
SPB1217LV

Preparing Spring Web
Applications for Loom

Staff Engineer, VMware

Mark Thomas (he/him)

© VMware, Inc. 2

Introductions

Tomcat since 2003
Committer, PMC member

Commons (Daemon, Pool, DBCP, BCEL)
Committer, PMC member

ASF member , ASF security team, ASF infrastructure team, Director 2016 to 2019
VP, Brand Management since 2018

Java EE Expert groups for Servlet, WebSocket, Expression Language

Jakarta Servlet, Pages, WebSocket and Expression Language
Committer

© VMware, Inc. 3

“Project Loom is to intended
to explore, incubate and
deliver Java VM features and
APIs built on top of them for
the purpose of supporting
easy-to-use, high-throughput
lightweight concurrency and
new programming models on
the Java platform.”

https://wiki.openjdk.org/display/loom

© VMware, Inc. 4

A Brief History of Servlet Scalability

© VMware, Inc. 5

A Brief History of Servlet Scalability

HTTP/1.0

HTTP/1.1 and keep-alive

Tomcat, blocking I/O (BIO, 3.x) and thread starvation

Tomcat, non-blocking I/O (NIO, 6.0.x / NIO2, 8.0.x)

Servlet asynchronous API and non-blocking I/O (7.0.x)

© VMware, Inc. 6

A Brief History of Servlet Scalability
Key

OS Scheduler

T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T

Web
Application

Service

Tomcat & JVM

Connection

Request

© VMware, Inc. 7

A Brief History of Servlet Scalability
HTTP/1.0

Connect, make request, close

One thread per connection

Maximum connections
==
Maximum concurrent requests
==
Thread pool size

Creating connections is
(relatively) expensive

OS Scheduler

_____ T T T T T T T T T T
T T T T T T T T T T T T T T T

Web
Application

ServiceT

T

T

T

T

© VMware, Inc. 8

A Brief History of Servlet Scalability
HTTP/1.1 keep-alive

HTTP/1.0 had keep-alive with
issues with interoperability

HTTP/1.1 fixed the issues

Better (lower) latency

Worse scalability

Typically uses more threads than
there are concurrent requests

Thread starvation

Tomcat BIO connector disabled
HTTP keep-alive for the last 25%
of threads in the thread pool

OS Scheduler

_____ T T T T T T T T T T
T T T T T T T T T T T T T T T

Web
Application

ServiceT

T

T

T

T

© VMware, Inc. 9

A Brief History of Servlet Scalability
Non-blocking I/O part 1 – between requests

Tomcat NIO / NIO2 connectors

Use non-blocking I/O while
waiting for a new request

Only use a thread for
connections where there is a
request to be processed

Maximum connections
>>
Maximum concurrent requests
==
Thread pool size

HTTP keep-alive latency benefits

Improved scalability

OS Scheduler

__ T T T T T T T T T T T T T
T T T T T T T T T T T T T T T

Web
Application

ServiceT

T

© VMware, Inc. 10

A Brief History of Servlet Scalability
Non-blocking I/O part 2 – Servlet asynchronous API

Use non-blocking I/O to
communicate with services

Only use a thread for
connections where there is a
request actively being processed

Maximum connections
>>
Maximum concurrent requests
>
Thread pool size

Further improved scalability
OS Scheduler

_ T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T

Web
Application

ServiceT

© VMware, Inc. 11

Virtual Threads

© VMware, Inc. 12

Virtual Threads

Pre-Java 21 threads referred to as platform threads

Virtual threads

• Not mapped to a dedicated OS thread

• Use the heap for stack

• Created for a task and then allowed to terminate

• Do not pool virtual threads

• Have their own scheduler

Virtual thread scheduler has a pool of platform threads to do the work

• One platform thread per processor by default

© VMware, Inc. 13

Virtual Threads
Blocking operations

Platform threads

• Thread waits for operation to complete

Virtual threads

• Non-blocking operation started

• Virtual thread suspended and platform thread released

• Operations completes

• Virtual thread resumed and becomes eligible to be scheduled

• Execution continues

Virtual threads are effectively non-blocking for many blocking operations

• Increased scalability for “free”

© VMware, Inc. 14

Virtual Threads
Coding constraints

Beware of pinning

• Long lasting blocking operations are problematic

• Brief synchronized blocks are fine

ThreadLocals

• Providing context across an API boundary OK

• Caching could be problematic

© VMware, Inc. 15

A Brief History of Servlet Scalability
Virtual threads

Impact on throughput?

