
Apache Accumulo User Manual

Version 1.4

June 28, 2012

Contents

1 Introduction 4

2 Accumulo Design 5

2.1 Data Model . 5
2.2 Architecture . 5
2.3 Components . 6

2.3.1 Tablet Server . 6
2.3.2 Loggers . 6
2.3.3 Garbage Collector . 6
2.3.4 Master . 6
2.3.5 Client . 7

2.4 Data Management . 7
2.5 Tablet Service . 8
2.6 Compactions . 8
2.7 Fault-Tolerance . 8

3 Accumulo Shell 10

3.1 Basic Administration . 10
3.2 Table Maintenance . 11
3.3 User Administration . 12

4 Writing Accumulo Clients 13

4.1 Running Client Code . 13
4.2 Connecting . 14
4.3 Writing Data . 14

4.3.1 BatchWriter . 14
4.4 Reading Data . 15

4.4.1 Scanner . 15
4.4.2 Isolated Scanner . 15

1

4.4.3 BatchScanner . 16

5 Table Con�guration 17

5.1 Locality Groups . 17
5.1.1 Managing Locality Groups via the Shell 17
5.1.2 Managing Locality Groups via the Client API 18

5.2 Constraints . 18
5.3 Bloom Filters . 19
5.4 Iterators . 19

5.4.1 Setting Iterators via the Shell . 20
5.4.2 Setting Iterators Programmatically . 20
5.4.3 Versioning Iterators and Timestamps . 20
5.4.4 Filters . 21
5.4.5 Combiners . 22

5.5 Block Cache . 23
5.6 Compaction . 24
5.7 Pre-splitting tables . 26
5.8 Merging tablets . 26
5.9 Delete Range . 27
5.10 Cloning Tables . 27

6 Table Design 30

6.1 Basic Table . 30
6.2 RowID Design . 31
6.3 Indexing . 32
6.4 Entity-Attribute and Graph Tables . 33
6.5 Document-Partitioned Indexing . 34

7 High-Speed Ingest 37

7.1 Pre-Splitting New Tables . 37
7.2 Multiple Ingester Clients . 38
7.3 Bulk Ingest . 38
7.4 Logical Time for Bulk Ingest . 39
7.5 MapReduce Ingest . 39

8 Analytics 40

8.1 MapReduce . 40
8.1.1 Mapper and Reducer classes . 40
8.1.2 AccumuloInputFormat options . 41
8.1.3 AccumuloOutputFormat options . 42

2

8.2 Combiners . 42
8.2.1 Feature Vectors . 43

8.3 Statistical Modeling . 43

9 Security 44

9.1 Security Label Expressions . 44
9.2 Security Label Expression Syntax . 45
9.3 Authorization . 45
9.4 User Authorizations . 46
9.5 Secure Authorizations Handling . 46
9.6 Query Services Layer . 46

10 Administration 48

10.1 Hardware . 48
10.2 Network . 48
10.3 Installation . 49
10.4 Dependencies . 49
10.5 Con�guration . 49

10.5.1 Edit conf/accumulo-env.sh . 49
10.5.2 Cluster Speci�cation . 50
10.5.3 Accumulo Settings . 50
10.5.4 Deploy Con�guration . 51

10.6 Initialization . 51
10.7 Running . 51

10.7.1 Starting Accumulo . 51
10.7.2 Stopping Accumulo . 52

10.8 Monitoring . 52
10.9 Logging . 52
10.10Recovery . 52

A Shell Commands 54

3

Chapter 1

Introduction

Apache Accumulo is a highly scalable structured store based on Google's BigTable. Accumulo
is written in Java and operates over the Hadoop Distributed File System (HDFS), which is part
of the popular Apache Hadoop project. Accumulo supports e�cient storage and retrieval of
structured data, including queries for ranges, and provides support for using Accumulo tables
as input and output for MapReduce jobs.

Accumulo features automatic load-balancing and partitioning, data compression and �ne-grained
security labels.

4

Chapter 2

Accumulo Design

2.1 Data Model

Accumulo provides a richer data model than simple key-value stores, but is not a fully relational
database. Data is represented as key-value pairs, where the key and value are comprised of the
following elements:

Key
Value

Row ID
Column

Timestamp
Family Quali�er Visibility

All elements of the Key and the Value are represented as byte arrays except for Timestamp,
which is a Long. Accumulo sorts keys by element and lexicographically in ascending order.
Timestamps are sorted in descending order so that later versions of the same Key appear �rst
in a sequential scan. Tables consist of a set of sorted key-value pairs.

2.2 Architecture

Accumulo is a distributed data storage and retrieval system and as such consists of several archi-
tectural components, some of which run on many individual servers. Much of the work Accumulo
does involves maintaining certain properties of the data, such as organization, availability, and
integrity, across many commodity-class machines.

5

2.3 Components

An instance of Accumulo includes many TabletServers, write-ahead Logger servers, one Garbage
Collector process, one Master server and many Clients.

2.3.1 Tablet Server

The TabletServer manages some subset of all the tablets (partitions of tables). This includes
receiving writes from clients, persisting writes to a write-ahead log, sorting new key-value pairs
in memory, periodically �ushing sorted key-value pairs to new �les in HDFS, and responding to
reads from clients, forming a merge-sorted view of all keys and values from all the �les it has
created and the sorted in-memory store.

TabletServers also perform recovery of a tablet that was previously on a server that failed,
reapplying any writes found in the write-ahead log to the tablet.

2.3.2 Loggers

The Loggers accept updates to Tablet servers and write them to local on-disk storage. Each
tablet server will write their updates to multiple loggers to preserve data in case of hardware
failure.

2.3.3 Garbage Collector

Accumulo processes will share �les stored in HDFS. Periodically, the Garbage Collector will
identify �les that are no longer needed by any process, and delete them.

2.3.4 Master

The Accumulo Master is responsible for detecting and responding to TabletServer failure. It tries
to balance the load across TabletServer by assigning tablets carefully and instructing Tablet-
Servers to migrate tablets when necessary. The Master ensures all tablets are assigned to one
TabletServer each, and handles table creation, alteration, and deletion requests from clients.
The Master also coordinates startup, graceful shutdown and recovery of changes in write-ahead
logs when Tablet servers fail.

6

2.3.5 Client

Accumulo includes a client library that is linked to every application. The client library contains
logic for �nding servers managing a particular tablet, and communicating with TabletServers to
write and retrieve key-value pairs.

2.4 Data Management

Accumulo stores data in tables, which are partitioned into tablets. Tablets are partitioned on
row boundaries so that all of the columns and values for a particular row are found together
within the same tablet. The Master assigns Tablets to one TabletServer at a time. This enables
row-level transactions to take place without using distributed locking or some other complicated
synchronization mechanism. As clients insert and query data, and as machines are added and
removed from the cluster, the Master migrates tablets to ensure they remain available and that
the ingest and query load is balanced across the cluster.

7

2.5 Tablet Service

When a write arrives at a TabletServer it is written to a Write-Ahead Log and then inserted
into a sorted data structure in memory called a MemTable. When the MemTable reaches a
certain size the TabletServer writes out the sorted key-value pairs to a �le in HDFS called
Indexed Sequential Access Method (ISAM) �le. This process is called a minor compaction. A
new MemTable is then created and the fact of the compaction is recorded in the Write-Ahead
Log.

When a request to read data arrives at a TabletServer, the TabletServer does a binary search
across the MemTable as well as the in-memory indexes associated with each ISAM �le to �nd
the relevant values. If clients are performing a scan, several key-value pairs are returned to the
client in order from the MemTable and the set of ISAM �les by performing a merge-sort as they
are read.

2.6 Compactions

In order to manage the number of �les per tablet, periodically the TabletServer performs Major
Compactions of �les within a tablet, in which some set of ISAM �les are combined into one
�le. The previous �les will eventually be removed by the Garbage Collector. This also pro-
vides an opportunity to permanently remove deleted key-value pairs by omitting key-value pairs
suppressed by a delete entry when the new �le is created.

2.7 Fault-Tolerance

If a TabletServer fails, the Master detects it and automatically reassigns the tablets assigned
from the failed server to other servers. Any key-value pairs that were in memory at the time
the TabletServer are automatically reapplied from the Write-Ahead Log to prevent any loss of
data.

The Master will coordinate the copying of write-ahead logs to HDFS so the logs are available to
all tablet servers. To make recovery e�cient, the updates within a log are grouped by tablet. The
sorting process can be performed by Hadoops MapReduce or the Logger server. TabletServers
can quickly apply the mutations from the sorted logs that are destined for the tablets they have
now been assigned.

TabletServer failures are noted on the Master's monitor page, accessible via
http://master-address:50095/monitor.

8

9

Chapter 3

Accumulo Shell

Accumulo provides a simple shell that can be used to examine the contents and con�guration
settings of tables, insert/update/delete values, and change con�guration settings.

The shell can be started by the following command:

$ACCUMULO_HOME/bin/accumulo shell -u [username]

The shell will prompt for the corresponding password to the username speci�ed and then display
the following prompt:

Shell - Apache Accumulo Interactive Shell
-
- version 1.3
- instance name: myinstance
- instance id: 00000000-0000-0000-0000-000000000000
-
- type ’help’ for a list of available commands
-

3.1 Basic Administration

The Accumulo shell can be used to create and delete tables, as well as to con�gure table and
instance speci�c options.

root@myinstance> tables
!METADATA

root@myinstance> createtable mytable

10

root@myinstance mytable>

root@myinstance mytable> tables
!METADATA
mytable

root@myinstance mytable> createtable testtable

root@myinstance testtable>

root@myinstance junk> deletetable testtable

root@myinstance>

The Shell can also be used to insert updates and scan tables. This is useful for inspecting tables.

root@myinstance mytable> scan

root@myinstance mytable> insert row1 colf colq value1
insert successful

root@myinstance mytable> scan
row1 colf:colq [] value1

The value in brackets "[]" would be the visibility labels. Since none were used, this is empty for
this row. You can use the "-t" option to scan to see the timestamp for the cell, too.

3.2 Table Maintenance

The compact command instructs Accumulo to schedule a compaction of the table during which
�les are consolidated and deleted entries are removed.

root@myinstance mytable> compact -t mytable
07 16:13:53,201 [shell.Shell] INFO : Compaction of table mytable
scheduled for 20100707161353EDT

The �ush command instructs Accumulo to write all entries currently in memory for a given
table to disk.

root@myinstance mytable> flush -t mytable
07 16:14:19,351 [shell.Shell] INFO : Flush of table mytable
initiated...

11

3.3 User Administration

The Shell can be used to add, remove, and grant privileges to users.

root@myinstance mytable> createuser bob
Enter new password for ’bob’: *********
Please confirm new password for ’bob’: *********

root@myinstance mytable> authenticate bob
Enter current password for ’bob’: *********
Valid

root@myinstance mytable> grant System.CREATE_TABLE -s -u bob

root@myinstance mytable> user bob
Enter current password for ’bob’: *********

bob@myinstance mytable> userpermissions
System permissions: System.CREATE_TABLE
Table permissions (!METADATA): Table.READ
Table permissions (mytable): NONE

bob@myinstance mytable> createtable bobstable
bob@myinstance bobstable>

bob@myinstance bobstable> user root
Enter current password for ’root’: *********

root@myinstance bobstable> revoke System.CREATE_TABLE -s -u bob

12

Chapter 4

Writing Accumulo Clients

4.1 Running Client Code

There are multiple ways to run Java code that uses Accumulo. Below is a list of the di�erent
ways to execute client code.

