
PRIMIX SOLUTIONS
Core Labs

Tapestry
Tutorial

C O R E L A B S

Tapestry Tutorial

 Primix Solutions
One Arsenal Marketplace

Phone (617) 923-6639 • Fax (617) 923-5139

Table of Contents
Introduction 2
Setting up Kawa and
ServletExec Debugger 3

Setting up the Tutorial Project 4
ServletExec Debugger 8

Hello World 10
Application Object 10
Application Servlet 11
Application Specification 11
Home Page Specification 12
Home Page Template 12
Launch ServletExec Debugger 13

Dynamic Content 16
Interactive Application 22

Launching the Application 29
Adding Interactivity using Listeners 29
Persistant Page State and Page

Pooling 30
Dynamic Page State 32

Tapestry Run Time Errors 33

Stale Sessions 33
Exception Handling 34

Debugging a Tapestry
Application 37

Changing templates and specifications39
Re-usable Components 41
The Tapestry Inspector 49

Specification View 50
Components View 51
Template View 52
Properties View 53

Complex Forms and Output 55
Survey 57
SurveyDatabase 61
SurveyApplication 61
SurveyPage 62
Results 70

Further Study 79

T A P E S T R Y T U T O R I A L

 2222

Introduction
apestry is a new application framework developed at Primix Solutions.

Tapestry uses a component object model to represent the pages of a web application.
This is similar to spirit to using the Java Swing component object model to build GUIs.

Just like using a GUI toolkit, there's some preparation and some basic ideas that must be cleared
before going to more ambitious things. Nobody writes a word processor off the top of their head
as their first GUI project; nobody should attempt a full-featured e-commerce site as their first
attempt at Tapestry.

The goal of Tapestry is to eliminate most of the coding in a web application. Under Tapestry,
nearly all code is directly related to application functionality, with very little "plumbing". If you
have previously developed a web application using Microsoft Active Server Pages, JavaServer
Pages or Java Servlets, you may take for granted all the plumbing: writing servlets, assembling
URLs, parsing URLs, managing objects inside the session, etc.

Tapestry takes care of nearly all of that, for free. It allows for the development of rich, highly
interactive applications.

This tutorial will start with basic concepts, such as the "Hello World" application, and will
gradually build up to more sophisticated examples.

These examples were developed using the Kawa IDE, JDK 1.2.2 and ServletExec Debugger 2.2.

Chapter

T

T A P E S T R Y T U T O R I A L

 3333

Setting up Kawa and
ServletExec Debugger
Before we can get started writing servlets, we must have an environment
for running them.

irst, create a working directory. In these examples, we'll use the working directory
D:\Work. If this is not convenient, any directory may be chosen, but the reader will be
responsible for adjusting the paths appropriately.

Directories within the working directory each store a Kawa project. In addition, the directory
D:\Work\lib will contain copies of several Jar files needed when compiling and executing the
tutorial.

Jar Description

gnu-regexp.jar GNU Regular Expression parser for Java, version 1.0.8. Used by the
Tapestry framework.

xerces.jar Xerces XML parser, available from apache.org.

ServletExecDebugger.jar ServletExec Debugger, version 2.2. Includes the Java Servlet API
version 2.1.1.

Tapestry.jar Tapestry framework.

PrimixFoundation.jar PrimixFoundation framework (provides supporting classes for
Tapestry).

Extract the Tutorial files to D:\Work\Tutorial. You may have received the Tutorial files in a
Zip file, or you may check them out of the CVS repository using WinCVS.

Chapter

F

T A P E S T R Y T U T O R I A L

 4444

Setting up the Tutorial Project
Start with an empty Kawa workspace:

Now, create the Tutorial project by selecting Project 4New ... from the menu.

Navigate into the D:\Work\Tutorial directory, and enter Tutorial.kpx to create the new
Project (you must specify the extension because of the naming conflict with the tutorial directory).

You now have a Kawa Project with no Java files. We'll now set up a list of files for the Tutorial
project:

Select the Tutorial project, then select Project 4 Add Directory ... from the menu.

We want to pick up not just the Java source files, but also Tapestry component specification files
(.jwc), application specification (.application) and HTML templates (.html).

T A P E S T R Y T U T O R I A L

 5555

Kawa will locate these files and organize them into appropriate folders. You can then expand
some folders to see the contents:

Now we have to setup the class path for compiling this project.

Select the Tutorial project and then choose Project 4 Classpath ... from the menu.

Initially, the class path is empty (except for classes provided by the JDK):

T A P E S T R Y T U T O R I A L

 6666

We need to add a few Jar files to the class path. Click on the "Add File..." button towards the
bottom of the panel:

You can select multiple files by holding down the control key while clicking:

After returning to the previous panel, click "Update". The Jar files selected will be added to the
class path:

T A P E S T R Y T U T O R I A L

 7777

The order may be different, but that's irrelevant to Kawa and to the JDK. Kawa allows Jars to be
easily added to or removed from the class path using the checkboxes, but we want all of these
Jars.

You can set many compilation options from within Kawa. Select the Tutorial project and choose
Project 4 Compiler Options... from the menu.

T A P E S T R Y T U T O R I A L

 8888

Turn on debugging output (for later, when we use Kawa to debug our application).

The project should now be compiled using the Project 4 Rebuild All or Project 4 Rebuild Dirty
menu items.

