
 1

Web Services Security 2

UsernameToken Profile 1.1 3

Commitee Draft - Tuesday, 14 June 2005 4

OASIS Identifier: 5
{WSS: SOAP Message Security }-{UsernameToken Profile }-{1.0} (Word) (PDF) 6

Location: 7

http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-wss-username-token-profile-1.1 8

Errata Location: 9
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss 10

Technical Commitee: 11

Web Service Security (WSS) 12

Chairs: 13
Kelvin Lawrence, IBM 14

 Chris Kaler, Microsoft 15

Editors: 16
Anthony Nadalin, IBM 17

 Phil Griffin, Individual 18
Chris Kaler, Microsoft 19

 Ronald Monzillo, Sun 20
Phillip Hallam-Baker, Verisign 21

Abstract: 22

This document describes how to use the UsernameToken with the Web Services 23
Security (WSS) specification. 24

Status: 25

This is a technical committee document submitted for consideration by the OASIS Web 26
Services Security (WSS) technical committee. Please send comments to the editors. 27

If you are on the wss@lists.oasis-open.org list for committee members, send comments 28
there. If you are not on that list, subscribe to the wss-comment@lists.oasis-open.org list 29
and send comments there. To subscribe, send an email message to wss-comment-30
request@lists.oasis-open.org with the word "subscribe" as the body of the message. 31

For patent disclosure information that may be essential to the implementation of this 32
specification, and any offers of licensing terms, refer to the Intellectual Property Rights 33
section of the OASIS Web Services Security Technical Committee (WSS TC) web page 34

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 2

at http://www.oasis-open.org/committees/wss/ipr.php. General OASIS IPR information 35
can be found at http://www.oasis-open.org/who/intellectualproperty.shtml. 36

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 3

Notices 37

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 38
that might be claimed to pertain to the implementation or use of the technology described in this 39
document or the extent to which any license under such rights might or might not be available; 40
neither does it represent that it has made any effort to identify any such rights. Information on 41
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 42
website. Copies of claims of rights made available for publication and any assurances of licenses 43
to be made available, or the result of an attempt made to obtain a general license or permission 44
for the use of such proprietary rights by implementors or users of this specification, can be 45
obtained from the OASIS Executive Director. 46
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 47
applications, or other proprietary rights which may cover technology that may be required to 48
implement this specification. Please address the information to the OASIS Executive Director. 49
Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 50
2002-2005. All Rights Reserved. 51
This document and translations of it may be copied and furnished to others, and derivative works 52
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 53
published and distributed, in whole or in part, without restriction of any kind, provided that the 54
above copyright notice and this paragraph are included on all such copies and derivative works. 55
However, this document itself does not be modified in any way, such as by removing the 56
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 57
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 58
Property Rights document must be followed, or as required to translate it into languages other 59
than English. 60
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 61
successors or assigns. 62
This document and the information contained herein is provided on an “AS IS” basis and OASIS 63
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 64
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 65
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 66
PARTICULAR PURPOSE. 67

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 4

Table of Contents 68

1 Introduction... 5 69
2 Notations and Terminology... 5 70

2.1 Notational Conventions ... 5 71
2.2 Namespaces ... 5 72
2.3 Acronyms and Abbreviations .. 6 73

3 UsernameToken Extensions .. 7 74
3.1 Usernames and Passwords .. 7 75
3.2 Token Reference... 11 76
3.3 Error Codes ... 11 77

4 Key Derivation .. 11 78
5 Security Considerations.. 13 79
6 References ... 14 80
Appendix A. Acknowledgements ... 16 81
Appendix B. Revision History .. 18 82
 83

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 5

1 Introduction 84

This document describes how to use the UsernameToken with the WSS: SOAP Message 85
Security specification [WSS]. More specifically, it describes how a web service consumer can 86
supply a UsernameToken as a means of identifying the requestor by “username”, and optionally 87
using a password (or shared secret, or password equivalent) to authenticate that identity to the 88
web service producer. 89
 90
This section is non-normative. Note that Sections 2.1, 2.2, all of 3, 4 and indicated parts of 6 are 91
normative. All other sections are non-normative. 92

