require a type and a name, and there must be separating
semicolons only if more than one declaration.
Clarified 14.3 that “candidate instances” are a subset of the candidate collection that are instances
of the candidate class or a subset of the candidate class.
Clarified 14.4 that “compile time” refers to “JDOQL-compile time”.
Changed 14.5 to state “If the candidates are not specified, then the candidate extent is the extent of
instances in the datastore with subclasses true.”
Clarified 14.6.2 if a cast operation would throw ClassCastException, it is treated the same as
a NullPointerException.
Clarified 14.6.5 the semantics of “contains” is “exists”. This clarification is needed to provide a ra-
tional meaning if the contains clause is negated.
Clarified in 15 that Extents are not managed for instances of embedded fields.
In 15.3, clarified that the iterator method will throw an exception if NontransactionalRead is not
supported.
In 17.1, added getCause(), getFailedObject() and getNestedExceptions() to the
description of JDOException.
In 17.1, fixed description of JDOUnsupportedOptionException: “This class is a derived class of
JDOUserException. This exception is thrown by an implementation to indicate that it does not im-
plement a JDO optional feature.”
In 17.1.9, added new JDOObjectNotFoundException to report instances that cannot be
found in the datastore.
In 17.1.10, added new JDOOptimisticVerificationException to report optimistic ver-
ification failures during commit.
Changed chapter 18 introduction to describe new policy for naming and accessing metadata files.
In 18.3, changed name scoping for persistence-capable-superclass.

Corrected 18.4 to correct an inconsistency with 20.9.6: “null-valued fields throw a JDOUserExcep-
tion when the instance is flushed to the datastore and the datastore does not support null values.”
Clarified in 18.4 that Extents are not managed for instances of embedded fields.
Updated 18.4.1 and 18.4.2 to clarify type name scoping: The type names use Java rules for naming:
if no package is included in the name, the package name is assumed to be the same package as the
persistence-capable class. Inner classes are identified by the "$" marker.
In 18.6, added DOCTYPE description to describe access to the public DTD at java.sun.com/dtd.
Changed 19.3 to reflect change in portable object identity field types.
Changed 20.9.6 to correct an inconsistency with 18.4: “null-valued fields throw a JDOUserExcep-
tion when the instance is flushed to the datastore and the datastore does not support null values.”
Changed 20.17 and 20.20.4 to modify security checking for JDOPermission(“setStateManager”).
Changed 20.17 to correct the access modifier of jdoPreSerialize from private to protected.
Changed 20.20.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-
ax.jdo.spi.PersistenceCapable.
Added new JDOPermission(“closePersistenceManagerFactory”) to check that the caller of Persis-
tenceManagerFactory.close() is authorized.

Java Data Objects 2.2

 JDO 2.2 349 October 10, 2008

Corrected Chapter 23 to remove alternative Name (ArgumentListopt) from MethodInvocation non-
terminal in the BNF.
Corrected Chapter 23 to remove the exclusive or operator from the BNF.
Removed Appendix B.3 since it no longer reflects reality.

C.18 Changes since 1.0.1
In 5.4, added classes used as an application identity class where there is a single application identity
field.
In 6.4.3, added interfaces and classes required to be supported as persistent field types: LinkedHash-
Map, LinkedHashSet, LinkedList, and Currency.
Added to 7.3 .1 a method to retrieve the version of an instance.
Added to 7.4.6 a method to determine if an instance is detached.
Changed 7.12 to add methods handling SimpleIdentity.
Changed in 8.5 the signature of the getPersistenceManagerFactory from Properties to Map.
Added to 8.5 new helper methods for getting PersistenceManagerFactory.
Added to 8.6 new options to specify the mapping for a PersistenceManagerFactory.
Updated 10 to disaggregate instance callbacks.
Changed in 11.1 and 11.7 the parameter of the getPersistenceManagerFactory from Properties to
Map.
Changed 11.6 to add javax.jdo.option.BinaryCompatibility, javax.jdo.option.UnconstrainedQuery-
Variables, javax.jdo.query.SQL, and javax.jdo.option.GetDataStoreConnection to optional features
that can be supported by the implementation.
Added to 11.8 a second level cache management API.
Added to 11.9 life cycle event listeners.
Changed requirements for PersistenceCapable to refer to BinaryCompatibility throughout.
Added new method in 12.6.4 getExtent(Class persistenceCapableClass).
Added to 12.6 a discussion on using interfaces with Extents.
Added to 12.6.1 a new method refreshAll(JDOException ex) to refresh instances after a failed op-
timistic transaction.
Added to 12.6.5 new methods getObjectsById to retrieve multiple instances based on id.
Added to 12.6.5 a new methods getObjectById to retrieve an instance based on class and key.
Added 12.6.6 newInstance method to create instances of persistence-capable interfaces.
Added 12.6.8 methods to detach and attach instances for multi-tier applications.
Added 12.7 methods to specify how instances are fetched from the datastore.
Added 12.8 a method to explicitly flush changes to the datastore.
Added to 12.11 methods to access multiple User Objects.
Added 12.14 new method getSequence.
Added 12.15 new LifecycleEventListener.
Added 12.16 new method getDataStoreConnection.
Clarified 13.4.4 if a transaction is active when begin is called, or a transaction is not active when
commit or rollback is called, JDOUserException is thrown.

Java Data Objects 2.2

 JDO 2.2 350 October 10, 2008

Added 13.4.5 get/setRollbackOnly to the Transaction interface.
Added to 14.5 newNamedQuery method.
Added to 14.6.1 setParameters methods to bind parameters to query instances.
Added to 14.6.2 the requirement for support of public final static fields in query filters.
Added to 14.6.2 table with supported methods on Collection, Map, and String.
Added to 14.6.2 static method JDOHelper.getObjectId(Object) to allow use of object id in queries.
Added after 14.6.7 new query elements for uniqueness, result, result class, grouping, and result car-
dinality limits.
Added after 14.6.12 a table for interactions among new query elements.
Added after 14.6 a new section to describe delete by query.
Added after 14.6 a new section to describe support for SQL native queries.
Changed 14.6.6 to permit ordering on boolean fields as a non-portable extension.
Moved Chapter 15 Extent to Chapter 19.
Added new Chapter 15 with object-relational mapping examples.
Moved Chapter 18 to Chapter 25 for JDO 1.0.1 XML metadata.
Added object-relational mapping metadata to Chapter 18.
Added 20.10 to discuss Binary Compatibility portability implications.
Renumbered Chapter 20 Reference Enhancer to Chapter 21.
Added new methods to Chapter 21 to support detached instances.
Updated 21.20.7 to correct a bug in the specification and implementation of getManagedField-
Count.
Renumbered Chapter 21 State Manager to Chapter 22.
Added new methods to Chapter 22 to support detached instances.
Updated 24.6 BLOB/CLOB datatype support to reflect that this functionality is part of JDO 2.0.

Updated 24.8 Case-Insensitive Query to reflect that this functionality is part of JDO 2.0.

Updated 24.13 Projections in query to reflect that this functionality is part of JDO 2.0.

Updated 24.16 Distributed object support to reflect that this functionality is part of JDO 2.0.

Updated 24.17 Object-Relational Mapping to reflect that this functionality is part of JDO 2.0.
Removed B.2 which discussed implications of removing PersistenceCapable.

C.19 Changes since Proposed Final Draft
Updated 18.14 to remove serialized attribute from element, key, and value. Removed foreign-key
attribute from field element. Added attribute serialized-element to elements collection and array.
Added attributes serialized-key and serialized-value to element map.
Removed attribute serialized from orm metadata. Added serialized-element, serialized-key, and se-
rialized-value to jdo metadata.
Removed true/false use of attribute foreign-key in metadata.
Allowed persistence-capable class to be the parameter of PersistenceManager newInstance.
Allowed attribute order in element collection to permit specifying a column to allow duplicates.
Allowed java.lang classes to be used in metadata without importing them.

Java Data Objects 2.2

 JDO 2.2 351 October 10, 2008

Added DetachAllOnCommit property to PersistenceManager to facilitate construction of detached
instances.
Changed signature of makePersistent to return the persistent instances, and to attach detached in-
stances.
Added attribute element-type to element array in metadata.
Added field-type to element field in metadata.
Specified behavior of null values in aggregates in JDOQL.
Allowed distinct with aggregates in JDOQL.
Allowed constructors or result class in JDOQL.
Allowed setUnique for delete by query in JDOQL.
Required relationships mapped using mapped-by to be consistent after flush.
Replaced fetch-depth by recursion-depth in fetch plan.
Added methods to specify detachment roots in fetch plan.
Automatically import JDOHelper in JDOQL.
Defined behavior of deletePersistent on detached instances.

C.20 Changes since 2.0
In 5.4.1, Compound Identity should be updated to reflect that for key fields of reference types, the
type of the key field is the reference type in the class but the oid of the reference type in the oid class.
In Table 2: State Transitions, the transition for a transient-dirty instance during commit with De-
tachAllOnCommit = true should be to transient-clean. Also, state changes need to be added for de-
tach methods and serialization.
In 5.5.8 and 5.5.9, detachCopy should be removed from the list of methods that throw exceptions if
applied to detached-clean or detached-dirty instances.
In 6.4.3, change "Portable JDO applications must not depend on whether instances of these classes
are treated as SCOs or FCOs. " to "Portable JDO applications must not depend on SCO or FCO
uniquing behavior, nor on the storage mechanism in the datastore. Portable applications may use the
same instance of these classes as field values in any persistence-capable class instance."
In section 7.5, change "If the class is abstract, null is returned." to "If the class is abstract, JDOFa-
talInternalException is thrown".
In section 7.5, add public byte fetchByteField(int fieldNumber); to ObjectIdFieldSupplier.
In section 7.5, add public byte storeByteField(int fieldNumber, byte value); to ObjectIdFieldCon-
sumer.
In Chapter 8, add after class JDOHelper {
 public JDOHelper();
 For some usage patterns, an instance of JDOHelper on which to invoke methods is preferable to
the use of static methods. For this purpose, a public constructor is provided.
In Chapter 8, add a convenience method that returns a PersistenceManager proxy that can be used
in web and ejb containers to dynamically bind to the transaction-associated PersistenceManager.
In Chapter 9, add section on managing date formatting for ObjectIdentity constructors.
 public synchronized void registerDateFormat(java.text.DateFormat df);
In 9.4, add method to retrieve persistence-capable classes that have been registered.