ServletExec Debugger
ServletExec Debugger requires setting up two directories outside of the IDE. The first directory
is where ServletExec Debugger stores configuration information about the different servlets. The
second directory is the "web server" root directory (ServletExec Debugger acts as a simple web
server, providing access to static resources such as GIF files as well as dynamic content from
servlets).

You don't need to create these directories first; ServletExec Debugger will create them the first
time it starts up.

In my case, D:\Work was my main working directory, so I used D:\Work\ServletDebug for
configuration, and the project directory as my web server root directory.

T A P E S T R Y T U T O R I A L

 9999

If you chose to put these files in a different directory, you'll have to adjust some of the examples
in later chapters.

When we want to run or debug our applications, we don't execute a specific class for our
application, we instead run the ServletExec Debugger, which acts as a simple web server and
servlet container.

To set this up, you must select the Project 4 Interpreter Options ... menu item, and update the
command line arguments and Java class name.

Don't forget to click the checkboxes; as with the class path, Kawa allows you to easily include or
exclude options used when running the program using those checkboxes; if they aren't checked,
the option won't be included.

T A P E S T R Y T U T O R I A L

 10101010

Hello World
We will develop a very simple, completely static web application as an
introduction to the basic concepts of Tapestry.

n this first example, we'll create a very simple "Hello World" kind of application. It won't
have any real functionality but it'll demonstrate the simplest possible variation of a number
of key aspects of the framework.

Even this simple Tapestry application requires two objects:

• ·An application object that runs our (very simple) application

• ·A servlet that bridges between the servlet container and our application

After that, we'll define our application, define the lone page of our application, configure
everything and launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, i.e.,
D:\Work\Tutorial\tutorial\hello.

Application Object
As each new client connects to the application, an instance of the application object is created for
them. The application object is used to track that client's activity within the application.

The application object is an instance, or subclass of, the Tapestry class
com.primix.tapestry.app.SimpleApplication.

In these first few examples, we have no additional behavior to add to the provided base class, so
we simply use SimpleApplication as our application’s class.

Chapter

I

T A P E S T R Y T U T O R I A L

 11111111

Application Servlet
The application servlet is a "bridge" between the servlet container and the application object. Its
job is simply to create (on the first request) or locate (on subsequent requests) the application
object.

The application servlet must subclass com.primix.tapestry.ApplicationServlet and implement two
methods: getApplicationSpecificationPath() and createApplication(). The first method provides
the path to the application specification file; the servlet reads this file when it is initialized.

The second method creates the application instance (on the first request from the client).
Tapestry will store the application instance into the HttpSession so that it will be available on
subsequent requests from the client.

HelloWorldServlet.java
package tutorial.hello;

import com.primix.tapestry.*;
import com.primix.tapestry.app.*;

public class HelloWorldServlet extends ApplicationServlet
{

protected String getApplicationSpecificationPath()
{

return "/tutorial/hello/HelloWorld.application";
}

protected IApplication createApplication(RequestContext context)
{

return new SimpleApplication(context, null);
}

}

Application Specification
The application specification is used to describe the application to the Tapestry framework. It
provides the application with a name, and a list of pages.

This specification is a file that is located on the Java class path. In a deployed Tapestry
application, the specification lives with the application's class files: either in a Jar file, or in the
WEB-INF/classes directory of a war (Web Application Archive).

HelloWorld.application
<?xml version="1.0"?>
<!DOCTYPE application PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<application>
<name>Hello World Tutorial</name>

T A P E S T R Y T U T O R I A L

 12121212

<page>
<name>Home</name>
<specification-path>/tutorial/hello/Home.jwc
</specification-path>

</page>
</application>

Our application is very simple; we give the application a name and define a single page, named
"Home" and identify the component that is used for that page. In Tapestry, components are
specified with the path to their specification file (a file that end with '.jwc').

Page "Home" has a special meaning to Tapestry; when you first launch a Tapestry application, it
loads and displays the "Home" page. All Tapestry applications are required to have such a home
page.

Home Page Specification
The page specification defines the Tapestry component responsible for the page. In this first
example, our component is very simple:

Home.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>com.primix.tapestry.BasePage</class>

</specification>

This simply says that Home is a kind of page. We use the supplied Tapestry class
com.primix.tapestry.BasePage since we aren't adding any behavior to the page.

Home Page Template
Finally, we get to the content of our application. This file is also a Java resource; it isn't directly
visible to the web server. It has the same location and name as the component specification,
except that it ends in "html".

Home.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>

<title>Hello World</title>
</head>

<body>

Welcome to your first Tapestry Application.

T A P E S T R Y T U T O R I A L

 13131313

</body>
</html>

Launch ServletExec Debugger
The ServletExec Debugger server is launched using the "Run Java" toolbar button, by selecting
Build 4 Run from the menu, or by hitting F4.

Once launched, the output window will show the progress as the server starts up:

C:\jdk1.2.2\bin\java.exe newatlanta.sedebugger.ServletExecDebugger -home
../ServletDebug -root .
Working Directory - D:\Work\Tutorial\
Class Path -
D:\Work\lib\Tapestry.jar;D:\Work\lib\jaxp.jar;D:\Work\lib\parser.jar;D:\Wor
k\lib\ServletExecDebugger.jar;D:\Work\lib\gnu-
regexp.jar;.;d:\tools\Kawa5.0beta1\kawaclasses.zip;C:\jdk1.2.2\lib\tools.ja
r;C:\jdk1.2.2\jre\lib\rt.jar;C:\jdk1.2.2\jre\lib\i18n.jar
New Atlanta ServletExec Debugger 2.2

Copyright (c) 1997-1999 New Atlanta Communications, LLC.
All rights reserved. http://www.newatlanta.com/

ServletExec 2.2 initialized
ServletExec ServletExec listening on port 8080

Like any servlet engine, servlets must be configured before they can be invoked. ServletExec
Debugger includes a servlet for administrating and configuring its environment. This is accessed
with the following URL:

http://localhost:8080/servlet/admin

The administration interface allows several aspects of the servlet container to be managed; we're
mostly interpreted in mapping servlets to Java servlet classes, and to mapping URL fragments to
servlets.