2 Notations and Terminology 93

This section specifies the notations, namespaces, and terminology used in this specification. 94

2.1 Notational Conventions 95

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 96
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 97
interpreted as described in [RFC 2119]. 98
 99
When describing abstract data models, this specification uses the notational convention used by 100
the XML Infoset. Specifically, abstract property names always appear in square brackets (e.g., 101
[some property]). 102
 103
When describing concrete XML schemas [XML-Schema], this specification uses the notational 104
convention of WSS: SOAP Message Security. Specifically, each member of an element’s 105
[children] or [attributes] property is described using an XPath-like [XPath] notation (e.g., 106
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of an element 107
wildcard (<xs:any/>). The use of @{any} indicates the presence of an attribute wildcard 108
(<xs:anyAttribute/>). 109
 110
Commonly used security terms are defined in the Internet Security Glossary [SECGLO]. Readers 111
are presumed to be familiar with the terms in this glossary as well as the definition in the Web 112
Services Security specification. 113

2.2 Namespaces 114

Namespace URIs (of the general form "some-URI") represents some application-dependent or 115
context-dependent URI as defined in RFC 3986 [URI]. This specification is designed to work with 116
the general SOAP [SOAP11, SOAP12] message structure and message processing model, and 117
should be applicable to any version of SOAP. The current SOAP 1.1 namespace URI is used 118
herein to provide detailed examples, but there is no intention to limit the applicability of this 119
specification to a single version of SOAP. 120
 121

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 6

The namespaces used in this document are shown in the following table (note that for brevity, the 122
examples use the prefixes listed below but do not include the URIs – those listed below are 123
assumed). 124
 125

Prefix Namespace

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd

wsse11 http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-wss-wssecurity-secext-
1.1.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd

 126
The URLs provided for the wsse and wsu namespaces can be used to obtain the schema files. 127
URI fragments defined in this specification are relative to a base URI of the following unless 128
otherwise stated: 129
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-130
profile-1.0 131
 132
The following table lists the full URI for each URI fragment referred to in this specification. 133
 134

URI Fragment Full URI

#PasswordDigest http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0#PasswordDigest

#PasswordText http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0#PasswordText

#UsernameToken http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0 #UsernameToken

2.3 Acronyms and Abbreviations 135

The following (non-normative) table defines acronyms and abbreviations for this document. 136
 137

Term Definition

SHA Secure Hash Algorithm

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 7

XML Extensible Markup Language

3 UsernameToken Extensions 138

3.1 Usernames and Passwords 139

The <wsse:UsernameToken> element is introduced in the WSS: SOAP Message Security 140
documents as a way of providing a username. 141
 142
Within <wsse:UsernameToken> element, a <wsse:Password> element may be specified. 143
Passwords of type PasswordText and PasswordDigest are not limited to actual 144
passwords, although this is a common case. Any password equivalent such as a derived 145
password or S/KEY (one time password) can be used. Having a type of PasswordText merely 146
implies that the information held in the password is “in the clear”, as opposed to holding a “digest” 147
of the information. For example, if a server does not have access to the clear text of a password 148
but does have the hash, then the hash is considered a password equivalent and can be used 149
anywhere where a "password" is indicated in this specification. It is not the intention of this 150
specification to require that all implementations have access to clear text passwords. 151
 152
Passwords of type PasswordDigest are defined as being the Base64 [XML-Schema] encoded, 153
SHA-1 hash value, of the UTF8 encoded password (or equivalent). However, unless this digested 154
password is sent on a secured channel or the token is encrypted, the digest offers no real 155
additional security over use of wsse:PasswordText. 156
 157
Two optional elements are introduced in the <wsse:UsernameToken> element to provide a 158
countermeasure for replay attacks: <wsse:Nonce> and <wsu:Created>. A nonce is a 159
random value that the sender creates to include in each UsernameToken that it sends. Although 160
using a nonce is an effective countermeasure against replay attacks, it requires a server to 161
maintain a cache of used nonces, consuming server resources. Combining a nonce with a 162
creation timestamp has the advantage of allowing a server to limit the cache of nonces to a 163
"freshness" time period, establishing an upper bound on resource requirements. If either or both 164
of <wsse:Nonce> and <wsu:Created> are present they MUST be included in the digest value 165
as follows: 166
 167
Password_Digest = Base64 (SHA-1 (nonce + created + password)) 168
 169
That is, concatenate the nonce, creation timestamp, and the password (or shared secret or 170
password equivalent), digest the combination using the SHA-1 hash algorithm, then include the 171
Base64 encoding of that result as the password (digest). This helps obscure the password and 172
offers a basis for preventing replay attacks. For web service producers to effectively thwart replay 173
attacks, three counter measures are RECOMMENDED: 174
 175

