Coordinating Celtix Applications with ActiveBPEL

Table of Contents

L 1Y T Y 1
Required SOftWare........ ..ot s s s s s s s s s s s s s s s s s nnnnnnnnnnns 2
Software Installation..........ccciiiiir e ———————— 2
N I ST 2
Y 0 X= Lo g L= N o | USRI 2
APACNE TOMCAL. ...ttt 2
o (1 V7=1 =1 o = PR PU RSO 3
O 1) PSP SSSRSERR 3
The BPEL Process Diagram...........cccoiiiiiiiiiicemeisisissssrssssemcsssssssssssssssssssmssssssssssssssssesssnmssnsssssssssssenns 4
The BPEL ProCess DeSCriPtiON........ceiiiiiiiiiiiiiiii ettt e e e e eee s 4
The ActiveBPEL Process Deployment DeSCrIPIOr.uveiiiiiiiiiiiiiiiiiiieeeeeee e 4
The ActiveBPEL Deployment ArCRIVE.uueeiiiii e 4
The Celtix Client Application and Web Services..........cccccciiiiiiiniimsmmeemcecererrerrrr s 5
B =AY 1 e (0N =T RS T=T Vo PSP 5
TE ASSESSOISEIVICE. ..ciiiiiiiiie e e ettt ettt e et e e e e e e e e e e aaaaaaaaaaaaaeaaaaaeans 5
The Client APPHCALION........oiiiiiiieee e e e e e e e e e e e e e aaaaaaaaaaaeeas 5
Developing the Complete Application...........cccciiiiiiiimi e ——————— 6
Write the ApprovalService APPlICatioN............ooiiiiiiiiee e 6
Write the AssessorService APPlCatioN...........eeiiiiiiiiiiiii e 6
Combine the Two Web Service WSDL FileS......c.oooviiiiiiiiii e 6
Write the Process Deployment Descriptor File..........uuuiiiiieiiiiiiiiieeeeee s 7
Create the Deployment ArChIVE...........uuiuiiiiiiiiiieeeeeeeeeee e 7
Edit the Combined WSDL File..........ooiiiiiiiiee et e e e e e eeeeeeas 7
Write a Client Application Against the Service Representing the BPEL Process.......................... 8
Start the Web Service AppliCatioNS...........ooiiiiiiiii e e e e e e e e e e e e 8
Deploy the Application Archive into the ActiveBPEL ENgine..........ccooovviiiiiiciiiiiiieeeeecee e 8
Run the Client APPlICAtION...........uiiiiiiiiee e 8
Review Process Execution Through the ActiveBPEL Admin Functionality..............cccceeeiernnnnnn. 8
Y o 01T 5 T 11
APProverServiCe APPIICAtION....... ... i ns 11
LA ST I = TSRS 11
o101 o 10 o I 1= T PP PP PPPRPP 12
ST = g 1Y F= Tl T PRI 12
7= - o PSS 12
ASSESSOrSErvice APPIICAtION.u i 13
LTS I 1= PR PSR 13
o101 o B0t o I 1= U OPPRP 14
STy Y= V=11] 1o T YRS 14
S T=Y V= 1 o | SRR TURRR 15
=]y IR T R 15
LT AT 9 I 1= SRR 15
o] o= I 1 PRSP PPRTPRRP 17
Deployment DeSCrIPIOr File.ottt e e e rabe e e 18
ClENt APPHCATION. ... e e e e e e e e e e e e e e e e e aaaaaeaaaaaeaaaens 19
LA ST I = TSRS 19
o101 o 10 o I 1= T PP PP PPPRPP 20
L0 11T o 1Y =1] T3 = OO PEERRR 20
Overview

In many situations, developers need to integrate several Web service applications into a larger application,
for example, using a credit checking service, an inventory service, and a shipping service to process a sales

order. While it might be possible to write an application that accepts customer input, invokes the various
services, and then returns shipping and billing information to the customer, an alternative approach would be
to define the process using business process execution language (BPEL) and leave the details of
persistence, compensation, coordination and exception handling to a business process engine.

This application note discusses how to use the ActiveBPEL business process engine to coordinate
information flow between multiple Celtix Web service applications. This note also demonstrates
interoperability between Celtix and the ActiveBPEL engine, which uses Axis as its underlying Web services
toolkit.

Required Software

All required software is free and readily available for download.

— JDKv1.5.0.06 (JDK v5.0 update 6) and above, available at

http://java.sun.com/j2se/1.5.0/download.jsp. Celtix requires JDK v1.5 (JDK v5.0), which is also
acceptable to the other products.

— Apache Ant v1.6.5 and above, available at http://ant.apache.org/.

— Apache Tomcat v5.5 and above, available at http:/tomcat.apache.org/download-55.cgi.

— ActiveBPEL v2.0.0 and above, available at http://www.activebpel.org/.

— Celtix milestone 4 and above binary distribution, available at http://forge.objectweb.org/projects/celtix/.

Software Installation

Software should be installed in the same order as listed within Required Software.

JDK

Once the product has been installed, you must set the JAVA_HOME environment variable to the JDK
installation directory and add the JAVA_HOME bin subdirectory to the PATH. These settings can be applied
at the system level or within each command window. The second approach, which is useful if you have
other versions of the JDK installed on the same computer, will be illustrated in this note.

In developing this note, the JDK v1.5.0.06 was installed into the directory C:\jJdk1.5.0 and the JAVA_HOME
environment variable set to C:\jJdk1.5.0. The directory C:\jdk1.5.0\bin was added to the PATH.

