
1 tu sca ny

The Tuscany Java Recursive Core:
 Architecture Update

5 June 2006

2 tu sca ny

Agenda

• Spec Update
• Core Update
• Extending the Runtime

3 tu sca ny

Agenda

• Spec Update
• Core Update
• Extending the Runtime

4 tu sca ny

Simplify Composition

• Reduce the number of SCA concepts
• Yet adds additional capabilities

• Modules become Composites
• Composites are a compound Component Type
• Entry Point eliminated, Service provides same function
• External Service eliminated, Reference provides same function

Component
Type

Properties

Services References

5 tu sca ny

Recursive Composition

• A Composite can become the implementation of a component
• The component’s services, references and properties are those of the

composite that is used as its implementation.
• Nestable to any level

<composite name="outer">
 <component name="outer1">
 <implementation.composite name="inner"/>
 </component>
</composite>

<composite name="inner">
 <component name="inner1">
 ...
 </component>
</composite>

6 tu sca ny

Complex Property Types

• Property types can now be any XML complex type
• Before they were simple types represented by a string

• “type” attribute contains QName of complex type
• Body of <property> element contains default value

<property name=“fooProp" type=“foo:FooType">
 <foo:a>value</foo:a>

 <b-1>inner value</b-1>

</property>

7 tu sca ny

Setting Component Property Values

• <v:> concept has been removed
• Value can be derived from content of <property> element:

• Or, can be the result of an XPath expression

<component name=“comp”>
 <property name=“prop">
 <foo:a>value</foo:a>
 <b-1>inner value</b-1>
 </property>
</component>

<property name=“fooProp“ type=“FooType”>
 <foo:a>value</foo:a>
 <b-1>inner value</b-1>
</property>
<component name=“comp”>
 <property name=“prop” source=“$fooProp/b”/>
</component>

8 tu sca ny

Composite Inclusion

• Module Fragments have been removed
• Replaced by a SCA-specific include mechanism

• XInclude was rejected due to complexity of XPointer
• Alternative still being defined

• Work in progress on subsystem concept
• Some form of open composite
• Tied into deployment concepts

9 tu sca ny

Packaging Structures

• No specification yet of a packaging format for a composite

• We need to do something in Tuscany
• OSGi bundle format looks promising

10 tu sca ny

Agenda

• Spec Update
• Core Update

• Overview
• Atomic Components
• Wires
• Composites
• The Component Tree
• Deployment
• Loading
• Building
• Bootstrap

• Extending the Runtime

11 tu sca ny

Overview

• SCA recursion as well experience with M1 led us to the conclusion that the
existing core architecture needed substantial refactoring

• Overall brittleness
• The $10,000,000 question: Which classloader is active at any given point?
• Component type loading
• Model initialization and walking
• Wiring and proxy generation
• Deprecated methods and use throughout the runtime

• Parts of the core were baroque
• Artifact registration
• Context factories, builders, invokers
• Model decoration
• Mixing of behavior and model

• No clear separation of concerns
• No SPI demarcation
• Model bleeds into runtime

• Core development cycle too long
• Develop-build-test-deploy cycle was painful

• Implementing recursion with the existing architecture would not simplify
• Most importantly, things could be easier and simpler…

12 tu sca ny

Atomic Component

• AtomicComponent: the most basic component form
• Corresponds to the spec concept

• Offers services, has references and properties
• Implementations deal with the specifics of a type, e.g. Java, XSLT, etc.
• Has implementation instances
• Has inbound and outbound wires

Outbound wire Inbound wire

Properties

13 tu sca ny

Atomic Component Instance Management

• Atomic components use a ScopeContainer to manage implementation
instances

• Module, HTTP Session, Request, Stateless
• ScopeContainers track implementation instances by scope id and the

AtomicComponent instance identity
• Instances are stored in an InstanceWrapper which is specific to the component

implementation type (e.g. PojoInstanceWrapper.java)