1. It is RECOMMENDED that web service producers reject any UsernameToken not 176
using both nonce and creation timestamps. 177

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 8

2. It is RECOMMENDED that web service producers provide a timestamp “freshness” 178
limitation, and that any UsernameToken with “stale” timestamps be rejected. As a 179
guideline, a value of five minutes can be used as a minimum to detect, and thus 180
reject, replays. 181

3. It is RECOMMENDED that used nonces be cached for a period at least as long as 182
the timestamp freshness limitation period, above, and that UsernameToken with 183
nonces that have already been used (and are thus in the cache) be rejected. 184

 185
Note that the nonce is hashed using the octet sequence of its decoded value while the timestamp 186
is hashed using the octet sequence of its UTF8 encoding as specified in the contents of the 187
element. 188
 189
Note that PasswordDigest can only be used if the plain text password (or password 190
equivalent) is available to both the requestor and the recipient. 191
 192
Note that the secret is put at the end of the input and not the front. This is because the output of 193
SHA-1 is the function's complete state at the end of processing an input stream. If the input 194
stream happened to fit neatly into the block size of the hash function, an attacker could extend 195
the input with additional blocks and generate new/unique hash values knowing only the hash 196
output for the original stream. If the secret is at the end of the stream, then attackers are 197
prevented from arbitrarily extending it -- since they have to end the input stream with the 198
password which they don't know. Similarly, if the nonce/created was put at the end, then an 199
attacker could update the nonce to be nonce+created, and add a new created time on the end to 200
generate a new hash. 201
 202
The countermeasures above do not cover the case where the token is replayed to a different 203
receiver. There are several (non-normative) possible approaches to counter this threat, which 204
may be used separately or in combination. Their use requires pre-arrangement (possibly in the 205
form of a separately published profile which introduces new password type) among the 206
communicating parties to provide interoperability: 207
 208

• including the username in the hash, to thwart cases where multiple user accounts 209
have matching passwords (e.g. passwords based on company name) 210

• including the domain name in the hash, to thwart cases where the same 211
username/password is used in multiple systems 212

• including some indication of the intended receiver in the hash, to thwart cases where 213
receiving systems don't share nonce caches (e.g., two separate application clusters 214
in the same security domain). 215

 216
The following illustrates the XML syntax of this element: 217
 218

<wsse:UsernameToken wsu:Id="Example-1"> 219
 <wsse:Username> ... </wsse:Username> 220
 <wsse:Password Type="..."> ... </wsse:Password> 221
 <wsse:Nonce EncodingType="..."> ... </wsse:Nonce> 222
 <wsu:Created> ... </wsu:Created> 223
</wsse:UsernameToken> 224

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 9

 225
The following describes the attributes and elements listed in the example above: 226
 227
/wsse:UsernameToken/wsse:Password 228

This optional element provides password information (or equivalent such as a hash). It is 229
RECOMMENDED that this element only be passed when a secure transport (e.g. 230
HTTP/S) is being used or if the token itself is being encrypted. 231
 232

/wsse:UsernameToken/wsse:Password/@Type 233
This optional URI attribute specifies the type of password being provided. The table 234
below identifies the pre-defined types (note that the URI fragments are relative to the URI 235
for this specification). 236

 237

URI Description

#PasswordText (default) The actual password for the username, the
password hash, or derived password or S/KEY.
This type should be used when hashed password
equivalents that do not rely on a nonce or creation
time are used, or when a digest algorithm other
than SHA1 is used.