Apache Ant

Apache Ant is used to build and run Celtix applications. If desired, you can use the Celtix utility wsd12java,
and the JDK executables javac and java, directly. If this is the approach followed, you do not require an
Apache Ant installation. However, it is recommended that you install Apache Ant, and this note will only
describe how to build and run the Celtix components through Ant.

Once the product has been installed, you must add the Ant bin subdirectory to the PATH. This setting can
be applied at the system level or within each command window.

In developing this note, Ant was installed into the directory C:\Ant\apache-ant-1.6.5. The directory
C:\Ant\apache-ant-1.6.5\bin was added to the PATH.

Apache Tomcat

Once the product has been installed, you should write a script that properly sets the environment before
starting the servlet container.

In developing this note, Tomcat was installed into the directory C:\Tomcat5.5. A script file, with the following
content, was added to the subdirectory C:\Tomcat5.5\bin.

set JAVA HOME=C:\jdkl.5.0
set PATH=%JAVA HOMES%\bin; $PATHS

http://forge.objectweb.org/projects/celtix/
http://www.activebpel.org/
http://tomcat.apache.org/download-55.cgi
http://ant.apache.org/
http://java.sun.com/j2se/1.5.0/download.jsp

set CLASSPATH=
tomcat5.exe

Use this script, rather than the tomcat5.exe executable directly, to start the servlet container under a suitable
environment.

The installation directory, in this note C:\Tomcat5.5, is referred to as CATALINA_HOME. You will need a
knowledge of the Tomcat installation directory in order to install the ActiveBPEL process engine.

ActiveBPEL

Installation instructions are available at http://www.activebpel.org/docs/install.html. In short:

— Extract the product archive into a temporary directory, which creates the subdirectory
activebpel-2.0.0.

— Within the activebpel-2.0.0 subdirectory, run the install script, passing the value of CATALINA_HOME
as an argument. For example,
install C:\Tomcat5.5

The installation process will copy a number of JAR files to the subdirectory CATALINA_HOME\shared\lib.
The installation also creates the subdirectory CATALINA HOME/bpr and copies several files to this location.

Celtix

Celtix is available as either a binary or source distribution. If you download the source distribution, you will
need to use Apache Maven v2.0.2 or above to build the binary files. This note will only discuss use of the
Celtix binary distribution.

The Celtix binary distribution is downloaded as a single JAR file. Save this file to a local directory and then
extract into an installation directory as described below.

— Save the Celtix binary distribution archive into a local directory.
— Create an installation directory, for example, C:\Celtix_bin4 for the Celtix milestone 4 binary release.

— Open a command window and confirm that the JAVA_HOMEN\bin directory is on the PATH. If
necessary, modify the PATH.

— Move to the installation directory and use the java executable to extract the archive. For example,

java -jar <path to Celtix binary distribution archive file>

The extraction process will create the following directory hierarchy.

2 | Celtix_bin4
=) celtix
I3 bin
® [docs

I etc
®)b
® | resources
® () samples

After installing Celtix, you will find it useful to write a script that insures that the environment is properly
configured. You should then run this script in each command window before trying to work with the Celtix
utilities or to compile and run a Celtix application. The following is a typical script.

set JAVA HOME=C:\jdkl.5.0

set CELTIX HOME=C:\Celtix bind\celtix

set ANT HOME=C:\Ant\apache-ant-1.6.5

set PATH=%ANT HOME%\bin;$CELTIX HOME%\bin;%JAVA HOME$\bin;%PATHS$
set CLASSPATH=.;.\build\classes

http://www.activebpel.org/docs/install.html

The BPEL Process Diagram

Although the ActiveBPEL product does not include the functionality needed to write a BPEL file, any BPEL
file that adheres to the specification can be deployed into this engine. A BPEL file may be written in any text
editor or XML editor. It is helpful, however, to have a diagrammatic representation of a BPEL process. The
following diagram, created with Active Endpoints ActiveWebflow™ Professional, illustrates the process
developed for this note.

(;9 ReceiveInputFromClient
Firsthlame
LastMame

Amount < 10000 Amount

Amount >= 10000

"js InvokeOnAssessar Amount > 8000
Risk != low

Amount <= 8000

" Risk = low
1"3 InvokeOnApprover

-’.] AssignYesFromAssessor

Return = yes|no from approver

Return = yes from assessor |

D ReplyToClient

The ReceivelnputFromClient and ReplyToClient activities represent the request/response operation exposed
by the BPEL process to clients. Later in this note, when you review the WSDL file that represents the
process, you will see how these activities correspond to the process operation of the bpelService port type.
The Invoke activities — InvokeOnAssessor and InvokeOnApprover — represent the two Web services —
AssessorService and ApproverService — that are integrated into a common application by this BPEL
process.

According to the business logic, if a client submits a request with an Amount less than $10000, the request is
sent to the AssessorService, whereas requests with Amounts greater than or equal to $10000 are sent to the
ApproverService. The AssessorService, however, assigns Amount requests that are greater than $8000 to a
high risk category and forwards them to the ApproverService; requests less than or equal to $8000 are
accepted by the AssessorService, which returns an appropriate message to the client. The ApproverService
accepts all Amount requests less than $15000, returning an appropriate message to the client. Requests
that exceed $15000 are rejected and a rejection message is returned to the client.

When you run this application, you will be able to use the BPEL Admin functionality that is part of the
ActiveBPEL engine to follow the execution of each request through the process.

