
So Much Static

Whenever someone asks, “How does Tomcat perform?” A significant percentage of the public
believes Tomcat isn't good at serving static files. Although this was true with Tomcat3, Tomcat
5.0.19 and 5.5.4 have made great strides. Rather than attempt to prove Tomcat beats server X, I
feel it's more important to understand the performance characteristics.

What does “performance characteristics” mean? To put it plainly, it's how Tomcat performs under
different conditions. I used Jmeter to run the a series of benchmarks using Tomcat 5.0.19, 5.5.4,
Apache 1.3.3 and Apache 2.0.50. To verify the results, I also used Apache AB.

Test Scenario

Jmeter
Test Series 1
File sizes: 1k, 5k, 10k, 20k, 40k, 80k, 160k
Threads: 5, 10, 15, 20, 25, 30

Test Series 2
Apache AB
File sizes: 1k, 10k
Threads: 100, 150, 20

Tomcat5.0.19
jdk1.4.2
jdk5
jdk5 + “-server”

Tomcat5.5.4
jdk5
jdk5 + “-server”

Hardware environment #1

Server:
Redhat Fedora Core 1
AMD2ghz
1Gb RAM
100Mb ethernet

Client:
Gateway 450 Laptop
Windows XP Pro
1.4ghz Pentium M/Centrino
1Gb RAM
Jmeter nightly build
jdk1.4.2
100Mb Ethernet

Sun Netra X1
Solaris 8
400mhz Ultrasparc 2
768Mb RAM
Apache ab 1.3
Dual 100mb Ethernet

Network:
Linksys 16 port 10/100 Switch



CAT5 cables

Tim's Environment #2

Dual 400mhz RISC HPUX servers
Tomcat 5.5.7, jdk5
100mbit network

Methodology and Environments

The primary test environment is my home development environment. Although it is getting a bit
old, the results are still valid. Tim Funk was kind enough to run the Apache ab tests at work.

There two sets of tests. The first set attempts to measure the performance in terms of requests
per second and kilobytes per second as the file size and concurrent clients increase. The data
from these tests shows how performance degrades. The second set of tests shows how tomcat
performs with a large number of concurrent clients. This measures how well the server responds
to a sudden spike in load.

Results

Unless stated explicitly, the graphs and tables are for the environment #1. The first graph shows
how tomcat performs using different VM's and settings. One interesting difference between 5.0.19
and 5.5.4 is “-server” option does not improve the throughput for 5.5.4. I had a discussion with
Remy about this and my guess is the additional optimizations and ehancements in 5.5.4 negate
the benefits of “-server”. With tomcat 4.0.x and 4.1.x, the improvement in performance was
approximately 25-30% with “-server” in 2002. Although I don't know the exact changes in catalina
and coyote responsible for the improvement, the results indicate 5.5.4 is more efficient in terms of
memory and thread usage.

Chart A: ab test series 2

Table A: ab test series 2

tc5.0.19 1k PNG: req/sec

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

0 50 100 150 200 250

threads

re
qu

es
ts

/s
ec jdk1.4.2

jdk5

jdk5-servr

100 150 200
jdk1.4.2 2652.0 2761.2 2762.6
jdk5 3076.6 3058.6 3006.6
jdk5-servr 3041.1 3348.3 3234.2



Running TC5.0.19 with jdk5 and “-server” is roughly 15% faster than running jdk1.4.2 in client
mode. That's pretty good news for those running 5.0.x release and want a boost. There's a catch
though. You have to make sure your webapps run under jdk5.

Chart B: ab test series 2

Table B: ab test series 2

Requests per second and kilobytes per second for TC 5.5.4. The results are show a similar
pattern to TC 5.0.19.

Chart C: TC5.5.4 Jmeter test series 1

tc5.0.19 1k PNG: kb/sec

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 50 100 150 200 250

threads

ki
lo

by
te

s/
se

c

jdk1.4.2

jdk5

jdk5-servr

100 150 200
jdk1.4.2 3410.29 3550.71 3552.43
jdk5 3956.41 3933.22 3866.16
jdk5-servr 3910.69 4305.74 4158.97

TC5.5.4 PNG: req/sec

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

threads

re
q/

se
c

1k

5k

10k

20k

40k

80k

160k



Chart D: Jmeter test series 1

Test results for Apache 1.3.3 and 2 show similar patterns. Nothing unusual to report here.

Chart E: Jmeter test series 1

Chart F: Jmeter test series 1

TC5.5.4 PNG: kb/sec

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40

threads

ki
lo

b
yt

es
/s

ec

1k

5k

10k

20k

40k

80k

160k

Apache2.0.50 PNG: req/sec

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

threads

re
qu

es
ts

/s
ec

1k

5k

10k

20k

40k

80k

160k

Apache2.0.50 PNG: kb/sec

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40

threads

ki
lo

by
te

s/
se

c

1k

5k

10k

20k

40k

80k

160k



Chart G: Jmeter test series 1

Chart H: Jmeter test series 1

I'm sure everyone wants to know how Tomcat compares to httpd, so here it is.