#PasswordDigest The digest of the password (and optionally nonce
and/or creation timestame) for the username
using the algorithm described above.

 238
/wsse:UsernameToken/wsse:Password/@{any} 239

This is an extensibility mechanism to allow additional attributes, based on schemas, to be 240
added to the element. 241
 242

/wsse:UsernameToken/wsse:Nonce 243
This optional element specifies a cryptographically random nonce. Each message 244
including a <wsse:Nonce> element MUST use a new nonce value in order for web 245
service producers to detect replay attacks. 246
 247

/wsse:UsernameToken/wsse:Nonce/@EncodingType 248
This optional attribute URI specifies the encoding type of the nonce (see the definition of 249
<wsse:BinarySecurityToken> for valid values). If this attribute isn't specified then 250
the default of Base64 encoding is used. 251
 252

/wsse:UsernameToken/wsu:Created 253
The optional <wsu:Created> element specifies a timestamp used to indicate the 254
creation time. It is defined as part of the <wsu:Timestamp> definition. 255
 256

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 10

All compliant implementations MUST be able to process the <wsse:UsernameToken> element. 257
Where the specification requires that an element be "processed" it means that the element type 258
MUST be recognized to the extent that an appropriate error is returned if the element is not 259
supported. 260
 261
Note that <wsse:KeyIdentifier> and <ds:KeyName> elements as described in the WSS: 262
SOAP Message Security specification are not supported in this profile. 263
 264
The following example illustrates the use of this element. In this example the password is sent as 265
clear text and therefore this message should be sent over a confidential channel: 266
 267

<S11:Envelope xmlns:S11="..." xmlns:wsse="..."> 268
 <S11:Header> 269
 ... 270
 <wsse:Security> 271
 <wsse:UsernameToken> 272
 <wsse:Username>Zoe</wsse:Username> 273
 <wsse:Password>IloveDogs</wsse:Password> 274
 </wsse:UsernameToken> 275
 </wsse:Security> 276
 ... 277
 </S11:Header> 278
 ... 279
</S11:Envelope> 280

 281
The following example illustrates using a digest of the password along with a nonce and a 282
creation timestamp: 283
 284

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu= "..."> 285
 <S11:Header> 286
 ... 287
 <wsse:Security> 288
 <wsse:UsernameToken> 289
 <wsse:Username>NNK</wsse:Username> 290
 <wsse:Password Type="...#PasswordDigest"> 291
 weYI3nXd8LjMNVksCKFV8t3rgHh3Rw== 292
 </wsse:Password> 293
 <wsse:Nonce>WScqanjCEAC4mQoBE07sAQ==</wsse:Nonce> 294
 <wsu:Created>2003-07-16T01:24:32Z</wsu:Created> 295
 </wsse:UsernameToken> 296
 </wsse:Security> 297
 ... 298
 </S11:Header> 299
 ... 300
</S11:Envelope> 301

 302

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 11

3.2 Token Reference 303

When a UsernameToken is referenced using <wsse:SecurityTokenReference> the 304
ValueType attribute is not required. If specified, the value of #UsernameToken MUST be 305
specified. 306
 307
The following encoding formats are pre-defined (note that the URI fragments are relative to the 308
URI for this specification): 309
 310