The BPEL Process Description

The BPEL process is described in an XML file with a .bpel extension. Additional information required by the
BPEL process, specifically the partner link type definitions, is also added to the WSDL file used by the
process engine. Copies of these files are included in the Appendix.

The ActiveBPEL Process Deployment Descriptor

The syntax for this XML file is described at http://www.activebpel.org/docs/file_formats.html. A deployment
descriptor file suitable for use in this application is included in the Appendix.

The ActiveBPEL Deployment Archive

This file is a JAR file with a .bpr extension. It includes the WSDL file describing the BPEL process, the
process deployment descriptor, and the .bpel file that describes the BPEL process. The structure of this
archive, and instructions for using the jar utility to assemble the file, are described at
http://www.activebpel.org/docs/deploy.html.

http://www.activebpel.org/docs/deploy.html
http://www.activebpel.org/docs/file_formats.html

The Celtix Client Application and Web Services

The two Celtix Web service applications are nearly identical, differing only in their port type, binding, and
service definitions. There is also a Celtix client application that will send the initial request to the BPEL
process. When developing these applications, it is easiest to model your directory hierarchy after the
approach used in the Celtix samples. Under the subdirectory samples within your Celtix installation, create
the following directory hierarchy.

=) samples
B) approver
B |2 stc
IC5) server
I wsdl
& |} assessor
B 5 src
I server
I3 wsdl
&) dlient
=) stc
I=5) client
I wsDL
The two Web service applications are an ApproverService and an AssessorService. For each service
application you will place a WSDL file into the WSDL subdirectory, source code files for the server mainline
and servant into the src\server subdirectory, and a build.xml file into the approver and assessor directories.
For the client application, you need a WSDL file, a source code file for the client mainline, and a build.xml
file. In all three applications, Ant will generate code from the WSDL file and compile the source code files
into Java .class files. The content of each of these files is given in the Appendix. You can copy the
required content into a text file and save in the appropriate directory.

Once the Celtix Web services have been written, you use their WSDL files in developing the BPEL process
description. As part of this process, you define a new port type that represents the BPEL process to an
external client application. Finally, you write a client application that invokes on the port type representing
the BPEL process. The files needed to implement the client application are included in the Appendix.

The ApproverService

The WSDL file for this service defines the approverPT port type, which implements the operation approve.
The processing logic in this operation is extremely simple. If the Amount parameter is greater than $15000,
the message “no from approver” is returned by the operation; otherwise the message “yes from approver” is
returned by the operation. If the request is processed by the Approver Web service, the BPEL process uses
the ReplyToClient activity to return the message to the client application.

The AssessorService

The WSDL file for this service defines the assessPT port type, which implements the operation assess. The
processing logic in this operation is also quite simple. If the Amount parameter is greater than $8000, the
message “high,” representing the risk associated with the request, is returned by the operation; otherwise the
message “low” is returned by the operation. If the risk is low, the AssignYesFromAssessor activity provides
the message “yes from assessor” to the ReplyToClient activity, which returns the message to the client
application. If the risk is high, the BPEL process forwards the request to the InvokeOnApprover activity.

The Client Application

The WSDL file for this application defines the bpelService port type, which implements the operation
process. The client application invokes this operation, which starts an instance of the BPEL process. Note
that the URL for this service's port directs the request to the servlet container running the BPEL engine.

Developing the Complete Application

Developing the application is straight-forward, although it does involve considerable attention to managing
the content of the WSDL files used by the different components. The following listing summarizes the steps
taken to develop this application.

— Write the ApproverService application.
— Wirite the AssessorService application.

— Combine these two Web service WSDL files and use the combined file in developing the BPEL
process.

— Edit the combined WSDL file, adding the port type that represents the BPEL process and the
required BPEL extension content (partner link type entries).

— Write the .bpel file.
— Write the process deployment descriptor file.
— Create the deployment archive.

— Edit the combined WSDL file, removing the port type, binding and service definitions related to the
Celtix Web services. This leaves only the <types>, <message> and BPEL process port type
definitions.

— Add a <binding> and <service> definition for the port type representing the BPEL process.
— Write a client application against the service representing the BPEL process.
— Start the Web service applications.
— Deploy the application archive into the ActiveBPEL engine.
— Run the client application.

— Review process execution through the ActiveBPEL Admin functionality.

Write the ApprovalService Application

The Appendix includes copies of the server mainline, servant, build.xml, and WSDL files that comprise this
application. To recreate the application, copy these files into the proper subdirectories under the
samples/approver directory and then compile by issuing ant build from within a command window opened
to the samples/approver directory. Depending on how the host computer's environment is set up, you may
need to run the environment script described in the section of this note dealing with Celtix installation (see
page 3).

Write the AssessorService Application

The Appendix includes copies of the server mainline, servant, build.xml, and WSDL files that comprise this
application. To recreate the application, copy these files into the proper subdirectories under the
samples/approver directory and then compile by issuing ant build from within a command window opened
to the samples/assessor directory. Depending on how the host computer's environment is set up, you may
need to run the environment script described in the section of this note dealing with Celtix installation (see
page 3).

The <types> and <message> entries in the WSDL file for this service are identical to ApprovalService WSDL
file. The <portType>, <binding>, and <service>/<port> entries differ.

Combine the Two Web Service WSDL Files

Open both WSDL files in separate instances of a text editor. Copy the <portType>, <binding>, and
<service>/<port> content from one of the files into the second file. Be certain to save the modified file to a
new location. Since the modified WSDL file now includes the <portType>, <binding>, and <service>/<port>
definitions for both services, it provides all the information needed to develop the .bpe1l file.

