XSD Objects

<lom o> <lom 2> <l >

1. XSD Objects

1.1. XML Schema Part 2 : Datatypes

The types and formatting of data transmitted in a SOAP message is defined by the XML
Schema, in particular Part 2 : Datatypes. The full specification can be seen here.

1.1.1. Built-in types

Within section 3 of the above specification 44 built-in datatypes are described, encompasing
Strings, numeric, time and encoded binary datatypes. These datatypes are split into two
groups, primitive and derived types.

1.1.1.1. Primitive Types

The XML schema provides 19 primitive types. As al datais represented in text form within
XML, the value space for each datatype needs to be specified, for example numeric types
cannot contain alphabetic characters. To do this, each type defines a number of contraining
facets and the values within these facets allows the XML engine to validate the data. See
Constraining Facets below for further information on how these are used.

The 19 primitive data types are: string, boolean, decimal, float, double, duration, dateTime,
time, date, gY earMonth, gY ear, gMonthDay, gDay, gMonth, hexBinary, base64Binary,
anyURI, QName, NOTATION

See section 3.2 of the specification for full detail on each datatype.

1.1.1.2. Derived Types
The XML Schema allows additional types to be derived from the primitive types, and has 25
built-in derived types. 12 data types are derived from the string primitive data type.

The 12 types derived from the string primitive data type are: normalizedString, token,
language, Name, NCName, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN

Page 1

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-primitive-datatypes

XSD Objects

and NMTOKENS
The remaining 13 data types are derived from the decimal primitive data type.

The 13 data types derived from the decimal primitive data type are: integer,
nonPositivel nteger, negativelnteger, long, int, short, byte, nonNegativel nteger,
unsignedL ong, unsignedint, unsignedShort, unsignedByte, positivel nteger

A derived type uses the same contraining facets as the type from which it is derived, but
provides differing values for one or more facet so as to further restrict the value space. For
example; the decimal allows fraction digits, while the integer derived type sets this facet to 0.

See section 3.3 of the specification for full detail on each datatype.

1.1.1.3. User defined derived types

In the same way as the XML Schema defines a number of built-in datatypes the user can also
provide additional derived types. This can be done in the WSDL document, or an XSD
referred from aWSDL document.

The following shows how you can create a new type caled di r ect i on, which is derived
from the NMTOKEN built-in type, to only have the values f ronKey and t oKey, by
restricting the enuner at i on constraining facet.

<xsd:simpleType name="direction"> <xsd:restriction base="NMTOKEN">
<xsd:enumeration value="fromKey"/> <xsd:enumeration value="toKey"/>
</xsd:restriction> </xsd:simpleType>

1.1.2. Constraining Facets

As mentioned above, the value spaces of each of the built-in types are controlled by
constraining facets. The XML Schema provides 12 constraining facets, as described in
section 4.3.

The 12 constraining facets are:

e length

e mnLength

e« maxLength

e pattern -describestheform of the data, typically using regular expression syntax.

e enumnerati on - specifiesafixed set of permitted values

« whi t eSpace - how to handle whitespace characters

e ¢ preserve -vaueisunchanged

* repl ace - al occurances of tab, line feed and carriage return are replaced with a
space

Page 2

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-derived
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#rf-facets

XSD Objects

» col | apse - after the process of r epl ace, remove all contigious repeating
occurances of spaces, and strip leading and trailing spaces

max| ncl usi ve

maxExcl usi ve

m nExcl usi ve

m nl ncl usi ve

totalDigits

fractionDigits

Each primitive datatype uses a subset of these contraining facets, to suit the characteristics of
that particular datatype. Section 4.1.5 of the XML Schema provides a table of which facets
are used for each datatype.

It is permitted for the value of a constraining facet to be undefined, with the exception of
whitespace which must be specified as one of preserve, replace or collapse.

2. Axis C++ Implementation of XSD built-in types

2.1. C++ Objects

In version 1.5 of Apache Axis C++, an object model was introduced to the SOAP engine for
the XSD built-in types. The object heirarchy mimics the order in which the datatypes are
derived from each other.

2.1.1. IAnySimpleType I nterface

All the XSD type objects implement the IAnySimpleType interface, which provides the
following methods, which must be implemented by al implementing classes

Axi sChar* serialize() throw (Axi sSoapExcepti on)

voi d deserial i ze(const Axi sChar * val ueAsChar) t hr ow
(Axi sSoapExcepti on)

XSDTYPE get Type()

voi d* get Val ue()

In addition each implementation of this interface must provide a parameterized constructor,
such that it can be constructed and will immediately serialize the provided value.

The IAnySimpleType interface provides the following utility method, which should be called
by all implementing classes when serializing data.

Axi sChar * serialize(const Axi sChar * val ue) t hr ow
(Axi sSoapExcepti on);

Page 3

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#defn-coss

XSD Objects

This method resolves reserved characters (eg & is replaced by &anp;), processes
Wi t espace, validates Pat t er n and ensures value is contained within Enuner at i on.

2.1.2. Object Heirarchy

Below is a portion of the C++ object heirarchy, which, as you will notice, is very similar to
the diagram of built-in datatypesin the XSD Schema

2.1.3. Mapping XSD built-in typesto C/C++ types

Within the Axis engine mappings are provided between the XSD built-in types and the native
C/C++ types. To aid understanding and maintain consistency, these are declared as typedefs
to match the XSD type names. These typedefs should be used throughout the engine for:

» Clarity of code, making it clear which type is being handled at any point in the code
« Ease of maintenance, should a native type need to be altered, it need only be donein the
typedef without further changes through the codebase.

2.1.3.1. C++ Types

The mapping from C++ types to the XSD built-in types is defined in Axi sUser API . hpp.
For each XSD built-in type a corresponding typedef is declared in the form xsd__ <t ype>,
eg: xsd__string.

Note: Axi sUser API . hpp only declares those types currenty supported within the user
API.

2.1.3.2. C Types

Similar to the C++ API, the mapping from C types to the XSD built-in types is defined in
Axi sUser APl . h. A typedef is declared for each XSD built-in type, in the form
xsdc___<type>, eg:xsdc__string.

2.1.4. 1ConstrainingFacet Interface

All the Constraining Facet objects implement the | ConstrainingFacet interface. This provides
the following utility method, which allows the XSD objects to determine if a given facet has
been defined:

bool isSet();

The following Constraining Facet objects provide utility methods to assist the
serialization/deserialization of XSD built-in types:

Enumeration void validat eEnunerati on(const AxisChar* val ue)
throw (Axi sSoapException); Pattern void validatePattern(const
Axi sChar* value) throw (Axi sSoapExcepti on); WhiteSpace PGS

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes

XSD Objects

Axi sChar* processWiteSpace(const Axi sChar* val ueToProcess);

3. Current Limitations

3.1. Function Limitation

Currently, the XSD objects are completely internal to the Axis engine. In the future we may
wish to expose these on the external API, such that customers (via WSDL2Ws) will be able
to derive additional ssimple types simply by refining one or more of the constraining facets,
then ssimply re-using the serialization/deserialization logic we have aready written.

3.2. Pattern Constraining Facet

The implementation of the pattern constraining facet is incomplete. It needs to validate
against a given regular expression, following this, the pattern for each of data types needs to
be updated with the regular expression to describe their particular data type.

4. References

XML Schema Part 2 : Datatypes -
http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/

4.1. Outstanding I ssues
AXISCPP-291

Page 5

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://issues.apache.org/jira/browse/AXISCPP-291