T A P E S T R Y T U T O R I A L

 14141414

We need to create a new servlet named "HelloWorld" that maps to the Java servlet class we've
created:

Next we need to create a URL alias for the servlet:

T A P E S T R Y T U T O R I A L

 15151515

Finally, we can use the servlet alias to build a URL:

http://localhost:8080/hello

Which will result in the following page:

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's
a start. Remember, there was no JavaServer page here, and now HTML directly visible to the
web server. There was an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

http://localhost:8080/hello

T A P E S T R Y T U T O R I A L

 16161616

Dynamic Content
This example will add a tiny amount of interactivity, as well as some very
simple dynamic content … content that is different each time the 'page' is
viewed.

n this section, we'll create a new web application that will show some dynamic content. We'll
also begin to show some interactivity by adding a link to the page.

Our dynamic content will simply be to show the current date and time. The interactivity will
be a link to refresh the page. It all looks like this:

Clicking the word "here" will update the page showing the new data and time. Not incredibly
interactive, but it's a start.

The code for this section of the tutorial is in the package tutorial.simple.

Chapter

I

T A P E S T R Y T U T O R I A L

 17171717

We need to create a new servlet and application object, but they're almost identical to our earlier
ones (only the parts marked in blue are different). The real action in this section will be the new
version of the home page.

 SimpleServlet.java
package tutorial.simple;

import com.primix.tapestry.*;
import com.primix.tapestry.app.*;

public class SimpleServlet extends ApplicationServlet
{

protected String getApplicationSpecificationPath()
{

return "/tutorial/simple/Simple.application";
}

protected IApplication createApplication(RequestContext context)
{

return new SimpleApplication(context, null);
}

}

The bold text identifies the only significant changes from the previous HelloWorldServlet class.

The application specification is also straight forward:

Simple.application
<?xml version="1.0"?>
<!DOCTYPE application PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<application>
<name>Simple Tutorial</name>

<page>
<name>Home</name>
<specification-path>/tutorial/simple/Home.jwc
</specification-path>

</page>

</application>

Things only begin to get more interesting when we look at the HTML template for the home
page:

Home.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Simple</title>

T A P E S T R Y T U T O R I A L

 18181818

</head>
<body>
This application demonstrates some dynamic behavior using Tapestry
components.

<p>The current date and time is: <jwc id="insertDate"/>

<p>Click <jwc id="refresh">here</jwc> to refresh.

</body>
</html>

This looks like ordinary HTML, except for the special <jwc> tags (shown in bold). "jwc" is an
abbreviation for "Java Web Component"; these tags are placeholders for the dynamic content
provided by Tapestry components.

We have two components. The first inserts the current date and time. The second component
creates a hyperlink that refreshes the page.

One of the goals of Tapestry is that the HTML should have the minimum amount of special
markup. This is demonstrated here ... the <jwc> tags blend into the standard HTML of the
template. We also don't confuse the HTML by explaining exactly what an insertDate or refresh
is; that comes out of the specification (described shortly). The ids used here are meaningful only
to the developer, the particular type and configuration of each component is defined in the
component specification.

Very significant is the fact that a Tapestry component can wrap around other elements of the
template. The refresh component wraps around the word "here". What this means is that the
refresh component will get a chance to emit some HTML (an <a> hyperlink tag), then emit the
HTML it wraps (the word "here"), then get a chance to emit more HTML (the "" closing
tag).

What's more important is that the component can not only wrap static HTML from the template
(as shown in this example), but may wrap around other Tapestry components … and those
components may themselves wrap text and components, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more
components inside of it. In a real application, the single page of HTML produced by the
framework may be the product of dozens of components, effectively "weaved" from dozens of
HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static
HTML that will be passed directly back to the client web browser, with a few placeholders (the
<jwc> tags) for where dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data
moves between the application, page and any components.

Home.jwc
<?xml version="1.0"?>

T A P E S T R Y T U T O R I A L

 19191919

<!DOCTYPE specification PUBLIC
"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>tutorial.simple.Home</class>

<components>
<component>

<id>insertDate</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-path>currentDate</property-path>

</binding>
</bindings>

</component>

<component>
<id>refresh</id>
<type>Page</type>

<bindings>
<static-binding>

<name>page</name>
<value>Home</value>

</static-binding>
</bindings>

</component>
</components>

</specification>

Here's what all that means: The Home page is implemented with a custom class,
tutorial.simple.Home. It contains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to
specify what should be inserted into the HTML produced by the page. The insertDate
component has its value parameter bound to a JavaBeans property of its container (the page), the
currentDate property.

The refresh component is type Page, meaning it creates a link to some other page in the
application. Page components have a parameter, also named page, which defines the name of the
page to navigate to. The name is matched against a page named in the application specification.

In this case, we only have one page in our application (named "Home"), so we can use a static
binding for the page parameter.