Prior to writing the .bpe1 file, a port type definition representing the BPEL process, is added to the WSDL
file.

<wsdl:portType name="bpelService">
<wsdl:operation name="process">
<wsdl:input message="tns:requestMessage"/>
<wsdl:output message="tns:responseMessage"/>
</wsdl:operation>
</wsdl:portType>

Also, <partnerLinkType> entries, and two namespace declarations must be added the WSDL file.

<?xml version="1.0" encoding="UTF-8"?2>

<wsdl:definitions name="bpel test.wsdl" ..
xmlns:bpws="http://schemas.xmlsoap. org/ws/2003/03/bu51ness process/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/"

<plnk:partnerLinkType name="processLinkType">
<plnk:role name="processor">
<plnk:portType name="tns:bpelService"/>
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="assessorLinkType">
<plnk:role name="assessor">
<plnk:portType name="tns:assessorPT"/>
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="approverLinkType">
<plnk:role name="approver">
<plnk:portType name="tns:approverPT"/>
</plnk:role>
</plnk:partnerLinkType>

</wsdl:definitions>

The .bpel file (included in the Appendix) may now be written.

Write the Process Deployment Descriptor File

The content of this file is specific to the BPEL engine. See http://www.activebpel.org/docs/file_formats.html
for the specifics of writing this file for the ActiveBPEL engine. The Appendix includes a file suitable for use
with the ActiveBPEL engine.

Create the Deployment Archive

This process is also specific to the BPEL engine. See http://www.activebpel.org/docs/deploy.html for the
specifics of preparing the ActiveBPEL archive.

Edit the Combined WSDL File

So far the application includes three WSDL files: one each for the ApprovalService and ApprovalService, and
a combined file used by the BPEL process. The combined file includes three port type definitions:
approverPT, assessorPT, and bpelService. There are also <binding> and <service>/<port> definitions for
the approverPT and assessorPT.

The client application does not require any knowledge about the ApproverService and AssessorService or
the partner link type declarations. Therefore, the port type, binding, and service definitions related to these
services, as well as the <partnerLinkType> entries, may be removed from the WSDL file. Only the <types>,
<message>, and bpelService port type definitions remain. Be certain to save this edited file to a new
location.

Before the client application can be written, a <binding> and <service>/<port> must be defined for the
bpelService port type. This can be done in a text editor or any WSDL editor. The only challenge in editing
this file is to determine what the value of the port's name attribute and <address> element should be. These
entries target the client's request to the container hosting the BPEL engine. The value assigned to the name

http://www.activebpel.org/docs/deploy.html
http://www.activebpel.org/docs/file_formats.html

attribute is derived from the service name. In this example, the service is named ProcessService, so the port
should be named ProcessServicePort. Since the ActiveBPEL engine is hosted in a Tomcat servlet
container, the value of the URL will be:

‘http://<hostname>:tomcat_port/active—bpel/services/ProcessService ‘

Use this fourth WSDL file to write the Celtix client application.

Write a Client Application Against the Service Representing the BPEL
Process

The Appendix includes copies of the client mainline, build.xml, and WSDL files that comprise this application.
To recreate the application, copy these files into the proper subdirectories under the samples/client directory
and then compile by issuing ant build from within a command window opened to the samples/client
directory. Depending on how the host computer's environment is set up, you may need to run the
environment script described in the section of this note dealing with Celtix installation (see page 3).

Start the Web Service Applications

To run the application, open command windows to the samples/approver and samples/assessor directories.
Issue the command ant server within each command window. Depending on how the host computer's
environment is set up, you may need to run the environment script described in the section of this note
dealing with Celtix installation (see page 3).

Note that the applications will automatically terminate after 5 minutes, so you need to confirm that the
application is still running just before you run the client application. If necessary, restart the Web service
applications.

Deploy the Application Archive into the ActiveBPEL Engine

This simply involves copying the deployment archive file into the bpr subdirectory under the Tomcat
installation directory. The bpr subdirectory was created during the installation of the ActiveBPEL engine
components, as described in the subsection ActiveBPEL under Software Installation.

Once deployed, start Tomcat using the script described in the subsection Apache Tomcat under Software
Installation.

Run the Client Application

Open a command window to the samples/client directory. Run the client by issuing ant client.
Depending on how the host computer's environment is set up, you may need to run the environment script
described in the section of this note dealing with Celtix installation (see page 3).

In a text editor, open the build.xml file and change the value assigned to the parameter.

<target name="client" description="run demo client">
<property name="param" value="7000"/>
<celtixrun classname="client.Client"
paraml="${basedir}/wsdl/bpel process.wsdl"
param2="${op}" param3="S${param}"/>
</target>

Save the file and rerun the client. Test several values: below $8000, between $8000 and $15000, and above
$15000. Observe the output in the command windows running the Celtix Web services.

Review Process Execution Through the ActiveBPEL Admin
Functionality

Open a Web browser and enter the URL:
‘http://<hostname>:tomcat_port/BpelAdmin

This opens the BPEL Admin home page.

Under the Deployment Status heading, click on the Deployed Processes link, which opens a page listing all

A activeBPEL™ Home
¥ engine
Date Started: 2006/01/20 09:11 AM
Home Deployed Processes: 1
Description: ActiveBPEL In-Memory Configuration
Engine Status: Running
Configuration Version: 2.0.0 (dev.master)
Storage

Version Detail

Siop Engine

Deployment Status

Deployment Log
Deployed Processes
Partner Definitions

WSDL Catalog

Process Status

Active Processes
Alarm Queue
Receive Queue

Process ID
Help

deployed processes.