• using java executable

• using the accumulo script

• using the tool script

Inorder to run client code written to run against Accumulo, you will need to include the jars
that Accumulo depends on in your classpath. Accumulo client code depends on Hadoop and
Zookeeper. For Hadoop add the hadoop core jar, all of the jars in the Hadoop lib directory,
and the conf directory to the classpath. For Zookeeper 3.3 you only need to add the Zookeeper
jar, and not what is in the Zookeeper lib directory. You can run the following command on a
con�gured Accumulo system to see what its using for its classpath.

$ACCUMULO_HOME/bin/accumulo classpath

Another option for running your code is to put a jar �le in $ACCUMULO_HOME/lib/ext. After
doing this you can use the accumulo script to execute your code. For example if you create a jar
containing the class com.foo.Client and placed that in lib/ext, then you could use the command
$ACCUMULO_HOME/bin/accumulo com.foo.Client to execute your code.

If you are writing map reduce job that access Accumulo, then you can use the bin/tool.sh script
to run those jobs. See the map reduce example.

13

4.2 Connecting

All clients must �rst identify the Accumulo instance to which they will be communicating. Code
to do this is as follows:

String instanceName = "myinstance";
String zooServers = "zooserver-one,zooserver-two"
Instance inst = new ZooKeeperInstance(instanceName, zooServers);

Connector conn = inst.getConnector("user", "passwd");

4.3 Writing Data

Data are written to Accumulo by creating Mutation objects that represent all the changes to
the columns of a single row. The changes are made atomically in the TabletServer. Clients then
add Mutations to a BatchWriter which submits them to the appropriate TabletServers.

Mutations can be created thus:

Text rowID = new Text("row1");
Text colFam = new Text("myColFam");
Text colQual = new Text("myColQual");
ColumnVisibility colVis = new ColumnVisibility("public");
long timestamp = System.currentTimeMillis();

Value value = new Value("myValue".getBytes());

Mutation mutation = new Mutation(rowID);
mutation.put(colFam, colQual, colVis, timestamp, value);

4.3.1 BatchWriter

The BatchWriter is highly optimized to send Mutations to multiple TabletServers and auto-
matically batches Mutations destined for the same TabletServer to amortize network overhead.
Care must be taken to avoid changing the contents of any Object passed to the BatchWriter
since it keeps objects in memory while batching.

Mutations are added to a BatchWriter thus:

long memBuf = 1000000L; // bytes to store before sending a batch
long timeout = 1000L; // milliseconds to wait before sending
int numThreads = 10;

14

BatchWriter writer =
conn.createBatchWriter("table", memBuf, timeout, numThreads)

writer.add(mutation);

writer.close();

An example of using the batch writer can be found at
accumulo/docs/examples/README.batch

4.4 Reading Data

Accumulo is optimized to quickly retrieve the value associated with a given key, and to e�ciently
return ranges of consecutive keys and their associated values.

4.4.1 Scanner

To retrieve data, Clients use a Scanner, which provides acts like an Iterator over keys and values.
Scanners can be con�gured to start and stop at particular keys, and to return a subset of the
columns available.

// specify which visibilities we are allowed to see
Authorizations auths = new Authorizations("public");

Scanner scan =
conn.createScanner("table", auths);

scan.setRange(new Range("harry","john"));
scan.fetchFamily("attributes");

for(Entry<Key,Value> entry : scan) {
String row = e.getKey().getRow();
Value value = e.getValue();

}

4.4.2 Isolated Scanner

Accumulo supports the ability to present an isolated view of rows when scanning. There are
three possible ways that a row could change in accumulo :

15

• a mutation applied to a table

• iterators executed as part of a minor or major compaction

• bulk import of new �les

Isolation guarantees that either all or none of the changes made by these operations on a row
are seen. Use the IsolatedScanner to obtain an isolated view of an accumulo table. When using
the regular scanner it is possible to see a non isolated view of a row. For example if a mutation
modi�es three columns, it is possible that you will only see two of those modi�cations. With
the isolated scanner either all three of the changes are seen or none.

The IsolatedScanner bu�ers rows on the client side so a large row will not crash a tablet server.
By default rows are bu�ered in memory, but the user can easily supply their own bu�er if they
wish to bu�er to disk when rows are large.

For an example, look at the following
src/examples/src/main/java/org/apache/accumulo/examples/isolation/InterferenceTest.java

4.4.3 BatchScanner

For some types of access, it is more e�cient to retrieve several ranges simultaneously. This
arises when accessing a set of rows that are not consecutive whose IDs have been retrieved from
a secondary index, for example.

The BatchScanner is con�gured similarly to the Scanner; it can be con�gured to retrieve a
subset of the columns available, but rather than passing a single Range, BatchScanners accept
a set of Ranges. It is important to note that the keys returned by a BatchScanner are not in
sorted order since the keys streamed are from multiple TabletServers in parallel.

ArrayList<Range> ranges = new ArrayList<Range>();
// populate list of ranges ...

BatchScanner bscan =
conn.createBatchScanner("table", auths, 10);

bscan.setRanges(ranges);
bscan.fetchFamily("attributes");

for(Entry<Key,Value> entry : scan)
System.out.println(e.getValue());

An example of the BatchScanner can be found at
accumulo/docs/examples/README.batch

16

Chapter 5

Table Con�guration

Accumulo tables have a few options that can be con�gured to alter the default behavior of
Accumulo as well as improve performance based on the data stored. These include locality
groups, constraints, bloom �lters, iterators, and block cache.

5.1 Locality Groups

Accumulo supports storing of sets of column families separately on disk to allow clients to scan
over columns that are frequently used together e�cient and to avoid scanning over column fam-
ilies that are not requested. After a locality group is set Scanner and BatchScanner operations
will automatically take advantage of them whenever the fetchColumnFamilies() method is used.

By default tables place all column families into the same �default" locality group. Additional
locality groups can be con�gured anytime via the shell or programmatically as follows:

5.1.1 Managing Locality Groups via the Shell

usage: setgroups <group>=<col fam>{,<col fam>}{ <group>=<col fam>{,<col
fam>}} [-?] -t <table>

user@myinstance mytable> setgroups -t mytable group_one=colf1,colf2

user@myinstance mytable> getgroups -t mytable
group_one=colf1,colf2

17

5.1.2 Managing Locality Groups via the Client API

Connector conn;

HashMap<String,Set<Text>> localityGroups =
new HashMap<String, Set<Text>>();

HashSet<Text> metadataColumns = new HashSet<Text>();
metadataColumns.add(new Text("domain"));
metadataColumns.add(new Text("link"));

HashSet<Text> contentColumns = new HashSet<Text>();
contentColumns.add(new Text("body"));
contentColumns.add(new Text("images"));

localityGroups.put("metadata", metadataColumns);
localityGroups.put("content", contentColumns);

conn.tableOperations().setLocalityGroups("mytable", localityGroups);

// existing locality groups can be obtained as follows
Map<String, Set<Text>> groups =

conn.tableOperations().getLocalityGroups("mytable");

The assignment of Column Families to Locality Groups can be changed anytime. The physical
movement of column families into their new locality groups takes place via the periodic Major
Compaction process that takes place continuously in the background. Major Compaction can
also be scheduled to take place immediately through the shell:

user@myinstance mytable> compact -t mytable

5.2 Constraints

Accumulo supports constraints applied on mutations at insert time. This can be used to dis-
allow certain inserts according to a user de�ned policy. Any mutation that fails to meet the
requirements of the constraint is rejected and sent back to the client.

Constraints can be enabled by setting a table property as follows:

user@myinstance mytable> config -t mytable -s table.constraint.1=com.test.ExampleConstraint
user@myinstance mytable> config -t mytable -s table.constraint.2=com.test.AnotherConstraint
user@myinstance mytable> config -t mytable -f constraint
---------+--------------------------------+----------------------------

18

SCOPE | NAME | VALUE
---------+--------------------------------+----------------------------
table | table.constraint.1............ | com.test.ExampleConstraint
table | table.constraint.2............ | com.test.AnotherConstraint
---------+--------------------------------+----------------------------

Currently there are no general-purpose constraints provided with the Accumulo distribution.
New constraints can be created by writing a Java class that implements the org.apache.accumulo.core.constraints.Constraint
interface.

To deploy a new constraint, create a jar �le containing the class implementing the new constraint
and place it in the lib directory of the Accumulo installation. New constraint jars can be added
to Accumulo and enabled without restarting but any change to an existing constraint class
requires Accumulo to be restarted.

An example of constraints can be found in
accumulo/docs/examples/README.constraints with corresponding code under
accumulo/src/examples/simple/main/java/accumulo/examples/simple/constraints .

5.3 Bloom Filters

As mutations are applied to an Accumulo table, several �les are created per tablet. If bloom
�lters are enabled, Accumulo will create and load a small data structure into memory to de-
termine whether a �le contains a given key before opening the �le. This can speed up lookups
considerably.

To enable bloom �lters, enter the following command in the Shell:

user@myinstance> config -t mytable -s table.bloom.enabled=true

An extensive example of using Bloom Filters can be found at
accumulo/docs/examples/README.bloom .

5.4 Iterators

Iterators provide a modular mechanism for adding functionality to be executed by Tablet-
Servers when scanning or compacting data. This allows users to e�ciently summarize, �lter,
and aggregate data. In fact, the built-in features of cell-level security and column fetching are
implemented using Iterators. Some useful Iterators are provided with Accumulo and can be
found in the org.apache.accumulo.core.iterators.user package.

19

5.4.1 Setting Iterators via the Shell

usage: setiter [-?] -ageoff | -agg | -class <name> | -regex |
-reqvis | -vers [-majc] [-minc] [-n <itername>] -p <pri>
[-scan] [-t <table>]

user@myinstance mytable> setiter -t mytable -scan -p 10 -n myiter

5.4.2 Setting Iterators Programmatically

scanner.addIterator(new IteratorSetting(
15, // priority
"com.company.MyIterator", // class name
"myiter" // name this iterator

));

Some iterators take additional parameters from client code, as in the following example:

IteratorSetting iter = new IteratorSetting(...);
iter.addOption("myoptionname", "myoptionvalue");
scanner.addIterator(iter)

Tables support separate Iterator settings to be applied at scan time, upon minor compaction
and upon major compaction. For most uses, tables will have identical iterator settings for all
three to avoid inconsistent results.

5.4.3 Versioning Iterators and Timestamps

Accumulo provides the capability to manage versioned data through the use of timestamps
within the Key. If a timestamp is not speci�ed in the key created by the client then the system
will set the timestamp to the current time. Two keys with identical rowIDs and columns but
di�erent timestamps are considered two versions of the same key. If two inserts are made into
accumulo with the same rowID, column, and timestamp, then the behavior is non-deterministic.

Timestamps are sorted in descending order, so the most recent data comes �rst. Accumulo can
be con�gured to return the top k versions, or versions later than a given date. The default is to
return the one most recent version.

