
Handler Tutorial

<!-- --> <!-- -->

1. Contents

• Introduction to Handlers
• Handler Samples
• Server sample handler
• Client sample handler
• Handler API's

2. Introduction to Handlers

Handlers are pluggable components in Axis C++. Handlers are pieces of code that you write
to intercept the message either on the client or service side. We have included a set of sample
handlers for your reference.
You can write your own handlers by following the instructions given for the sample
Handlers. At the end of this section we have also added some more detailed API information.

3. Handler samples

We have included the following sample Handlers for your reference.

1. echoStringHeaderHandler (A server side handler sample) This sample handler will
simply echo (i.e send back) the string which you send in the SOAP Header in the SOAP
request.

2. testHandler (A client side handler sample) This sample handler will simply add a SOAP
Header to the generated SOAP request.

4. echoStringHeaderHandler (A server side handler sample)

4.1. Building the echoStringHeaderHandler

4.1.1. Linux

The build files are available at:
<Axis install directory>/samples/server/echoStringHeaderHandler

Page 1
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

Change your current directory to this directory and then execute the following...

• make
• make install

The handler libeshhandler.so file will be created at
<Axis install directory>/lib directory

4.1.2. Windows

The VC dsw file (ServerHandlers.dsw) is available at
<Axis Install directory>/vc/samples/server/ServerHandlers.dsw.

Open this file and build the project echoStringHeaderHandler. Once the build is successful
you will find the DLL (echoStringHeaderHandler.dll) at:
<Axis install directory>/bin

4.2. Configuring the echoStringHeader Handler

Edit the server.wsdd file (as created when you configured your server) to include the handler
for a particular service.
In this instance we are using the Calculator server example that we have used in both the
client and server setup examples. The example below shows how a linux file would look e.g.
libeshhandler.so is used please vary the file according to the libraries you have created. This
example shows the same handler being deployed on both the incoming and outgoing
message.

<service name="Calculator" provider="CPP:RPC" description="Simple Calculator
Axis C++ Service"> <requestFlow name="CalculatorHandlers"> <handler
name="ESHHandler" type="<Axis installation
directory>/handlers/custom/echoStringHeaderHandler/libeshhandler.so">
</handler> </requestFlow> <responseFlow name="CalculatorHandlers">
<handler name="ESHHandler" type="<Axis installation
directory>/handlers/custom/echoStringHeaderHandler/libeshhandler.so">
</handler> </responseFlow> <parameter name="allowedMethods" value="add sub
mul div"/> <parameter name="className" value="<Axis installation
directory>/webservices/libcalculator.so" /> </service>Note:

4.3. Running the echoStringHeader Handler

Since this Handler is configured to the Calculator web service in the above step, this Handler
will be executed when a client sends a SOAP request to the Calculator web service. Use the
calculator client you created earlier.

Handler Tutorial

Page 2
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

../serveruser-guide.html#Deploy_the_service
../serveruser-guide.html
../clientuser-guide.html#Generating and using client stubs

5. testHandler (A client side handler sample)

5.1. Building the testHandler

The build files are available at <Axis installation directory>/samples/client/testHandler.
Change your current directory to this directory and then you can execute the following.

5.1.1. Linux

• make
• make install

The handler so file will be created at
<Axis installation directory>/lib/

5.1.2. Windows

The VC dsw file (ClientHandlers.dsw) is available at:
<Axis Installation directory>/vc/samples/client/ClientHandlers.dsw

Open this file and build the project TestHandler.

Once the build is successful you will find the DLL (testHandler.dll) at:
<Axis Installation directory>/bin

If you see this DLL at the above location you are done with the first step.

5.2. Configuring the testHandler

Now edit the <Axis installation directory>/etc/client.wsdd to include the handler for a
particular service.

In this example we will continue to use the Calculator service. The sample wsdd file outlined
below shows a linux directory system - for other operating systems please use the correct
path symbols.
Note: Up until this point you did not need a client wsdd file the client only requires a wsdd
file when it has handlers.