Impact on scalability?

Impact on GC?

Impact on memory footprint?

Impact of extra scheduler?

Impact on code complexity?

Impact of constraints?

OS Scheduler

T T T T

VT Scheduler

Web
Application

Service

V

V

© VMware, Inc. 16

Investigations

Lots of areas to explore

Areas are not independent

Try and focus on a single variable

Performance tests only ever indicative

Not meant to be representative of real applications

Java 21 is still in Early Access

This work is just a starting point

© VMware, Inc. 17

Throughput

© VMware, Inc. 18

Throughput

Aims:

• compare virtual and platform threads in same scenario

• minimise impact of other factors

• not looking to identify maximums

• relative, rather than absolute, results were primary interest

Examined:

• Different sized requests

• Different concurrencies

• Configured to minimise Tomcat and web application processing time

• Details at https://spring.io/blog/2023/02/27/web-applications-and-project-loom

© VMware, Inc. 19

Throughput
Results

The bigger the response size, the less the difference

Platform thread performance is worse with
concurrency of 2 than it is with 1

Virtual threads have higher throughput and this is
more obvious with smaller response sizes

Once concurrency exceeds processor count, virtual
threads show increased throughput compared to
platform threads

Tomcat’s thread pool uses LinkedBlockingQueue for
the task queue by default.

The virtual thread scheduler uses a work stealing
queue by default.

© VMware, Inc. 20

Throughput
Bonus results

These results are from some informal testing

• Much higher concurrency than my tests (8192 concurrent users)

• Any errors are my fault

• Any credit is due to Violeta Georgieva

Platform threads

• 3,366,303 requests with 100% within 800ms

Virtual threads

• 3,408,798 requests with 89% complete within 800ms

• 9% complete between 800ms and 1200ms

• 2% complete in more than 1200ms

© VMware, Inc. 21

Easy to Use

© VMware, Inc. 22

Servlet Blocking IO
Counting request body bytes

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 resp.setCharacterEncoding("UTF-8");
 ServletInputStream sis = req.getInputStream();
 byte[] buffer = new byte[8192];
 int read = -1;
 int totalBytesRead = 0;
 while ((read = sis.read(buffer)) > -1) {
 if (read > 0) {
 totalBytesRead += read;
 }
 }
 ServletOutputStream sos = resp.getOutputStream();
 String msg = "Total bytes written = [" + totalBytesRead + "]";
 sos.write(msg.getBytes(StandardCharsets.UTF_8));
}

© VMware, Inc. 23

Servlet Non-blocking IO
Counting request body bytes

protected void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/plain");
 resp.setCharacterEncoding("UTF-8");
 AsyncContext ac = req.startAsync();
 CounterListener listener =
 new CounterListener(ac, req.getInputStream(), resp.getOutputStream());
}

private static class CounterListener implements ReadListener, WriteListener {
 private final AsyncContext ac;
 private final ServletInputStream sis;
 private final ServletOutputStream sos;
 private volatile boolean readFinished = false;
 private volatile long totalBytesRead = 0;
 private byte[] buffer = new byte[8192];

 private CounterListener(AsyncContext ac, ServletInputStream sis,
 ServletOutputStream sos) {
 this.ac = ac;
 this.sis = sis;
 this.sos = sos;
 sis.setReadListener(this);
 sos.setWriteListener(this);
 }

 public void onDataAvailable() throws IOException {
 int read = 0;
 while (sis.isReady() && read > -1) {
 read = sis.read(buffer);
 if (read > 0) {
 totalBytesRead += read;
 }
 }
 }

 public void onAllDataRead() throws IOException {
 readFinished = true;
 if (sos.isReady()) {
 onWritePossible();
 }
 }

 public void onWritePossible() throws IOException {
 if (readFinished) {
 String msg = "Total bytes written = [" + totalBytesRead + "]";
 sos.write(msg.getBytes(StandardCharsets.UTF_8));
 ac.complete();
 }
 }

 public void onError(Throwable throwable) {
 ac.complete();
 }
}

© VMware, Inc. 24

Easy to Use

Aims:

• Compare virtual threads with blocking code to thread pool with non-blocking

• Minimise other factors

Examined

• External service that blocked and waited a preset time before continuing

• Service ‘delay’ dominated initial results

© VMware, Inc. 25

Easy to Use

Virtual threads generally a little more performant

Difference more noticeable at low concurrency and
when concurrency exceeds processor cores