That just leaves the implementation of the Home page component:

T A P E S T R Y T U T O R I A L

 20202020

Home.java
package tutorial.simple;

import java.util.*;
import com.primix.tapestry.spec.*;
import com.primix.tapestry.*;

public class Home extends BasePage
{
public Home(IApplication application,

ComponentSpecification componentSpecification)
{
super(application, componentSpecification);

}

public Date getCurrentDate()
{
return new Date();

}
}

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate
that the insertDate component needs. When asked for the current date, the Home object returns
a new instance of the java.util.Date object.

The insertDate component converts objects into strings by invoking toString() on the object.
Now all the bits and pieces are working together.

To run this new Tapestry application, you'll have to map servlet 'Simple' to class
'tutorial.simple.SimpleServlet' and map alias '/simple' to servlet 'Simple'. You can then use the
following URL to try out the dynamic web application:

http://localhost:8080/simple

Run the application, and use the View Source command to examine the HTML generated by
Tapestry:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Simple</title>
</head>
<body>

This application demonstrates some dynamic behavior using Tapestry
components.

<p>The current date and time is: Wed Jul 19 10:48:26 EDT 2000

<p>Click
here to refresh.

</body>
</html>

T A P E S T R Y T U T O R I A L

 21212121

This should look very familiar. Text which was generated dynamically, by Tapestry components,
is in bold font. As you can see, Tapestry not only inserted simple text (the current date and time,
obtained from an java.util.Date object), but the refresh component inserted the <a> and
 tags, and created an appropriate URL for the href attribute.

T A P E S T R Y T U T O R I A L

 22222222

Interactive Application
A more ambitious example, we'll build a simple adding machine.

ow it's time to build a real, interactive application. We'll still use just a single page, but it
will demonstrate many of the more interesting features of Tapestry, including
maintenance of server side page state.

Our application allows the user to sum up a list of numbers.

The user enters a number into the value field and clicks "Add to list". The number is added to the
list of items and factored into the total.

A Form component containing a TextField component will be used to collect information from
the user. A Foreach component will be used to run though the list of items, and Insert
components will be used to present each item in the list, as well as the total.

If the user enter in a non-number, then an error message is displayed.

Chapter

N

T A P E S T R Y T U T O R I A L

 22223333

As with the previous examples, the servlet and application objects are simple variations on the
previous two sets (they are ommited here).

The application specification is, likewise, a variation on the prior example.

The code for this section is in the tutorial.adder package.

We'll start with the HTML template for the home page:

Home.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Adder Tutorial</title>
</head>
<body>

<jwc id="ifError">
<table border=1>

<tr>
<td bgcolor=red>

<jwc id="insertError"/>

</td>

</tr>
</table>
<p>
</jwc>

<jwc id="form">

T A P E S T R Y T U T O R I A L

 24242424

<table>
<tr>
<td align=right>Value:</td>
<td><jwc id="inputNewValue"/></td>

</tr>
<tr>
<td> </td>
<td><input type=submit value="Add to list"></td>

</tr>
</table>

</jwc>

<table>
<tr> <th>Items</th> </tr>

<jwc id="e">
<tr align=right>
<td>
<jwc id="insertCurrentValue"/>

</td>
</tr>

</jwc>

<tr align=right>
<td>
<hr>

<jwc id="insertTotal"/>

</td>
</tr>

</table>

</body>
</html>

Again, Tapestry takes care of most of the details. The form component will turn into an HTML
<FORM> element, and the correct URL is automatically generated. The textfield component
will become an <INPUT TYPE=TEXT>, with the necessary smarts to collect the value
submitted by the user and provide it to the page.

The e component is a Foreach, used for running through a list of elements (supplied as a List,
Iterator or an array of Java objects). We've already see the Insert component.

Next we have the specification:

Home.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC "-//Primix Solutions//Tapestry Specification
1.0//EN"

"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>tutorial.adder.Home</class>

<components>

T A P E S T R Y T U T O R I A L

 25252525

<component>
<id>ifError</id>
<type>Conditional</type>

<bindings>
<binding>

<name>condition</name>
<property-path>error</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertError</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-path>error</property-path>

</binding>
</bindings>

</component>

<component>
<id>form</id>
<type>Form</type>

<bindings>
<binding>
<name>listener</name>
<property-path>formListener</property-path>

</binding>
</bindings>

</component>

<component>
<id>inputNewValue</id>
<type>TextField</type>

<bindings>
<binding>
<name>text</name>
<property-path>newValue</property-path>

</binding>
</bindings>

</component>

<component>
<id>e</id>
<type>Foreach</type>

<bindings>
<binding>
<name>source</name>
<property-path>items</property-path>

</binding>

T A P E S T R Y T U T O R I A L

 26262626

</bindings>
</component>

<component>
<id>insertCurrentValue</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>components.e.value</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertTotal</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>total</property-path>

</binding>
</bindings>

</component>
</components>

</specification>

We only want to display the error message if there is one, so the ifText is conditional on there
being a non-null error message (the Conditional component treats null as false).

For the form component, all we have to do is supply a listener, an object that is informed when
the form is submitted.

For the textfield component, we provide a text parameter that provides the default value for the
<INPUT> element, as well as a place to put the value submitted on the form. This must be of
type java.lang.String, so we need to do a little translation (in our Java class), since internally we
want to store the value as a double.