Java Data Objects 2.2

 JDO 2.2 352 October 10, 2008

 public java.util.Collection getRegisteredClasses();
In 9.5, add method to verify that the class is authorized to be a state manager.
 public static void checkAuthorizedStateManagerClass(Class smClass);
In 9.5, add method to register multiple state manager classes.
 public static void registerAuthorizedStateManagerClasses(java.util.Collection smClasses) throws
SecurityException;
In Chapter 11, add properties for configuring PersistenceManagerFactory that are consistent with
JPA specification of TransactionType and Persistence Unit Name.
In Chapter 12, specify the behavior of PersistenceManager if it extends Serializable and writeObject
is called.
In 12.6.6, clarify that a JDOUserException will be thrown when invoking newInstance: if a class is
not persistence-capable, or does not declare a public no-args constructor; if an interface is not per-
sistence-capable or declares methods that are not defined as persistent properties; if an abstract class
is not persistence-capable or declares abstract methods that are not defined as persistent properties.
In 12.6.8, section heading Explicit Detach, the sentence "If the parameter instance is detached, then
JDOUserException is thrown. " should be removed.
In 12.6.8, add a note that serialization for storage using the serialized, serialized-element, serialized-
key, or serialized-value metadata attributes does not create a detached instance.
In 12.6.8, clarify the behavior of instances during serialization both with and without an active trans-
action.
In 12.7.5, change public int setMaxFetchDepth(); to public int getMaxFetchDepth();
In 12.7.5, specify that getFetchGroups returns a read-only copy of the active Fetch Groups.
In 12.7.6, p. 127, change "A recursion-depth of 0 will fetch the whole graph of instances reachable
from this field." to "A recursion-depth of -1 will fetch the whole graph of instances reachable from
this field."
In 12.7.6 p. 129, change fetch-depth to recursion-depth in the example.
In 14, add subqueries to permit e.g. select from Employee where this.salary > (select avg(salary)
from Employee)
In 14.6.2 p. 159, the sectionheading "Methods" is not marked as a sectionheading.
Add to 14.6.9: Projected SCOs are never owned, projected FCOs are always managed. Modifying
unowned SCOs never has an effect on the database. Modifying FCOs no matter how you get them
always has an effect if the tx commits.
In 15.3, p. 187, the third paragraph, beginning "The field on the other side" and ending "in the next
transaction", is duplicated and will be removed.
In 15.3, add text to describe updating the other side of relationships where this side is deleted. This
maintains referential integrity for delete as well as update.
Add to 17.1.11
 JDOUserCallbackException extends javax.jdo.JDOUserException
In Chapter 18, add an xml element to specify the fetch plan to use for a query.
In 18.15.1, change "(e.g. a field of type Object can specify field-type=”Integer”)." to "(e.g. an ele-
ment of type Object can specify element-type=”Integer”).
In Chapter 18, add to .jdo metadata:
 <!ATTLIST property field-type CDATA #IMPLIED>

Java Data Objects 2.2

 JDO 2.2 353 October 10, 2008

Add to 18.15.1 "The default for dependent-element is false."
Add to 18.15.2 "The default for dependent-key is false."
Add to 18.15.2 "The default for dependent-value is false."
Change the last paragraph of 21.6 from "For Detachable classes, the results of restoring a serialized
persistent instance graph is a graph of interconnected detached instances that might be attached via
the attachCopy methods." to "For Detachable classes, the results of restoring a serialized persistent
instance graph is a graph of interconnected detached instances that might be attached via the makeP-
ersistent methods."
Change 21.13 from "Some methods require a non-null state manager. In these cases, if the jdoState-
Manager is null, then IllegalStateException is thrown." to "Some methods require a non-null state
manager. In these cases, if the jdoStateManager is null, then JDOFatalInternalException is thrown."
Change 21.21.7 Generated jdoGetManagedFieldCount sample implementation to avoid using the
jdoFieldNames field that might be initialized after it is used during initialization of a subclass.
 protected static int jdoGetManagedFieldCount () {
return jdoFieldNames.length;
}
 to protected static int jdoGetManagedFieldCount () {
return <enhancer-generated constant>;
}

Add to Chapter 23, constants defined in the JDOPermission class:
 public static final javax.jdo.spi.JDOPermission
CLOSE_PERSISTENCE_MANAGER_FACTORY = "closePersistenceManagerFactory";
public static final javax.jdo.spi.JDOPermission GET_METADATA = "getMetadata";
public static final javax.jdo.spi.JDOPermission MANAGE_METADATA = "manageMetadata";
public static final javax.jdo.spi.JDOPermission SET_STATE_MANAGER = "setStateManager";
These changes better support JDK 1.5:
Add to 6.3 a section requiring support for enum types, including subclasses of enum types.
Change in 12.6 signatures of the following PersistenceManager methods to use Java SE 5 features
including generics and varargs.
Note that these changes are source compatible with existing application programs.

Table 1: Java SE 5 Signature Changes

JDO 2.0 JDO 2.1 Maintenance Release

Object[] getObjectsById (Object[] oids) Object[] getObjectsById (Object... oids)

Object getObjectById (Class cls, Object key) <T> T getObjectById (Class<T> cls, Object key)

Object[] getObjectsById (Object[] oids, boolean
validate)

Object[] getObjectsById (boolean validate,
Object... oids)

Object newInstance(Class persistenceCapable) <T> T newInstance(Class<T> persistenceCa-
pable)

Object makePersistent (Object pc) <T> T makePersistent (T pc)

Java Data Objects 2.2

 JDO 2.2 354 October 10, 2008

Add to 15.1 a paragraph describing that mapping an enum to a fixed-precision numeric type uses
the ordinal() value for storage; mapping to a character column type (CHAR, VARCHAR, etc.) is
the default, and uses the name() value for storage; mapping to any other column type is an error.
Provide in a new chapter a set of annotations that map directly to xml elements as an alternative to
using xml metadata. Describe how jdo implementations can use either JDO annotations or JPA an-
notations to provide metadata.
Provide interfaces that extend both JDO and JPA in order to make it easier to migrate applications
from JDO to JPA.

Object[] makePersistentAll (Object[] pcs) <T> T[] makePersistentAll (T[] pcs)

Collection makePersistentAll (Collection pcs) <T> Collection<T> makePersistentAll (Collec-
tion<T> pcs)

Object detachCopy(Object pc) <T> T detachCopy(T pc)

Collection detachCopyAll(Collection pcs) <T> Collection<T> detachCopyAll(Collec-
tion<T> pcs)

Object[] detachCopyAll(Object[] pcs) <T> T[] detachCopyAll(T[] pcs)

void deletePersistentAll (Object[] pcs) void deletePersistentAll (Object... pcs)

void evictAll(Object[] pcs) void evictAll(Object... pcs)

void refreshAll (Object[] pcs) void refreshAll (Object... pcs)

Extent getExtent (Class persistenceCapableClass,
boolean subclasses)

<T> Extent<T> getExtent (Class<T> persistence-
CapableClass, boolean subclasses)

Extent getExtent (Class persistenceCapableClass) <T> Extent<T> getExtent (Class<T> persistence-
CapableClass)

void makeTransientAll (Object[] pcs) void makeTransientAll (Object... pcs)

void makeTransientAll (Object[] pcs, boolean
useFetchPlan)

void makeTransientAll (boolean useFetchPlan,
Object... pcs)

void makeTransactionalAll (Object[] pcs) void makeTransactionalAll (Object... pcs)

void makeNontransactionalAll (Object[] pcs) void makeNontransactionalAll (Object... pcs)

void retrieveAll (Object[] pcs) void retrieveAll (Object... pcs)

void retrieveAll (Object[] pcs, boolean useFetch-
Plan)

void retrieveAll (boolean useFetchPlan, Object...
pcs)

Table 1: Java SE 5 Signature Changes

JDO 2.0 JDO 2.1 Maintenance Release

Java Data Objects 2.2

 JDO 2.2 355 October 10, 2008

Appendix D: XML Schema for jdoconfig.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<xs:schema
 targetNamespace=”http://java.sun.com/xml/ns/jdo/jdoconfig”
 xmlns=”http://java.sun.com/xml/ns/jdo/jdoconfig”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jdoconfig=”http://java.sun.com/xml/ns/jdo/jdoconfig”
 elementFormDefault=”qualified”
 attributeFormDefault=”unqualified”
 version=”2.1”>
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema for the JDO configuration file.
 </xs:documentation>
 </xs:annotation>

 <xs:element name=”jdoconfig”>
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 The root configuration element for JDO.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name=”persistence-manager-factory” minOccurs=”1”
 maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 Standard JDO PersistenceManagerFactory
 configuration properties.
 Vendor-specific properties are set using
 additional vendor-specific attributes and/or
 property elements.
 </xs:documentation>
 </xs:annotation>
 <xs:sequence minOccurs=”0” maxOccurs=”1”>
 <xs:element name=”property” minOccurs=”0”
 maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>

Java Data Objects 2.2

 JDO 2.2 356 October 10, 2008

 Vendor-specific properties.
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref=”attlist.property”/>
 </xs:complexType>
 </xs:element>
 <xs:element name=”instance-lifecycle-listener”
 minOccurs=”0” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:annotation>
 <xs:documentation>
 javax.jdo.listener.InstanceLifecycleListener
 instance configuration.
 There is one
 instance-lifecycle-listener element
 per listener instance.
 Only one instance of the listener
 class is supported in this
 configuration file.
 If multiple instances of the same
 listener class is required, then the
 API

PersistenceManagerFactory.addInstanceLifecycleListener(...)
 must be used.