The version policy can be changed by changing the VersioningIterator options for a table as
follows:

user@myinstance mytable> config -t mytable -s
table.iterator.scan.vers.opt.maxVersions=3

20

user@myinstance mytable> config -t mytable -s
table.iterator.minc.vers.opt.maxVersions=3

user@myinstance mytable> config -t mytable -s
table.iterator.majc.vers.opt.maxVersions=3

Logical Time

Accumulo 1.2 introduces the concept of logical time. This ensures that timestamps set by
accumulo always move forward. This helps avoid problems caused by TabletServers that have
di�erent time settings. The per tablet counter gives unique one up time stamps on a per mutation
basis. When using time in milliseconds, if two things arrive within the same millisecond then
both receive the same timestamp. When using time in milliseconds, accumulo set times will still
always move forward and never backwards.

A table can be con�gured to use logical timestamps at creation time as follows:

user@myinstance> createtable -tl logical

Deletes

Deletes are special keys in accumulo that get sorted along will all the other data. When a delete
key is inserted, accumulo will not show anything that has a timestamp less than or equal to
the delete key. During major compaction, any keys older than a delete key are omitted from
the new �le created, and the omitted keys are removed from disk as part of the regular garbage
collection process.

5.4.4 Filters

When scanning over a set of key-value pairs it is possible to apply an arbitrary �ltering policy
through the use of a Filter. Filters are types of iterators that return only key-value pairs that
satisfy the �lter logic. Accumulo has a few built-in �lters that can be con�gured on any table:
AgeO�, ColumnAgeO�, Timestamp, NoVis, and RegEx. More can be added by writing a Java
class that extends the
org.apache.accumulo.core.iterators.Filter class.

The AgeO� �lter can be con�gured to remove data older than a certain date or a �xed amount
of time from the present. The following example sets a table to delete everything inserted over
30 seconds ago:

21

user@myinstance> createtable filtertest
user@myinstance filtertest> setiter -t filtertest -scan -minc -majc -p 10 -n myfilter -ageoff
AgeOffFilter removes entries with timestamps more than <ttl> milliseconds old
----------> set org.apache.accumulo.core.iterators.user.AgeOffFilter parameter negate, default false keeps k/v that pass accept method, true rejects k/v that pass accept method:
----------> set org.apache.accumulo.core.iterators.user.AgeOffFilter parameter ttl, time to live (milliseconds): 3000
----------> set org.apache.accumulo.core.iterators.user.AgeOffFilter parameter currentTime, if set, use the given value as the absolute time in milliseconds as the current time of day:
user@myinstance filtertest>
user@myinstance filtertest> scan
user@myinstance filtertest> insert foo a b c
user@myinstance filtertest> scan
foo a:b [] c
user@myinstance filtertest> sleep 4
user@myinstance filtertest> scan
user@myinstance filtertest>

To see the iterator settings for a table, use:

user@example filtertest> config -t filtertest -f iterator
---------+---+------------------
SCOPE | NAME | VALUE
---------+---+------------------
table | table.iterator.majc.myfilter | 10,org.apache.accumulo.core.iterators.user.AgeOffFilter
table | table.iterator.majc.myfilter.opt.ttl | 3000
table | table.iterator.majc.vers | 20,org.apache.accumulo.core.iterators.VersioningIterator
table | table.iterator.majc.vers.opt.maxVersions .. | 1
table | table.iterator.minc.myfilter | 10,org.apache.accumulo.core.iterators.user.AgeOffFilter
table | table.iterator.minc.myfilter.opt.ttl | 3000
table | table.iterator.minc.vers | 20,org.apache.accumulo.core.iterators.VersioningIterator
table | table.iterator.minc.vers.opt.maxVersions .. | 1
table | table.iterator.scan.myfilter | 10,org.apache.accumulo.core.iterators.user.AgeOffFilter
table | table.iterator.scan.myfilter.opt.ttl | 3000
table | table.iterator.scan.vers | 20,org.apache.accumulo.core.iterators.VersioningIterator
table | table.iterator.scan.vers.opt.maxVersions .. | 1
---------+--+------------------

5.4.5 Combiners

Accumulo allows Combiners to be con�gured on tables and column families. When a Combiner
is set it is applied across the values associated with any keys that share rowID, column family,
and column quali�er. This is similar to the reduce step in MapReduce, which applied some
function to all the values associated with a particular key.

For example, if a summing combiner were con�gured on a table and the following mutations
were inserted:

22

Row Family Qualifier Timestamp Value
rowID1 colfA colqA 20100101 1
rowID1 colfA colqA 20100102 1

The table would re�ect only one aggregate value:

rowID1 colfA colqA - 2

Combiners can be enabled for a table using the setiter command in the shell. Below is an
example.

root@a14 perDayCounts> setiter -t perDayCounts -p 10 -scan -minc -majc -n daycount
-class org.apache.accumulo.core.iterators.user.SummingCombiner

TypedValueCombiner can interpret Values as a variety of number encodings
(VLong, Long, or String) before combining

----------> set SummingCombiner parameter columns,
<col fam>[:<col qual>]{,<col fam>[:<col qual>]} : day

----------> set SummingCombiner parameter type, <VARNUM|LONG|STRING>: STRING

root@a14 perDayCounts> insert foo day 20080101 1
root@a14 perDayCounts> insert foo day 20080101 1
root@a14 perDayCounts> insert foo day 20080103 1
root@a14 perDayCounts> insert bar day 20080101 1
root@a14 perDayCounts> insert bar day 20080101 1

root@a14 perDayCounts> scan
bar day:20080101 [] 2
foo day:20080101 [] 2
foo day:20080103 [] 1

Accumulo includes some useful Combiners out of the box. To �nd these look in the
org.apache.accumulo.core.iterators.user package.

Additional Combiners can be added by creating a Java class that extends
org.apache.accumulo.core.iterators.Combiner and adding a jar containing that class to
Accumulo's lib/ext directory.

An example of a Combiner can be found under
accumulo/src/examples/simple/main/java/org/apache/accumulo/examples/simple/combiner/StatsCombiner.java

5.5 Block Cache

In order to increase throughput of commonly accessed entries, Accumulo employs a block cache.
This block cache bu�ers data in memory so that it doesn't have to be read o� of disk. The

23

RFile format that Accumulo prefers is a mix of index blocks and data blocks, where the index
blocks are used to �nd the appropriate data blocks. Typical queries to Accumulo result in a
binary search over several index blocks followed by a linear scan of one or more data blocks.

The block cache can be con�gured on a per-table basis, and all tablets hosted on a tablet server
share a single resource pool. To con�gure the size of the tablet server's block cache, set the
following properties:

tserver.cache.data.size: Specifies the size of the cache for file data blocks.
tserver.cache.index.size: Specifies the size of the cache for file indices.

To enable the block cache for your table, set the following properties:

table.cache.block.enable: Determines whether file (data) block cache is enabled.
table.cache.index.enable: Determines whether index cache is enabled.

The block cache can have a signi�cant e�ect on alleviating hot spots, as well as reducing query
latency. It is enabled by default for the !METADATA table.

5.6 Compaction

As data is written to Accumulo it is bu�ered in memory. The data bu�ered in memory is
eventually written to HDFS on a per tablet basis. Files can also be added to tablets directly by
bulk import. In the background tablet servers run major compactions to merge multiple �les
into one. The tablet server has to decide which tablets to compact and which �les within a
tablet to compact. This decision is made using the compaction ratio, which is con�gurable on
a per table basis. To con�gure this ratio modify the following property:

table.compaction.major.ratio

Increasing this ratio will result in more �les per tablet and less compaction work. More �les per
tablet means more higher query latency. So adjusting this ratio is a trade o� between ingest
and query performance. The ratio defaults to 3.

The way the ratio works is that a set of �les is compacted into one �le if the sum of the sizes of
the �les in the set is larger than the ratio multiplied by the size of the largest �le in the set. If
this is not true for the set of all �les in a tablet, the largest �le is removed from consideration,
and the remaining �les are considered for compaction. This is repeated until a compaction is
triggered or there are no �les left to consider.

The number of background threads tablet servers use to run major compactions is con�gurable.
To con�gure this modify the following property:

24

tserver.compaction.major.concurrent.max

Also, the number of threads tablet servers use for minor compactions is con�gurable. To con-
�gure this modify the following property:

tserver.compaction.minor.concurrent.max

The numbers of minor and major compactions running and queued is visible on the Accumulo
monitor page. This allows you to see if compactions are backing up and adjustments to the
above settings are needed. When adjusting the number of threads available for compactions,
consider the number of cores and other tasks running on the nodes such as maps and reduces.

If major compactions are not keeping up, then the number of �les per tablet will grow to a point
such that query performance starts to su�er. One way to handle this situation is to increase the
compaction ratio. For example, if the compaction ratio were set to 1, then every new �le added
to a tablet by minor compaction would immediately queue the tablet for major compaction. So
if a tablet has a 200M �le and minor compaction writes a 1M �le, then the major compaction
will attempt to merge the 200M and 1M �le. If the tablet server has lots of tablets trying to do
this sort of thing, then major compactions will back up and the number of �les per tablet will
start to grow, assuming data is being continuously written. Increasing the compaction ratio will
alleviate backups by lowering the amount of major compaction work that needs to be done.

Another option to deal with the �les per tablet growing too large is to adjust the following
property:

table.file.max

When a tablet reaches this number of �les and needs to �ush its in-memory data to disk, it will
choose to do a merging minor compaction. A merging minor compaction will merge the tablet's
smallest �le with the data in memory at minor compaction time. Therefore the number of �les
will not grow beyond this limit. This will make minor compactions take longer, which will cause
ingest performance to decrease. This can cause ingest to slow down until major compactions have
enough time to catch up. When adjusting this property, also consider adjusting the compaction
ratio. Ideally, merging minor compactions never need to occur and major compactions will keep
up. It is possible to con�gure the �le max and compaction ratio such that only merging minor
compactions occur and major compactions never occur. This should be avoided because doing
only merging minor compactions causes O(N2) work to be done. The amount of work done by
major compactions is O(N ∗ logR(N)) where R is the compaction ratio.

Compactions can be initiated manually for a table. To initiate a minor compaction, use the �ush
command in the shell. To initiate a major compaction, use the compact command in the shell.
The compact command will compact all tablets in a table to one �le. Even tablets with one �le
are compacted. This is useful for the case where a major compaction �lter is con�gured for a
table. In 1.4 the ability to compact a range of a table was added. To use this feature specify

25

start and stop rows for the compact command. This will only compact tablets that overlap the
given row range.

5.7 Pre-splitting tables

Accumulo will balance and distribute tables accross servers. Before a table gets large, it will
be maintained as a single tablet on a single server. This limits the speed at which data can be
added or queried to the speed of a single node. To improve performance when the a table is
new, or small, you can add split points and generate new tablets.

In the shell:

root@myinstance> createtable newTable
root@myinstance> addsplits -t newTable g n t

This will create a new table with 4 tablets. The table will be split on the letters �g�, �n�, and
�t� which will work nicely if the row data start with lower-case alphabetic characters. If your
row data includes binary information or numeric information, or if the distribution of the row
information is not �at, then you would pick di�erent split points. Now ingest and query can
proceed on 4 nodes which can improve performance.

