
BookKeeper overview

by

Table of contents

1 BookKeeper overview..2

1.1 Basic elements... 2

1.2 In slightly more detail..2

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. BookKeeper overview

This document explains basic concepts of BookKeeper. We start by discussing the basic
elements of BookKeeper, and next we discuss how they work together.

1.1. Basic elements

BookKeeper uses four basic elements:

• Ledger: A ledger is a sequence of entries, and each entry is a sequence of bytes. Entries
are written sequentially to a ledger and at most once. Consequently, ledgers have an
append-only semantics;

• BookKeeper client: A client runs along with a BookKeeper application, and it enables
applications to execute operations on ledgers, such as creating a ledger and writing to it;

• Bookie: A bookie is a BookKeeper storage server. Bookies store the content of ledgers.
For any given ledger L, we call an ensemble the group of bookies storing the content of
L. For performance, we store on each bookie of an ensemble only a fragment of a ledger.
That is, we stripe when writing entries to a ledger such that each entry is written to
sub-group of bookies of the ensemble.

• Metadata storage service: BookKeeper requires a metadata storage service to store
information related to ledgers and available bookies. We currently use ZooKeeper for
such a task.

1.2. In slightly more detail...

BookKeeper implements highly available logs, and it has been designed with write-ahead
logging in mind. Besides high availability due to the replicated nature of the service, it
provides high throughput due to striping. As we write entries in a subset of bookies of an
ensemble and rotate writes across available quorums, we are able to increase throughput with
the number of servers for both reads and writes. Scalability is a property that is possible to
achieve in this case due to the use of quorums. Other replication techniques, such as
state-machine replication, do not enable such a property.

An application first creates a ledger before writing to bookies through a local BookKeeper
client instance. To create a ledger, an application has to specify which kind of ledger it wants
to use: self-verifying or generic. Self-verifying includes a digest on every entry, which
enables a reduction on the degree of replication. Generic ledgers do not store a digest along
with entries at the cost of using more bookies.

Upon creating a ledger, a BookKeeper clients writes metadata about the ledger to

BookKeeper overview

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

ZooKeeper. A given client first creates a znode named "L" as a child of "/ledger" with the
SEQUENCE flag. ZooKeeper consequently assigns a unique sequence number to the node,
naming the node "/Lx", where x is the sequence number assigned. We use this sequence
number as the identifier of the ledger. This identifier is necessary when opening a ledger. We
also store the ensemble composition so that readers know which set of bookies of access for a
given ledger.

Each ledger currently has a single writer. This writer has to execute a close ledger operation
before any other client can read from it. If the writer of a ledger does not close a ledger
properly because, for example, it has crashed before having the opportunity of closing the
ledger, then the next client that tries to open a ledger executes an procedure to recover it. As
closing a ledger consists essentially of writing the last entry written to a ledger to ZooKeeper,
the recovery procedure simply finds the last entry written correctly and writes it to
ZooKeeper in the form of a close znode as a child of "/Lx", where x is the identifier of the
ledger.

Note that currently this recovery procedure is executed automatically upon trying to open a
ledger and no explicit action is necessary. Although two clients may try to recover a ledger
concurrently, only one will succeed, the first one that is able to create the close znode for the
ledger.

BookKeeper overview

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 BookKeeper overview
	1.1 Basic elements
	1.2 In slightly more detail...