 If attribute “classes” is missing,
 all persistence-capable instances
 are observed,
 otherwise it is a comma- or
 whitespace-delimited list of
 persistence-capable
 classes whose instances’ will be
 observed.
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref=”attlist.instance-lifecycle-listener”/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup
 ref=”attlist.persistence-manager-factory”/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.jdoconfig”/>
 </xs:complexType>
 </xs:element>

 <xs:attributeGroup name=”attlist.jdoconfig”/>

 <xs:attributeGroup name=”attlist.persistence-manager-factory”>
 <xs:annotation>
 <xs:documentation>
 These are attributes corresponding to the standard properties
 defined in JDO 2.1.
 Any other attributes present, if unrecognized by a JDO
 implementation, may be silently ignored.
 </xs:documentation>
 </xs:annotation>

Java Data Objects 2.2

 JDO 2.2 357 October 10, 2008

 <!-- Corresponds to standard JDO property
javax.jdo.PersistenceManagerFactoryClass. -->
 <xs:attribute name=”class” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.Name. The absence
of this attribute implies the anonymous PMF. -->
 <xs:attribute name=”name” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.PersistenceUnitName. -->
 <xs:attribute name=”persistence-unit-name” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.Optimistic. -->
 <xs:attribute name=”optimistic” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.RetainValues. -->
 <xs:attribute name=”retain-values” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.RestoreValues.
-->
 <xs:attribute name=”restore-values” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.IgnoreCache. -->
 <xs:attribute name=”ignore-cache” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.NontransactionalRead. -->
 <xs:attribute name=”nontransactional-read” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.NontransactionalWrite. -->
 <xs:attribute name=”nontransactional-write” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.Multithreaded.
-->
 <xs:attribute name=”multithreaded” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.ConnectionDriverName. -->
 <xs:attribute name=”connection-driver-name” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.ConnectionUserName. -->
 <xs:attribute name=”connection-user-name” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.ConnectionPassword. -->
 <xs:attribute name=”connection-password” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.ConnectionURL.
-->
 <xs:attribute name=”connection-url” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.ConnectionFactoryName. -->
 <xs:attribute name=”connection-factory-name” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.ConnectionFactory2Name. -->
 <xs:attribute name=”connection-factory2-name” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.Mapping. -->
 <xs:attribute name=”mapping” use=”optional”/>
 <!-- Corresponds to standard JDO property
javax.jdo.option.DetachAllOnCommit. -->
 <xs:attribute name=”detach-all-on-commit” use=”optional”/>
 <!-- Corresponds to standard JDO property javax.jdo.option.ServerTimeZoneID.
-->
 <xs:attribute name=”server-time-zone-id” use=”optional”/>
 <!-- Any other vendor-specific attributes are allowed and passed literally
to the underlying implementation. -->
 <xs:anyAttribute processContents=”lax”/>
 </xs:attributeGroup>

 <xs:attributeGroup name=”attlist.property”>
 <!-- The name of the vendor-specific property. -->

Java Data Objects 2.2

 JDO 2.2 358 October 10, 2008

 <xs:attribute name=”name” use=”required”/>
 <!-- The value of the vendor-specific property. -->
 <xs:attribute name=”value” use=”optional”/>
 </xs:attributeGroup>

 <xs:attributeGroup name=”attlist.instance-lifecycle-listener”>
 <!-- The name of the listener class to instantiate. -->
 <xs:attribute name=”listener” use=”required”/>
 <!-- Comma- or whitespace-delimited list of persistence-capable classes
whose instances to observe. The absence of this attribute means to observe all. -->
 <xs:attribute name=”classes” use=”optional”/>
 </xs:attributeGroup>

</xs:schema>

Java Data Objects 2.2

 JDO 2.2 359 October 10, 2008

Appendix E: XML Schema for jdo.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<xs:schema targetNamespace=”http://java.sun.com/xml/ns/jdo/jdo”
 xmlns=”http://java.sun.com/xml/ns/jdo/jdo”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 version=”2.1”>
 <xs:element name=”jdo”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”package”/>
 <xs:element ref=”query”/>
 <xs:element ref=”fetch-plan”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.jdo”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.jdo”>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”fetch-plan”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”fetch-group”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.fetch-plan”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.fetch-plan”>
 <xs:attribute name=”name” default=””/>
 <xs:attribute name=”max-fetch-depth” default=”1”/>
 <xs:attribute name=”fetch-size” default=”0”/>
 </xs:attributeGroup>
 <xs:element name=”package”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”interface”/>
 <xs:element ref=”class”/>
 <xs:element ref=”sequence”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.package”/>

Java Data Objects 2.2

 JDO 2.2 360 October 10, 2008

 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.package”>
 <xs:attribute name=”name” default=””/>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”interface”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - datastore-identity
 - primary-key
 - inheritance
 - version
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”datastore-identity”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”inheritance”/>
 <xs:element ref=”version”/>
 <xs:element ref=”join”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 <xs:element ref=”property”/>
 <xs:element ref=”query”/>
 <xs:element ref=”fetch-group”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.interface”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.interface”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”identity-type”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”datastore”/>
 <xs:enumeration value=”application”/>
 <xs:enumeration value=”nondurable”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”objectid-class”/>
 <xs:attribute name=”requires-extent” default=”true”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”detachable” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>

Java Data Objects 2.2

 JDO 2.2 361 October 10, 2008

 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”embedded-only”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”property”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of array, collection and map,
 - join
 - embedded
 - key
 - value
 - order
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice minOccurs=”0” maxOccurs=”1”>
 <xs:element ref=”array”/>
 <xs:element ref=”collection”/>
 <xs:element ref=”map”/>
 </xs:choice>
 <xs:element ref=”join”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”element”/>
 <xs:element ref=”key”/>
 <xs:element ref=”value”/>
 <xs:element ref=”order”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.property”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.property”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”persistence-modifier”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”persistent”/>
 <xs:enumeration value=”transactional”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”default-fetch-group”>

Java Data Objects 2.2

 JDO 2.2 362 October 10, 2008

 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”load-fetch-group”/>
 <xs:attribute name=”null-value” default=”none”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”exception”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”embedded”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”primary-key” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”value-strategy”/>
 <xs:attribute name=”sequence”/>
 <xs:attribute name=”serialized”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”field-type”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>

Java Data Objects 2.2

 JDO 2.2 363 October 10, 2008

 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 <xs:attribute name=”recursion-depth”/>
 <xs:attribute name=”field-name”/>
 </xs:attributeGroup>
 <xs:element name=”class”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - datastore-identity
 - primary-key
 - inheritance
 - version
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”implements”/>
 <xs:element ref=”datastore-identity”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”inheritance”/>
 <xs:element ref=”version”/>
 <xs:element ref=”join”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 <xs:element ref=”column”/>
 <xs:element ref=”field”/>
 <xs:element ref=”property”/>
 <xs:element ref=”query”/>
 <xs:element ref=”fetch-group”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.class”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.class”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”identity-type”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”application”/>

Java Data Objects 2.2

 JDO 2.2 364 October 10, 2008

 <xs:enumeration value=”datastore”/>
 <xs:enumeration value=”nondurable”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”objectid-class”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”requires-extent” default=”true”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”persistence-capable-superclass”/>
 <xs:attribute name=”detachable” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”embedded-only”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”persistence-modifier”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”persistence-capable”/>
 <xs:enumeration value=”persistence-aware”/>
 <xs:enumeration value=”non-persistent”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”primary-key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.primary-key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.primary-key”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”column”/>
 </xs:attributeGroup>
 <xs:element name=”join”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>

Java Data Objects 2.2

 JDO 2.2 365 October 10, 2008

 Please note,
 the following subelements must not occur more than once:
 - primary-key
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.join”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.join”>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”outer” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”version”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>

Java Data Objects 2.2

 JDO 2.2 366 October 10, 2008

 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.version”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.version”>
 <xs:attribute name=”strategy”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”datastore-identity”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.datastore-identity”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.datastore-identity”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”strategy” default=”native”/>
 <xs:attribute name=”sequence”/>
 </xs:attributeGroup>
 <xs:element name=”implements”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”property”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.implements”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.implements”>
 <xs:attribute name=”name” use=”required”/>
 </xs:attributeGroup>
 <xs:element name=”inheritance”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - join
 - discriminator
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”join”/>

Java Data Objects 2.2

 JDO 2.2 367 October 10, 2008

 <xs:element ref=”discriminator”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.inheritance”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.inheritance”>
 <xs:attribute name=”strategy”/>
 </xs:attributeGroup>
 <xs:element name=”discriminator”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.discriminator”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.discriminator”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”value”/>
 <xs:attribute name=”strategy”/>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”column”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.column”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.column”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”target”/>
 <xs:attribute name=”target-field”/>
 <xs:attribute name=”jdbc-type”/>
 <xs:attribute name=”sql-type”/>
 <xs:attribute name=”length”/>
 <xs:attribute name=”scale”/>
 <xs:attribute name=”allows-null”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

Java Data Objects 2.2

 JDO 2.2 368 October 10, 2008

 <xs:attribute name=”default-value”/>
 <xs:attribute name=”insert-value”/>
 </xs:attributeGroup>
 <xs:element name=”field”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of array, collection, and map
 - join
 - embedded
 - key
 - value
 - order
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice minOccurs=”0” maxOccurs=”1”>
 <xs:element ref=”array”/>
 <xs:element ref=”collection”/>
 <xs:element ref=”map”/>
 </xs:choice>
 <xs:element ref=”join”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”element”/>
 <xs:element ref=”key”/>
 <xs:element ref=”value”/>
 <xs:element ref=”order”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.field”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.field”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”persistence-modifier”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”persistent”/>
 <xs:enumeration value=”transactional”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”field-type”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”primary-key” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

Java Data Objects 2.2

 JDO 2.2 369 October 10, 2008

 <xs:attribute name=”null-value” default=”none”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”exception”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”default-fetch-group”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”embedded”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”serialized”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”value-strategy”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>

Java Data Objects 2.2

 JDO 2.2 370 October 10, 2008

 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”sequence”/>
 <xs:attribute name=”load-fetch-group”/>
 <xs:attribute name=”recursion-depth”/>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”foreign-key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields and properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice minOccurs=”0” maxOccurs=”1”>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.foreign-key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.foreign-key”>
 <xs:attribute name=”table”/>
 <xs:attribute name=”deferred”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”delete-action” default=”restrict”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action” default=”restrict”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>

Java Data Objects 2.2

 JDO 2.2 371 October 10, 2008

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”name”/>
 </xs:attributeGroup>
 <xs:element name=”collection”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.collection”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.collection”>
 <xs:attribute name=”element-type”/>
 <xs:attribute name=”embedded-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”serialized-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”map”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.map”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.map”>
 <xs:attribute name=”key-type”/>
 <xs:attribute name=”embedded-key”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>