For the e component, we supply a binding for the source parameter. For each item in the source
list, it will update its value property, which is later accessed by the Insert component. The
property path components.e.value accomplishes this: the page has a component property, which
is a Map of the components on the page. e is the id of a component, and a key in the Map. It has
a property named value, which is the current item from the source list.

A Foreach also has a parameter named value. By creating a binding for this parameter, the
Foreach can update a property of the page, or some other component. This is more commonly
used when the items in the list are business objects and the application needs to invoke business
methods on them.

Finally, the Java code for the home page puts everything together:

T A P E S T R Y T U T O R I A L

 27272727

Home.java
package tutorial.adder;

import com.primix.tapestry.*;
import com.primix.tapestry.components.*;
import com.primix.tapestry.spec.*;
import java.util.*;

public class Home extends BasePage
{

private List items;
private String newValue;
private String error;

public Home(IApplication application, ComponentSpecification
specification)

{
super(application, specification);

}

public List getItems()
{

return items;
}

public void setItems(List value)
{

items = value;

fireObservedChange("items", value);
}

public void setNewValue(String value)
{

newValue = value;
}

public String getNewValue()
{

return newValue;
}

public void detachFromApplication()
{

items = null;
newValue = null;
error = null;

super.detachFromApplication();
}

public void addItem(double value)
{

if (items == null)
{

items = new ArrayList();

T A P E S T R Y T U T O R I A L

 28282828

fireObservedChange("items", items);
}

items.add(new Double(value));

fireObservedChange();
}

public double getTotal()
{

Iterator i;
Double item;
double result = 0.0;

if (items != null)
{

i = items.iterator();
while (i.hasNext())
{

item = (Double)i.next();
result += item.doubleValue();

}
}

return result;
}

public IActionListener getFormListener()
{

return new IActionListener()
{

public void actionTriggered(IComponent component,
IRequestCycle cycle)

{
try
{

double item = Double.parseDouble(newValue);
addItem(item);

newValue = null;
}
catch (NumberFormatException e)
{

error = "Please enter a valid number.";
}

}
};

}

public String getError()
{

return error;
}

}

T A P E S T R Y T U T O R I A L

 29292929

That may seem like a lot of code for what we're doing, but in reality, very much is going that we
don't have to write:

• Processing the submitted form

• Storing the List of items persistently between request cycles

• Encoding and decoding URLs

• Very robust exception support

Tapestry components, using JavaBeans properties, take care of moving data to and from the
HTML form. Our application merely has to supply the logic to properly respond when the form
is submitted. In this case, converting the text into a double that can be added to the list.

Because we let Tapestry set the names of our form elements, there's no possibility of mismatched
names between the Java code (setting defaults and interpreting the posted request) and the
HTML template.

Launching the Application
Run the application, then use the ServletExec Admin page to configure the servlet. Map servlet
"Adder" to "tutorial.adder.AdderServlet" and map alias "/adder" to servlet "Adder".

Enter the following URL to start the application:

http://localhost:8080/adder

Enter a few values into the text field to see how the application works, adding them together into
an ever larger list.

Adding Interactivity using Listeners
To understand the relationship between the home page specification, the home page class and the
components used by the home page, it is necessary to understand the JavaBeans properties
provided by the home page class.

We implement several JavaBeans properties on this page:

Property
name

Type R / W Description

newItem String R / W Stores the string entered into the form.

http://localhost:8080/adder

T A P E S T R Y T U T O R I A L

 30303030

items List (of
Double)

R / W Items in the list. Persists between request
cycles.

formListener IActionListener Read
Only

Informed when form is submitted.

total double Read
Only

Total of items; computed on the fly.

This example demonstrates how to provide interactivity to an application. For Tapestry,
interactivity is defined as a request cycle initiated by a user clicking on a hyperlink or submitting a
form.

In our case, we want to know when the form containing the TextField is submitted so that we can
provide application specific behavior -- adding the value enterred in the TextField to the list of
items.

This is accomplished using a listener, an object that implements the Java interface
IActionListener. This interface defines a single method, actionTriggered(). When the
form is submitted, all the components wrapped by the form (in this case, the TextField) are given
a chance to retrieve their values from the request and update properties of the application (the
TextField sets the currentItem property). The form then gets its listener and invokes the
actionTriggered() method.

In the specification, the listener parameter was bound to the formListener property of the page.
The code in the getFormListener() method creates an anonymous inner class and returns it.

Inner classes have access to the private fields and methods of the class. In this case, the inner
class invokes the addItem() method to add the currentItem (with a value provided by the
TextField component) to the items List.

A listener is free to do anything it wants. It can change the state of the application, or can retrieve
other pages (by name) from the request cycle object, and can change properties of those pages. It
can even chose a different page to render, by invoking setPage() on the request cycle.

Persistant Page State and Page Pooling
The home page of this application uses a persistant page property, a List that contains
java.lang.Doubles, the items in the list.

Persistent page state is one of the most important concepts in Tapestry. Each page in the
application (and in fact, even components within the page) has some properties that should
persist between requests. This can be values such as the user's name and address, or (in this case)
the list of numbers enterred so far.

T A P E S T R Y T U T O R I A L

 31313131

In traditional JavaServer Pages or servlet applications, a good chunk of code must be written to
manage this. The values must be encoded in cookies, as hidden form fields, as named attributes
of the HttpSession, or stored into a server-side flat file or database. Each servle (or JSP) is
directly responsible for managing access to these values … which leads to many half realized, ad-
hoc solutions and an avalanche of bugs, and even security holes.