Click on the link to the process, and you can review the content of the BPEL file and deployment descriptor

for this process.

If you click on the Active Processes link under the Process Status heading, you will be presented with a page

2 activeBPEL™
¥ engine

Deployed Processes

Name

Home

Fnaina

bpel_test

through which you can review what happened each time this process ran.

Click on the link to a process instance, and you are presented with a diagrammatic representation of the

process flow.

2 activeBPEL™

Active Processes

® engine

ID Process Name Start Date End Date State
Home 2005/01/20 09:22 2006/01/20 09:22

5 bpel_test AM AM Completed
Engine 4 bpeltedt 2008/01/20 09:20 2006/01/20 09:20 (o yereg
Configuration - 8 =
. 3 bpel_test 2006/01/20 09:15 2006/01/20 09:15 Completed
Version Detail 5 bpel_test 2006/01/20 09:15 2006/01/20 09:15 Completed

3 AM AM
Deployment Status 1 bpel_test :“?105]01.’20 09:15 :'3'05/01/20 08:15 Completed
Deployment Log
Deployed Processes |20 '~ | records per page. Results 1-50f 5
Partner Definitions 3 n
WSDL Catalo Selection Filter
State: @ All ©Running O Completed O Faulted
SABGESE BiSlE Created between: Eland| | & (yyyy/mmidd
Active Processes : Jakan < (yyyy/mm/cid)
Alarm Queue Completed between: Hand i | (yyyy/mm/dd)
Receive Queue Name:
Process ID [cizar
&l

Help

g activeBPEL™ Active Process Detail: bpel_fest (ID 5) Refresh | Help | Close
engine

ne oM | -

J Process H BPEL |

E-i5a| bpel_test v
E-2F partnertinks
2 processiink

P o

BF sk fd RECeivelnpUF romclient »
-3+ approverLink \

§:

partners 4
E-{x) variables v

{%) request (-3 InvokeOnAssessar o’

{X%) response |

Ee% Rece ‘ 3
T ¢ RecelvelnputFromClent & €5 Invokenapprover + = | AsslgntesFromAssEss0re
@ receive-to-assess

g |
¥ 5
! L iy receive-to-approve | |
““@% ReplyToCient % !

EI 75 InvokeOnAssessor &

FeplwTaClient «

”
i @» assess-to-approve
o assess-to-setMessage 3 .
=¢85, InvokeOnApprover & =
e 12 4 Process
[E-=+7 AssignYesFromAssessor &
T Property Value
@ L1
i Name bpel_test
= oopy Path /process
Current State Completed
Target Namespace http://bpel_test
Suppress Join Failure yes
Start Date 2006-01-20 09:22:22
End Date 2006-01-20 09:22:22

Notice how activities that where not executed (in the above screen shot, the AssignYesFromAssessor) are
“grayed” out while the process flow is highlighted in color and bold linking arrows. If you click on any of the
entries listed along the left-hand side of the page, the tabular data below the process diagram will summarize
the instance specific details associated with that item. For example, selecting one of the items under the
variables entry allows you to review the XML content of the corresponding message.

Appendix

To recreate this application, copy the following content into the application directories.

ApproverService Application

WSDL File

This file should be copied into the subdirectory samples/approver/wsdl. Save as bpel_test.wsdl.

<?xml version="1.0" encoding="UTF-8"?2>
<!--WSDL file template-->
<!--Created by IONA Artix Designer-->
<definitions name="bpel test.wsdl"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://org.objectweb/celtix/bpel test"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="customer request">
<sequence maxOccurs="1" minOccurs="1">
<element maxOccurs="1" minOccurs="1" name="firstName"
type="string"/>
<element maxOccurs="1" minOccurs="1" name="lastName"
type="string"/>
<element maxOccurs="1" minOccurs="1" name="amount"
type="int"/>
</sequence>
</complexType>
</schema>
</types>
<message name="requestMessage">
<part name="in" type="tns:customer request"/>
</message>
<message name="responseMessage">
<part name="out" type="xsd:string"/>
</message>
<portType name="approverPT">
<operation name="approve">
<input message="tns:requestMessage" name="approveRequest"/>
<output message="tns:responseMessage" name="approveResponse"/>
</operation>
</portType>
<binding name="approverPTSOAPBinding" type="tns:approverPT">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="approve">
<soap:operation soapAction="" style="rpc"/>
<input name="approveRequest">
<soap:body use="literal"/>
</input>
<output name="approveResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="ApproverService">
<port binding="tns:approverPTSOAPBinding" name="SoapPort">
<soap:address
location=
"http://localhost:9000/celtix/services/ApproverWebService" />

</port>
</service>
</definitions>

build.xml File

This file should be copied into the subdirectory samples/approver. Save as build.xml.