Java Data Objects 2.2

 JDO 2.2 372 October 10, 2008

 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent-key”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”serialized-key”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”value-type”/>
 <xs:attribute name=”embedded-value”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent-value”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”serialized-value”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>

Java Data Objects 2.2

 JDO 2.2 373 October 10, 2008

 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.key”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”value”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique

Java Data Objects 2.2

 JDO 2.2 374 October 10, 2008

 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.value”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.value”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”array”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.array”/>

Java Data Objects 2.2

 JDO 2.2 375 October 10, 2008

 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.array”>
 <xs:attribute name=”element-type”/>
 <xs:attribute name=”embedded-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”dependent-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”serialized-element”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”element”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.element”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.element”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>

Java Data Objects 2.2

 JDO 2.2 376 October 10, 2008

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”order”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.order”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.order”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”fetch-group”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”fetch-group”/>
 <xs:element ref=”field”/>
 <xs:element ref=”property”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.fetch-group”/>

Java Data Objects 2.2

 JDO 2.2 377 October 10, 2008

 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.fetch-group”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”post-load”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”embedded”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”field”/>
 <xs:element ref=”property”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.embedded”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.embedded”>
 <xs:attribute name=”owner-field”/>
 <xs:attribute name=”null-indicator-column”/>
 <xs:attribute name=”null-indicator-value”/>
 </xs:attributeGroup>
 <xs:element name=”sequence”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.sequence”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.sequence”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”datastore-sequence”/>
 <xs:attribute name=”factory-class”/>
 <xs:attribute name=”strategy” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”nontransactional”/>
 <xs:enumeration value=”contiguous”/>
 <xs:enumeration value=”noncontiguous”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”index”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields or properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>

Java Data Objects 2.2

 JDO 2.2 378 October 10, 2008

 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.index”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.index”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”unique” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”query”>
 <xs:complexType mixed=”true”>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.query”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.query”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”language”/>
 <xs:attribute name=”unmodifiable” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”result-class”/>
 <xs:attribute name=”fetch-plan”/>
 </xs:attributeGroup>
 <xs:element name=”unique”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields or properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>

Java Data Objects 2.2

 JDO 2.2 379 October 10, 2008

 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.unique”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.unique”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”deferred” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”extension”>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base=”any”>
 <xs:attributeGroup ref=”attlist.extension”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.extension”>
 <xs:attribute name=”vendor-name” use=”required”/>
 <xs:attribute name=”key”/>
 <xs:attribute name=”value”/>
 </xs:attributeGroup>
 <xs:complexType name=”any” mixed=”true”>
 <xs:sequence>
 <xs:any minOccurs=”0” maxOccurs=”unbounded” processContents=”skip”/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Java Data Objects 2.2

 JDO 2.2 380 October 10, 2008

Appendix F: XML Schema for orm.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<xs:schema targetNamespace=”http://java.sun.com/xml/ns/jdo/orm”
 xmlns=”http://java.sun.com/xml/ns/jdo/orm”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 version=”2.1”>
 <xs:element name=”orm”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”package”/>
 <xs:element ref=”query”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.orm”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.orm”>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”package”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”interface”/>
 <xs:element ref=”class”/>
 <xs:element ref=”sequence”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.package”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.package”>
 <xs:attribute name=”name” default=””/>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”interface”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - datastore-identity

Java Data Objects 2.2

 JDO 2.2 381 October 10, 2008

 - primary-key
 - inheritance
 - version
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”datastore-identity”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”inheritance”/>
 <xs:element ref=”version”/>
 <xs:element ref=”join”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 <xs:element ref=”property”/>
 <xs:element ref=”query”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.interface”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.interface”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”property”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - join
 - embedded
 - key
 - value
 - order
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”join”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”element”/>
 <xs:element ref=”key”/>
 <xs:element ref=”value”/>
 <xs:element ref=”order”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.property”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.property”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”value-strategy”/>
 <xs:attribute name=”sequence”/>
 <xs:attribute name=”serialized”>
 <xs:simpleType>

Java Data Objects 2.2

 JDO 2.2 382 October 10, 2008

 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 <xs:attribute name=”recursion-depth”/>
 <xs:attribute name=”field-name”/>
 </xs:attributeGroup>
 <xs:element name=”class”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - datastore-identity
 - primary-key
 - inheritance
 - version
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”datastore-identity”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”inheritance”/>
 <xs:element ref=”version”/>
 <xs:element ref=”join”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 <xs:element ref=”column”/>

Java Data Objects 2.2

 JDO 2.2 383 October 10, 2008

 <xs:element ref=”field”/>
 <xs:element ref=”property”/>
 <xs:element ref=”query”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.class”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.class”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”catalog”/>
 <xs:attribute name=”schema”/>
 </xs:attributeGroup>
 <xs:element name=”primary-key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.primary-key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.primary-key”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”column”/>
 </xs:attributeGroup>
 <xs:element name=”join”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - primary-key
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”primary-key”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.join”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.join”>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”outer” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>

Java Data Objects 2.2

 JDO 2.2 384 October 10, 2008

 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”version”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.version”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.version”>
 <xs:attribute name=”strategy”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”datastore-identity”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.datastore-identity”/>

Java Data Objects 2.2

 JDO 2.2 385 October 10, 2008

 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.datastore-identity”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”strategy” default=”native”/>
 <xs:attribute name=”sequence”/>
 </xs:attributeGroup>
 <xs:element name=”implements”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”property”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.implements”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.implements”>
 <xs:attribute name=”name” use=”required”/>
 </xs:attributeGroup>
 <xs:element name=”inheritance”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - join
 - discriminator
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”join”/>
 <xs:element ref=”discriminator”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.inheritance”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.inheritance”>
 <xs:attribute name=”strategy”/>
 </xs:attributeGroup>
 <xs:element name=”discriminator”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.discriminator”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.discriminator”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”value”/>
 <xs:attribute name=”strategy”/>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>

Java Data Objects 2.2

 JDO 2.2 386 October 10, 2008

 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”column”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.column”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.column”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”target”/>
 <xs:attribute name=”target-field”/>
 <xs:attribute name=”jdbc-type”/>
 <xs:attribute name=”sql-type”/>
 <xs:attribute name=”length”/>
 <xs:attribute name=”scale”/>
 <xs:attribute name=”allows-null”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”default-value”/>
 <xs:attribute name=”insert-value”/>
 </xs:attributeGroup>
 <xs:element name=”field”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - join
 - embedded
 - key
 - value
 - order
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”join”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”element”/>
 <xs:element ref=”key”/>
 <xs:element ref=”value”/>
 <xs:element ref=”order”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.field”/>

Java Data Objects 2.2

 JDO 2.2 387 October 10, 2008

 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.field”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”column”/>
 <xs:attribute name=”value-strategy”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”sequence”/>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”foreign-key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields and properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice minOccurs=”0” maxOccurs=”1”>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.foreign-key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.foreign-key”>
 <xs:attribute name=”table”/>
 <xs:attribute name=”deferred”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>

Java Data Objects 2.2

 JDO 2.2 388 October 10, 2008

 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”delete-action” default=”restrict”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action” default=”restrict”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”name”/>
 </xs:attributeGroup>
 <xs:element name=”key”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.key”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.key”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>

Java Data Objects 2.2

 JDO 2.2 389 October 10, 2008

 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”value”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>
 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.value”/>
 </xs:complexType>

Java Data Objects 2.2

 JDO 2.2 390 October 10, 2008

 </xs:element>
 <xs:attributeGroup name=”attlist.value”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”element”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - embedded
 - foreign-key
 - index
 - unique
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”embedded”/>
 <xs:element ref=”column”/>
 <xs:element ref=”foreign-key”/>
 <xs:element ref=”index”/>

Java Data Objects 2.2

 JDO 2.2 391 October 10, 2008

 <xs:element ref=”unique”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.element”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.element”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”delete-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”update-action”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”restrict”/>
 <xs:enumeration value=”cascade”/>
 <xs:enumeration value=”null”/>
 <xs:enumeration value=”default”/>
 <xs:enumeration value=”none”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”indexed”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 <xs:enumeration value=”unique”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”order”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - index
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:element ref=”column”/>
 <xs:element ref=”index”/>
 </xs:choice>

Java Data Objects 2.2

 JDO 2.2 392 October 10, 2008

 <xs:attributeGroup ref=”attlist.order”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.order”>
 <xs:attribute name=”column”/>
 <xs:attribute name=”mapped-by”/>
 </xs:attributeGroup>
 <xs:element name=”embedded”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”field”/>
 <xs:element ref=”property”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.embedded”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.embedded”>
 <xs:attribute name=”owner-field”/>
 <xs:attribute name=”null-indicator-column”/>
 <xs:attribute name=”null-indicator-value”/>
 </xs:attributeGroup>
 <xs:element name=”sequence”>
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.sequence”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.sequence”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”datastore-sequence”/>
 <xs:attribute name=”factory-class”/>
 <xs:attribute name=”strategy” use=”required”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”nontransactional”/>
 <xs:enumeration value=”contiguous”/>
 <xs:enumeration value=”noncontiguous”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”index”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields or properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.index”/>
 </xs:complexType>

Java Data Objects 2.2

 JDO 2.2 393 October 10, 2008

 </xs:element>
 <xs:attributeGroup name=”attlist.index”>
 <xs:attribute name=”name”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”unique” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”query”>
 <xs:complexType mixed=”true”>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.query”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.query”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”language”/>
 <xs:attribute name=”unmodifiable” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”result-class”/>
 </xs:attributeGroup>
 <xs:element name=”unique”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:annotation><xs:documentation>
 Please note,
 the following subelements must not occur more than once:
 - the choice of columns, fields or properties
 </xs:documentation></xs:annotation>
 <xs:element ref=”extension”/>
 <xs:choice>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”column”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”field”/>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”property”/>
 </xs:choice>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.unique”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.unique”>