ScopeContainer

AtomicComponent

AtomicComponent

Collection of instance
wrappers keyed by scope
id and collection keyed by
AtomicComponent

14 tu sca ny

Component Implementation Instance Creation

ScopeContainer

getInstance(this)

no instance cachedcreateInstance

return instance

track and enqueue instance (for
destruction)

return instance

AtomicComponent

Instantiate and inject the
instance (which will
recurse for dependents)

15 tu sca ny

Wires: RuntimeWire

• Corresponds to the specification term wire
• Responsible for flowing an invocation to a target
• Components (atomic and composite) have 0..n wires

• Two sides
• InboundWire - handles the source side of a wire, including policy
• OutboundWire - handles the target side of a wire, including policy
• The runtime connects inbound and outbound wires, performing

optimizations if possible
• Inbound and outbound wires may be associated with different service

contracts
• Different implementation types

• “Standard” wires contain invocation chains that have Interceptors and
MessageHandlers that perform some form of mediation (e.g. policy)

• Other wire types exist that, for example, do not perform mediations

Outbound wire Inbound wire

16 tu sca ny

Invocation Chains

• A wire has an InvocationChain per service operation
• An InvocationChain may have

• Interceptors - “Around-style” mediation
• One-way MessageHandlers

• Component implementation instances access a wire through a WireInvocationHandler
associated with a reference

• WireInvocationHandlers may (or may not depending on the component type) be fronted by a
proxy

• WireInvocationHandlers dispatch an invocation to the correct chain
• A wire has a TargetInvoker that is created from the target side AtomicComponent or

Reference and is stored on the source wire invocation handler. The TargetInvoker is
resposnible for dispatching the request to the target instance when the message hits the
end of the target invocation chain.

Invocation chains

Invocation chains

17 tu sca ny

Invocation Overview

• An invocation is dispatched to the WireInvocationHandler
• The WireInvocationHandler looks up the correct InvocationChain
• It then creates a message, sets the payload, sets the TargetInvoker, and passes

the message down the chain
• When the message reaches the end of the chain, the TargetInvoker is called,

which in turn is responsible for dispatching to the target
• Having the TargetInvoker stored on the outbound side allows it to cache the

target instance when the wire source has a scope of equal or lesser value than
the target (e.g. request-->module)

WireInvocationHandler

Invocation

TargetInvoker
associated
with the
operation

Payload

Dispatch
on target

18 tu sca ny

Wires and Implementation Instances

• The runtime provides components with InboundWires and OutboundWires
• InvocationChains are held in component wires and are therefore stateless

• Allows for dynamic behavior such as introduction of new interceptors or re-wiring

WireInvocationHandler

Implementation instance

Pr
ox

y

Outboundwire
held by
component

InboundWire
associated with
a service and
held by
component

TargetInvoker may need to
resolve the target instance. This
may be done by referencing the
ScopeContainer

19 tu sca ny

Invocation Detail

Outbound
Interceptor Chain TargetInvoker

Outbound
Request Channel

1

Inbound
Request ChannelRequest

2

Inbound
Response Channel

Outbound
Response Channel

6

7

Response 3 4 5

1. RequestResponseInterceptor (RRI) dispatches to the outbound request channel (OReqC)
2. RRI dispatches to the inbound request channel (IReqC)
3. MessageDispatcher dispatches to the inbound interceptor chain
4. TargetInvokerInterceptor pulls the TargetInvoker from the message and dispatches to it
5. TargetInvoker dispatches to the target (implementation instance or to some transport)
6. RRI dispatches to the inbound response channel (IRespC)
7. RRI dispatches to the outbound response channel (ORespC)
8. The response is returned back up the outbound channel to the client

Inbound
Interceptor Chain

Note the runtime may optimize invocations not to call interceptors or handlers
and possibly dispatch directly to a target (or any combination thereof)

20 tu sca ny

Composite Component

• CompositeComponent: a component which contains child components
• Corresponds to the spec concept