5.8 Merging tablets

Over time, a table can get very large, so large that it has hundreds of thousands of split points.
Once there are enough tablets to spread a table across the entire cluster, additional splits
may not improve performance, and may create unnecessary bookkeeping. The distribution of
data may change over time. For example, if row data contains date information, and data is
continually added and removed to maintain a window of current information, tablets for older
rows may be empty.

Accumulo supports tablet merging, which can be used to reduce delete the number of split
points. The following command will merge all rows from �A� to �Z� into a single tablet:

root@myinstance> merge -t myTable -s A -e Z

If the result of a merge produces a tablet that is larger than the con�gured split size, the tablet
may be split by the tablet server. Be sure to increase your tablet size prior to any merges if the
goal is to have larger tablets:

root@myinstance> config -t myTable -s table.split.threshold=2G

26

In order to merge small tablets, you can ask accumulo to merge sections of a table smaller than
a given size.

root@myinstance> merge -t myTable -s 100M

By default, small tablets will not be merged into tablets that are already larger than the given
size. This can leave isolated small tablets. To force small tablets to be merged into larger tablets
use the ��force� option:

root@myinstance> merge -t myTable -s 100M --force

Merging away small tablets works on one section at a time. If your table contains many sections
of small split points, or you are attempting to change the split size of the entire table, it will be
faster to set the split point and merge the entire table:

root@myinstance> config -t myTable -s table.split.threshold=256M
root@myinstance> merge -t myTable

5.9 Delete Range

Consider an indexing scheme that uses date information in each row. For example �20110823-
15:20:25.013� might be a row that speci�es a date and time. In some cases, we might like
to delete rows based on this date, say to remove all the data older than the current year.
Accumulo supports a delete range operation which can e�ciently removes data between two
rows. For example:

root@myinstance> deleterange -t myTable -s 2010 -e 2011

This will delete all rows starting with �2010� and it will stop at any row starting �2011�. You
can delete any data prior to 2011 with:

root@myinstance> deleterange -t myTable -e 2011 --force

The shell will not allow you to delete an unbounded range (no start) unless you provide the
��force� option.

Range deletion is implemented using splits at the given start/end positions, and will a�ect the
number of splits in the table.

5.10 Cloning Tables

A new table can be created that points to an existing table's data. This is a very quick meta-
data operation, no data is actually copied. The cloned table and the source table can change

27

independently after the clone operation. One use case for this feature is testing. For example
to test a new �ltering iterator, clone the table, add the �lter to the clone, and force a major
compaction. To perform a test on less data, clone a table and then use delete range to e�ciently
remove a lot of data from the clone. Another use case is generating a snapshot to guard against
human error. To create a snapshot, clone a table and then disable write permissions on the
clone.

The clone operation will point to the source table's �les. This is why the �ush option is present
and is enabled by default in the shell. If the �ush option is not enabled, then any data the
source table currently has in memory will not exist in the clone.

A cloned table copies the con�guration of the source table. However the permissions of the
source table are not copied to the clone. After a clone is created, only the user that created the
clone can read and write to it.

In the following example we see that data inserted after the clone operation is not visible in the
clone.

root@a14> createtable people
root@a14 people> insert 890435 name last Doe
root@a14 people> insert 890435 name first John
root@a14 people> clonetable people test
root@a14 people> insert 890436 name first Jane
root@a14 people> insert 890436 name last Doe
root@a14 people> scan
890435 name:first [] John
890435 name:last [] Doe
890436 name:first [] Jane
890436 name:last [] Doe
root@a14 people> table test
root@a14 test> scan
890435 name:first [] John
890435 name:last [] Doe
root@a14 test>

The du command in the shell shows how much space a table is using in HDFS. This command
can also show how much overlapping space two cloned tables have in HDFS. In the example
below du shows table ci is using 428M. Then ci is cloned to cic and du shows that both tables
share 428M. After three entries are inserted into cic and its �ushed, du shows the two tables still
share 428M but cic has 226 bytes to itself. Finally, table cic is compacted and then du shows
that each table uses 428M.

root@a14> du ci
428,482,573 [ci]

root@a14> clonetable ci cic

28

root@a14> du ci cic
428,482,573 [ci, cic]

root@a14> table cic
root@a14 cic> insert r1 cf1 cq1 v1
root@a14 cic> insert r1 cf1 cq2 v2
root@a14 cic> insert r1 cf1 cq3 v3
root@a14 cic> flush -t cic -w
27 15:00:13,908 [shell.Shell] INFO : Flush of table cic completed.
root@a14 cic> du ci cic

428,482,573 [ci, cic]
226 [cic]

root@a14 cic> compact -t cic -w
27 15:00:35,871 [shell.Shell] INFO : Compacting table ...
27 15:03:03,303 [shell.Shell] INFO : Compaction of table cic completed for given range
root@a14 cic> du ci cic

428,482,573 [ci]
428,482,612 [cic]

root@a14 cic>

29

Chapter 6

Table Design

6.1 Basic Table

Since Accumulo tables are sorted by row ID, each table can be thought of as being indexed by
the row ID. Lookups performed row ID can be executed quickly, by doing a binary search, �rst
across the tablets, and then within a tablet. Clients should choose a row ID carefully in order
to support their desired application. A simple rule is to select a unique identi�er as the row
ID for each entity to be stored and assign all the other attributes to be tracked to be columns
under this row ID. For example, if we have the following data in a comma-separated �le:

userid,age,address,account-balance

We might choose to store this data using the userid as the rowID and the rest of the data in
column families:

Mutation m = new Mutation(new Text(userid));
m.put(new Text("age"), age);
m.put(new Text("address"), address);
m.put(new Text("balance"), account_balance);

writer.add(m);

We could then retrieve any of the columns for a speci�c userid by specifying the userid as the
range of a scanner and fetching speci�c columns:

Range r = new Range(userid, userid); // single row
Scanner s = conn.createScanner("userdata", auths);
s.setRange(r);
s.fetchColumnFamily(new Text("age"));

30

for(Entry<Key,Value> entry : s)
System.out.println(entry.getValue().toString());

6.2 RowID Design

Often it is necessary to transform the rowID in order to have rows ordered in a way that is optimal
for anticipated access patterns. A good example of this is reversing the order of components of
internet domain names in order to group rows of the same parent domain together:

com.google.code
com.google.labs
com.google.mail
com.yahoo.mail
com.yahoo.research

Some data may result in the creation of very large rows - rows with many columns. In this case
the table designer may wish to split up these rows for better load balancing while keeping them
sorted together for scanning purposes. This can be done by appending a random substring at
the end of the row:

com.google.code_00
com.google.code_01
com.google.code_02
com.google.labs_00
com.google.mail_00
com.google.mail_01

It could also be done by adding a string representation of some period of time such as date to
the week or month:

com.google.code_201003
com.google.code_201004
com.google.code_201005
com.google.labs_201003
com.google.mail_201003
com.google.mail_201004

Appending dates provides the additional capability of restricting a scan to a given date range.

31

6.3 Indexing

In order to support lookups via more than one attribute of an entity, additional indexes can be
built. However, because Accumulo tables can support any number of columns without specifying
them beforehand, a single additional index will often su�ce for supporting lookups of records in
the main table. Here, the index has, as the rowID, the Value or Term from the main table, the
column families are the same, and the column quali�er of the index table contains the rowID
from the main table.

Key
Value

Row ID
Column

Timestamp
Family Quali�er Visibility

Term Field Name MainRowID

Note: We store rowIDs in the column quali�er rather than the Value so that we can have more
than one rowID associated with a particular term within the index. If we stored this in the
Value we would only see one of the rows in which the value appears since Accumulo is con�gured
by default to return the one most recent value associated with a key.

Lookups can then be done by scanning the Index Table �rst for occurrences of the desired values
in the columns speci�ed, which returns a list of row ID from the main table. These can then be
used to retrieve each matching record, in their entirety, or a subset of their columns, from the
Main Table.

To support e�cient lookups of multiple rowIDs from the same table, the Accumulo client library
provides a BatchScanner. Users specify a set of Ranges to the BatchScanner, which performs
the lookups in multiple threads to multiple servers and returns an Iterator over all the rows
retrieved. The rows returned are NOT in sorted order, as is the case with the basic Scanner
interface.

// first we scan the index for IDs of rows matching our query

Text term = new Text("mySearchTerm");

HashSet<Text> matchingRows = new HashSet<Text>();

Scanner indexScanner = createScanner("index", auths);
indexScanner.setRange(new Range(term, term));

// we retrieve the matching rowIDs and create a set of ranges
for(Entry<Key,Value> entry : indexScanner)

matchingRows.add(new Text(entry.getKey().getColumnQualifier()));

32

// now we pass the set of rowIDs to the batch scanner to retrieve them
BatchScanner bscan = conn.createBatchScanner("table", auths, 10);

bscan.setRanges(matchingRows);
bscan.fetchFamily("attributes");

for(Entry<Key,Value> entry : scan)
System.out.println(entry.getValue());

One advantage of the dynamic schema capabilities of Accumulo is that di�erent �elds may be
indexed into the same physical table. However, it may be necessary to create di�erent index
tables if the terms must be formatted di�erently in order to maintain proper sort order. For
example, real numbers must be formatted di�erently than their usual notation in order to be
sorted correctly. In these cases, usually one index per unique data type will su�ce.

6.4 Entity-Attribute and Graph Tables

Accumulo is ideal for storing entities and their attributes, especially of the attributes are sparse.
It is often useful to join several datasets together on common entities within the same table. This
can allow for the representation of graphs, including nodes, their attributes, and connections to
other nodes.

Rather than storing individual events, Entity-Attribute or Graph tables store aggregate infor-
mation about the entities involved in the events and the relationships between entities. This
is often preferrable when single events aren't very useful and when a continuously updated
summarization is desired.

The physical schema for an entity-attribute or graph table is as follows:

Key
Value

Row ID
Column

Timestamp
Family Quali�er Visibility

EntityID Attribute Name Attribute Value Weight

EntityID Edge Type Related EntityID Weight

For example, to keep track of employees, managers and products the following entity-attribute
table could be used. Note that the weights are not always necessary and are set to 0 when not
used.

33

RowID ColumnFamily ColumnQualifier Value

E001 name bob 0
E001 department sales 0
E001 hire_date 20030102 0
E001 units_sold P001 780

E002 name george 0
E002 department sales 0
E002 manager_of E001 0
E002 manager_of E003 0

E003 name harry 0
E003 department accounts_recv 0
E003 hire_date 20000405 0
E003 units_sold P002 566
E003 units_sold P001 232

P001 product_name nike_airs 0
P001 product_type shoe 0
P001 in_stock germany 900
P001 in_stock brazil 200

P002 product_name basic_jacket 0
P002 product_type clothing 0
P002 in_stock usa 3454
P002 in_stock germany 700

To allow e�cient updating of edge weights, an aggregating iterator can be con�gured to add the
value of all mutations applied with the same key. These types of tables can easily be created
from raw events by simply extracting the entities, attributes, and relationships from individual
events and inserting the keys into Accumulo each with a count of 1. The aggregating iterator
will take care of maintaining the edge weights.