URI Description

#UsernameToken UsernameToken

 311
When a UsernameToken is referenced from a <ds:KeyInfo> element, it can be used to derive 312
a key for a message authentication algorithm using the password. This profile considers specific 313
mechanisms for key derivation to be out of scope. Implementations should agree on a key 314
derivation algorithm in order to be interoperable. 315
 316
There is no definition of a KeyIdentifier for a UsernameToken. Consequently, KeyIdentifier 317
references MUST NOT used when referring to a UsernameToken. 318
 319
Similarly, there is no definition of a KeyName for a UsernameToken. Consequently, KeyName 320
references MUST NOT be used when referring to a UsernameToken. 321
 322
All references refer to the wsu:Id for the token. 323

3.3 Error Codes 324

Implementations may use custom error codes defined in private namespaces if needed. But it is 325
RECOMMENDED that they use the error handling codes defined in the WSS: SOAP Message 326
Security specification for signature, decryption, and encoding and token header errors to improve 327
interoperability. 328
 329
When using custom error codes, implementations should be careful not to introduce security 330
vulnerabilities that may assist an attacker in the error codes returned. 331

4 Key Derivation 332

The password associated with a username may be used to derive a shared secret key for the 333
purposes of integrity or confidentiality protecting message contents. This section defines schema 334
extensions and a procedure for deriving such keys. This procedure MUST be employed when 335
keys are to be derived from passwords in order in insure interoperability. 336
 337

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 12

It must be noted that passwords are subject to several kinds of attack, which in turn will lead to 338
the exposure of any derived keys. This key derivation procedure is intended to minimize the risk 339
of attacks on the keys, to the extent possible, but it is ultimately limited by the insecurity of a 340
password that it is possible for a human being to remember and type on a standard keyboard. 341
This is discussed in more detail in the security considerations section of this document. 342
 343
Two additional elements are required to enable to derivation of a key from a password. They are 344
<wsse11:Salt> and <wsse11:Iteration>. These values are not secret and MUST be 345
conveyed in the Username token when key derivation is used. When key derivation is used the 346
password MUST NOT be included in the Username token. The receiver will use its knowledge of 347
the password to derive the same key as the sender. 348
 349
The following illustrates the syntax of the <wsse11:Salt> and <wsse11:Iteration> 350
elements. 351

<wsse:UsernameToken wsse:Id=”…”> 352
 <wsse:Username>…</wsse:Username> 353
 <wsse11:Salt>…</wsse11:Salt> 354
 <wsse11:Iteration>…</wsse11:Iteration> 355
</wsse:UsernameToken> 356

The following describes these elements. 357
 358
/wsse11:UsernameToken/wsse:Salt 359

This element is combined with the password as described below. Its value is a 128 bit 360
number expressed in hexadecimal. It MUST be present when key derivation is used. 361
 362

/wsse11:UsernameToken/wsse11:Iteration 363
This element indicates the number of times the hashing operation is repeated when 364
deriving the key. It is expressed as a decimal value. If it is not present, a value is 1000 is 365
used for the iteration count. 366
 367

A key derived from a password may be used either in the calculation of a Message Authentication 368
Code (MAC) or as a symmetric key for encryption. When used in a MAC, the key length will 369
always be 160 bits. When used for encryption, an encryption algorithm MUST NOT be used 370
which requires a key of length greater than 160 bits. A sufficient number of the high order bits of 371
the key will be used for encryption. Unneeded low order bits will be discarded. For example, if the 372
AES-128 algorithm is used, the high order 128 bits will be used and the low order 32 bits will be 373
discarded from the derived 160 bit value. 374
 375
The <wsse11:Salt> element is constructed as follows. The high order 8 bits of the Salt will 376
have the value of 01 if the key is to be used in a MAC and 02 if the key is to be used for 377
encryption. The remaining 120 low order bits of the Salt should be a random value. 378
 379
The key is derived as follows. The password and Salt are concatenated in that order. Only the 380
actual octets of the password are used, it is not padded or zero terminated. This value is hashed 381
using the SHA1 algorithm. The result of this operation is also hashed using SHA1. This process is 382
repeated until the total number of hash operations equals the Iteration count. 383