<?xml version="1.0"?>
<project name="approver service" default="build" basedir=".">

<import file="../common build.xml"/>

<target name="client" description="run demo client">
<property name="param" value=""/>
<celtixrun classname="client.Client"
paraml="${basedir}/wsdl/bpel test.wsdl"
param2="${op}" param3="S${param}"/>
</target>

<target name="server" description="run demo server">
<celtixrun classname="server.Server"
paraml="${basedir}/wsdl/bpel test.wsdl"/>
</target>

<target name="generate.code">

<echo level="info" message="Generating code using wsdl2java..."/>
<wsdl2java file="bpel test.wsdl"/>
</target>

</project>

Server Mainline

This file should be copied into the subdirectory samples/approver/src/server. Save as server. java.

package server;
import javax.xml.ws.Endpoint;
public class Server ({

protected Server () throws Exception {
System.out.println ("Starting Server");

Object implementor = new ApproverPTImpl () ;

String address =
"http://localhost:9000/celtix/services/ApproverWebService";

Endpoint.publish (address, implementor) ;

}

public static void main (String args([]) throws Exception ({
new Server () ;
System.out.println ("Server ready...");

Thread.sleep(5 * 60 * 1000) ;
System.out.println ("Server exiting");
System.exit (0) ;

Servant

This file should be copied into the subdirectory samples/approver/src/server. Save as
ApproverPTImpl. java.

package server;

import java.util.logging.Logger;
import objectweb.org.celtix.bpel test.ApproverPT;

import objectweb.org.celtix.bpel test.ApproverService;
import objectweb.org.celtix.bpel test.CustomerRequest;

@javax.jws.WebService (name = "ApproverPT", serviceName = "ApproverService",
targetNamespace = "http://org.objectweb/celtix/bpel test",
wsdlLocation = "file:./wsdl/bpel_test.wsdl")

public class ApproverPTImpl implements ApproverPT {

private static final Logger LOG =
Logger.getLogger (ApproverPTImpl.class.getPackage () .getName ()) ;
public String approve (CustomerRequest in) {

LOG.info ("Executing operation assess");

System.out.println ("approve operation invoked") ;

String return = "yes from approver";
if (in.getAmount () > 15000) {
_return = "no from approver";

return return;

AssessorService Application

WSDL File

This file should be copied into the subdirectory samples/assessor/wsdl. Save as bpel test.wsdl.

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--Created by IONA Artix Designer-->
<definitions name="bpel test.wsdl"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://org.objectweb/celtix/bpel test"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="customer request">
<sequence maxOccurs="1" minOccurs="1">
<element maxOccurs="1" minOccurs="1" name="firstName"
type="string" />
<element maxOccurs="1" minOccurs="1" name="lastName"
type="string" />
<element maxOccurs="1" minOccurs="1" name="amount"
type="int"/>
</sequence>
</complexType>
</schema>
</types>
<message name="requestMessage">
<part name="in" type="tns:customer request"/>
</message>
<message name="responseMessage">
<part name="out" type="xsd:string"/>
</message>
<portType name="assessorPT">
<operation name="assess'">

<input message="tns:requestMessage" name="assessRequest"/>
<output message="tns:responseMessage" name="assessResponse"/>
</operation>
</portType>
<binding name="assessorPTSOAPBinding" type="tns:assessorPT">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="assess">
<soap:operation soapAction="" style="rpc"/>
<input name="assessRequest'">
<soap:body use="literal"/>
</input>
<output name="assessResponse'">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="AssessorService">
<port binding="tns:assessorPTSOAPBinding" name="SoapPort">
<soap:address
location=
"http://localhost:9001/celtix/services/AssessorWebService"/>
</port>
</service>
</definitions>

build.xml File

This file should be copied into the subdirectory samples/assessor. Save as build.xml.

<?xml version="1.0"?>
<project name="assessor service" default="build" basedir=".">

<import file="../common build.xml"/>

<target name="client" description="run demo client">
<property name="param" value=""/>
<celtixrun classname="client.Client"
paraml="${basedir}/wsdl/bpel test.wsdl"
param2="S${op}" param3="S${param}"/>
</target>

<target name="server" description="run demo server">
<celtixrun classname="server.Server"
paraml="${basedir}/wsdl/bpel test.wsdl"/>
</target>

<target name="generate.code">

<echo level="info" message="Generating code using wsdl2java..."/>
<wsdl2java file="bpel test.wsdl"/>
</target>

</project>

Server Mainline

This file should be copied into the subdirectory samples/assessor/src/server. Save as server. java.

package server;
import javax.xml.ws.Endpoint;
public class Server ({

protected Server () throws Exception {
System.out.println ("Starting Server");

Object implementor = new AssessorPTImpl () ;

String address =
"http://localhost:9001/celtix/services/AssessorWebService";

Endpoint.publish (address, implementor) ;

}

public static void main (String args[]) throws Exception ({
new Server () ;
System.out.println("Server ready...");

Thread.sleep(5 * 60 * 1000) ;
System.out.println ("Server exiting");
System.exit (0) ;

Servant

This file should be copied into the subdirectory samples/assessor/src/server. Save as
AssessorPTImpl. java.

package server;

import java.util.logging.Logger;

import objectweb.org.celtix.bpel test.AssessorPT;
import objectweb.org.celtix.bpel test.AssessorService;
import objectweb.org.celtix.bpel test.CustomerRequest;

@javax.jws.WebService (name = "AssessorPT", serviceName = "AssessorService",
targetNamespace = "http://org.objectweb/celtix/bpel test",
wsdlLocation = "file:./wsdl/bpel_test.wsdl")

public class AssessorPTImpl implements AssessorPT ({

private static final Logger LOG =
Logger.getlLogger (AssessorPTImpl.class.getPackage () .getName ()) ;
public String assess (CustomerRequest in) {

LOG.info ("Executing operation assess");

System.out.println ("assess operation invoked") ;

String return = "low";
if (in.getAmount () > 8000) {
_return = "high";

}

return return;

BPELService

WSDL File

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="bpel test.wsdl"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns:tns="http://org.objectweb/celtix/bpel test"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<schema attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="customer request">

