
Tips for Debugging
Tomcat and Web

Applications

Coty Sutherland

Coty
Sutherland

Supported Tomcat, httpd, and
JBoss EAP/JBossWeb for ~3
years

ASF Tomcat committer since
late 2016

ASF Member

Fedora tomcat and tomcat-
native package co-maintainer
since 2015

Software Engineer, Red Hat
JBoss Web Server Project

Agenda

My examples and notes are from a Fedora 30 machine, so there will be
Linux-specific tools in use. There are Windows equivalents available.

● Some Helpful Debugging Tools
● General Debugging
● Tomcat is using all my CPU!
● Heap Analysis with Eclipse MAT
● How to get Help with Debugging Tomcat
● Questions?

Helpful Tools for Debugging
● General Debugging:

○ Tomcat Log Files
○ Integrated Development Environment (IDE)
○ The Java Debugger (JDB) (not super great, but useful)
○ Java Management Extensions (JMX)

● For capturing thread dumps:
○ jstack
○ `kill -3`

● For analyzing thread dumps:
○ Text Editor (like Gedit or ViM)
○ Samurai
○ Thread Dump Analyzer (TDA)

● For capturing/analyzing heap dumps:
○ Eclipse Memory Analyzer (MAT)

https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstack.html
https://docs.oracle.com/javase/7/docs/technotes/tools/share/jstack.html
https://linux.die.net/man/1/kill
https://github.com/yusuke/samurai
https://github.com/irockel/tda
https://www.eclipse.org/mat/

General Debugging

● Output found in $CATALINA_HOME/logs
○ catalina.out and catalina.$(date).log - container log, most tomcat core logging
○ localhost.$(date).log - Host log (default name), most internal errors logged here
○ localhost_access_log.$(date).log - access log equivalent to httpd’s access_log.

Valve defined in the server.xml.
○ manager.$(date).log and host-manager.$(date).log

● Configuration
○ $CATALINA_HOME/conf/logging.properties

Tomcat Log Files

Integrated Development Environment (IDE)

● IDE Examples:
○ IntelliJ IDEA (my current favorite)
○ Eclipse
○ Visual Studio Code aka VS Code

● Sort of a pain to configure, but tomcat ships with some helpful
config files nowadays (e.g. res/ide-support/tomcat.iml for IntelliJ)

● Run tomcat in debug mode from an IDE and break, examine
wherever you’d like in the IDE’s GUI.

○ stop at org.apache.catalina.servlets.DefaultServlet:497
○ curl localhost:8080/badapp/

● Note that when the breakpoint is hit, you can see the thread stack
too...I’ll show this again in a bit from a heap dump

The Java Debugging (JDB)
● To use JDB you have to start tomcat in debug mode and then attach to it with JDB.
● I have some handy functions defined in my .bashrc for me to do this quickly, when

needed:

JDB, cont’d.
● After starting and attaching, you can set you breakpoint and continue.

Java Management Extensions (JMX)
● JMX is a powerful way to see everything about Tomcat’s JVM in real time
● Local access directly via attaching to the process
● Remote access over a specified (pre-configured) port
● JMXProxyServlet which is accessible through the manager webapp
● JConsole is useful for quick access
● There are some helpful frameworks for collecting data via JMX for later debugging:

– Jolokia.org

– Prometheus.io and Prometheus JMX Exporter

https://tomcat.apache.org/tomcat-9.0-doc/manager-howto.html#Using_the_JMX_Proxy_Servlet
https://jolokia.org/
https://prometheus.io/
https://github.com/prometheus/jmx_exporter%5C

Debugging CPU Issues

Help, Tomcat is using all my CPU!

● Pretty common issue raised in support, “Why is Tomcat using so
much CPU time?”

● Generally the problem is in an application (or library) :)
● Some common causes include:

○ Application or library code misbehaving (excessive looping)
○ Excessive Garbage Collection (likely due to an undersized heap)
○ Concurrent access to non thread-safe objects (HashMap, TreeMap, etc)

High CPU, an Example...

In this scenario, we’ve identified that a request to a certain webapp
does not complete/is hanging. To determine why the hang is occuring,
follow the steps below:

1. Wait for the issue to occur (or reproduce the problem). If you don’t
know the problematic app/request, one way to narrow it down is to
use the AccessLogValve with Time Taken (%D or %T) and looking
through the logging to find longer than usual request times.

https://tomcat.apache.org/tomcat-9.0-doc/api/org/apache/catalina/valves/AbstractAccessLogValve.html

High CPU, an Example… cont’d.

2. When the problem is occurring, use one of the thread dump capture
tools mentioned before to capture thread dumps, and also capture
CPU data at the same interval. We are using a script that executes
jstack and top in a loop over a 20 second period.

High CPU, an Example… cont’d.

The jstack script looks like this:

High CPU, an Example… cont’d.