With Tapestry, the framework takes care of these persistence issues. When a persistent property
of a page is changed the accessor method also invokes the method fireObservedChange().
This method informs a special object, the page's recorder, about the property and its new value.

When the page is next used, the value is restored automatically. This may not seem natural … an
obvious question is: why wasn't the page in the same state? Then answer is that that page
instance is shared, and may be used by a different client in the interrum.

Within the Tapestry framework, all of these pages, components, specifications and templates are
converted into Java objects. Assembling a page is somewhat expensive: it involves reading all
those specifications and templates1, creating and initializating component objects, creating binding
objects for the components, and organizing the components into a hierarchy.

Creating a page object for just one request cycle only to discard it is simply unacceptible. Pages
should be kept around as long as they are needed; they should be re-used in subsequent request
cycles, both for the same client session, or for other sessions.

The Tapestry framework accomplishes this by pooling instances of page objects; there could
concievably be a handful of different instances being shared by thousands of client sessions. This
is a kind of shell game that is important to maintain scalability.

What this means for the developer is some minor extra work. On each request cycle, a different
instance of the page object may be used to handle the request. This means that data can't simply
be stored in the instance variables of the page between request cycles.

Tapestry seperates the persistent state of a page from the actual page objects. The state is stored
seperately, making use of the page recorder objects. When needed, a page can be created or
reclaimed from the page pool and have all of its persistant properties set by the page recorder.

The developer has three responsibilities when coding a page with persistant state:

• The property must be serializable; this includes Java scalar types (boolean, int, double,
etc.), Strings, common collection classes (ArrayList, HashMap, etc.) and other classes
that implement java.io.Serializable, such as javax.ejb.Handle.

• When the value of the property changes, the fireObservedChange() method must be
invoked, to inform the page recorder about the change.

1 Specifications and templates are generally read just once, then left in memory for susbsequent use.

T A P E S T R Y T U T O R I A L

 32323232

• When the request cycle ends and the page is returned to the pool, the persistant state
must be reset to its initial value (as if the page object was newly instantiated). This is done
in the detachFromApplication() method.

Dynamic Page State
This page has a bit of dynamic state; state that changes as the page is being renderred. The value
property of the Foreach component takes on different values from the items List as the page is
renderred. Dynamic state is easier to handle than persistant state; for completeness, it must also
be reset in the detachFromApplication() method.

T A P E S T R Y T U T O R I A L

 33333333

Tapestry Run Time Errors
Tapestry has some rich support for detecting and presenting errors at
runtime.

One of the benefits to developing using Tapestry is its robust exception handling support.

We'll demonstrate these by creating invalid URLs.

Stale Sessions
As we just demonstrated, Tapestry is quite careful about conversational state. What happens if all
the conversation state is lost?

Start up adder application then enter a few numbers. Go back to the Kawa IDE and stop, then
restart, ServletExec Debugger. This wipes out all session information.

Now, try to add an additional number to the list.

Chapter

T A P E S T R Y T U T O R I A L

 34343434

Because Tapestry can't find any information about your session, it assumes the session timed out
and was discarded, and so presents the default error page for this situation.

Remember that most Tapestry URLs are very conversational, they only make sense as the most
recent request in a series of requests exchanged between the client and the server.

This means that most pages in a Tapestry application can't be bookmarked; the URL that would
be stored in the client's web browser is not meaningful. Creating bookmarkable pages is a subject
of a later tutorial.

Exception Handling
Tapestry handles exceptions, catching them when they occur and formatting a readable page with
all the details. Of course, in your own application, such exceptions will never occur, or will be
caught and handled by your own code.

Still, it's nice that Tapestry can assist when debugging during development, when exception may
in fact be thrown.

To demonstrate what Tapestry does for exceptions, we need to do a little bit of sneaky work.

First, enter a few numbers into the Adder application:

T A P E S T R Y T U T O R I A L

 35353535

Now, edit the URL in the Address field, and change the word "action" to "acton" (i.e, remove the
letter 'i') and hit return.

Tapestry has discovered that the URL was invalid ... in this case that the word "action" was
changed to "acton". Since Tapestry normally produces all the URLs it must later consume, it
doesn't make an effort to pretty this up (as it does with stale links and sessions), instead it throws
an exception which is caught and displayed.

T A P E S T R Y T U T O R I A L

 36363636

As you may notice, the exception report is extremely complex. Tapestry displays all the
information it can about the exception that was thrown ... it can even break apart nested
exceptions and dig down to the deepest one. It shows the stack trace where the deepest
exception was thrown. It also provides information about the HttpRequest, HttpSession,
ServletContext and Java VM.

Finally, it includes a link that will destroy the current HttpSession and restart the application from
scratch.

T A P E S T R Y T U T O R I A L

 37373737

Debugging a Tapestry
Application
We'll show how to debug a Tapestry application while it runs, by running
the servlet container inside Kawa's debugger.

e're going to make a quick detour and discuss debugging a Tapestry application using
Kawa.

We'll continue using the previous example, this time setting a breakpoint to
demonstrate how the Foreach component updates the page property 'currentItem'.

First, edit the file tutorial/adder/Home.java. Navigate to the method setNewValue() and
set a breakpoint by clicking F9 or the menu item Build 4 Breakpoint Set/UnSet. A red marker
appears in the gutter along the left edge:

ChapterChapter

W

T A P E S T R Y T U T O R I A L

 38383838

At this point, you can launch the debugger, using the Build 4 Debug 4 Run menu item, or by
hitting F5, or by clicking the debug icon on the toolbar.