Chart I: ab test series 2

Comparison: req/sec

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

0 50 100 150 200 250

threads

re
qu

es
ts

/s
ec 5.0.19

5.5.4

ap1.3

ap2.0

Apache1.3.3 PNG: req/sec

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

threads

re
qu

es
ts

/s
ec

1k

5k

10k

20k

40k

80k

160k

Apache1.3.3 PNG: kb/sec

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40

threads

ki
lo

by
te

s/
se

c

1k

5k

10k

20k

40k

80k

160k



Table I: Netra X1 Client

Chart J: ab test series 2

Table J

Chart K: ab test series 2

Table K: Compared to Apache2 max throughput

100 150 200
5.0.19 3041.1 3348.3 3234.2
5.5.4 4004.49 3969.62 3266
ap1.3 4647.06 4027.49 4078.22
ap2.0 4798.92 4254.96 4110.83

Gateway laptop AB: req/sec

5587.92

5107.73

4800.00

4900.00

5000.00

5100.00

5200.00

5300.00

5400.00

5500.00

5600.00

5700.00

tomcat apache

server

re
qu

es
ts

/s
ec

Netra X1 AB: req/sec

4004.49

4798.92

3600

3800

4000

4200

4400

4600

4800

5000

tomcat apache

server

re
qu

es
ts

/s
ec

Series1

%
gateway 16.4
hpux 18.8
netra X1 -16.6

tomcat apache
gateway 5587.92 5107.73
HPUX 5699.14
Netra X1 4004.49 4798.92



For 1k PNG, TC 5.5.4 is roughly 16% slower than Apache2 using Netra X1 as the client, which
manages to reach 4798 requests per second. In contrast, when the client is HPUX or the Gateway
laptop, TC 5.5.4 is 16% faster than Apache2. The netra X1 is an old rackmount server and is
about 4 years old, so it's unable to max out either Apache2 or TC 5.5.4. The results from HPUX
and laptop should be more accurate. For some odd reason, the laptop couldn't run apache2 ab
with more than 50 clients. With 100, 150 or 200 clients on the laptop, ab wouldn't run and gave
me a cryptic error message. I didn't bother investigating the cause. If someone knows how to get
around this problem, I will re-run the ab tests with 100, 150 and 200 clients. Using Jmeter on the
laptop, I was able to simulate 100, 150 and 200 clients, but Jmeter is unable to max out the
server. The charts and results for 100, 150 and 200 clients aren't included in the article, but they
are in the excel file.

Although I could run more tests and figure out theoritical max throughput with multiple clients, very
few websites keep their HTML to 1k. If we look at google's homepage, it is 1.11k of HTML and
8.36k for the logo.

Table L req/sec: TC5.5.4, JDK5, Jmeter, Laptop client

If we look at Yahoo's homepage, it is 11.1K of HTML and includes 20 images. The icons on
Yahoo's homepage are smaller than 1k, but largest is 11.3K. In the case of Yahoo, they get on
average 1.9 billion page views (http://public.yahoo.com/~radwin/talks/one-year-of-php-
oscon2003.htm), so every byte they shave is money saved on bandwidth. For a site like yahoo
that gets millions of page views per day, it makes sense to host all the images on a dedicated
image server with gigabit ethernet, or use a service like Akamai.

Chart D shows the bandwidth maxing out around 11Mb/sec with a 40K png. As the image size
increases, the IO throughput remains the same, while the requests/second drops. The maximum
throughput for 40K png is approximately 280-290 requests/sec regardless of the server. The only
way to get higher throughput is to use gigabit ethernet or multiple ethernet ports. Realistically,
most ISP only provide 10mbit of bandwidth unless you happen to be Yahoo, Google, or AOL. The
bottom line is that Apache and Tomcat won't be your bottleneck for serving static files. In a “real-
world” setup, the actual bandwidth to your servers will probably be closer to 5mbit/sec in bursts.
Sustained throughput will most likely be closer to 2mbit/sec for a second/third tier ISP. Full 100mb
bandwidth is available from backbone providers, but it won't be cheap. Keep in mind that real
world conditions are very different from a LAN and packet loss can easily exceed 50%.
Unfortunately, I don't have the resources to test tomcat with real modem connections to simulate
“real-world” congestion. If someone has those resource available to them and would like to run
the tests, I will gladly add those results to this report.

Before I conclude the report, lets look at what 5K requests/sec means.

5K req/sec x 60 seconds/min X 60 min/hr x 24hr/day = 432,000,000 req/day 

That would translate to over 400Gb of data transfer per day. I might be going out on a limb here,
but I'm guessing only large corporations consume that much bandwidth. In those cases, the
production environment is a cluster of servers with redundancies and backup systems. In large
deployments, the question isn't “should we use apache or tomcat for static files?” Websites like
Yahoo, CNN, Espn and MSN use hosting services like Akamai.

5 10 15 20 25 30
1k 1513.3 1457.9 1413.1 1375.4 1298.8 1309.3
5k 1010.7 1056.6 987.4 1006.1 947.4 921.2
10k 796.3 769.9 729.9 708.7 695.4 676.1
20k 503.8 506.9 504.3 473.9 459.1 440.9
40k 282.7 284.2 284.8 281.5 277.2 275.4
80k 142.7 143 141.3 140.3 137.8 133.6
160k 68.6 71.6 70.9 70.3 69.4 67.9



Conclusion

For those who want to view the entire excel spreadsheet, it is available here
http://cvs.apache.org/~woolfel/tc_results.html. The testplans used for the benchmark are also
available http://cvs.apache.org/~woolfel/testplans.zip. After 400+ benchmarks, what does this say
about Tomcat?

First off, I'm bias in favor of Tomcat. Based on these results, I can state with confidence Tomcat
5.5.4 has made great strides since Tomcat 3.3. Tomcat 5.5.4 is faster, more reliable and more
efficient than previous releases. For those who wonder “can tomcat handle static files?” My
opinion is yes. If you only have a single server co-located at an ISP and can't afford a dedicated
image server, Tomcat will work just fine. For sites that need high performance/high availability, the
best option is to setup dedicated Apache2 for the static files. This setup allows tomcat to focus on
generating dynamic content, instead of clogging the network IO. Hopefully these results help
dispell the myth that Tomcat 5.5.4 can't handle static files efficiently. If you find errors in the
article, or would like to contribute additional results, please feel free to email woolfel AT gmail
DOT com.