<sequence maxOccurs="1" minOccurs="1">
<element maxOccurs="1" minOccurs="1" name="firstName"
type="string"/>
<element maxOccurs="1" minOccurs="1" name="lastName"
type="string"/>
<element maxOccurs="1" minOccurs="1" name="amount"
type="int"/>
</sequence>
</complexType>
</schema>
</wsdl:types>

<wsdl:message name="responseMessage'">

<wsdl:part name="out" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="requestMessage">

<wsdl:part name="in" type="tns:customer request"/>
</wsdl :message>

<wsdl:portType name="bpelService">
<wsdl:operation name="process">
<wsdl:input message="tns:requestMessage"/>
<wsdl:output message="tns:responseMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="assessorPT">
<wsdl:operation name="assess'">
<wsdl:input name="assessRequest" message="tns:requestMessage" />
<wsdl:output name="assessResponse" message='"tns:responseMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="approverPT">
<wsdl:operation name="approve">
<wsdl:input name="approveRequest" message="tns:requestMessage"/>
<wsdl:output name="approveResponse" message="tns:responseMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="approverPTSOAPBinding" type="tns:approverPT">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
<wsdl:operation name="approve">
<soap:operation socapAction="" style="rpc"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
<wsdl:input name="approveRequest">
<soap:body use="literal" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:input>
<wsdl:output name="approveResponse">
<soap:body use="literal" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:binding name="assessorPTSOAPBinding" type="tns:assessorPT">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
<wsdl:operation name="assess">
<soap:operation soapAction="" style="rpc"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
<wsdl:input name="assessRequest">
<soap:body use="literal" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:input>
<wsdl:output name="assessResponse'">
<soap:body use="literal" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<wsdl:service name="ApproverService">
<wsdl:port name="SoapPort" binding="tns:approverPTSOAPBinding">
<soap:address
location="http://localhost:9000/celtix/services/ApproverWebService"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:port>
</wsdl:service>

<wsdl:service name="AssessorService">
<wsdl:port name="SoapPort" binding="tns:assessorPTSOAPBinding">
<soap:address
location="http://localhost:9001/celtix/services/AssessorWebService"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"/>
</wsdl:port>
</wsdl:service>

<plnk:partnerLinkType name="processLinkType">
<plnk:role name="processor">

<plnk:portType name="tns:bpelService"/>
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="assessorLinkType">
<plnk:role name="assessor">

<plnk:portType name="tns:assessorPT"/>
</plnk:role>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="approverLinkType">
<plnk:role name="approver">

<plnk:portType name="tns:approverPT"/>
</plnk:role>
</plnk:partnerLinkType>

</wsdl:definitions>

.bpel File

<?xml version="1.0" encoding="UTF-8"?>

<process name="bpel test" suppressJoinFailure="yes"
targetNamespace="http://bpel test"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:nsl="http://org.objectweb/celtix/bpel test"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<partnerLinks>
<partnerLink myRole="processor" name="processLink"
partnerLinkType="nsl:processLinkType" />
<partnerLink name="assessorLink" partnerLinkType="nsl:assessorLinkType"
partnerRole="assessor"/>
<partnerLink name="approverLink" partnerLinkType="nsl:approverLinkType"
partnerRole="approver"/>
</partnerLinks>

<variables>
<variable messageType="nsl:requestMessage" name="request"/>
<variable messageType="nsl:responseMessage" name="response"/>
</variables>

<flow>

<links>
<link name="receive-to-assess"/>
<link name="receive-to-approve"/>
<link name="assess-to-approve"/>
<link name="assess-to-setMessage"/>
<link name="L2"/>
<link name="L1"/>
</links>
<receive createlInstance="yes" name="ReceiveInputFromClient"

operation="process" partnerLink="processLink"
portType="nsl:bpelService" variable="request">
<source linkName="receive-to-assess"
transitionCondition="bpws:getVariableData
("request', 'in', '/in/amount') < 10000"/>
<source linkName="receive-to-approve"
transitionCondition="bpws:getVariableData
("request', 'in', '/in/amount') >= 10000"/>
</receive>

<reply name="ReplyToClient" operation="process" partnerLink="processLink"
portType="nsl:bpelService" variable="response">
<target linkName="L2"/>
<target linkName="L1"/>
</reply>

<invoke inputVariable="request" name="InvokeOnAssessor" operation="assess"
outputVariable="response" partnerLink="assessorLink"
portType="nsl:assessorPT">
<target linkName="receive-to-assess"/>
<source linkName="assess-to-approve"
transitionCondition="bpws:getVariableData
("response', 'out') != 'low'"/>
<source linkName="assess-to-setMessage"
transitionCondition="bpws:getVariableData
("response', 'out') = 'low'"/>
</invoke>

<invoke inputVariable="request" name="InvokeOnApprover" operation="approve"
outputVariable="response" partnerLink="approverLink"
portType="nsl:approverPT">
<target linkName="receive-to-approve"/>
<target linkName="assess-to-approve"/>
<source linkName="L2"/>
</invoke>

<assign name="AssignYesFromAssessor">
<target linkName="assess-to-setMessage"/>
<source linkName="L1"/>

<copy>
<from expression="'yes from assessor'"/>
<to part="out" variable="response"/>
</copy>
</assign>
</flow>
</process>