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 13

 384
In other words: K1 = SHA1(password + Salt) 385
 K2 = SHA1(K1) 386
 … 387
 Kn = SHA1 (Kn-1) 388
Where + means concatenation and n is the iteration count. 389
 390
The resulting 160 bit value is used in a MAC function or truncated to the appropriate length for 391
encryption. 392

5 Security Considerations 393

The use of the UsernameToken introduces no additional threats beyond those already identified 394
for other types of SecurityTokens. Replay attacks can be addressed by using message 395
timestamps, nonces, and caching, as well as other application-specific tracking mechanisms. 396
Token ownership is verified by use of keys and man-in-the-middle attacks are generally 397
mitigated. Transport-level security may be used to provide confidentiality and integrity of both the 398
UsernameToken and the entire message body. 399
 400
When a password (or password equivalent) in a <UsernameToken> is used for authentication, 401
the password needs to be properly protected. If the underlying transport does not provide enough 402
protection against eavesdropping, the password SHOULD be digested as described in this 403
document. Even so, the password must be strong enough so that simple password guessing 404
attacks will not reveal the secret from a captured message. 405
 406
When a password is encrypted, in addition to the normal threats against any encryption, two 407
password-specific threats must be considered: replay and guessing. If an attacker can 408
impersonate a user by replaying an encrypted or hashed password, then learning the actual 409
password is not necessary. One method of preventing replay is to use a nonce as mentioned 410
previously. Generally it is also necessary to use a timestamp to put a ceiling on the number of 411
previous nonces that must be stored. However, in order to be effective the nonce and timestamp 412
must be signed. If the signature is also over the password itself, prior to encryption, then it would 413
be a simple matter to use the signature to perform an offline guessing attack against the 414
password. This threat can be countered in any of several ways including: don't include the 415
password under the signature (the password will be verified later) or sign the encrypted 416
password. 417
 418
The reader should also review Section 13 of WSS: SOAP Message Security document for 419
additional discussion on threats and possible counter-measures. 420
 421
The security of keys derived from passwords is limited by the attacks available against passwords 422
themselves, such as guessing and brute force. Because of the limited size of password that 423
human beings can remember and limited number of octet values represented by keys that can 424
easily be typed, a typical password represents the equivalent of an entropy source of a maximum 425
of only about 50 bits. For this reason a maximum key size of only 160 bits is supported. Longer 426
keys would simply increase processing without adding to security. 427

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 14

 428
The key derivation algorithm specified here is based on one described in RFC 2898. It is referred 429
to in that document as PBKDF1. It is used instead of PBKDF2, because it is simpler and keys 430
longer than 160 bits are not required as discussed previously. 431
 432
The purpose of the salt is to prevent the bulk pre-computation of key values to be tested against 433
distinct passwords. The Salt value is defined so that MAC and encryption keys are guaranteed to 434
have distinct values even when derived from the same password. This prevents certain 435
cryptanalytic attacks. 436
 437
The iteration count is intended to increase the work factor of a guessing or brute force attack, at a 438
minor cost to normal key derivation. An iteration count of at least 1000 (the default) SHOULD 439
always be used. 440
 441
This section is non-normative. 442

6 References 443

The following are normative references: 444
[SECGLO] Informational RFC 2828, "Internet Security Glossary," May 2000. 445
[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," 446

RFC 2119, Harvard University, March 1997 447
[WSS] OASIS standard, "WSS: SOAP Message Security," TBD. 448
[SOAP11] W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 449
[SOAP12] W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging 450

Framework", 23 June 2003 451
[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers 452

(URI): Generic Syntax," RFC 3986, MIT/LCS, Day Software, Adobe 453
Systems, January 2005.. 454

[XML-Schema] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 455
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 456

[XPath] W3C Recommendation, "XML Path Language", 16 November 1999 457
 458

The following are non-normative references included for background and related material: 459
[WS-Security] OASIS,”Web Services Security: SOAP Message Security” 19 January 460