• Offers services, has references over bindings
• Has properties

• Has inbound and outbound wires associated with Services and References
• Implementations deal with the specifics of a type, e.g. Spring

ReferenceService

Properties

21 tu sca ny

A Composite Example

• Expose a Spring Bean through a service with a SOAP/HTTP binding and
using a reference bound over SOAP/JMS

• Spring application.xml does not need to be modified
• Preserves Spring programming model
• Allows existing Spring applications to be wired in an assembly

• Services and references are contributed by SCA bindings (e.g. Celtix)

Reference
Service

SpringCompositeComponent

Spring Bean

Spring Bean

22 tu sca ny

Composite Wiring

• Services and references are “twist-ties” for inbound and outbound wires

Services have
connected
InboundWire/
OutboundWire pairs

OutboundInbound OutboundInbound

References have
connected
InboundWire/
OutboundWire pairs

Inbound Outbound

CompositeComponent

AtomicComponent

23 tu sca ny

Composite Reference Invocations

• When a message reaches the end of the outbound reference wire, the
TargetInvoker dispatches over a transport

• In contrast to Component-->Component invocations, where the TargetInvoker
would resolve the target implementation instance

OutboundInboundOutboundInbound

Invoke on
transport

AtomicComponent Composite Reference

24 tu sca ny

Component Tree

• Composites form a containment hierarchy
• The hierarchy may be arbitrarily deep
• The runtime itself, DefaultRuntime, is a composite
• There are two runtime hierarchies

• The application hierarchy
• End-user components

• The system hierarchy
• Runtime extensions

25 tu sca ny

Deployment

Deployer

Loader

Builder

Connector

Loads artifacts to
create configuration

model

Creates components
and bindings from

configuration model

Creates wires that
connect components

to each other

Co-ordinates
deployment process

26 tu sca ny

Configuration Loading

Loader

StAXElement
Loader

ComponentType
Loader

Loads XML element
from StAX stream

Loads the
componentType for an

implementation

27 tu sca ny

Component Type Loading

• Loads the component type definition for a specific implementation
• How it does this is implementation-specific
• May load XML sidefile (location set by implementation)
• May introspect an implementation artifact (e.g. Java annotations)
• … or anything else

• Composite ComponentType Loader
• Load SCDL from supplied URL
• Extract and load SCDL from composite package (format TBD)

• POJO ComponentType Loader
• Load SCDL from class-relative “.componentType” sidefile
• Introspect Java annotations

28 tu sca ny

Annotation Processing

• Spec needs to clarify annotation processing algorithms
• Proposal based on the email to our list 5/29

• Pluggable annotation processors
• Ability to add new annotations
• Extend componentType structure

• @Init
• @Autowire

• Magic Property and Reference definitions
• @SDOHelper
• @Monitor

29 tu sca ny

Building

• Builder creates a runtime component from the configuration model
• Builder for each implementation type
• Builder for each binding type (service or reference component)

• Runtime component manages:
• Implementation instances
• Inbound and Outbound wires

• Every implementation is likely to be different
• Different artifacts, programming model, …

• Composite implementation recurses for contained components
• Re-invokes the Builder for every child

30 tu sca ny

Bootstrap

• Bootstrap process is controlled by Host environment
• Default process implemented in DefaultBootstrapper

Create
DefaultRuntime

Create
Bootstrap
Deployer

Deploy
System

Assembly

Locate
Application
Assemblies

Locate System
Assembly

Deploy
Application
Assembly

Start Server

31 tu sca ny

Agenda

• Spec Update
• Core Update
• Extending the Runtime

32 tu sca ny

The SPI Package

• A separate SPI project has been created for extending the runtime
• Extension code must never reference classes in tuscany-core

• Besides being bad design, this type of code will break when deployed to hosts
that enforce classloader isolation

• There is a tuscany-test package for testcases to instantiate a few core
implementation classes without directly referrencing them (we should look to
eliminate it if possible)