At this point, Kawa will reconfigure itself slightly, adding a "JVMDI Watch" window (this is
window that allows values to be displayed while debugging).

Launch the Adder application (from the previous chapter) with the URL:

http://localhost:8080/adder

When the form comes up, enter a value and click the submit button.

The Kawa window will raise itself, and the Project pane (along the left side of the window) will
show the stack trace leading upto the break point.

http://localhost:8080/adder

T A P E S T R Y T U T O R I A L

 39393939

You can use the stack track to inspect the object, or see the parameters to the method.

Hit the continue button (or Build 4Debug 4 Cont menu item, or F5) to allow ServletExec and
Tapestry to finish the response.

Changing templates and specifications
Part of the normal development process is often "tweaking" Tapestry specifications and HTML
templates, correcting minor errors that affect the application (even when code changes are not
necessary).

Tapestry caches, in memory, component specifications and templates. This means that changing
a file on disk won't change the running application ... the previously cached version of the
specification or template will continue to be used.

You can force a running Tapestry application to discard its cached component specifications and
templates by invoking the reset service. This is done by entering the URL

http://host:port/servlet-path/reset

In our previous examples, the URL would be http://localhost:8080/hello/reset or
http://localhost:8080/adder/reset.

This clears cached data and invalidates the current session, then starts a new one. It’s the same as
starting a new session on a fresh server. This does not reload any changed Java code and it does
not reload the application specification.

Also, the developer must be aware of the classpath, especially when using the Java Build
Environment (JBE). The JBE copies resource files (templates and specifications) to a directory
that may be earilier on the classpath than the developer's working directory. This means that
changes to the working files may be obscured by the out-of-date copies; the developer should
perform a make after changing any such files.

T A P E S T R Y T U T O R I A L

 40404040

Finally, this service is not always available. For security reasons, the reset service is only available
when the JVM system property com.primix.tapestry.enable-reset-service is set to
true. If this system property is not true, then the URL will be rejected like any other invalid
service (such as the "acton" example in the previous chapter).

T A P E S T R Y T U T O R I A L

 41414141

Re-usable Components
Tapestry is designed to facilitate the creation of re-usable comopnents; this
chapter will show an example of such a component.

n this tutorial, we'll show how to create a re-usable component. One common use of
components it to create a common "border" for the application that includes basic
navigation. We'll be creating a simple, three page application with a navigation bar down the
left side2.

Navigating to another page results in a similar display:

2 These screen shots are slightly out of date; the names of the pages (which appear down the left side) are now capitalized.

Chapter

I

T A P E S T R Y T U T O R I A L

 42424242

Each page's content is confined to the silver area in the center. Note that the border adapts itself
to each page: the title "Home" or "Credo" is specific to the page, and the current page doesn't
have an active link.

The "i" in the circle is the Show Inspector link. It will be described in the next chapter.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files.
The complete source of the tutorial examples is available seperately, in the tutorial.border package.

Each of the three pages has a similar HTML template:

Home.html
<jwc id="border">

Nothing much doing here on the home page. Visit one of our other
fine
pages.

</jwc>

What we're doing here is wrapping the entire page inside the border. Note that we don't specify
an <HTML> or <BODY> tags; those are provided by the border (as well as the matching close
tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds
the Border component (as we'll see in the Home page's specification). However, the Border
component wraps the content of the Home page … the Home page HTML template indicates
the order in which components (and static HTML elements) get a chance to render. On the
Home page, the Border component 'bats' first and cleanup.

T A P E S T R Y T U T O R I A L

 43434343

The construction of the Border component is based on how it differs from page to page. You'll
see that on each page, the title (in the upper left corner) changes. The names of all three pages are
displayed, but only two of the three will have links (the third, the current page, is just text). Lastly,
each page contains the specific content from its own HTML template.

Border.html
<HTML>
<head>
<title><jwc id="insertApplicationName"/></title>
</head>
<jwc id="body">
<table border=0 bgcolor=gray cellspacing=0 cellpadding=4>
<tr valign=top>
<td colspan=3 align=left>
<jwc id="insertPageTitle"/>

</td>
</tr>
<tr valign=top>
<td align=right>

<jwc id="e">

<jwc id="link"><jwc id="insertName"/></jwc>

</jwc>

</td>
<td rowspan=2 valign=top bgcolor=silver>
<jwc id="wrapped"/>

</td>
<td rowspan=2 width=4></td>

</tr>
<tr>

<td><jwc id="showInspector"/></td>
</tr>
<tr>
<td colspan=3 height=4> </td>

</tr>
</table>
</jwc>
</HTML>

The insertApplicationName and insertPageTitle components provides the name of the
application, and the title of the page within the application.

The e, link and insertName components provide the inter-page navigation links. The
showInspector component provides the button below the page names (the italicized "i" in a
circle) and will be explained shortly. The body component is a replacement for the <body> tag; it
is required to support automatic rollover buttons (such as the showInspector) and will be used by
most Tapestry applications.

Lastly, the wrapped component provides the actual content for the page.

T A P E S T R Y T U T O R I A L

 44444444

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard
code the list of page names. These must be provided to the border component. In fact, the
application object provides the list.