Deployment Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<process location="bpel/BPEL/bpel test.bpel" name="bpelns:bpel test"
persistenceType="full" xmlns="http://schemas.active-
endpoints.com/pdd/2005/09/pdd.xsd" xmlns:bpelns="http://bpel test"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<partnerLinks>
<partnerLink name="approverLink">
<partnerRole endpointReference="static">
<wsa:EndpointReference
xmlns:s="http://org.objectweb/celtix/bpel test">
<wsa:Address>
http://localhost:9000/celtix/services/ApproverWebService
</wsa:Address>
<wsa:ServiceName PortName="SoapPort">
s:ApproverService
</wsa:ServiceName>
</wsa:EndpointReference>
</partnerRole>
</partnerLink>
<partnerLink name="assessorLink">

<partnerRole endpointReference="static">
<wsa:EndpointReference
xmlns:s="http://org.objectweb/celtix/bpel test">
<wsa:Address>
http://localhost:9001/celtix/services/AssessorWebService
</wsa:Address>
<wsa:ServiceName PortName="SoapPort">
s:AssessorService
</wsa:ServiceName>
</wsa:EndpointReference>
</partnerRole>
</partnerLink>
<partnerLink name="processLink">
<myRole allowedRoles="" binding="RPC-LIT" service="ProcessService"/>
</partnerLink>
</partnerLinks>
<wsdlReferences>
<wsdl location="project:/BPEL/WSDL/bpel test.wsdl"
namespace="http://org.objectweb/celtix/bpel test"/>
</wsdlReferences>
</process>

Client Application

WSDL File

This file should be copied into the subdirectory samples/client/wsdl. Save as bpel test.wsdl.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bpel process.wsdl"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://org.objectweb/celtix/bpel test"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<schema attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://org.objectweb/celtix/bpel test"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="customer request">
<sequence maxOccurs="1" minOccurs="1">
<element maxOccurs="1" minOccurs="1" name="firstName"
type="string" />
<element maxOccurs="1" minOccurs="1" name="lastName"
type="string" />
<element maxOccurs="1" minOccurs="1" name="amount"
type="int"/>
</sequence>
</complexType>
</schema>
</types>
<message name="responseMessage">
<part name="out" type="xsd:string"/>
</message>
<message name="requestMessage">
<part name="in" type="tns:customer request"/>
</message>
<portType name="bpelService">
<operation name="process">
<input message="tns:requestMessage" name="process"/>
<output message="tns:responseMessage" name="processResponse"/>
</operation>
</portType>
<binding name="bpelServiceSOAPBinding" type="tns:bpelService">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="process">
<soap:operation soapAction="" style="rpc"/>
<input name="process">
<soap:body use="literal"/>
</input>
<output name="processResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="ProcessService">
<port binding="tns:bpelServiceSOAPBinding" name="ProcessServicePort">
<http:address
location=
"http://localhost:8080/active-bpel/services/ProcessService"/>
</port>
</service>
</definitions>

build.xml File

This file should be copied into the subdirectory samples/client. Save as build.xml.

<?xml version="1.0"?>
<project name="process service" default="build" basedir=".">

<import file="../common build.xml"/>

<target name="client" description="run demo client">
<property name="param" value="7000"/>
<celtixrun classname="client.Client"
paraml="${basedir}/wsdl/bpel process.wsdl"
param2="S${op}" param3="S${param}"/>
</target>

<target name="generate.code">

<echo level="info" message="Generating code using wsdl2java..."/>
<wsdl2java file="bpel process.wsdl"/>
</target>

</project>

Client Mainline

This file should be copied into the subdirectory samples/client/src/client. Save as client.java.
package client;

import java.io.File;
import java.net.URL;

import javax.xml.namespace.QName;

import objectweb.org.celtix.bpel test.BpelService;
import objectweb.org.celtix.bpel test.ProcessService;
import objectweb.org.celtix.bpel test.CustomerRequest;

public final class Client {
private static final QName SERVICE NAME =
new QName ("http://org.objectweb/celtix/bpel test", "ProcessService");
private Client () {
}
public static void main (String[] args) throws Exception ({
if (args.length == 0) {

System.out.println ("please specify wsdl");
System.exit (1) ;

}

URL wsdlURL;
File wsdlFile = new File(args[O0]);
if (wsdlFile.exists()) {
wsdlURL = wsdlFile.toURL() ;
} else {
wsdlURL = new URL(args[0]);
}

ProcessService service = new ProcessService (wsdlURL, SERVICE NAME) ;
BpelService bs = (BpelService)service.getProcessServicePort () ;

System.out.println ("Invoking process...");

CustomerRequest r = new CustomerRequest () ;

r.setFirstName ("Harry") ;

r.setLastName ("Potter") ;

r.setAmount (new Integer (args[2]) .intValue());
System.out.println("server responded with: " + bs.process(r));
System.out.println() ;

System.exit (0) ;

	Overview
	Required Software
	Software Installation
	JDK
	Apache Ant
	Apache Tomcat
	ActiveBPEL
	Celtix

	The BPEL Process Diagram
	The BPEL Process Description
	The ActiveBPEL Process Deployment Descriptor
	The ActiveBPEL Deployment Archive

	The Celtix Client Application and Web Services
	The ApproverService
	The AssessorService
	The Client Application

	Developing the Complete Application
	Write the ApprovalService Application
	Write the AssessorService Application
	Combine the Two Web Service WSDL Files
	Write the Process Deployment Descriptor File
	Create the Deployment Archive
	Edit the Combined WSDL File
	Write a Client Application Against the Service Representing the BPEL Process
	Start the Web Service Applications
	Deploy the Application Archive into the ActiveBPEL Engine
	Run the Client Application
	Review Process Execution Through the ActiveBPEL Admin Functionality

	Appendix
	ApproverService Application
	AssessorService Application
	BPELService
	Client Application

