
TomEE Embedded



TomEE Embedded is based on Tomcat embedded and starts a real TomEE in the
launching JVM. It is also able to deploy the classpath as a webapp and to use
either META-INF/resources or a folder as web resources.

Here is a basic programmatic usage based on
org.apache.tomee.embedded.Container class:

try (final Container container = new Container(new Configuration())
.deployClasspathAsWebApp()) {
    System.out.println("Started on http://localhost:" + container.getConfiguration()
.getHttpPort());

    // do something or wait until the end of the application
}

All EE features are then accessible directly in the same JVM.

TomEE Embedded Configuration
The default configuration allows to start tomee without issue but you can desire to customize some
of them.

Name Default Description

httpPort 8080 http port

stopPort 8005 shutdown port

host localhost host

dir - where to create a file hierarchy
for tomee (conf, temp, …)

serverXml - which server.xml to use

keepServerXmlAsThis false don’t adjust ports/host from the
configuration and keep the ones
in server.xml

properties - container properties

quickSession true use Random instead of
SecureRandom (for dev)

skipHttp false don’t use the http connector

httpsPort 8443 https potr

ssl false activate https

withEjbRemote false use EJBd

1



Name Default Description

keystoreFile - https keystore location

keystorePass - https keystore password

keystoreType JKS https keystore type

clientAuth - https client auth

keyAlias - https alias

sslProtocol - SSL protocol for https connector

webXml - default web.xml to use

loginConfig - which LoginConfig to use, relies
on
org.apache.tomee.embedded.Logi
nConfigBuilder to create it

securityConstraints - add some security constraints,
use
org.apache.tomee.embedded.Secu
rityConstaintBuilder to build
them

realm - which realm to use (useful to
switch to JAASRealm for instance)
without modifying the
application

deployOpenEjbApp false should internal openejb
application be delpoyed

users - a map of user/password

roles - a map of role/users

tempDir ${java.io.tmpdir}/tomee-
embedded_${timestamp}

tomcat needs a docBase, in case
you don’t provide one one will
be created there

webResourceCached true should web resources be cached
by tomcat (set false in frontend
dev)

configuration-location - location (classpath or file) to a
.properties to configure the
server [pre-task

- Runnable or
org.apache.tomee.embedded.Lif
ecycleTask implementations to
execute before the container
starts

classes-filter

2



Name Default Description

- implementation of a custom
xbean Filter to ignore not
desired classes during scanning

basic

Note: passing to Container constructor a Configuration it will start the container automatically but
using setup(Configuration) to initialize the configuration you will need to call start().

You can also pass through the properties connector.xxx and connector.attributes.xxx to customize
connector(s) configuration directly.

Standalone applications or TomEE
Embedded provided main(String[])
Deploying an application in a server is very nice cause the application is generally small and it
allows to update the container without touching the application (typically insanely important in
case of security issues for instance).

However sometimes you don’t have the choice so TomEE Embedded provides a built-in
main(String[]). Here are its options:

NOTE this is still a TomEE so all system properties work (for instance to create a resource).

Name Default Description

--path - location of application(s) to
deploy

--context - Context name for applications
(same order than paths)

-p or --port 8080 http port

-s or --shutdown 8005 shutdown port

-d or --directory ./.apache-tomee tomee work directory

-c or --as-war - deploy classpath as a war

-b or --doc-base - where web resources are for
classpath deployment

--renaming - for fat war only, is renaming of
the context supported

--serverxml - the server.xml location

--tomeexml - the server.xml location

--property - a list of container properties
(values follow the format x=y)

3



Note that since 7.0.0 TomEE provides 3 flavors (qualifier) of tomee-embedded as fat jars:

• uber (where we put all request features by users, this is likely the most complete and the
biggest)

• jaxrs: webprofile minus JSF

• jaxws: webprofile plus JAX-WS

These different uber jars are interesting in mainly 2 cases:

• you do a war shade (it avoids to list a bunch of dependencies but still get a customized version)

• you run your application using --path option

NOTE
if you already do a custom shade/fatjar this is not really impacting since you can
depend on tomee-embedded and exclude/include what you want.