Performance of blocking code with virtual threads is
comparable to refactoring to use non-blocking APIs

© VMware, Inc. 26

Coding constraints

© VMware, Inc. 27

Pinning

Detect it with –Djdk.tracePinnedThreads=[full|short]

Logs issues to stdout as they are detected

Tomcat experience

• Configured unit tests to run with this detection enabled

• Identified a handful of issues in HTTP/2

Can replace synchronized with ReentrantLock

• Need to be careful to ensure lock is released

• Make sure all uses of synchronized are replaced for a given object

© VMware, Inc. 28

Pinning

Replace
 synchronized (lock) {

 …

 }

With
 Lock lock = new ReentrantLock();

 …

 lock.lock();

 try {

 …

 } finally {

 lock.unlock();

 }

© VMware, Inc. 29

Threadlocal alternatives

Tomcat uses ThreadLocal for thread-safe caching of objects that are expensive to create

• Matchers in RewriteValve

• RequestDispatcher request mapping

• etc

Options to implement this with virtual threads

• No change, continue to use ThreadLocal

• Always create a new Object

• Cache using SynchronizedStack (or similar)

© VMware, Inc. 30

ThreadLocal alternatives

ThreadLocal

• Should be slower than new Object for virtual threads

new Object

• Lose the benefit of caching

• Is caching still required?

SynchronizedStack

• May be slower under high concurrency

© VMware, Inc. 31

ThreadLocal alternatives

Ran a series of tests

• Non-dispatching request / dispatching request

• 8, 16, 32 & 64 concurrent users (machine under test has 20 cores)

• new Object() / SynchronizedStack / ThreadLocal

• Platform threads / Virtual Threads

Ran each combination for 11 runs of 60 seconds

• Dropped the first result (warm-up)

• Took average of remaining 10

Results were inconclusive

• No clear winner or loser

© VMware, Inc. 32

Conclusions

© VMware, Inc. 33

Conclusions

Applications currently using non-blocking APIs will likely see minimal differences with
virtual threads

Applications currently using blocking APIs

• will likely see minimal throughput differences with virtual threads

• will likely see measurable scalability improvements with virtual threads

Code changes may be required for:

• long lasting blocking operations

• ThreadLocals

© VMware, Inc. 34

Next Steps

© VMware, Inc. 35

Next Steps

Tomcat included virtual thread support in the June 2023 releases

Tomcat 11

• Requires a minimum of Java 21

Tomcat 8.5, 9.0 & 10.1

• No change to minimum Java versions

• Required Java 21 to use virtual threads

Future Tomcat development

• Investigate bottlenecks as they get reported

Questions…

Discuss all things Tomcat @
https://tomcat.apache.org/lists.html

Stay Connected

Visit @ https://tomcat.apache.org

https://github.com/apache/tomcat

For a discussion this week
markt@apache.org

https://tomcat.apache.org/lists.html
https://github.com/apache/tomcat
mailto:markt@apache.org

Thank you

	SpringOne at VMware Explore
	Slide 1: Preparing Spring Web Applications for Loom
	Slide 2: Introductions
	Slide 3
	Slide 4: A Brief History of Servlet Scalability
	Slide 5: A Brief History of Servlet Scalability
	Slide 6: A Brief History of Servlet Scalability
	Slide 7: A Brief History of Servlet Scalability
	Slide 8: A Brief History of Servlet Scalability
	Slide 9: A Brief History of Servlet Scalability
	Slide 10: A Brief History of Servlet Scalability
	Slide 11: Virtual Threads
	Slide 12: Virtual Threads
	Slide 13: Virtual Threads
	Slide 14: Virtual Threads
	Slide 15: A Brief History of Servlet Scalability
	Slide 16: Investigations
	Slide 17: Throughput
	Slide 18: Throughput
	Slide 19: Throughput
	Slide 20: Throughput
	Slide 21: Easy to Use
	Slide 22: Servlet Blocking IO
	Slide 23: Servlet Non-blocking IO
	Slide 24: Easy to Use
	Slide 25: Easy to Use
	Slide 26: Coding constraints
	Slide 27: Pinning
	Slide 28: Pinning
	Slide 29: Threadlocal alternatives
	Slide 30: ThreadLocal alternatives
	Slide 31: ThreadLocal alternatives
	Slide 32: Conclusions
	Slide 33: Conclusions
	Slide 34: Next Steps
	Slide 35: Next Steps
	Slide 36: Questions…
	Slide 37: Stay Connected
	Slide 38: Thank you

