
THE METRO PROJECT ROADMAP

METRO Roadmap

Mission Statement
The Metro project aims to provide advanced enterprise class solutions for component
based development, dynamic deployment and runtime management.

Overview
This document presents an overview of the Metro project, its code, project
relationships, status, roadmap related to the sub-system that will collectively make
up the initial code repository, together with an introduction to the community and
our establishment strategy.
Key features of the metro runtime platform include the following:
 * automatic assembly
 * muli-layer configuration management
 * advanced context management
 * composite component management
 * packaged deployment scenarios
 * local and remote repository integration
 * classloader and plugin management
 * integral extension jar management
 * logging service framework and selectable plugin implementation
 * complete facilities architecture
 * pluggable runtime layer
 * lifecycle lifestyle management
In addition to the above – the metro project provides developer tools supporting
tight integration of version and dependency management, pluggable build
extensions, complete build automation, testing, packaging and continuous
integration solutions

Product Breakdown
Product Description

Metro The Metro product (formerly known as Avalon Merlin) is a
component management system backed by a formal component
type and block management system capable of support composite
component deployment.
Primary subsystems include:

 Transit The transit system is a resource gateway that
provides functional support for the creation of
classloader hierarchies based on remotely
available artifacts. The transit system serves as
the bootstrap deployment environment for the
Metro runtime and Magic build system.

THE METRO PROJECT ROADMAP

Product Description

 Logging The logging sub-system the handles the
establishment of pluggable logging
implementations including Lo4J and LogKit.

 Meta The component type model dealing with the
declaration of runtime requirements towards a
composition system.

 Composition The component management model (context,
configuration, channels, dependencies
management), that provides the framework for
the composition and the interface to the
underlying deployment runtime.

 Activation The activation platform is a plugin established by
the metro kernel that encapsulates the runtime
contract of a particular component model. It is
responsible for the control over lifecycle and
lifestyle aspects.

Studio The Studio product is an Eclipse plugin that provides support for
development of composite components through management of
meta information about component types and meta data about
service composition.

Magic Magic is an ant library that provides support for centralized version
management, transitive dependency management, and a suite of
common build functions related to composite component
development processes.

Technical Strategy and Priorities
The metro platform is characterized by strong contracts, from meta-information
collocated with component classes though to deployment information packaged
under units called blocks. Through explicit separation of the publication of
component operational requirements from deployment solutions, the metro team has
established an architecture within which it is possible to compose new component
implementations dynamically on demand. This notion of composition is a strong and
important characteristic fundamental to the delivery of component reuse.
A second and notable aspect of the technical strategy is a strong separation of api,
spi, and implementation units across all aspects of the metro platform. This notion
of strong separation is reflected thought our development tools, the runtime
platform, and the deployment infrastructure.
Looking forward, the team aims to deliver solutions supporting long-running systems
maintenance, dynamic sub-systems replacement, graceful platform evolution, and
enhancements dealing the integration of peer systems. This last aspect presents
probably the most interesting social aspect the metro solution – the ability to
enhance the development and runtime processes of connected peers (customers,
providers, partners, etc.). From this notion is an opportunity to strongly reinforce
and amplify the value to and generated by the end-user community.

THE METRO PROJECT ROADMAP

The challenges ahead will cover many technical domains including, security,
distribution, and availability management (and non-availability tolerance). Achieving
these targets will require the continued process of building the developer community,
continuing our support for end-users, and the engagement of the private sector in
areas concerning support, training, promotion, and related professional services.

Related Apache Projects
Project Relationship

Ant The metro build system is built directly on the Apache Ant build
system and leverages many of the new features introduced in the
recent 1.6 release cycle.

Avalon The metro platform will continue to provide complete support for the
Avalon 4.2 framework contract as part of its concurrent model
management strategy. The Metro project will a replacement
framework optimized for the metro build and runtime as a
concurrent upgrade strategy.

Jakarta Many of the commons utilities are used with the metro sub-systems,
including cli, collections, beanutils, and commons logging. Commons
dbcp and pool are used with metro facilities related to database
connection management and the commons messenger and digester
are used in facilities supporting message integration. In addition,
the metro platform leverages the Jakarta regular expressions and
becel utilities. The Jasper compiler and runtime library from Jakarta
Tomcat are used within the metro http facility.

Logging
Services

An IOC logging api, service provider management spi together with
a Log4J and LogKit implementation plugins. The Metro project
intends to expolore the possibility of collaboration with the Apache
Logging Service project with respect the API and SPI layers.

Community
The development community surrounding the Metro project is made up of the core
developer team. These individuals have strong experience in enterprise applications
delivery and typically a background in dealing with problems of reuse and long-term
maintenance concerns.
The end-user community is made up of a very diverse collection of individuals
representing domain activities in the financial services sector, information systems in
the bio-technology sector, embedded applications in the area of transaction and cash
management, larger scale applications in the area of payment processing,
applications in the business object and workflow area, instant messaging systems,
and a variety of desktop applications.

Establishment Strategy
The Metro project codebase will be derived from a fork of the Apache Avalon
codebase. The project will maintain a maintenance branch corresponding to a
current Merlin 3.3.0 platform and all related Avalon sub-systems. A production
branch will be established under the metro namespace.

THE METRO PROJECT ROADMAP

Following establishment of the codebase and initial infrastructure work will be
undertaken to rationalize implementation systems with the objective of establish
tight integration between transit, the magic build system, and the metro deployment
platform. Artifact distributing via DPML will be maintained as is.

Notes concerning Migration
Concerns related to package changes and migration overhead will depend directly on
the type of user and usage scenarios. The following is a summary of the projected
impact on users relative to the primary API and SPI contracts.

Usage Role Impact Assessment

Component
Author

Zero

The existing release of the Merlin 3.3.0 platform will
be maintained under the Metro project. A release of
Metro will supercede Merlin but shall maintain full
backward compatibility with the Avalon framework 4.2
API contract. The Metro team aims to rapidly deliver
support for concurrent runtime systems, enabling the
possibility of the simultaneous deployment of
framework 4.2 based components with a native metro
equivalent.

Facility
Developers

Minor Facility developers will be exposed to package name
and context entry URI changes at the level of the
composition system API.

Embedded
Applications

Moderate Changes to package names would be visible and in
addition some changes are anticipated with respect to
the management of the repository system initial
context. These changes reflect important
enhancements to the initial bootstrapping framework
that provided higher resilience and greater flexibility in
the management and upgrading up large installation.