FatApp a shortcut main
FatApp main (same package as tomee embedded Main) just wraps the default main ensuring:

• ̀`--as-war` is used

• ̀`--single-classloader` is used

• --configuration-location=tomee-embedded.properties is set if tomee-embedded.properties is found
in the classpath

configuration-location
--configuration-location option allows to simplify the configuration of tomee embedded through
properties.

Here are the recognized entries (they match the configuration, see
org.apache.tomee.embedded.Configuration for the detail):

Name

http

https

stop

host

dir

serverXml

keepServerXmlAsThis

quickSession

4



skipHttp

ssl

http2

webResourceCached

withEjbRemote

deployOpenEjbApp

keystoreFile

keystorePass

keystoreType

clientAuth

keyAlias

sslProtocol

webXml

tempDir

classesFilter

conf

properties.x (set container properties x with the
associated value)

users.x (for default in memory realm add the
user x with its password - the value)

roles.x (for default in memory realm add the
role x with its comma separated users - the
value)

connector.x (set the property x on the
connector)

realm=fullyqualifiedname,realm.prop=xxx
(define a custom realm with its configuration)

login=,login.prop=xxx (define a
org.apache.tomee.embedded.LoginConfigBuilder
== define a LoginConfig)

securityConstraint=,securityConstraint.prop=xxx
(define a
org.apache.tomee.embedded.SecurityConstaintB
uilder == define webapp security)

5



configurationCustomizer.alias=,configurationCu
stomizer.alias.class=class,configurationCustomiz
er.alias.prop=xxx (define a
ConfigurationCustomizer)

Here is a sample to add BASIC security on /api/*:

# security configuration
securityConstraint =
securityConstraint.authConstraint = true
securityConstraint.authRole = **
securityConstraint.collection = api:/api/*

login =
login.realmName = app
login.authMethod = BASIC

realm = org.apache.catalina.realm.JAASRealm
realm.appName = app

properties.java.security.auth.login.config = configuration/login.jaas

And here a configuration to exclude jackson packages from scanning and use log4j2 as main logger
(needs it as dependency):

properties.openejb.log.factory = log4j2
properties.openejb.container.additional.include =
com.fasterxml.jackson,org.apache.logging.log4j

Application Runner
SInce TomEE 7.0.2, TomEE provide a light ApplicationComposer integration for TomEE Embedded
(all features are not yet supported but the main ones are):
org.apache.tomee.embedded.TomEEEmbeddedApplicationRunner. It relies on the definition of an
@Application:

6



@Application
@Classes(context = "app")
@ContainerProperties(@ContainerProperties.Property(name = "t", value = "set"))
@TomEEEmbeddedApplicationRunner.LifecycleTasks(MyTask.class) // can start a
ftp/sftp/elasticsearch/mongo/... server before tomee
@TomEEEmbeddedApplicationRunner.Configurers(SetMyProperty.class)
public class TheApp {
    @RandomPort("http")
    private int port;

    @RandomPort("http")
    private URL base;

    @org.apache.openejb.testing.Configuration
    public Properties add() {
        return new PropertiesBuilder().p("programmatic", "property").build();
    }

    @PostConstruct
    public void appStarted() {
        // ...
    }
}

Then just start it with:

TomEEEmbeddedApplicationRunner.run(TheApp.class, "some arg1", "other arg");

TIP
@Classes(values) and @Jars are supported too which can avoid a huge scanning if you
run with a lot of not CDI dependencies which would boost the startup of your
application.

7


	TomEE Embedded
	TomEE Embedded Configuration
	Standalone applications or TomEE Embedded provided main(String[])
	FatApp a shortcut main
	configuration-location
	Application Runner

