
Proxy objects

1. Proxy objects

A proxy class is a class that implements a list of interfaces specified at compile time. The
proxy object typically holds a reference to an internal object that implements the same
interfaces (or parts of them). The proxy object is implemented by delegating method calls to
the internal object. This is the same principle as implemented by the class
java.lang.reflect.Proxy, which created proxy objects dynamically at runtime using
Java reflection.

Compared to the standard Proxy class, the generator has the obvious disadvantage, that you
have to specify the implemented interfaces at runtime. On the other hand, it allows both to
select the proxy objects super class and the derivation of subclasses. In fact the derivation of
a subclass is much more obvious, simple and faster than the use of an InvocationHandler.

The proxy generator is implemented by the class ProxyGenerator. Use of the ProxyGenerator
is demonstrated in the Ant target "generate.proxy".

The proxy generator Ant task supports the following attributes:

Name Description Required
Default

classpathRef Reference to a class path,
being used to load Java
classes or sources. See the
"type" attribute in the nested
element
"implementedInterface" below
for details. Use of the
"classpathRef" attribute is
mutually exclusive with the
nested element "classpath".

No
Ant's class path

destDir Path of the directory, where the
generated sources are being
created. A package structure
will be created below. In other
words, if a class
"org.apache.Foo" is generated,
then it will be found in the file

No
Current directory

Page 1
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

../../apidocs/org/apache/ws/jaxme/js/pattern/ProxyGenerator.html


${destDir}/org/apache/Foo.class.

extendedClass Specifies the fully qualified
name of a class, which is being
extended by the generated
sources.

No
java.lang.Object

The proxy generator Ant task also supports the following nested elements:

Name Description Required
Default

classPath Specifies a path, which is being
used for loading Java classes
or sources. See the "type"
attribute in the nested element
"implementedInterface" below
for details. The "classpath"
element is mutually exclusive
with the "classpathRef"
attribute.

No
Ant's class path

implementedInterface Specifies an additional
interface being implemented.
This element must have an
attribute "interface" with the
fully qualified name of a Java
interface which is being
implemented by the generated
classes.
The generator needs to
determine the methods
specified by the interface. If the
element has an attribute "type"
with the value "Reflection", then
the specified interface will be
loaded as a compiled Java
class. Otherwise, if the attribute
"type" has the value "Source",
then the generator attempts to
load a Java source file with the
same name from the class path
and parse it. Otherwise, if the
"type" attribute is missing, it will
attempt both "Reflection" and
"Source", in that order.

Yes, at least one

Proxy objects

Page 2
Copyright © 2003-2004 Apache Software Foundation All rights reserved.



2. Multiple Inheritance

Multiple inheritance is a design pattern which is not so easy to implement in Java - unless
you use the ProxyGenerator. This is demonstrated by the JUnit test MultipleInheritanceTest,
which creates a subclass of java.util.Observable, that also inherits from
java.util.ArrayList. The example implements a list, which notifies its observers
whenever the add() method is invoked.

Proxy objects

Page 3
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

../../apidocs/org/apache/ws/jaxme/js/pattern/ProxyGenerator.html
../../apidocs/org/apache/ws/jaxme/js/junit/MultipleInheritanceTest.html

	1 Proxy objects
	2 Multiple Inheritance