Java Data Objects 2.2

 JDO 2.2 394 October 10, 2008

 <xs:attribute name=”name”/>
 <xs:attribute name=”table”/>
 <xs:attribute name=”deferred” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:attributeGroup>
 <xs:element name=”extension”>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base=”any”>
 <xs:attributeGroup ref=”attlist.extension”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.extension”>
 <xs:attribute name=”vendor-name” use=”required”/>
 <xs:attribute name=”key”/>
 <xs:attribute name=”value”/>
 </xs:attributeGroup>
 <xs:complexType name=”any” mixed=”true”>
 <xs:sequence>
 <xs:any minOccurs=”0” maxOccurs=”unbounded” processContents=”skip”/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Java Data Objects 2.2

 JDO 2.2 395 October 10, 2008

Appendix G: XML Schema for jdoquery.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<!--
 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with
 this work for additional information regarding copyright ownership.
 The ASF licenses this file to You under the Apache License, Version 2.0
 (the “License”); you may not use this file except in compliance with
 the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an “AS IS” BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<xs:schema targetNamespace=”http://java.sun.com/xml/ns/jdo/jdoquery”
 xmlns=”http://java.sun.com/xml/ns/jdo/jdoquery”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 version=”2.1”>
 <xs:element name=”jdoquery”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”package”/>
 <xs:element ref=”query”/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name=”package”>
 <xs:complexType>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”interface”/>
 <xs:element ref=”class”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.package”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.package”>
 <xs:attribute name=”name” default=””/>
 </xs:attributeGroup>
 <xs:element name=”interface”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
 <xs:element ref=”extension”/>
 <xs:element ref=”query”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.interface”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.interface”>
 <xs:attribute name=”name” use=”required”/>
 </xs:attributeGroup>
 <xs:element name=”class”>
 <xs:complexType>
 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>

Java Data Objects 2.2

 JDO 2.2 396 October 10, 2008

 <xs:element ref=”extension”/>
 <xs:element ref=”query”/>
 </xs:choice>
 <xs:attributeGroup ref=”attlist.class”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.class”>
 <xs:attribute name=”name” use=”required”/>
 </xs:attributeGroup>
 <xs:element name=”query”>
 <xs:complexType mixed=”true”>
 <xs:sequence>
 <xs:element minOccurs=”0” maxOccurs=”unbounded” ref=”extension”/>
 </xs:sequence>
 <xs:attributeGroup ref=”attlist.query”/>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.query”>
 <xs:attribute name=”name” use=”required”/>
 <xs:attribute name=”language”/>
 <xs:attribute name=”unmodifiable” default=”false”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”unique”>
 <xs:simpleType>
 <xs:restriction base=”xs:token”>
 <xs:enumeration value=”true”/>
 <xs:enumeration value=”false”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name=”result-class”/>
 </xs:attributeGroup>
 <xs:element name=”extension”>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base=”any”>
 <xs:attributeGroup ref=”attlist.extension”/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:attributeGroup name=”attlist.extension”>
 <xs:attribute name=”vendor-name” use=”required”/>
 <xs:attribute name=”key”/>
 <xs:attribute name=”value”/>
 </xs:attributeGroup>
 <xs:complexType name=”any” mixed=”true”>
 <xs:sequence>
 <xs:any minOccurs=”0” maxOccurs=”unbounded” processContents=”skip”/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

JDO 2.2 397 October 10, 2008

Java Data Objects 2.2

A
accessDeclaredMembers 317
addInstanceLifecycleListener 111, 144
addRegisterClassListener 92
addStateInterrogation 95
afterCompletion 51, 152
all 137
allows-null 223
application 43
ApplicationIdentity 107
Array 107
ArrayList 107
Arrays 75
associated object 139
AttachCallback 98
AttachLifecycleListener 143
ATTRIBUTE deferred 228
ATTRIBUTE delete-action 227
ATTRIBUTE update-action 227

B
basic 137
beforeCompletion 51, 152
begin 153
Binary Compatibility 28
Binary compatibility 286
BinaryCompatibility 108
ByteIdentity 48

C
Cache management 117
Change of identity 46
ChangeApplicationIdentity 108
char literals 166
CharIdentity 48
ClearCallback 97
ClearLifecycleListener 142
clone 291
Cloning 291
Closing Query results 172
Collection 74, 116
commit 153, 154
compile 163
compound Identity 47
Conflicting changes 196
Connection 29, 34, 100
connection 25, 33, 35, 147
Connection Management 148
ConnectionFactory 104

copyKeyFieldsToObjectId 94
Correlated subqueries 169
CreateLifecycleListener 141
Currency 74

D
datastore connection 145
DataStoreCache 110
DatastoreIdentity 107
DateFormat 94
DateTime 108
declareImports 162
declareParameters 162
declareVariables 162
default 136
default fetch group 130
default-value 223
Delete persistent instances 124
DeleteCallback 97
DeleteLifecycleListener 142
deletePersistent 124
DETACH_LOAD_FIELDS 128, 129
DETACH_UNLOAD_FIELDS 128
Detachable 83, 289
DetachAllOnCommit 54, 126, 127
DetachCallback 97
detachCopy 127
detachCopyAll 127
Detached 79
Detached-clean 54
Detached-dirty 54
detachedState 291
DetachLifecycleListener 143
DirtyLifecycleListener 142
Document Type Descriptor 236, 334

E
ELEMENT array 233, 334
ELEMENT class 331
ELEMENT collection 227, 228, 232, 333
ELEMENT column 220
ELEMENT discriminator 227
ELEMENT element 235
ELEMENT embedded 234
ELEMENT extension 236, 334
ELEMENT field 228, 332
ELEMENT implements 227
ELEMENT inheritance 226
ELEMENT interface 220

Index

JDO 2.2 398 October 10, 2008

Java Data Objects 2.2

ELEMENT jdo 220, 331
ELEMENT join 226
ELEMENT key 234
ELEMENT map 233, 333
ELEMENT orm 236
ELEMENT package 220, 331
ELEMENT primary-key 225
ELEMENT property 228
ELEMENT query 235
ELEMENT sequence 235
ELEMENT value 234
ELEMENT version 225
enum 191
Enums 75
equals 44
evict 117
Evicting objects from the cache 110
exceptions 214
exclude subclasses 177, 178
execute 164
executeWithArray 165
executeWithMap 164
Extent 119, 281
Extent iterator 281

F
Fetch Groups 129
fetch plan 118, 129
fetch size 129
FETCH_SIZE_GREEDY 132
FETCH_SIZE_OPTIMAL 132
FetchGroup 136
fetch-group 133
FetchPlan 131
FGOnly 118
Field Numbering 290
First Class Objects 71
flush 195
for... operator 280
from 177

G
Generated fields 296, 297
Generated methods 297
Generated static initializer 297
getDataStoreCache 110
GetDataStoreConnection 108
getDataStoreConnection 145
getDetachAllOnCommit 126

getDetachmentOptions 132
getFetchPlan 281
getFieldNames 91
getFieldTypes 91
getIgnoreCache 119, 163
GetJDBCConnection 108
getJDOImplHelper 317
getKey 48
getKeyAsObject 48
getMultithreaded 139
getNativeConnection 145
getObjectById 120, 122
getObjectId 86, 121
getObjectIdClass 140
getObjectIds 86
getObjectsById 122
GetPersistenceManager 77
getPersistenceManager 105, 149, 161
getPersistenceManagerFactory 140
getSynchronization 152
getTargetClass 48
getTargetClassName 48
getTransactionalObjectId 121
getUserObject 139
getVersion 86
group by 177

H
hashCode 44
HeterogeneousInterfaceType 108
HeterogeneousObjectType 108
Hollow 52

I
IgnoreCache 163
Inheritance 75, 290
inheritance 224, 331
Inner class 219, 331
insert-value 223
Instance life cycle management 123
InstanceCallbacks 96
InstanceLifecycleEvent 144
InstanceLifecycleListener 111, 141
IntIdentity 48
into 177
Introspection (Java core reflection) 292
isActive 150
isClosed 116
isDetached 87

JDO 2.2 399 October 10, 2008

Java Data Objects 2.2

Isolation Level 100
isUnmodifiable 163

J
java.sql.Connection 145
javax.jdo.mapping.Catalog 102
javax.jdo.mapping.Schema 102
javax.jdo.option.ChangeApplicationIdentity 128
javax.jdo.option.Mapping 102, 218
jdbc-type 222
JDO Identity 44, 51, 71, 78, 86, 120, 167, 284, 313
JDO identity 47
JDO option 42, 43, 54
jdoconfig 103
JDOConnection 145
jdoCopyFields 308
jdoCopyKeyFieldsToObjectId 299, 309, 310
JDODetachedFieldAccessException 128, 300
jdoDetachedState 84, 296
JDOEntityManagerFactory 279
jdoFieldFlags 296
jdoFieldNames 296, 303
jdoFieldTypes 297, 303
jdoFlags 295, 303
jdoGetField 288, 289, 294, 305
jdoGetManagedFieldCount 305
jdoGetObjectId 78, 86, 298
jdoGetPersistenceManager 77
jdoGetTransactionalObjectId 298
jdoGetVersion 298
JDOHelper 77, 85
JDOImplHelper 91
jdoInheritedFieldCount 296, 303
jdoIsDeleted 79, 87, 297
jdoIsDetached 297
jdoIsDirty 79, 297
jdoIsNew 79, 87, 297
jdoIsPersistent 79, 87, 297
jdoIsTransactional 79, 87, 297
jdoMakeDirty 78, 297
jdoNewInstance 80, 300, 304, 305
jdoNewObjectIdInstance 81
JDONullIdentityException 49, 82
JDOPermission("getMetadata") 317
JDOPermission("setStateManager") 317
jdoPersistenceCapableSuperclass 297
JDOPostAttach 127
jdoPostAttach 98
jdoPostDetach 97

jdoPostLoad 96
jdoPreAttach 98
jdoPreClear 97
jdoPreDelete 97
jdoPreDetach 97
jdoPreSerialize 291, 309
jdoPreStore 96
jdoProvideField 307
jdoProvideFields 307, 308
JDOQL 109
jdoReplaceDetachedState 84, 300
jdoReplaceField 307
jdoReplaceFields 306, 307
jdoReplaceStateManager 304
jdoSetField 288, 289, 294, 306, 307
jdoStateManager 303
JDOUnsupportedOptionException 100
JoinedTablePerClass 108
JoinedTablePerConcreteClass 109