6.5 Document-Partitioned Indexing

Using a simple index as described above works well when looking for records that match one of
a set of given criteria. When looking for records that match more than one criterion simultane-

34

ously, such as when looking for documents that contain all of the words `the' and `white' and
`house', there are several issues.

First is that the set of all records matching any one of the search terms must be sent to the
client, which incurs a lot of network tra�c. The second problem is that the client is responsible
for performing set intersection on the sets of records returned to eliminate all but the records
matching all search terms. The memory of the client may easily be overwhelmed during this
operation.

For these reasons Accumulo includes support for a scheme known as sharded indexing, in which
these set operations can be performed at the TabletServers and decisions about which records
to include in the result set can be made without incurring network tra�c.

This is accomplished via partitioning records into bins that each reside on at most one Tablet-
Server, and then creating an index of terms per record within each bin as follows:

Key
Value

Row ID
Column

Timestamp
Family Quali�er Visibility

BinID Term DocID Weight

Documents or records are mapped into bins by a user-de�ned ingest application. By storing
the BinID as the RowID we ensure that all the information for a particular bin is contained
in a single tablet and hosted on a single TabletServer since Accumulo never splits rows across
tablets. Storing the Terms as column families serves to enable fast lookups of all the documents
within this bin that contain the given term.

Finally, we perform set intersection operations on the TabletServer via a special iterator called
the Intersecting Iterator. Since documents are partitioned into many bins, a search of all doc-
uments must search every bin. We can use the BatchScanner to scan all bins in parallel. The
Intersecting Iterator should be enabled on a BatchScanner within user query code as follows:

Text[] terms = {new Text("the"), new Text("white"), new Text("house")};

BatchScanner bs = conn.createBatchScanner(table, auths, 20);
IteratorSetting iter = new IteratorSetting(20, "ii", IntersectingIterator.class);
IntersectingIterator.setColumnFamilies(iter, terms);
bs.addScanIterator(iter);
bs.setRanges(Collections.singleton(new Range()));

for(Entry<Key,Value> entry : bs) {
System.out.println(" " + entry.getKey().getColumnQualifier());

}

This code e�ectively has the BatchScanner scan all tablets of a table, looking for documents

35

that match all the given terms. Because all tablets are being scanned for every query, each
query is more expensive than other Accumulo scans, which typically involve a small number
of TabletServers. This reduces the number of concurrent queries supported and is subject to
what is known as the `straggler' problem in which every query runs as slow as the slowest server
participating.

Of course, fast servers will return their results to the client which can display them to the user
immediately while they wait for the rest of the results to arrive. If the results are unordered
this is quite e�ective as the �rst results to arrive are as good as any others to the user.

36

Chapter 7

High-Speed Ingest

Accumulo is often used as part of a larger data processing and storage system. To maximize
the performance of a parallel system involving Accumulo, the ingestion and query components
should be designed to provide enough parallelism and concurrency to avoid creating bottlenecks
for users and other systems writing to and reading from Accumulo. There are several ways to
achieve high ingest performance.

7.1 Pre-Splitting New Tables

New tables consist of a single tablet by default. As mutations are applied, the table grows
and splits into multiple tablets which are balanced by the Master across TabletServers. This
implies that the aggregate ingest rate will be limited to fewer servers than are available within
the cluster until the table has reached the point where there are tablets on every TabletServer.

Pre-splitting a table ensures that there are as many tablets as desired available before ingest
begins to take advantage of all the parallelism possible with the cluster hardware. Tables can
be split anytime by using the shell:

user@myinstance mytable> addsplits -sf /local_splitfile -t mytable

For the purposes of providing parallelism to ingest it is not necessary to create more tablets
than there are physical machines within the cluster as the aggregate ingest rate is a function
of the number of physical machines. Note that the aggregate ingest rate is still subject to the
number of machines running ingest clients, and the distribution of rowIDs across the table. The
aggregation ingest rate will be suboptimal if there are many inserts into a small number of
rowIDs.

37

7.2 Multiple Ingester Clients

Accumulo is capable of scaling to very high rates of ingest, which is dependent upon not just
the number of TabletServers in operation but also the number of ingest clients. This is because
a single client, while capable of batching mutations and sending them to all TabletServers, is
ultimately limited by the amount of data that can be processed on a single machine. The
aggregate ingest rate will scale linearly with the number of clients up to the point at which
either the aggregate I/O of TabletServers or total network bandwidth capacity is reached.

In operational settings where high rates of ingest are paramount, clusters are often con�gured to
dedicate some number of machines solely to running Ingester Clients. The exact ratio of clients
to TabletServers necessary for optimum ingestion rates will vary according to the distribution
of resources per machine and by data type.

7.3 Bulk Ingest

Accumulo supports the ability to import �les produced by an external process such as MapRe-
duce into an existing table. In some cases it may be faster to load data this way rather than via
ingesting through clients using BatchWriters. This allows a large number of machines to format
data the way Accumulo expects. The new �les can then simply be introduced to Accumulo via
a shell command.

To con�gure MapReduce to format data in preparation for bulk loading, the job should be set
to use a range partitioner instead of the default hash partitioner. The range partitioner uses the
split points of the Accumulo table that will receive the data. The split points can be obtained
from the shell and used by the MapReduce RangePartitioner. Note that this is only useful if
the existing table is already split into multiple tablets.

user@myinstance mytable> getsplits
aa
ab
ac
...
zx
zy
zz

Run the MapReduce job, using the AccumuloFileOutputFormat to create the �les to be in-
troduced to Accumulo. Once this is complete, the �les can be added to Accumulo via the
shell:

38

user@myinstance mytable> importdirectory /files_dir /failures

Note that the paths referenced are directories within the same HDFS instance over which Ac-
cumulo is running. Accumulo places any �les that failed to be added to the second directory
speci�ed.

A complete example of using Bulk Ingest can be found at
accumulo/docs/examples/README.bulkIngest

7.4 Logical Time for Bulk Ingest

Logical time is important for bulk imported data, for which the client code may be choosing
a timestamp. At bulk import time, the user can choose to enable logical time for the set of
�les being imported. When its enabled, Accumulo uses a specialized system iterator to lazily
set times in a bulk imported �le. This mechanism guarantees that times set by unsynchronized
multi-node applications (such as those running on MapReduce) will maintain some semblance of
causal ordering. This mitigates the problem of the time being wrong on the system that created
the �le for bulk import. These times are not set when the �le is imported, but whenever it is
read by scans or compactions. At import, a time is obtained and always used by the specialized
system iterator to set that time.

The timestamp assigned by accumulo will be the same for every key in the �le. This could cause
problems if the �le contains multiple keys that are identical except for the timestamp. In this
case, the sort order of the keys will be unde�ned. This could occur if an insert and an update
were in the same bulk import �le.

7.5 MapReduce Ingest

It is possible to e�ciently write many mutations to Accumulo in parallel via a MapReduce
job. In this scenario the MapReduce is written to process data that lives in HDFS and write
mutations to Accumulo using the AccumuloOutputFormat. See the MapReduce section under
Analytics for details.

An example of using MapReduce can be found under
accumulo/docs/examples/README.mapred

39

Chapter 8

Analytics

Accumulo supports more advanced data processing than simply keeping keys sorted and per-
forming e�cient lookups. Analytics can be developed by using MapReduce and Iterators in
conjunction with Accumulo tables.

8.1 MapReduce

Accumulo tables can be used as the source and destination of MapReduce jobs. To use an
Accumulo table with a MapReduce job (speci�cally with the new Hadoop API as of version 0.20),
con�gure the job parameters to use the AccumuloInputFormat and AccumuloOutputFormat.
Accumulo speci�c parameters can be set via these two format classes to do the following:

• Authenticate and provide user credentials for the input

• Restrict the scan to a range of rows

• Restrict the input to a subset of available columns

8.1.1 Mapper and Reducer classes

To read from an Accumulo table create a Mapper with the following class parameterization and
be sure to con�gure the AccumuloInputFormat.

class MyMapper extends Mapper<Key,Value,WritableComparable,Writable> {
public void map(Key k, Value v, Context c) {

// transform key and value data here

40

}
}

To write to an Accumulo table, create a Reducer with the following class parameterization and
be sure to con�gure the AccumuloOutputFormat. The key emitted from the Reducer identi�es
the table to which the mutation is sent. This allows a single Reducer to write to more than
one table if desired. A default table can be con�gured using the AccumuloOutputFormat, in
which case the output table name does not have to be passed to the Context object within the
Reducer.

class MyReducer extends Reducer<WritableComparable, Writable, Text, Mutation> {

public void reduce(WritableComparable key, Iterator<Text> values, Context c) {

Mutation m;

// create the mutation based on input key and value

c.write(new Text("output-table"), m);
}

}

The Text object passed as the output should contain the name of the table to which this
mutation should be applied. The Text can be null in which case the mutation will be applied
to the default table name speci�ed in the AccumuloOutputFormat options.

8.1.2 AccumuloInputFormat options

Job job = new Job(getConf());
AccumuloInputFormat.setInputInfo(job,

"user",
"passwd".getBytes(),
"table",
new Authorizations());

AccumuloInputFormat.setZooKeeperInstance(job, "myinstance",
"zooserver-one,zooserver-two");

Optional settings:

To restrict Accumulo to a set of row ranges:

ArrayList<Range> ranges = new ArrayList<Range>();
// populate array list of row ranges ...
AccumuloInputFormat.setRanges(job, ranges);

41

To restrict accumulo to a list of columns:

ArrayList<Pair<Text,Text>> columns = new ArrayList<Pair<Text,Text>>();
// populate list of columns
AccumuloInputFormat.fetchColumns(job, columns);

To use a regular expression to match row IDs:

AccumuloInputFormat.setRegex(job, RegexType.ROW, "^.*");

8.1.3 AccumuloOutputFormat options

boolean createTables = true;
String defaultTable = "mytable";

AccumuloOutputFormat.setOutputInfo(job,
"user",
"passwd".getBytes(),
createTables,
defaultTable);

AccumuloOutputFormat.setZooKeeperInstance(job, "myinstance",
"zooserver-one,zooserver-two");

Optional Settings:

AccumuloOutputFormat.setMaxLatency(job, 300); // milliseconds
AccumuloOutputFormat.setMaxMutationBufferSize(job, 5000000); // bytes

An example of using MapReduce with Accumulo can be found at
accumulo/docs/examples/README.mapred

8.2 Combiners

Many applications can bene�t from the ability to aggregate values across common keys. This
can be done via Combiner iterators and is similar to the Reduce step in MapReduce. This
provides the ability to de�ne online, incrementally updated analytics without the overhead or
latency associated with batch-oriented MapReduce jobs.

All that is needed to aggregate values of a table is to identify the �elds over which values will be
grouped, insert mutations with those �elds as the key, and con�gure the table with a combining
iterator that supports the summarizing operation desired.

42

The only restriction on an combining iterator is that the combiner developer should not assume
that all values for a given key have been seen, since new mutations can be inserted at anytime.
This precludes using the total number of values in the aggregation such as when calculating an
average, for example.