2004, http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-461
soap-message-security-1.0 462

[XML-C14N] W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001 463
[EXC-C14N] W3C Recommendation, "Exclusive XML Canonicalization Version 1.0," 8 464

July 2002. 465
[XML-Encrypt] W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 466

2002 467
W3C Recommendation, “Decryption Transform for XML Signature”, 10 468
December 2002. 469

[XML-ns] W3C Recommendation, "Namespaces in XML," 14 January 1999. 470

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 15

[XML Signature] D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-471
Signature Syntax and Processing, W3C Recommendation, 12 February 472
2002. http://www.w3.org/TR/xmldsig-core/ 473

 474

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 16

Appendix A. Acknowledgements 475

Contributors: 476
Gene Thurston AmberPoint
Frank Siebenlist Argonne National Lab
Merlin Hughes Baltimore Technologies
Irving Reid Baltimore Technologies
Peter Dapkus BEA
Hal Lockhart BEA
Steve Anderson BMC (Sec)
Srinivas Davanum Computer Associates
Thomas DeMartini ContentGuard
Guillermo Lao ContentGuard
TJ Pannu ContentGuard
Shawn Sharp Cyclone Commerce
Ganesh Vaideeswaran Documentum
Sam Wei Documentum
John Hughes Entegrity
Tim Moses Entrust
Toshihiro Nishimura Fujitsu
Tom Rutt Fujitsu
Yutaka Kudo Hitachi
Jason Rouault HP
Paula Austel IBM
Bob Blakley IBM
Joel Farrell IBM
Satoshi Hada IBM
Maryann Hondo IBM
Michael McIntosh IBM
Hiroshi Maruyama IBM
David Melgar IBM
Anthony Nadalin IBM
Nataraj Nagaratnam IBM
Wayne Vicknair IBM
Kelvin Lawrence IBM (co-Chair)
Don Flinn Individual
Bob Morgan Individual
Bob Atkinson Microsoft
Keith Ballinger Microsoft
Allen Brown Microsoft
Paul Cotton Microsoft
Giovanni Della-Libera Microsoft
Vijay Gajjala Microsoft
Johannes Klein Microsoft
Scott Konersmann Microsoft
Chris Kurt Microsoft
Brian LaMacchia Microsoft
Paul Leach Microsoft

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 17

John Manferdelli Microsoft
John Shewchuk Microsoft
Dan Simon Microsoft
Hervey Wilson Microsoft
Chris Kaler Microsoft (co-Chair)
Prateek Mishra Netegrity
Frederick Hirsch Nokia
Senthil Sengodan Nokia
Lloyd Burch Novell
Ed Reed Novell
Charles Knouse Oblix
Vipin Samar Oracle
Jerry Schwarz Oracle
Eric Gravengaard Reactivity
Stuart King Reed Elsevier
Andrew Nash RSA Security
Rob Philpott RSA Security
Peter Rostin RSA Security
Martijn de Boer SAP
Blake Dournaee Sarvega
Pete Wenzel SeeBeyond
Jonathan Tourzan Sony
Yassir Elley Sun Microsystems
Jeff Hodges Sun Microsystems
Ronald Monzillo Sun Microsystems
Jan Alexander Systinet
Michael Nguyen The IDA of Singapore
Don Adams TIBCO
Symon Chang TIBCO
John Weiland US Navy
Phillip Hallam-Baker VeriSign
Mark Hays Verisign
Hemma Prafullchandra VeriSign

 477

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 18

Appendix B. Revision History 478

Rev Date By Whom What

WGD 1.1 2004-09-13 Anthony Nadalin Initial version cloned from the Version
1.0 and Errata

WGD 1.1 2005-05-11 Anthony Nadalin Issue 373, 388

WGD 1.1 2005-05-17 Anthony Nadalin Formatting Issues

WGD 1.1 2005-06-14 Anthony Nadalin Fix Example

WSS: UsernameToken Profile 14 June 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved. Page 19

 479