L
length 223
LinkedHashMap 74
LinkedHashSet 74
LinkedList 107
List 107
LoadCallback 96
LoadLifecycleListener 141
Locale 74
LongIdentity 48

M
Make instances nontransactional 125
Make instances persistent 123
Make instances transactional 125
Make instances transient 124
makeNontransactional 125
makePersistent 123, 126
makeTransactional 125
makeTransient 124, 125
mapped-by 195
MaxFetchDepth 130
Membership 183
Message-driven Beans 29
META 103
Multithreaded 139
multivalued 136

JDO 2.2 400 October 10, 2008

Java Data Objects 2.2

N
Namespaces in queries 158
newInstance 92
newObjectIdInstance 94
newQuery 159
NonDurableIdentity 107
NonJoinedTablePerConcreteClass 109
Nontransactional 54
NontransactionalRead 107, 150
NontransactionalWrite 107
NullCollection 107, 168

O
Object Class type 74
Object Database 35
object database 27, 28, 156
object equality 44
object identity 44, 287
ObjectId class management 140
ObjectIdentity 49
ObjectIdFieldConsumer 83
ObjectIdFieldManager 83
ObjectIdFieldSupplier 83
Optimistic 107, 149, 150, 154
Optimistic transaction 58
order by 177
Ordering 172
overhead 127

P
parameters 177, 178
parseXXX 49
persistence 103
persistence by reachability 51
PersistenceCapable 77
Persistence-capable 70
PersistenceManager 114
PersistenceManagerFactory 99
Persistent-clean 53
Persistent-deleted 53
Persistent-dirty 52
Persistent-new 51
Persistent-nontransactional 56
Persistent-nontransactional-dirty 56
Pinning objects in the cache 110
Portability Guidelines 280
postAttach 127
post-load 133, 137
PreDirtyEvent 108

primary key 45
Properties 106
provisionally persistent 123

Q
Query factory 119

R
range 177
Recursion-depth 131
recursion-depth 138
ReflectPermission 317
refresh 117
registerClass 92, 303
registerDateFormat 94
relational 24, 27, 28, 35, 41, 156, 294
relationship 136
RelationSubclassTable 109
removeInstanceLifecycleListener 111, 144
removeRegisterClassListener 93
removeStateInterrogation 95
restoreValue 51
RestoreValues 54, 55, 151
result 177
result-class-name 177
RetainValues 107, 150, 151
retrieve 118
retrieveAll 118
rollback 153

S
scale 223
Second Class Objects 71
Second-level cache management 110
select 177
Sequence 140
Serialization 290
Serializing Persistent Instances 127
setCandidates 161
setClass 161
setDetachAllOnCommit 126
setDetachmentOptions 132
setFilter 162
setGrouping 162
setIgnoreCache 119, 163
setMultithreaded 139
setNontransactionalRead 150
setNontransactionalWrite 150
setOptimistic 150

JDO 2.2 401 October 10, 2008

Java Data Objects 2.2

setOrdering 162
setRange 162
setResult 162
setResultClass 162
setRetainValues 151
setStateManager 317
setSynchronization 152
setUnique 162
setUnmodifiable 163
setUserObject 139
ShortIdentity 48
single field identity 48, 82, 299
Single-String Query 177
SQL 108, 156
SQL Portability 145
sql-type 223
State interrogation 79
StateImage 108
StateInterrogation 95
static initialization 297
static initializer 303
StoreCallback 96
StoreLifecycleListener 142
StringIdentity 48
subclasses 177, 178
supported query languages 107
supportedOptions 107
suppressAccessChecks 317
Synchronization 139, 152

T
Threading 115
Transaction factory 119
Transaction Isolation Level 100
Transient 51, 57
Transient Transactional 57
Transient-clean 57
Transient-dirty 58
TransientTransactional 107
TreeMap 107
TreeSet 107

U
UnconstrainedQueryVariables 108
unique 177
unmodifiable 138
Unpinning objects in the cache 110

V
validate 120
variables 177, 178
Vector 107

W
web application 127
where 177
writeObject 309

4140 Network Circle
Santa Clara, CA 95404

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales: 415 688-9000

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Target Audience
	1.4 Organization
	1.5 Document Convention
	1.6 Terminology Convention

	2 Overview
	2.1 Definitions
	2.1.1 JDO common interfaces
	JDO Instance
	JDO Implementation
	JDO Enhancer
	Table 1: Which Enhancement Interface is Used
	2.1.2 JDO in a managed environment

	Enterprise Information System (EIS)
	EIS Resource
	Resource Manager (RM)
	Connection
	Application Component
	Session Beans
	Message-driven Beans
	Entity Beans
	Helper objects
	Container

	2.2 Rationale
	Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

	2.3 Goals

	3 JDO Architecture
	3.1 Overview
	Figure 2.0 Overview of non-managed JDO architecture

	3.2 JDO Architecture
	3.2.1 Two tier usage
	3.2.2 Application server usage
	Resource Adapter
	Pooling
	Contracts
	Figure 3.0 Contracts between application server and native JDO resource adapter
	Figure 4.0 Contracts between application server and layered JDO implementation

	4 Roles and Scenarios
	4.1 Roles
	4.1.1 Application Developer
	4.1.2 Application Component Provider
	4.1.3 Application Assembler
	4.1.4 Deployer
	4.1.5 System Administrator
	4.1.6 JDO Vendor
	4.1.7 Connector Provider
	4.1.8 Application Server Vendor
	4.1.9 Container Provider

	4.2 Scenario: Embedded calendar management system
	Figure 5.0 Scenario: Embedded calendar manager

	4.3 Scenario: Enterprise Calendar Manager
	Figure 6.0 Scenario: Enterprise Calendar Manager

	5 Life Cycle of JDO Instances
	5.1 Overview
	5.2 Goals
	5.3 Architecture:
	JDO Instances
	JDO State Manager
	JDO Managed Fields

	5.4 JDO Identity
	Three Types of JDO identity
	Uniquing
	Change of identity
	JDO Identity Support
	5.4.1 Application (primary key) identity

	Compound Identity
	5.4.2 Single Field Identity
	5.4.3 Datastore identity
	5.4.4 Nondurable JDO identity

	5.5 Life Cycle States
	Datastore Transactions
	5.5.1 Transient (Required)
	5.5.2 Persistent-new (Required)
	5.5.3 Persistent-dirty (Required)
	5.5.4 Hollow (Required)
	5.5.5 Persistent-clean (Required)
	5.5.6 Persistent-deleted (Required)
	5.5.7 Persistent-new-deleted (Required)
	5.5.8 Detached-clean (Required)
	5.5.9 Detached-dirty (Required)

	5.6 Nontransactional (Optional)
	5.6.1 Persistent-nontransactional (Optional)
	5.6.2 Persistent-nontransactional-dirty (Optional)

	5.7 Transient Transactional (Optional)
	5.7.1 Transient-clean (Optional)
	5.7.2 Transient-dirty (Optional)

	5.8 Optimistic Transactions (Optional)
	Table 2: State Transitions
	Figure 7.0 Life Cycle: New Persistent Instances
	Figure 8.0 Life Cycle: Transactional Access
	Figure 9.0 Life Cycle: Datastore Transactions
	Figure 10.0 Life Cycle: Optimistic Transactions
	Figure 11.0 Life Cycle: Access Outside Transactions
	Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional
	Figure 13.0 Life Cycle: Detached
	Figure 14.0 JDO Instance State Transitions
	1. A transient instance transitions to persistent-new when the instance is the parameter of a makePersistent method.
	2. A persistent-new instance transitions to hollow when the transaction in which it was made persistent commits.
	3. A hollow instance transitions to persistent-clean when a field is read.
	4. A persistent-clean instance transitions to persistent-dirty when a field is written.
	5. A persistent-dirty instance transitions to hollow at commit or rollback.
	6. A persistent-clean instance transitions to hollow at commit or rollback.
	7. A transient instance transitions to transient-clean when it is the parameter of a makeTransactional method.
	8. A transient-clean instance transitions to transient-dirty when a field is written.
	9. A transient-dirty instance transitions to transient-clean at commit or rollback.
	10. A transient-clean instance transitions to transient when it is the parameter of a makeNontransactional method.
	11. A hollow instance transitions to persistent-dirty when a field is written.
	12. A persistent-clean instance transitions to persistent-nontransactional at commit when RetainValues is set to true, at rollback when RestoreValues is set to true, or when it is the parameter of a makeNontransactional method.
	13. A persistent-nontransactional instance transitions to persistent-clean when it is the parameter of a makeTransactional method.
	14. A persistent-nontransactional instance transitions to persistent-dirty when a field is written in a transaction.
	15. A persistent-new instance transitions to transient on rollback.
	16. A persistent-new instance transitions to persistent-new-deleted when it is the parameter of deletePersistent.
	17. A persistent-new-deleted instance transitions to transient on rollback. The values of the fields are restored as of the makePersistent method.
	18. A persistent-new-deleted instance transitions to transient on commit. No changes are made to the values.
	19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent- deleted when it is the parameter of deletePersistent.
	20. A persistent-deleted instance transitions to transient when the transaction in which it was deleted commits.
	21. A persistent-deleted instance transitions to hollow when the transaction in which it was deleted rolls back.
	22. A hollow instance transitions to persistent-nontransactional when the NontransactionalRead option is set to true, a field is read, and there is either an optimistic transaction or no transaction active.
	23. A persistent-dirty instance transitions to persistent-nontransactional at commit when RetainValues is set to true or at rollback when RestoreValues is set to true.
	24. A persistent-new instance transitions to persistent-nontransactional at commit when RetainValues is set to true.