8.2.1 Feature Vectors

An interesting use of combining iterators within an Accumulo table is to store feature vectors for
use in machine learning algorithms. For example, many algorithms such as k-means clustering,
support vector machines, anomaly detection, etc. use the concept of a feature vector and the
calculation of distance metrics to learn a particular model. The columns in an Accumulo table
can be used to e�ciently store sparse features and their weights to be incrementally updated
via the use of an combining iterator.

8.3 Statistical Modeling

Statistical models that need to be updated by many machines in parallel could be similarly
stored within an Accumulo table. For example, a MapReduce job that is iteratively updating a
global statistical model could have each map or reduce worker reference the parts of the model
to be read and updated through an embedded Accumulo client.

Using Accumulo this way enables e�cient and fast lookups and updates of small pieces of
information in a random access pattern, which is complementary to MapReduce's sequential
access model.

43

Chapter 9

Security

Accumulo extends the BigTable data model to implement a security mechanism known as cell-
level security. Every key-value pair has its own security label, stored under the column visibility
element of the key, which is used to determine whether a given user meets the security require-
ments to read the value. This enables data of various security levels to be stored within the
same row, and users of varying degrees of access to query the same table, while preserving data
con�dentiality.

9.1 Security Label Expressions

When mutations are applied, users can specify a security label for each value. This is done as
the Mutation is created by passing a ColumnVisibility object to the put() method:

Text rowID = new Text("row1");
Text colFam = new Text("myColFam");
Text colQual = new Text("myColQual");
ColumnVisibility colVis = new ColumnVisibility("public");
long timestamp = System.currentTimeMillis();

Value value = new Value("myValue");

Mutation mutation = new Mutation(rowID);
mutation.put(colFam, colQual, colVis, timestamp, value);

44

9.2 Security Label Expression Syntax

Security labels consist of a set of user-de�ned tokens that are required to read the value the
label is associated with. The set of tokens required can be speci�ed using syntax that supports
logical AND and OR combinations of tokens, as well as nesting groups of tokens together.

For example, suppose within our organization we want to label our data values with security
labels de�ned in terms of user roles. We might have tokens such as:

admin
audit
system

These can be speci�ed alone or combined using logical operators:

// Users must have admin privileges:
admin

// Users must have admin and audit privileges
admin&audit

// Users with either admin or audit privileges
admin|audit

// Users must have audit and one or both of admin or system
(admin|system)&audit

When both | and & operators are used, parentheses must be used to specify precedence of the
operators.

9.3 Authorization

When clients attempt to read data from Accumulo, any security labels present are examined
against the set of authorizations passed by the client code when the Scanner or BatchScanner
are created. If the authorizations are determined to be insu�cient to satisfy the security label,
the value is suppressed from the set of results sent back to the client.

Authorizations are speci�ed as a comma-separated list of tokens the user possesses:

// user possess both admin and system level access
Authorization auths = new Authorization("admin","system");

Scanner s = connector.createScanner("table", auths);

45

9.4 User Authorizations

Each accumulo user has a set of associated security labels. To manipulate these in the shell
use the setuaths and getauths commands. These may also be modi�ed using the java security
operations API.

When a user creates a scanner a set of Authorizations is passed. If the authorizations passed to
the scanner are not a subset of the users authorizations, then an exception will be thrown.

To prevent users from writing data they can not read, add the visibility constraint to a table.
Use the -evc option in the createtable shell command to enable this constraint. For existing
tables use the following shell command to enable the visibility constraint. Ensure the constraint
number does not con�ict with any existing constraints.

config -t table -s table.constraint.1=org.apache.accumulo.core.security.VisibilityConstraint

Any user with the alter table permission can add or remove this constraint. This constraint is
not applied to bulk imported data, if this a concern then disable the bulk import permission.

9.5 Secure Authorizations Handling

For applications serving many users, it is not expected that an accumulo user will be created
for each application user. In this case an accumulo user with all authorizations needed by any
of the applications users must be created. To service queries, the application should create a
scanner with the application users authorizations. These authorizations could be obtained from
a trusted 3rd party.

Often production systems will integrate with Public-Key Infrastructure (PKI) and designate
client code within the query layer to negotiate with PKI servers in order to authenticate users
and retrieve their authorization tokens (credentials). This requires users to specify only the in-
formation necessary to authenticate themselves to the system. Once user identity is established,
their credentials can be accessed by the client code and passed to Accumulo outside of the reach
of the user.

9.6 Query Services Layer

Since the primary method of interaction with Accumulo is through the Java API, production
environments often call for the implementation of a Query layer. This can be done using web
services in containers such as Apache Tomcat, but is not a requirement. The Query Services

46

Layer provides a mechanism for providing a platform on which user facing applications can
be built. This allows the application designers to isolate potentially complex query logic, and
enables a convenient point at which to perform essential security functions.

Several production environments choose to implement authentication at this layer, where users
identi�ers are used to retrieve their access credentials which are then cached within the query
layer and presented to Accumulo through the Authorizations mechanism.

Typically, the query services layer sits between Accumulo and user workstations.

47

Chapter 10

Administration

10.1 Hardware

Because we are running essentially two or three systems simultaneously layered across the cluster:
HDFS, Accumulo and MapReduce, it is typical for hardware to consist of 4 to 8 cores, and 8 to
32 GB RAM. This is so each running process can have at least one core and 2 - 4 GB each.

One core running HDFS can typically keep 2 to 4 disks busy, so each machine may typically
have as little as 2 x 300GB disks and as much as 4 x 1TB or 2TB disks.

It is possible to do with less than this, such as with 1u servers with 2 cores and 4GB each, but
in this case it is recommended to only run up to two processes per machine - i.e. DataNode
and TabletServer or DataNode and MapReduce worker but not all three. The constraint here
is having enough available heap space for all the processes on a machine.

10.2 Network

Accumulo communicates via remote procedure calls over TCP/IP for both passing data and
control messages. In addition, Accumulo uses HDFS clients to communicate with HDFS. To
achieve good ingest and query performance, su�cient network bandwidth must be available
between any two machines.

48

10.3 Installation

Choose a directory for the Accumulo installation. This directory will be referenced by the
environment variable $ACCUMULO_HOME. Run the following:

$ tar xzf $ACCUMULO_HOME/accumulo.tar.gz

Repeat this step at each machine within the cluster. Usually all machines have the same
$ACCUMULO_HOME.

10.4 Dependencies

Accumulo requires HDFS and ZooKeeper to be con�gured and running before starting. Password-
less SSH should be con�gured between at least the Accumulo master and TabletServer machines.
It is also a good idea to run Network Time Protocol (NTP) within the cluster to ensure nodes'
clocks don't get too out of sync, which can cause problems with automatically timestamped
data. Accumulo will remove from the set of TabletServers those machines whose times di�er
too much from the master's.

10.5 Con�guration

Accumulo is con�gured by editing several Shell and XML �les found in $ACCUMULO_HOME/conf.
The structure closely resembles Hadoop's con�guration �les.

10.5.1 Edit conf/accumulo-env.sh

Accumulo needs to know where to �nd the software it depends on. Edit accumulo-env.sh and
specify the following:

1. Enter the location of the installation directory of Accumulo for $ACCUMULO_HOME

2. Enter your system's Java home for $JAVA_HOME

3. Enter the location of Hadoop for $HADOOP_HOME

4. Choose a location for Accumulo logs and enter it for $ACCUMULO_LOG_DIR

5. Enter the location of ZooKeeper for $ZOOKEEPER_HOME

49

By default Accumulo TabletServers are set to use 1GB of memory. You may change this by
altering the value of $ACCUMULO_TSERVER_OPTS. Note the syntax is that of the Java JVM com-
mand line options. This value should be less than the physical memory of the machines running
TabletServers.

There are similar options for the master's memory usage and the garbage collector process.
Reduce these if they exceed the physical RAM of your hardware and increase them, within the
bounds of the physical RAM, if a process fails because of insu�cient memory.

Note that you will be specifying the Java heap space in accumulo-env.sh. You should make sure
that the total heap space used for the Accumulo tserver and the Hadoop DataNode and Task-
Tracker is less than the available memory on each slave node in the cluster. On large clusters,
it is recommended that the Accumulo master, Hadoop NameNode, secondary NameNode, and
Hadoop JobTracker all be run on separate machines to allow them to use more heap space. If
you are running these on the same machine on a small cluster, likewise make sure their heap
space settings �t within the available memory.

10.5.2 Cluster Speci�cation

On the machine that will serve as the Accumulo master:

1. Write the IP address or domain name of the Accumulo Master to the
$ACCUMULO_HOME/conf/masters �le.

2. Write the IP addresses or domain name of the machines that will be TabletServers in
$ACCUMULO_HOME/conf/slaves, one per line.

Note that if using domain names rather than IP addresses, DNS must be con�gured properly
for all machines participating in the cluster. DNS can be a confusing source of errors.

10.5.3 Accumulo Settings

Specify appropriate values for the following settings in
$ACCUMULO_HOME/conf/accumulo-site.xml :

<property>
<name>zookeeper</name>
<value>zooserver-one:2181,zooserver-two:2181</value>
<description>list of zookeeper servers</description>

</property>
<property>

<name>walog</name>

50

<value>/var/accumulo/walogs</value>
<description>local directory for write ahead logs</description>

</property>

This enables Accumulo to �nd ZooKeeper. Accumulo uses ZooKeeper to coordinate settings
between processes and helps �nalize TabletServer failure.

Accumulo records all changes to tables to a write-ahead log before committing them to the
table. The `walog' setting speci�es the local directory on each machine to which write-ahead
logs are written. This directory should exist on all machines acting as TabletServers.

Some settings can be modi�ed via the Accumulo shell and take e�ect immediately. However,
any settings that should be persisted across system restarts must be recorded in the accumulo-
site.xml �le.

10.5.4 Deploy Con�guration

Copy the masters, slaves, accumulo-env.sh, and if necessary, accumulo-site.xml from the
$ACCUMULO_HOME/conf/ directory on the master to all the machines speci�ed in the slaves �le.

10.6 Initialization

Accumulo must be initialized to create the structures it uses internally to locate data across the
cluster. HDFS is required to be con�gured and running before Accumulo can be initialized.

Once HDFS is started, initialization can be performed by executing
$ACCUMULO_HOME/bin/accumulo init . This script will prompt for a name for this instance of
Accumulo. The instance name is used to identify a set of tables and instance-speci�c settings.
The script will then write some information into HDFS so Accumulo can start properly.

The initialization script will prompt you to set a root password. Once Accumulo is initialized
it can be started.

10.7 Running

10.7.1 Starting Accumulo

Make sure Hadoop is con�gured on all of the machines in the cluster, including access to a
shared HDFS instance. Make sure HDFS and ZooKeeper are running. Make sure ZooKeeper

51

is con�gured and running on at least one machine in the cluster. Start Accumulo using the
bin/start-all.sh script.

To verify that Accumulo is running, check the Status page as described under Monitoring. In
addition, the Shell can provide some information about the status of tables via reading the
!METADATA table.

10.7.2 Stopping Accumulo

To shutdown cleanly, run bin/stop-all.sh and the master will orchestrate the shutdown of
all the tablet servers. Shutdown waits for all minor compactions to �nish, so it may take some
time for particular con�gurations.