3. After capturing the data, check the CPU usage first to identify large
consumers.

High CPU, an Example… cont’d.

4. Now that you know the offending pid/tid (in our example we have
one thread that’s consuming CPU) you can find the thread in the
thread dump outputs (after converting the decimal value to hex) to
see what it's doing.

High CPU, an Example… cont’d.

5. Now that you know where the hang is, find it in the code and see
why :)

High CPU, an Example… bonus!

CPU usage can also occur due to excessive garbage collection, which
you can identify with the same data collection techniques mentioned
previously. Here is a shot of excessive GC captured in CPU data
(captured with `top -H` to display thread info):

High CPU, an Example… bonus!

If you’re using an older version of top (that doesn’t display thread
names), you may need to determine which thread is the problem by
examining the thread dump as well.

Quick Look at Samurai and TDA

Debugging Memory Issues

Common Memory Problems

● One of the main problems when it comes to java memory are
OutOfMemoryErrors (OOME). There are many different flavors of an
OOME:

○ Heap Space
○ PermGen/MetaSpace (Java 8+)
○ “Unable to create new native thread”
○ “GC overhead limit exceeded”
○ Out of swap space
○ Native Memory Exhausted

● We will take a look an example of a Heap Space OOME and how one
could go about debugging one.

Heap Analysis with Eclipse MAT

● In order to capture a heap dump for review, you must first configure
tomcat with `-XX:+HeapDumpOnOutOfMemoryError` and restart.

● In our example, we will create an OOME by invoking an application
(badapp/oome.jsp) that causes the heap space to become
exhausted.

Heap Analysis with Eclipse MAT, cont’d.

To analyze the heap dump, we can simply open it with MAT. Our heap
dump in this example is only ~1G, but depending on memory available,
etc you may want to parse the heap dump in the background with
MAT’s ParseHeapDump.sh script first.

Eclipse asks if you’d like for it to run the “Leak Suspects” report, which
is very helpful :)

Heap Analysis with Eclipse MAT, cont’d.

From the Leak Suspects Report we can see that 98.26% of the heap is
being used by a thread named http-nio-8080-exec-1 and that the
memory is being accumulated in one instance of java.lang.Object[].

Digging into the report a bit more, we can see that there are > 20
million Integer objects in the Object[].

Heap Analysis with Eclipse MAT, cont’d.

Now that we know what sort of objects are sucking up all the memory,
you can dig even further into it to trace it to a thread to see where it
comes from in the application!

Heap Analysis with Eclipse MAT, cont’d.

And the offending application code is...

Heap Analysis, a bit deeper...

You can also dig further into the large object by using MAT’s Thread
Overview and Stacks feature. When using that, you can dig all the way
down to see which request cause the issue, and all sorts of other
aspects of the problematic object(s).

Heap Analysis, cont’d.

Some things to remember when analyzing heap dumps…

● Problems will not always be as obvious as this one; bad acting
applications aren’t always the cause of an OOME.

● Sometimes the heap is just too small.

How to get Help with Debugging Tomcat

● Be prepared to provide as much information as you can. Commons
questions that we ask users are:
○ Java version
○ Tomcat version
○ OS details
○ Does a particular event/resource trigger the problem?
○ How long does the problem last?
○ Did the problem start recently (after an update)?

● After you have the information, reach out to the community:
○ Mailing list: tomcat-users
○ IRC: Freenode #tomcat

https://tomcat.apache.org/lists.html#tomcat-users

Questions?

THANK YOU!

Coty Sutherland

github.com/csutherl linkedin.com/in/cotysutherland twitter.com/cotysutherland

https://github.com/csutherl
https://linkedin.com/in/cotysutherland
https://twitter.com/cotysutherland

	Slide 1
	Coty Sutherland
	Agenda
	Helpful Tools for Debugging
	General Debugging
	Tomcat Log Files
	Integrated Development Environment (IDE)
	The Java Debugging (JDB)
	JDB, cont’d.
	Java Management Extensions (JMX)
	Debugging CPU Issues
	Help, Tomcat is using all my CPU!
	High CPU, an Example...
	High CPU, an Example… cont’d.
	High CPU, an Example… cont’d.
	High CPU, an Example… cont’d.
	High CPU, an Example… cont’d.
	High CPU, an Example… cont’d.
	High CPU, an Example… bonus!
	High CPU, an Example… bonus!
	Quick Look at Samurai and TDA
	Debugging Memory Issues
	Common Memory Problems
	Heap Analysis with Eclipse MAT
	Heap Analysis with Eclipse MAT, cont’d.
	Slide 26
	Heap Analysis with Eclipse MAT, cont’d.
	Heap Analysis with Eclipse MAT, cont’d.
	Heap Analysis with Eclipse MAT, cont’d.
	Heap Analysis, a bit deeper...
	Slide 31
	Heap Analysis, cont’d.
	How to get Help with Debugging Tomcat
	Questions?
	Slide 35