	6 The Persistent Object Model
	6.1 Overview
	Figure 15.0 Instantiated persistent objects

	6.2 Goals
	6.3 Architecture
	Persistence-capable
	First Class Objects and Second Class Objects
	First Class Objects
	Second Class Objects
	Arrays
	Primitives
	Interfaces

	6.4 Field types of persistence-capable classes
	6.4.1 Nontransactional non-persistent fields
	6.4.2 Transactional non-persistent fields
	6.4.3 Persistent fields
	Precision of fields
	Primitive types
	Immutable Object Class types
	Mutable Object Class types
	Persistence-capable Class types
	Object Class type
	Collection Interface types
	Other Interface types
	Arrays
	Enums
	6.4.4 Static and final fields
	6.4.5 Complex enum types

	6.5 Inheritance

	7 PersistenceCapable
	7.1 Persistence Manager
	7.2 Make Dirty
	7.3 JDO Identity
	7.3.1 Version

	7.4 Status interrogation
	7.4.1 Dirty
	7.4.2 Transactional
	7.4.3 Persistent
	7.4.4 New
	7.4.5 Deleted
	7.4.6 Detached
	Table 3: State interrogation

	7.5 New instance
	7.6 State Manager
	7.7 Replace Flags
	7.8 Replace Fields
	7.9 Provide Fields
	7.10 Copy Fields
	7.11 Static Fields
	7.12 JDO identity handling
	interface ObjectIdFieldSupplier
	interface ObjectIdFieldConsumer
	interface ObjectIdFieldManager

	7.13 Detachable

	8 JDOHelper
	8.1 Persistence Manager
	8.2 Make Dirty
	8.3 JDO Identity
	8.4 JDO Version
	8.5 Status interrogation
	8.5.1 Dirty
	8.5.2 Transactional
	8.5.3 Persistent
	8.5.4 New
	8.5.5 Deleted
	8.5.6 Detached

	8.6 State Interrogation
	8.6.1 enum ObjectState

	8.7 PersistenceManagerFactory methods
	Get by Name with Overrides
	Get by Properties file or input stream
	Get by Name
	Get by Properties map
	Get by JNDI lookup

	9 JDOImplHelper
	9.1 JDOImplHelper access
	9.2 Metadata access
	9.3 Persistence-capable instance factory
	9.4 Registration of PersistenceCapable classes
	9.4.1 Notification of PersistenceCapable class registrations
	RegisterClassEvent
	RegisterClassListener

	9.5 Security administration
	9.6 Application identity handling
	9.7 Persistence-capable class state interrogation

	10 InstanceCallbacks
	10.1 jdoPostLoad
	10.2 jdoPreStore
	10.3 jdoPreClear
	10.4 jdoPreDelete
	10.5 jdoPreDetach and jdoPostDetach
	10.6 jdoPreAttach and jdoPostAttach

	11 PersistenceManagerFactory
	11.1 Interface PersistenceManagerFactory
	ServerTimeZoneID
	Transaction Isolation Level
	Connection
	11.1.1 Construction by Properties
	11.1.2 Construction by jdoconfig.xml
	11.1.3 Access via persistence.xml
	11.1.4 jdoconfg.xml

	11.2 ConnectionFactory
	11.3 PersistenceManager access
	11.3.1 Access via proxy

	11.4 Close the PersistenceManagerFactory
	11.5 Non-configurable Properties
	11.6 Optional Feature Support
	11.7 Properties constructors
	11.8 Second-level cache management
	Evicting objects from the cache
	Pinning objects in the cache
	Unpinning objects in the cache

	11.9 Registering for life cycle events
	11.10 Serialization
	11.11 OSGi Service Discovery
	From the user perspective
	From the implementation perspective
	Examples

	12 PersistenceManager
	12.1 Overview
	12.2 Goals
	12.3 Architecture: JDO PersistenceManager
	12.4 Threading
	12.5 Class Loaders
	12.6 Interface PersistenceManager
	State Transitions for persistent instances at close
	Null management
	12.6.1 Cache management

	Evict instances
	Retrieve instances
	12.6.2 Transaction factory interface
	12.6.3 Query factory interface
	12.6.4 Extent Management

	Extents of interfaces
	12.6.5 JDO Identity management

	Getting Multiple Persistent Instances
	Getting an Object by Class and Key
	12.6.6 Persistent instance factory
	12.6.7 JDO Instance life cycle management

	Make instances persistent
	Delete persistent instances
	Make instances transient
	Make instances transactional
	Make instances nontransactional
	12.6.8 Detaching and attaching instances

	Committing the transaction with DetachAllOnCommit
	Attaching Detached Instances with CopyOnAttach
	Serializing Persistent Instances
	Explicit detach
	Behavior of Detached Instances

	12.7 Fetch Plan
	12.7.1 Fetch Groups
	12.7.2 MaxFetchDepth
	12.7.3 Root instances
	12.7.4 Recursion-depth
	12.7.5 The FetchPlan interface
	12.7.6 Defining fetch groups
	12.7.7 Defining Fetch Groups Dynamically
	Persistence Manager Factory Scoped Fetch Groups
	Persistence Manager Scoped Fetch Groups
	Interface FetchGroup

	12.8 Flushing instances
	12.9 Transaction completion
	12.10 Multithreaded Synchronization
	12.11 User associated objects
	12.12 PersistenceManagerFactory
	12.13 ObjectId class management
	12.14 Sequence
	12.15 Life-cycle callbacks
	InstanceLifecycleEvent

	12.16 Access to internal datastore connection
	SQL Portability

	12.17 Server Date
	12.18 Serialization

	13 Transactions and Connections
	13.1 Overview
	13.2 Goals
	13.3 Architecture: PersistenceManager, Transactions, and Connections
	Connection Management Scenarios
	Native Connection Management
	Non-native Connection Management
	Optimistic Transactions
	Figure 16.0 Transactions and Connections

	13.4 Interface Transaction
	13.4.1 PersistenceManager
	13.4.2 Transaction options
	Nontransactional access to persistent values
	Optimistic concurrency control
	Retain values at transaction commit
	Restore values at transaction rollback
	Transaction Isolation Level
	13.4.3 Synchronization
	13.4.4 Transaction demarcation

	Non-managed environment
	Managed environment
	13.4.5 RollbackOnly

	13.5 Optimistic transaction management

	14 Query
	14.1 Overview
	14.2 Goals
	14.3 Architecture: Query
	14.4 Namespaces in queries
	Keywords

	14.5 Query Factory in PersistenceManager interface
	14.6 Query Interface
	Persistence Manager
	Fetch Plan
	Query element binding
	Query options
	Query modification
	Query evaluation
	Query compilation
	14.6.1 Query execution
	14.6.2 Filter specification
	Table 4: Query Operators

	Methods
	Table 5: Query Methods

	Subqueries
	Non-correlated subqueries
	Correlated subqueries
	14.6.3 Parameter declaration

	Implicit parameter declaration
	14.6.4 Import statements
	14.6.5 Variable declaration

	Implicit variable declaration
	14.6.6 Ordering statement
	14.6.7 Closing Query results
	14.6.8 Limiting the Cardinality of the Query Result
	14.6.9 Specifying the Result of a Query (Projections, Aggregates)

	Distinct results
	Named Result Expressions
	Aggregate Types
	Primitive Types
	Null Results
	Default Result
	Projected Second Class Result
	14.6.10 Grouping Aggregate Results
	14.6.11 Specifying Uniqueness of the Query Result

	Default Unique setting
	14.6.12 Specifying the Class of the Result

	Result Class Requirements
	Table 6: Shape of Result (C is the candidate class)
	14.6.13 Single-string Query element binding

	14.7 SQL Queries
	Table 7: Shape of Result of SQL Query
	14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes

	14.8 Deletion by Query
	14.9 Extensions
	14.10 Examples:
	14.10.1 Basic query.
	14.10.2 Basic query with ordering.
	14.10.3 Parameter passing.
	14.10.4 Navigation through single-valued field.
	14.10.5 Navigation through multi-valued field.
	14.10.6 Membership in a collection
	14.10.7 Projection of a Single Field
	14.10.8 Projection of Multiple Fields and Expressions
	14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance
	14.10.10 Aggregation of a single Field
	14.10.11 Aggregation of Multiple Fields and Expressions
	14.10.12 Aggregation of Multiple fields with Grouping
	14.10.13 Selection of a Single Instance
	14.10.14 Selection of a Single Field
	14.10.15 Projection of “this” to User-defined Result Class with Matching Field
	14.10.16 Projection of “this” to User-defined Result Class with Matching Method
	14.10.17 Projection of variables
	14.10.18 Non-correlated subquery
	14.10.19 Correlated subquery
	14.10.20 Deleting Multiple Instances

	15 Object-Relational Mapping
	Mapping Overview
	Mapping Strategies
	15.1 Column Elements
	Mapping enums
	15.1.1 Mapping single-valued fields to columns

	15.2 Join Condition
	15.2.1 Secondary Table mapping
	15.2.2 Map using join table

	15.3 Relationship Mapping
	Mapping Strategies
	15.3.1 Many-to-One using foreign key
	15.3.2 One-to-Many using foreign key
	15.3.3 Many-to-One and One-to-Many using mapped-by
	15.3.4 Many-to-One and One-to-Many using compound foreign key
	15.3.5 Many-to-One and One-to-Many using Map<Department, String>
	15.3.6 Many-to-One and One-to-Many using Map<String, Employee>

	15.4 Embedding
	15.4.1 Mapping relationships using embedded, referenced, and join table

	15.5 Foreign Key Constraints
	Delete Action, Update Action
	15.5.1 Many-to-One with foreign key constraint

	15.6 Indexes
	Unique Constraints
	15.6.1 Single-field and Compound Indexes

	15.7 Inheritance
	15.8 Versioning
	15.8.1 Inheritance with superclass-table and version
	15.8.2 Inheritance with new-table and version
	15.8.3 Inheritance with subclass-table

	16 Enterprise Java Beans
	16.1 Session Beans
	16.1.1 Stateless Session Bean with Container Managed Transactions
	16.1.2 Stateful Session Bean with Container Managed Transactions
	16.1.3 Stateless Session Bean with Bean Managed Transactions
	16.1.4 Stateful Session Bean with Bean Managed Transactions

	16.2 Entity Beans

	17 JDO Exceptions
	17.1 JDOException
	17.1.1 JDOFatalException
	17.1.2 JDOCanRetryException
	17.1.3 JDOUnsupportedOptionException
	17.1.4 JDOUserException
	17.1.5 JDOFatalUserException
	17.1.6 JDOFatalInternalException
	17.1.7 JDODataStoreException
	17.1.8 JDOFatalDataStoreException
	17.1.9 JDOObjectNotFoundException
	17.1.10 JDOOptimisticVerificationException
	17.1.11 JDODetachedFieldAccessException
	17.1.12 JDOUserCallbackException