10.8 Monitoring

The Accumulo Master provides an interface for monitoring the status and health of Accumulo
components. This interface can be accessed by pointing a web browser to
http://accumulomaster:50095/status

10.9 Logging

Accumulo processes each write to a set of log �les. By default these are found under
$ACCUMULO/logs/.

10.10 Recovery

In the event of TabletServer failure or error on shutting Accumulo down, some mutations may
not have been minor compacted to HDFS properly. In this case, Accumulo will automatically
reapply such mutations from the write-ahead log either when the tablets from the failed server
are reassigned by the Master, in the case of a single TabletServer failure or the next time
Accumulo starts, in the event of failure during shutdown.

Recovery is performed by asking the loggers to copy their write-ahead logs into HDFS. As the
logs are copied, they are also sorted, so that tablets can easily �nd their missing updates. The
copy/sort status of each �le is displayed on Accumulo monitor status page. Once the recovery

52

is complete any tablets involved should return to an �online" state. Until then those tablets will
be unavailable to clients.

The Accumulo client library is con�gured to retry failed mutations and in many cases clients
will be able to continue processing after the recovery process without throwing an exception.

Note that because Accumulo uses timestamps to order mutations, any mutations that are applied
as part of the recovery process should appear to have been applied when they originally arrived
at the TabletServer that failed. This makes the ordering of mutations consistent in the presence
of failure.

53

Appendix A

Shell Commands

?

usage: ? [<command> <command>] [-?] [-np] [-nw]
description: provides information about the available commands
-?,--help display this help
-np,--no-pagination disables pagination of output
-nw,--no-wrap disables wrapping of output

about

usage: about [-?] [-v]
description: displays information about this program
-?,--help display this help
-v,--verbose displays details session information

addsplits

usage: addsplits [<split> <split>] [-?] [-b64] [-sf <filename>] [-t <tableName>]
description: add split points to an existing table
-?,--help display this help
-b64,--base64encoded decode encoded split points
-sf,--splits-file <filename> file with newline separated list of rows to add to

table
-t,--table <tableName> name of a table to add split points to

54

authenticate

usage: authenticate <username> [-?]
description: verifies a user’s credentials
-?,--help display this help

bye

usage: bye [-?]
description: exits the shell
-?,--help display this help

classpath

usage: classpath [-?]
description: lists the current files on the classpath
-?,--help display this help

clear

usage: clear [-?]
description: clears the screen
-?,--help display this help

clonetable

usage: clonetable <current table name> <new table name> [-?] [-e <arg>] [-nf] [-s
<arg>]

description: clone a table
-?,--help display this help
-e,--exclude <arg> properties that should not be copied from source table.

Expects <prop>,<prop>
-nf,--noFlush do not flush table data in memory before cloning.
-s,--set <arg> set initial properties before the table comes online. Expects

<prop>=<value>,<prop>=<value>

cls

usage: cls [-?]

55

description: clears the screen
-?,--help display this help

compact

usage: compact [-?] [-b <arg>] [-e <arg>] [-nf] [-p <pattern> | -t <tableName>]
[-w]

description: sets all tablets for a table to major compact as soon as possible
(based on current time)

-?,--help display this help
-b,--begin-row <arg> begin row
-e,--end-row <arg> end row
-nf,--noFlush do not flush table data in memory before compacting.
-p,--pattern <pattern> regex pattern of table names to flush
-t,--table <tableName> name of a table to flush
-w,--wait wait for compact to finish

config

usage: config [-?] [-d <property> | -f <string> | -s <property=value>] [-np] [-t
<table>]

description: prints system properties and table specific properties
-?,--help display this help
-d,--delete <property> delete a per-table property
-f,--filter <string> show only properties that contain this string
-np,--no-pagination disables pagination of output
-s,--set <property=value> set a per-table property
-t,--table <table> display/set/delete properties for specified table

createtable

usage: createtable <tableName> [-?] [-a
<<columnfamily>[:<columnqualifier>]=<aggregation class>>] [-b64] [-cc
<table>] [-cs <table> | -sf <filename>] [-evc] [-f <className>] [-ndi]
[-tl | -tm]

description: creates a new table, with optional aggregators and optionally pre-split
-?,--help display this help
-a,--aggregator <<columnfamily>[:<columnqualifier>]=<aggregation class>> comma

separated column=aggregator
-b64,--base64encoded decode encoded split points

56

-cc,--copy-config <table> table to copy configuration from
-cs,--copy-splits <table> table to copy current splits from
-evc,--enable-visibility-constraint prevents users from writing data they can not

read. When enabling this may want to consider disabling bulk import and
alter table

-f,--formatter <className> default formatter to set
-ndi,--no-default-iterators prevents creation of the normal default iterator set
-sf,--splits-file <filename> file with newline separated list of rows to create a

pre-split table
-tl,--time-logical use logical time
-tm,--time-millis use time in milliseconds

createuser

usage: createuser <username> [-?] [-s <comma-separated-authorizations>]
description: creates a new user
-?,--help display this help
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

debug

usage: debug [on | off] [-?]
description: turns debug logging on or off
-?,--help display this help

delete

usage: delete <row> <colfamily> <colqualifier> [-?] [-l <expression>] [-t
<timestamp>]

description: deletes a record from a table
-?,--help display this help
-l,--authorization-label <expression> formatted authorization label expression
-t,--timestamp <timestamp> timestamp to use for insert

deleteiter

usage: deleteiter [-?] [-majc] [-minc] -n <itername> [-scan] [-t <table>]
description: deletes a table-specific iterator
-?,--help display this help
-majc,--major-compaction applied at major compaction

57

-minc,--minor-compaction applied at minor compaction
-n,--name <itername> iterator to delete
-scan,--scan-time applied at scan time
-t,--table <table> tableName

deletemany

usage: deletemany [-?] [-b <start-row>] [-c
<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>]
[-e <end-row>] [-f] [-fm <className>] [-np] [-r <row>] [-s
<comma-separated-authorizations>] [-st] [-t <table>]

description: scans a table and deletes the resulting records
-?,--help display this help
-b,--begin-row <start-row> begin row (inclusive)
-c,--columns

<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>
comma-separated columns

-e,--end-row <end-row> end row (inclusive)
-f,--force forces deletion without prompting
-fm,--formatter <className> fully qualified name of the formatter class to use
-np,--no-pagination disables pagination of output
-r,--row <row> row to scan
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

(all user auths are used if this argument is not specified)
-st,--show-timestamps enables displaying timestamps
-t,--table <table> table to be created

deleterows

usage: deleterows [-?] [-b <arg>] [-e <arg>] [-f] [-t <table>]
description: delete a range of rows in a table. Note that rows matching the start

row ARE NOT deleted, but rows matching the end row ARE deleted.
-?,--help display this help
-b,--begin-row <arg> begin row
-e,--end-row <arg> end row
-f,--force delete data even if start or end are not specified
-t,--tableName <table> table to delete row range

deletescaniter

58

usage: deletescaniter [-?] [-a] [-n <itername>] [-t <table>]
description: deletes a table-specific scan iterator so it is no longer used during

this shell session
-?,--help display this help
-a,--all delete all for tableName
-n,--name <itername> iterator to delete
-t,--table <table> tableName

deletetable

usage: deletetable <tableName> [-?] [-t <arg>]
description: deletes a table
-?,--help display this help
-t,--tableName <arg> deletes a table

deleteuser

usage: deleteuser <username> [-?]
description: deletes a user
-?,--help display this help

droptable

usage: droptable <tableName> [-?] [-t <arg>]
description: deletes a table
-?,--help display this help
-t,--tableName <arg> deletes a table

dropuser

usage: dropuser <username> [-?]
description: deletes a user
-?,--help display this help

du

usage: du <table> <table> [-?] [-p <pattern>]
description: Prints how much space is used by files referenced by a table. When

multiple tables are specified it prints how much space is used by files
shared between tables, if any.

59

-?,--help display this help
-p,--pattern <pattern> regex pattern of table names

egrep

usage: egrep <regex> <regex> [-?] [-b <start-row>] [-c
<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>]
[-e <end-row>] [-f <int>] [-fm <className>] [-np] [-nt <arg>] [-r <row>]
[-s <comma-separated-authorizations>] [-st] [-t <table>]

description: searches each row, column family, column qualifier and value, in
parallel, on the server side (using a java Matcher, so put .* before and
after your term if you’re not matching the whole element)

-?,--help display this help
-b,--begin-row <start-row> begin row (inclusive)
-c,--columns

<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>
comma-separated columns

-e,--end-row <end-row> end row (inclusive)
-f,--show few <int> Only shows certain amount of characters
-fm,--formatter <className> fully qualified name of the formatter class to use
-np,--no-pagination disables pagination of output
-nt,--num-threads <arg> num threads
-r,--row <row> row to scan
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

(all user auths are used if this argument is not specified)
-st,--show-timestamps enables displaying timestamps
-t,--tableName <table> table to grep through

execfile

usage: execfile [-?] [-v]
description: specifies a file containing accumulo commands to execute
-?,--help display this help
-v,--verbose displays command prompt as commands are executed

exit

usage: exit [-?]
description: exits the shell
-?,--help display this help

60

flush

usage: flush [-?] [-b <arg>] [-e <arg>] [-p <pattern> | -t <tableName>] [-w]
description: flushes a tables data that is currently in memory to disk
-?,--help display this help
-b,--begin-row <arg> begin row
-e,--end-row <arg> end row
-p,--pattern <pattern> regex pattern of table names to flush
-t,--table <tableName> name of a table to flush
-w,--wait wait for flush to finish

formatter

usage: formatter [-?] -f <className> | -l | -r [-t <table>]
description: specifies a formatter to use for displaying table entries
-?,--help display this help
-f,--formatter <className> fully qualified name of the formatter class to use
-l,--list display the current formatter
-r,--remove remove the current formatter
-t,--table <table> table to set the formatter on

getauths

usage: getauths [-?] [-u <user>]
description: displays the maximum scan authorizations for a user
-?,--help display this help
-u,--user <user> user to operate on

getgroups

usage: getgroups [-?] [-t <table>]
description: gets the locality groups for a given table
-?,--help display this help
-t,--table <table> get locality groups for specified table

getsplits

usage: getsplits [-?] [-b64] [-m <num>] [-o <file>] [-t <table>] [-v]
description: retrieves the current split points for tablets in the current table

61

-?,--help display this help
-b64,--base64encoded encode the split points
-m,--max <num> specifies the maximum number of splits to create
-o,--output <file> specifies a local file to write the splits to
-t,--tableName <table> table to get splits on
-v,--verbose print out the tablet information with start/end rows

grant

usage: grant <permission> [-?] -p <pattern> | -s | -t <table> -u <username>
description: grants system or table permissions for a user
-?,--help display this help
-p,--pattern <pattern> regex pattern of tables to grant permissions on
-s,--system grant a system permission
-t,--table <table> grant a table permission on this table
-u,--user <username> user to operate on

grep

usage: grep <term> <term> [-?] [-b <start-row>] [-c
<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>]
[-e <end-row>] [-f <int>] [-fm <className>] [-np] [-nt <arg>] [-r <row>]
[-s <comma-separated-authorizations>] [-st] [-t <table>]

description: searches each row, column family, column qualifier and value in a table
for a substring (not a regular expression), in parallel, on the server
side

-?,--help display this help
-b,--begin-row <start-row> begin row (inclusive)
-c,--columns

<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>
comma-separated columns

-e,--end-row <end-row> end row (inclusive)
-f,--show few <int> Only shows certain amount of characters
-fm,--formatter <className> fully qualified name of the formatter class to use
-np,--no-pagination disables pagination of output
-nt,--num-threads <arg> num threads
-r,--row <row> row to scan
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

(all user auths are used if this argument is not specified)
-st,--show-timestamps enables displaying timestamps

62

-t,--tableName <table> table to grep through

help

usage: help [<command> <command>] [-?] [-np] [-nw]
description: provides information about the available commands
-?,--help display this help
-np,--no-pagination disables pagination of output
-nw,--no-wrap disables wrapping of output

history

usage: history [-?] [-c]
description: Generates a list of commands previously executed
-?,--help display this help
-c,--Clears History, takes no arguments. Clears History File

importdirectory

usage: importdirectory <directory> <failureDirectory> true|false [-?]
description: bulk imports an entire directory of data files to the current table.