<service name="Calculator" provider="CPP:RPC" description="Calculator web
service"> <requestFlow name="CalculatorHandlers"> <handler
name="TestHandler" type="<Axis Installation
directory>/lib/libtest_client_handler.so"> </handler> </requestFlow> </service>
Now you are almost ready to run your client side handler.

Handler Tutorial

Page 3
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

Note: If you are using Client side Handlers you need to enter the ClientWSDDFilePath
entry in your axiscpp.conf configuration file.

5.3. Running the testHandler

Since this Handler is configured to the Calculator web service in the above step, this Handler
will be executed when you run the calculator web service client..

6. The Handler API's

Now you have seen some sample Handlers you can explore more on Handlers. The following
sections should help you understand that API's available to you in your handler code.
In order to get access to the DeSerializer the handler writer can use the following code block.

// -----
.....
IHandlerSoapDeSerializer* pIHandlerSoapDeSerializer;
pIMsg->getSoapDeSerializer(&pIHandlerSoapDeSerializer);
.....
-------//

In order to get access to a incoming HeaderBlock the handler writer can use the following
code block.
// -----
.....
IHeaderBlock* pIHeaderBlock=
pIHandlerSoapDeSerializer->getHeaderBlock("echoMeString",
"http://soapinterop.org/echoheader/");
.....
-------//

In order to manipulate the above accessed HeaderBlock the handler writer can use the
following code block.
// -----
.....
if (pIHeaderBlock != NULL) {

const BasicNode* pBasicNode= pIHeaderBlock->getFirstChild();
const AxisChar* pachHeaderValue;
if (pBasicNode != NULL)
{

if((pBasicNode->getNodeType()) == CHARACTER_NODE) {
pachHeaderValue= pBasicNode->getValue();

Handler Tutorial

Page 4
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

../install-guide.html#Installing_Client
../clientuser-guide.html#Generating_and_using_client_stubs

} else {
pachHeaderValue = "This was not the expected value Ros";

}
} else
{
pachHeaderValue = "pBascNode is NULL";
}
AxisChar* pachTmpValue = (AxisChar*) malloc(strlen(pachHeaderValue) + 4);
strcpy(pachTmpValue, pachHeaderValue);
pachTemp = "EchoStringHeaderHandlerPr1.id";
pIMsg->setProperty(pachTemp, pachTmpValue);
free(pachTmpValue);
} else {
//do some thing
//AxisChar* pachTmpValue = "Default values since no reqeust SOAP header";
//pachTemp = "EchoStringHeaderHandlerPr1.id";
//pIMsg->setProperty(pachTemp, pachTmpValue);
//free(pachTmpValue);
}

.....
-------//
In order to get access to the incoming SOAP Body the handler writer can use the following
code block.
To get the body as a AxisChar*
// -----
.....
IHandlerSoapDeSerializer* pIHandlerSoapDeSerializer;
pIMsg->getSoapDeSerializer(&pIHandlerSoapDeSerializer);
AxisChar* pSoapBody = pIHandlerSoapDeSerializer->getBodyAsChar();
.....
-------//
To get the body as a decoded base64 stream.
// -----
.....
IHandlerSoapDeSerializer* pIHandlerSoapDeSerializer;
pIMsg->getSoapDeSerializer(&pIHandlerSoapDeSerializer);
xsd__base64Binary bb = pIHandlerSoapDeSerializer->getBodyAsBase64Binary();
.....
-------//

Handler Tutorial

Page 5
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

Notes:
Have a look at the following classes at the API docs to see all the available functions and
their respective descriptions. (You can even look at the relevent .h/.hpp header files for the
API comments)
IhandlerSoapDeSerializer
IHeaderBlock
BasicNode

The BasicNode API is similar (not exactly the same, but ..) to the DOM and is written as a
tree traversing API.
With the sample code samples provided above and with the API notes a developer will easily
be able to write and play around his/her own Handlers.

Handler Tutorial

Page 6
Copyright © 2000-2005 The Apache Software Foundation All rights reserved.

