
METRO DRAFT 0.1

Introduction to the proposed Apache Metro Project
This document presents an overview of the code, project relationships, status and
general roadmap of the suite of sub-system that will collectively make up the initial
code repository together with an introduction to the community and our
establishment strategy.

Product Breakdown
Product Description

Metro The metro product (formerly known as Merlin) is a component
management system backed by a formal component type and
block management system capable of support composite
component deployment.
Primary subsystems include:

 Transit The transit system is a resource gateway that
provides functional support for the creation of
classloader hierarchies based on remotely
available artifacts. The transit system serves as
the bootstrap deployment environment for the
metro runtime and magic build system.

 Logging The logging sub-system the handles the
establishment of pluggable logging
implementations including Lo4J and LogKit.

 Meta The component type model dealing with the
declaration of runtime requirements towards a
composition system.

 Composition The component management model (context,
configuration, channels, dependencies
management), that provides the framework for
the composition and the interface to the
underlying deployment runtime.

 Activation The activation platform is a plugin established by
the metro kernel that encapsulates the runtime
contract of a particular component model. It is
responsible for the control over lifecycle and
lifestyle aspects.

Studio The Studio product is an Eclipse plugin that provides support for
development of composite components through management of
meta information about component types and meta data about
service composition.

Magic Magic is an ant library that provides support for centralized version
management, transitive dependency management, and a suite of
common build functions related to composite component
development processes.

METRO DRAFT 0.1

Technical Strategy and Priorities
The metro platform is characterized by strong contracts, from meta-information
collocated with component classes though to deployment information packaged
under units called blocks. Through explicit separation of the publication of
component operations requirements from deployment solutions, the metro team has
established an architecture within which it is possible to compose new component
implementations dynamically on demand. This notion of composition is a strong and
important characteristic fundamental to the delivery of component reuse.
A second and notable aspect of the technical strategy is a strong separation of api,
spi, and implementation units across all aspects of the metro platform. This notion
of strong separation is reflected thought our development tools, the runtime
platform, and the deployment infrastructure.
Looking forward, the team aims to deliver solutions supporting long-running systems
maintenance, dynamic sub-systems replacement, graceful platform evolution, and
enhancements dealing the integration of peer systems. This last aspect presents
probably the most interesting social aspect the metro platform – the ability to
enhance the development and runtime process of connected peers. From this notion
is an opportunity to strongly reinforce and amplify the value to and generated by the
end-user community.
The challenges ahead will cover many technical domains including, security,
distribution, and availability management (and non-availability tolerance). Achieving
these targets will require the continued process of building the developer community,
continued support for end-users, and the engagement of the private sector in areas
concerning support, training, and related professional services.

Related Apache Projects
Project Relationship

Ant The metro build system is build directly on the Apache Ant build
system and leverages many of the new features introduced in the
recent 1.6 release cycle.

Avalon The metro platform provides and will continue to support the Avalon
4.2 framework contract as part of its concurrent model management
strategy.

Jakarta Many of the commons utilities are used with the metro sub-systems,
including cli, collections, beanutils, and commons logging. Commons
dbcp and pool are used with metro facilities related to database
connection management and the commons messenger and digester
are used in facilities supporting message integration. In addition,
the metro platform leverages the Jakarta regular expressions and
becel utilities. The Jasper compiler and runtime library from Jakarta
Tomcat is used within the metro http facility.

Logging
Services

Development in metro has lead to the establishment of
implementation independent logging apis and spis capable of
supporting plugin providers. Discussions have been initiated on the
subject of collaboration with the Apache Logging Service Project with
a view towards contributing to solutions in the logging service area
that facilitate improved contract and service provider management.

METRO DRAFT 0.1

Community
The development community surrounding the proposed Metro project is
predominately made up of developers with experience in enterprise applications
delivery and typically a background in dealing with problems of reuse and long-term
maintenance concerns.
The end-user community is made up of a very diverse collection of individuals
representing domain activities in the financial services sector, information systems in
the bio-technology sector, embedded applications in the area of transaction and cash
management, larger scale applications in the area of payment processing,
applications in the business object and workflow area, instant messaging systems,
and a variety of desktop applications.

Establishment Strategy
The Metro project codebase is based on a fork of the Apache Avalon project
codebase. The proposed fork would involve the division of the current Avalon
codebase in such a way that would separate existing Avalon Merlin product, sub-
systems and facilities, from the framework, LogKit, and cornerstone component
content. A critical consideration within this process is the absolute maintenance of
code compatibility with the released framework 4.2 component contracts, while at
the same time, enabling the concurrent management of alternatives.
A brief summary of the remaining package is presented in the following table.

Package Issue/Responsibilities

Framework The Avalon Framework current release is version 4.2. An improved
version 4.3 has been established under svn and could be moved to
release status with minimum effort (no api changes). It is important
that the framework receive basic maintenance as it is used across
many projects in Apache and has significant exposure outside of
Apache. Based on discussion within the Avalon development
community - further development of 4.X is not anticipated.

LogKit The LogKit product is a stable logging system. It not under active
development as it has already a good level of maturity. It receives
occasional maintenance. The package is referenced by the
framework (an issue addressed and resolved under the non-released
framework 4.3), it is used in the Excalibur Logging system, and it
serves as one the underlying technology for one of the plugin
logging implements under within the Merlin platform.
LogKit requires a home against which on-going but light weight
support can be provided. The Excalibur project may be a candidate.

Cornerstone The Cornerstone project is a small collection of components based
mainly on the Excalibur components (cornerstone representing
carse-grain service functionality whereas the underlying Excalibur
components are more fine-grain almost utility level systems).
Cornerstone components are used in a number of projects (notably
the Apache James Project). Further development of the suite is not
anticipated – but minimal maintenance should be provided.

METRO DRAFT 0.1

References to maintenance mainly concern the long term monitoring of Gump builds.
This is already in place however resolution of successful build cycles for a number of
cornerstone packages is pending resolution of technical issues related to
Gump/Maven integration. It is expected that these issues will be resolved in the
near term following which normal cycles will resume.

Notes concerning Migration
Concerns related to package changes and migration overhead will depend directly on
the type of user and usage scenarios. The following is a summary of the
requirements on the Metro team and the probable impact on users.

Usage Role Impact Assessment

Component
Author

Zero

The existing release of the Merlin 3.3.0 platform will
be maintained under the Metro project. A release of
Metro will supercede Merlin but shall maintain full
backward compatibility with the Avalon framework 4.2
api contract – including standard context entry usage
and lifecycle extension support. Looking further ahead
the Metro team aim to prove support for concurrent
runtime systems, enabling the possibility of the
simultaneous deployment of framework 4.2 based
components with a native metro equivalent.

Facility
Developers

Minor Facility developers will be exposed to package name
changes at the level of the composition system api.

Embedded
Applications

Moderate Changes to package names would be visible and in
addition some changes are anticipated with respect to
the management of the repository system initial
context. These changes reflect some important
enhancements to the initial bootstrapping framework
that will in the longer term provided higher resilience
and greater flexibility in the management and
upgrading up large installation. Impact will likely
require plugin descriptor re-generation and potential
changes to code dealing with the kernel
establishment.