The boolean argument determines if accumulo sets the time.
-?,--help display this help

info

usage: info [-?] [-v]
description: displays information about this program
-?,--help display this help
-v,--verbose displays details session information

insert

usage: insert <row> <colfamily> <colqualifier> <value> [-?] [-l <expression>] [-t
<timestamp>]

description: inserts a record
-?,--help display this help
-l,--authorization-label <expression> formatted authorization label expression
-t,--timestamp <timestamp> timestamp to use for insert

63

listiter

usage: listiter [-?] [-majc] [-minc] [-n <itername>] [-scan] [-t <table>]
description: lists table-specific iterators
-?,--help display this help
-majc,--major-compaction applied at major compaction
-minc,--minor-compaction applied at minor compaction
-n,--name <itername> iterator to delete
-scan,--scan-time applied at scan time
-t,--table <table> tableName

listscans

usage: listscans [-?] [-np] [-ts <tablet server>]
description: list what scans are currently running in accumulo. See the

accumulo.core.client.admin.ActiveScan javadoc for more information about
columns.

-?,--help display this help
-np,--no-pagination disables pagination of output
-ts,--tabletServer <tablet server> list scans for a specific tablet server

masterstate

usage: masterstate is deprecated, use the command line utility instead [-?]
description: DEPRECATED: use the command line utility instead
-?,--help display this help

maxrow

usage: maxrow [-?] [-b <begin-row>] [-be] [-e <end-row>] [-ee] [-s
<comma-separated-authorizations>] [-t <table>]

description: find the max row in a table within a given range
-?,--help display this help
-b,--begin-row <begin-row> begin row
-be,--begin-exclusive make start row exclusive, by defaults it inclusive
-e,--end-row <end-row> end row
-ee,--end-exclusive make end row exclusive, by defaults it inclusive
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

(all user auths are used if this argument is not specified)
-t,--table <table> table to be created

64

merge

usage: merge [-?] [-b <arg>] [-e <arg>] [-f] [-s <arg>] [-t <table>] [-v]
description: merge tablets in a table
-?,--help display this help
-b,--begin-row <arg> begin row
-e,--end-row <arg> end row
-f,--force merge small tablets to large tablets, even if it goes over the given

size
-s,--size <arg> merge tablets to the given size over the entire table
-t,--tableName <table> table to be merged
-v,--verbose verbose output during merge

notable

usage: notable [-?] [-t <arg>]
description: returns to a tableless shell state
-?,--help display this help
-t,--tableName <arg> Returns to a no table state

offline

usage: offline [-?] [-p <pattern> | -t <tableName>]
description: starts the process of taking table offline
-?,--help display this help
-p,--pattern <pattern> regex pattern of table names to flush
-t,--table <tableName> name of a table to flush

online

usage: online [-?] [-p <pattern> | -t <tableName>]
description: starts the process of putting a table online
-?,--help display this help
-p,--pattern <pattern> regex pattern of table names to flush
-t,--table <tableName> name of a table to flush

passwd

usage: passwd [-?] [-u <user>]

65

description: changes a user’s password
-?,--help display this help
-u,--user <user> user to operate on

quit

usage: quit [-?]
description: exits the shell
-?,--help display this help

renametable

usage: renametable <current table name> <new table name> [-?]
description: rename a table
-?,--help display this help

revoke

usage: revoke <permission> [-?] -s | -t <table> -u <username>
description: revokes system or table permissions from a user
-?,--help display this help
-s,--system revoke a system permission
-t,--table <table> revoke a table permission on this table
-u,--user <username> user to operate on

scan

usage: scan [-?] [-b <start-row>] [-c
<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>]
[-e <end-row>] [-f <int>] [-fm <className>] [-np] [-r <row>] [-s
<comma-separated-authorizations>] [-st] [-t <table>]

description: scans the table, and displays the resulting records
-?,--help display this help
-b,--begin-row <start-row> begin row (inclusive)
-c,--columns

<<columnfamily>[:<columnqualifier>],<columnfamily>[:<columnqualifier>]>
comma-separated columns

-e,--end-row <end-row> end row (inclusive)
-f,--show few <int> Only shows certain amount of characters
-fm,--formatter <className> fully qualified name of the formatter class to use

66

-np,--no-pagination disables pagination of output
-r,--row <row> row to scan
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations

(all user auths are used if this argument is not specified)
-st,--show-timestamps enables displaying timestamps
-t,--tableName <table> table to be scanned

select

usage: select <row> <columnfamily> <columnqualifier> [-?] [-np] [-s
<comma-separated-authorizations>] [-st] [-t <table>]

description: scans for and displays a single record
-?,--help display this help
-np,--no-pagination disables pagination of output
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations
-st,--show-timestamps enables displaying timestamps
-t,--tableName <table> table

selectrow

usage: selectrow <row> [-?] [-np] [-s <comma-separated-authorizations>] [-st] [-t
<table>]

description: scans a single row and displays all resulting records
-?,--help display this help
-np,--no-pagination disables pagination of output
-s,--scan-authorizations <comma-separated-authorizations> scan authorizations
-st,--show-timestamps enables displaying timestamps
-t,--tableName <table> table to row select

setauths

usage: setauths [-?] -c | -s <comma-separated-authorizations> [-u <user>]
description: sets the maximum scan authorizations for a user
-?,--help display this help
-c,--clear-authorizations clears the scan authorizations
-s,--scan-authorizations <comma-separated-authorizations> set the scan

authorizations
-u,--user <user> user to operate on

setgroups

67

usage: setgroups <group>=<col fam>,<col fam> <group>=<col fam>,<col fam> [-?]
[-t <table>]

description: sets the locality groups for a given table (for binary or commas, use
Java API)

-?,--help display this help
-t,--table <table> get locality groups for specified table

setiter

usage: setiter [-?] -ageoff | -agg | -class <name> | -regex | -reqvis | -vers
[-majc] [-minc] [-n <itername>] -p <pri> [-scan] [-t <table>]

description: sets a table-specific iterator
-?,--help display this help
-ageoff,--ageoff an aging off type
-agg,--aggregator an aggregating type
-class,--class-name <name> a java class type
-majc,--major-compaction applied at major compaction
-minc,--minor-compaction applied at minor compaction
-n,--name <itername> iterator to set
-p,--priority <pri> the order in which the iterator is applied
-regex,--regular-expression a regex matching type
-reqvis,--require-visibility a type that omits entries with empty visibilities
-scan,--scan-time applied at scan time
-t,--table <table> tableName
-vers,--version a versioning type

setscaniter

usage: setscaniter [-?] -ageoff | -agg | -class <name> | -regex | -reqvis | -vers
[-n <itername>] -p <pri> [-t <table>]

description: sets a table-specific scan iterator for this shell session
-?,--help display this help
-ageoff,--ageoff an aging off type
-agg,--aggregator an aggregating type
-class,--class-name <name> a java class type
-n,--name <itername> iterator to set
-p,--priority <pri> the order in which the iterator is applied
-regex,--regular-expression a regex matching type
-reqvis,--require-visibility a type that omits entries with empty visibilities

68

-t,--table <table> tableName
-vers,--version a versioning type

sleep

usage: sleep [-?]
description: sleep for the given number of seconds
-?,--help display this help

systempermissions

usage: systempermissions [-?]
description: displays a list of valid system permissions
-?,--help display this help

table

usage: table <tableName> [-?]
description: switches to the specified table
-?,--help display this help

tablepermissions

usage: tablepermissions [-?]
description: displays a list of valid table permissions
-?,--help display this help

tables

usage: tables [-?] [-l]
description: displays a list of all existing tables
-?,--help display this help
-l,--list-ids display internal table ids along with the table name

trace

usage: trace [on | off] [-?]
description: turns trace logging on or off
-?,--help display this help

69

user

usage: user <username> [-?]
description: switches to the specified user
-?,--help display this help

userpermissions

usage: userpermissions [-?] [-u <user>]
description: displays a user’s system and table permissions
-?,--help display this help
-u,--user <user> user to operate on

users

usage: users [-?]
description: displays a list of existing users
-?,--help display this help

whoami

usage: whoami [-?]
description: reports the current user name
-?,--help display this help

70

	Introduction
	Accumulo Design
	Data Model
	Architecture
	Components
	Tablet Server
	Loggers
	Garbage Collector
	Master
	Client

	Data Management
	Tablet Service
	Compactions
	Fault-Tolerance

	Accumulo Shell
	Basic Administration
	Table Maintenance
	User Administration

	Writing Accumulo Clients
	Running Client Code
	Connecting
	Writing Data
	BatchWriter

	Reading Data
	Scanner
	Isolated Scanner
	BatchScanner

	Table Configuration
	Locality Groups
	Managing Locality Groups via the Shell
	Managing Locality Groups via the Client API

	Constraints
	Bloom Filters
	Iterators
	Setting Iterators via the Shell
	Setting Iterators Programmatically
	Versioning Iterators and Timestamps
	Filters
	Combiners

	Block Cache
	Compaction
	Pre-splitting tables
	Merging tablets
	Delete Range
	Cloning Tables

	Table Design
	Basic Table
	RowID Design
	Indexing
	Entity-Attribute and Graph Tables
	Document-Partitioned Indexing

	High-Speed Ingest
	Pre-Splitting New Tables
	Multiple Ingester Clients
	Bulk Ingest
	Logical Time for Bulk Ingest
	MapReduce Ingest

	Analytics
	MapReduce
	Mapper and Reducer classes
	AccumuloInputFormat options
	AccumuloOutputFormat options

	Combiners
	Feature Vectors

	Statistical Modeling

	Security
	Security Label Expressions
	Security Label Expression Syntax
	Authorization
	User Authorizations
	Secure Authorizations Handling
	Query Services Layer

	Administration
	Hardware
	Network
	Installation
	Dependencies
	Configuration
	Edit conf/accumulo-env.sh
	Cluster Specification
	Accumulo Settings
	Deploy Configuration

	Initialization
	Running
	Starting Accumulo
	Stopping Accumulo

	Monitoring
	Logging
	Recovery

	Shell Commands