• tuscany-core is an implementation of tuscany-spi

tuscany-core

tuscany-spiExtension

33 tu sca ny

Extension Design Principals

• The core must be as simple as possible but no simpler
• Simple but not simplistic
• Don’t sacrifice performance for extension simplification

• Make the extension API progressive
• High-level API for common cases
• A lower-level API that allows extenders nearly complete access

• Make the runtime easier for application developers first, then extenders
• Make everything possible an extension

• Limit the knowledge of the core
• The core should know very little about extension points
• People will want to extend the runtime in ways we haven’t thought of so make it as

flexible as possible
• Extenders are Java developers and understand IoC

• Extending the runtime should only require knowledge of J2SE and IoC

34 tu sca ny

Base Extension Types

• Components
• Protocol Bindings
• Transport Bindings
• Data Bindings
• Policy
• Loaders
• Other types:

• Scope contexts
• Wires
• Proxy generation
• Anything people can think of and attach to the runtime…

35 tu sca ny

Extension Package

• tuscany-spi contains an extension package with abstract classes for
base extensions
• AtomicComponentExtension.java
• CompositeComponentExtension.java
• LoaderExtension.java
• ReferenceExtension.java
• ServiceExtension.java

36 tu sca ny

Creating an Atomic Component Implementation Type

1. Implement 1..n model POJOs
2. Implement Loader or extend LoaderExtension

• Reads a StAX stream and creates appropriate model objects
3. Implement AtomicComponent or extend AtomicComponentExtension

• Extension will be given InboundWires and OutboundWires corresponding to its
services and references; it must decide how to inject those onto its implementation
instances (e.g. create a proxy)

• A WireService will be provided to the extension, which it can use to generate
proxies and WireInvocationHandlers

• The extension must implement createTargetInvoker(..) and instantiate
TargetInvokers responsible for dispatching to target instances

4. Implement ComponentBuilder or extend ComponentBuilderExtension
• Implements build(..) which returns the AtomicComponent implementation

5. Write a simple SCDL file and deploy into the system composite hierarchy

37 tu sca ny

Creating a Composite Component Implementation Type

1. Implement 1..n model POJOs
2. Implement Loader or extend LoaderExtension

• Reads a StAX stream and creates appropriate model objects
3. Implement CompositeComponent or extend CompositeComponentExtension

• The extension must implement createTargetInvoker(..) and instantiate
TargetInvokers responsible for dispatching to target child instances

4. Implement ComponentBuilder or extend ComponentBuilderExtension
• Implements build(..) which returns the AtomicComponent implementation

5. Write a simple SCDL file and deploy into the system composite hierarchy

38 tu sca ny

Creating a Service

1. Implement 1..n model POJOs
2. Implement Loader or extend LoaderExtension

• Reads a StAX stream and creates appropriate model objects
3. Implement Service or extend ServiceExtension

• Receives requests from a binding. This may involve interfacing with the Tuscany
host environment through the Host API

4. Implement BindingBuilder or extend BindingBuilderExtension
• Implements build(..) which returns the Service implementation

5. Write a simple SCDL file and deploy into the system composite hierarchy

39 tu sca ny

Creating a Reference

1. Implement 1..n model POJOs
2. Implement Loader or extend LoaderExtension

• Reads a StAX stream and creates appropriate model objects
3. Implement Reference or extend ReferenceExtension

• Receives requests from a binding. This may involve interfacing with the
Tuscany host environment through the Host API

• The extension must also implement createTargetInvoker(..) and
create TargetInvokers responsible for dispatching to the transport

4. Implement BindingBuilder or extend BindingBuilderExtension
• Implements build(..) which returns the Reference implementation

5. Write a simple SCDL file and deploy into the system composite
hierarchy

40 tu sca ny

Creating a Generic Extension

1. Write a Java class
2. Write a simple SCDL file and deploy into the system composite

hierarchy