	18 XML Metadata
	Mapping to Relational Databases
	18.1 ELEMENT jdo
	18.2 ELEMENT package
	18.3 ELEMENT interface
	18.4 ELEMENT column
	Table 8: Default jdbc-type

	18.5 ELEMENT class
	18.5.1 ELEMENT datastore-identity
	18.5.2 ELEMENT version

	18.6 ELEMENT primary-key
	18.7 ELEMENT join
	18.8 ELEMENT inheritance
	18.9 ELEMENT discriminator
	18.10 ELEMENT implements
	18.11 ELEMENT foreign-key
	18.11.1 ATTRIBUTE update-action
	18.11.2 ATTRIBUTE delete-action
	18.11.3 ATTRIBUTE deferred
	18.11.4 ATTRIBUTE name

	18.12 ELEMENT unique
	18.13 ELEMENT index
	18.14 ELEMENT property
	18.15 ELEMENT field
	Default persistence-modifier
	Embedded
	Column Mapping
	Foreign key
	18.15.1 ELEMENT collection
	18.15.2 ELEMENT map
	18.15.3 ELEMENT array
	18.15.4 ELEMENT embedded
	18.15.5 ELEMENT key
	18.15.6 ELEMENT value
	18.15.7 ELEMENT element
	18.15.8 ELEMENT order

	18.16 ELEMENT query
	18.17 ELEMENT sequence
	18.18 ELEMENT extension
	18.19 ELEMENT orm
	18.20 ELEMENT jdoquery
	18.21 The jdo Schema Descriptor
	18.22 The orm Schema Descriptor
	18.23 The jdoquery Schema Descriptor
	18.24 Example XML file

	19 Annotations
	Java Persistence API Annotations
	Overrides
	19.1 Cacheable Annotation
	19.2 Column Annotation
	19.3 Columns Annotation
	19.4 DatastoreIdentity Annotation
	19.5 Discriminator Annotation
	19.6 DiscriminatorStrategy Enum
	19.7 Element Annotation
	19.8 Embedded Annotation
	19.9 EmbeddedOnly Annotation
	19.10 Extension Annotation
	19.11 Extensions Annotation
	19.12 FetchGroup Annotation
	19.13 FetchGroups Annotation
	19.14 FetchPlan Annotation
	19.15 FetchPlans Annotation
	19.16 ForeignKey Annotation
	19.17 ForeignKeyAction Enum
	19.18 ForeignKeys Annotation
	19.19 IdGeneratorStrategy Enum
	19.20 IdentityType Enum
	19.21 Index Annotation
	19.22 Indices Annotation
	19.23 Inheritance Annotation
	19.24 InheritanceStrategy Enum
	19.25 Join Annotation
	19.26 Joins Annotation
	19.27 Key Annotation
	19.28 NotPersistent Annotation
	19.29 NullValue Enum
	19.30 Order Annotation
	19.31 PersistenceAware Annotation
	19.32 PersistenceCapable Annotation
	19.33 PersistenceModifier Enum
	19.34 Persistent Annotation
	19.35 PrimaryKey Annotation
	19.36 Queries Annotation
	19.37 Query Annotation
	19.38 Sequence Annotation
	19.39 SequenceStrategy Enum
	19.40 Serialized Annotation
	19.41 Transactional Annotation
	19.42 Unique Annotation
	19.43 Uniques Annotation
	19.44 Value Annotation
	19.45 Version Annotation
	19.46 VersionStrategy Enum
	Table 9: Annotation correspondence to xml metadata

	20 Java Persistence API (JSRs 220, 317) Alignment
	20.1 JDOEntityManagerFactory
	20.2 JDOEntityManager

	21 Extent
	21.1 Overview
	21.2 Goals
	21.3 Interface Extent

	22 Portability Guidelines
	22.1 Optional Features
	22.1.1 Optimistic Transactions
	22.1.2 Nontransactional Read
	22.1.3 Nontransactional Write
	22.1.4 Transient Transactional
	22.1.5 RetainValues
	22.1.6 IgnoreCache

	22.2 Object Model
	22.3 JDO Identity
	22.4 PersistenceManager
	22.5 Query
	22.6 XML metadata
	22.7 Life cycle
	22.8 JDOHelper
	22.9 Transaction
	22.10 Binary Compatibility

	23 JDO Reference Enhancer
	23.1 Overview
	23.2 Goals
	23.3 Enhancement: Architecture
	23.4 Inheritance
	23.5 Field Numbering
	23.6 Serialization
	23.7 Cloning
	23.8 Introspection (Java core reflection)
	23.9 Field Modifiers
	23.9.1 Non-persistent
	23.9.2 Transactional non-persistent
	23.9.3 Persistent
	23.9.4 PrimaryKey
	23.9.5 Embedded
	23.9.6 Null-value

	23.10 Treatment of standard Java field modifiers
	23.10.1 Static
	23.10.2 Final
	23.10.3 Private
	23.10.4 Public, Protected

	23.11 Fetch Groups
	23.12 jdoFlags Definition
	23.13 Exceptions
	23.14 Modified field access
	Table 10: Field access mediation

	23.15 Generated fields in least-derived PersistenceCapable class
	23.16 Generated fields in all PersistenceCapable classes
	Generated static initializer

	23.17 Generated methods in least-derived PersistenceCapable class
	23.18 Generated methods in PersistenceCapable root classes
	23.19 Generated method in least-derived Detachable classes
	23.20 Generated methods in all PersistenceCapable classes
	23.21 Example class: Employee
	23.21.1 Generated fields
	23.21.2 Generated static initializer
	23.21.3 Generated interrogatives
	23.21.4 Generated jdoReplaceStateManager
	23.21.5 Generated jdoReplaceFlags
	23.21.6 Generated jdoNewInstance helpers
	23.21.7 Generated jdoGetManagedFieldCount
	23.21.8 Generated jdoGetXXX methods (one per persistent field)
	23.21.9 Generated jdoSetXXX methods (one per persistent field)
	23.21.10 Generated jdoReplaceField and jdoReplaceFields
	23.21.11 Generated jdoProvideField and jdoProvideFields
	23.21.12 Generated jdoCopyField and jdoCopyFields methods
	23.21.13 Generated writeObject method
	23.21.14 Generated jdoPreSerialize method
	23.21.15 Generated jdoNewObjectIdInstance
	23.21.16 Generated jdoCopyKeyFieldsToObjectId
	23.21.17 Generated jdoCopyKeyFieldsFromObjectId
	23.21.18 Generated Detachable methods

	24 Interface StateManager
	24.1 Overview
	Clone support

	24.2 StateManager Management
	24.3 PersistenceManager Management
	24.4 Dirty management
	24.5 State queries
	24.6 JDO Identity
	24.7 Serialization support
	24.8 Field Management
	24.8.1 User-requested value of a field
	24.8.2 User-requested modification of a field
	24.8.3 StateManager-requested value of a field
	24.8.4 StateManager-requested modification of a field

	24.9 Detached instance support

	25 JDOPermission
	26 JDOQL BNF
	26.1 Single-String JDOQL
	26.2 Filter Specification
	26.3 Subqueries
	26.4 Parameter Declaration
	26.5 Variable Declaration
	26.6 Import Declaration
	26.7 Ordering Specification
	26.8 Result Specification
	26.9 Grouping Specification
	26.10 Types
	26.11 Literals
	26.12 Names
	26.13 Keywords

	27 Items Deferred to the Next Release
	27.1 Nested Transactions
	27.2 Savepoint, Undosavepoint
	27.3 Inter-PersistenceManager References
	27.4 Enhancer Invocation API
	27.5 Prefetch API
	27.6 BLOB/CLOB datatype support
	27.7 Managed (inverse) relationship support
	27.8 Case-Insensitive Query
	27.9 String conversion in Query
	27.10 Read-only fields
	27.11 Enumeration pattern
	27.12 Non-static inner classes
	27.13 Projections in query
	27.14 LogWriter support
	27.15 New Exceptions
	27.16 Distributed object support
	27.17 Object-Relational Mapping

	28 JDO 1.0.1 Metadata
	28.1 ELEMENT jdo
	28.2 ELEMENT package
	28.3 ELEMENT class
	28.4 ELEMENT field
	Default persistence-modifier
	28.4.1 ELEMENT collection
	28.4.2 ELEMENT map
	28.4.3 ELEMENT array

	28.5 ELEMENT extension
	28.6 The Document Type Descriptor
	28.7 Example XML file

	Appendix A: References
	[1] Enterprise JavaBeans (EJB) specification:
	[2] Java Transaction API (JTA) specification - version 1.0
	[3] Java 2 Platform Enterprise Edition (J2EE), Platform specification:
	[4] Java 2 Platform Enterprise Edition (J2EE), Connector Architecture:

	Appendix B: Design Decisions
	B.1 Enhancer

	Appendix C: Revision History
	C.1 Changes since Draft 0.1
	C.2 Changes since Draft 0.2
	C.3 Changes since Draft 0.3
	C.4 Changes since Draft 0.4
	C.4.1 PersistenceManager
	C.4.2 Query
	C.4.3 Object Model
	C.4.4 Life Cycle
	C.4.5 PersistenceCapable

	C.5 Changes since Draft 0.5
	C.6 Changes since Draft 0.6 (Participant Review Draft)
	C.7 Changes since Draft 0.7
	C.8 Changes since Draft 0.8
	C.9 Changes since Draft 0.9
	C.10 Changes since draft 0.91
	C.11 Changes since draft 0.92
	C.12 Changes since draft 0.93
	C.13 Changes since draft 0.94
	C.14 Changes since draft 0.95 (Proposed Final Draft)
	C.15 Changes since draft 0.96
	C.16 Changes since draft 0.97
	C.17 Changes since Approved Draft
	C.18 Changes since 1.0.1
	C.19 Changes since Proposed Final Draft
	C.20 Changes since 2.0
	Table 1: Java SE 5 Signature Changes

	Appendix D: XML Schema for jdoconfig.xml
	Appendix E: XML Schema for jdo.xml
	Appendix F: XML Schema for orm.xml
	Appendix G: XML Schema for jdoquery.xml
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