Border.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC "-//Primix Solutions//Tapestry Specification
1.0//EN"

"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>tutorial.border.Border</class>

<parameters>

<allow-informal-parameters>no</allow-informal-parameters>

<parameter>
<name>title</name>
<java-type>java.lang.String</java-type>
<required>yes</required>

</parameter>

<parameter>
<name>pages</name>
<required>yes</required>

</parameter>
</parameters>

<components>

<component>
<id>insertApplicationName</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-

path>page.application.specification.name</property-path>
</binding>

</bindings>
</component>

<component>
<id>insertPageTitle</id>
<type>Insert</type>

<bindings>
<inherited-binding>
<name>value</name>
<parameter-name>title</parameter-name>

</inherited-binding>
</bindings>

</component>

T A P E S T R Y T U T O R I A L

 45454545

<component>
<id>body</id>
<type>Body</type>

</component>

<component>
<id>e</id>
<type>Foreach</type>

<bindings>
<inherited-binding>
<name>source</name>
<parameter-name>pages</parameter-name>

</inherited-binding>

<binding>
<name>value</name>
<property-path>pageName</property-path>

</binding>
</bindings>

</component>

<component>
<id>link</id>
<type>Page</type>

<bindings>
<binding>
<name>page</name>
<property-path>pageName</property-path>

</binding>

<binding>
<name>enabled</name>
<property-path>enablePageLink</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertName</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>pageName</property-path>

</binding>
</bindings>

</component>

<component>
<id>wrapped</id>
<type>InsertWrapped</type>

</component>

<component>

T A P E S T R Y T U T O R I A L

 46464646

<id>showInspector</id>
<type>ShowInspector</type>

</component>

</components>
</specification>

So, the specification for the Border component must identify the parameters it needs, but also the
components it uses and how they are configured.

We start by declaring two parameters: title and pages. The first is the title that will appear on the
page. The second is the list of page names for the navigation area. We don't specify a type for
pages because we want to allow all the possibilites (List, Iterator, Java array) that are acceptible as
the source parameter to a Foreach.

The insertApplicationName doesn't get its value from a parameter; it jumps from the page, to the
application, to the application specification and gets the name of the application.

Further down we see that the insertPageTitle component inherits the title parameter from its
container, the border component. Whatever binding is provided for the title parameter of the
border will also be used as the value parameter of the insertPageTitle component. Using these
inherited bindings simplifies the process of creating complex components from simple ones.

Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from
the Border component's pages parameter. It has been configured to store each succesive page
name into the pageName property of the Border component; this is necessary so that the Border
component can determine which page link to disable (it disables the current page since we're
already there).

The link component creates the link to the other pages. It has an enabled parameter; when false
the link component doesn't create the hyperlink (though it still allows the elements it wraps to
render). The Java class for the Border component, tutorial.border.Border, provides a
method, getEnablePageLink(), that returns true unless the pageName parameter (set by the e
component) matches the current page's name.

The showInspector component creates a rollover button (the "i" lights up when the mouse is
moved over it):

Clicking on the button raises a second window that describes the current page in the application
(this is used when debugging a Tapestry applicaton). The Inspector is described in the next
chapter.

T A P E S T R Y T U T O R I A L

 47474747

The final mystery is the wrapped component. It is used to render the elements wrapped by the
border on the page containing the border. Those elements will vary from page to page; running
the application shows that they are different on the home, credo and legal pages (different text
appears in the central light-grey box). There is no limitation on the elements either .. Tapestry is
specifically designed to allow components to wrap other components in this way, without any
arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all,
not just static HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is
static, the literal value "Home" (this isn't the best approach if localization is a concern).

Home.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>com.primix.tapestry.BasePage</class>

<components>
<component>
<id>border</id>
<type>Border</type>

<bindings>
<static-binding>
<name>title</name>
<value>Home</value>

</static-binding>

<binding>
<name>pages</name>
<property-path>application.pageNames</property-path>

</binding>
</bindings>

</component>
</components>

</specification>

The pages property is retrieved from the application, which implments a pageNames property:

BorderApplication.java (excerpt)
private static final String[] pageNames =
{ "Home", "Credo", "Legal" };

public String[] getPageNames()
{
return pageNames;

}

T A P E S T R Y T U T O R I A L

 48484848

How did Tapestry know that the type 'Border' (shown in bold in the page specification)
corresponded to the specification /tutorial/border/Border.jwc? Only because we defined
an alias in the application specification:

Border.application (excerpt)
<component>
<alias>Border</alias>
<type>/tutorial/border/Border.jwc</type>

</component>

Had we failed to do this, we would have had to specify the complete resource path,
/tutorial/border/Border.jwc, on each page's specification, instead of the short alias
'Border'. There is no magic about the existing Tapestry component types (Insert, Foreach, Page,
etc.) ... they each have an alias pre-registered into every application specification. These short
aliases are simply a convienience.

T A P E S T R Y T U T O R I A L

 49494949

The Tapestry Inspector
Tapestry includes a powerful tool for debugging a running application,
called The Inspector. This chapter will provide a brief overview of its
abilities.

Unlike scripting systems (such as JavaServer Pages and the like), Tapestry applications are gifted
with a huge amount of information about how they are implemented … the same component
object model that allows Tapestry to perform so many ordinary functions can be leveraged to
provide some unusual functionality.

Run the border tutorial from the previous chapter and click on the show inspector button (the
circle with the italic "i"). A new window will launch, containing the Inspector:

Chapter

T A P E S T R Y T U T O R I A L

 50505050

Component Navigation
View Selection
View Details

The Inspector displays live information from the running application; in fact, it is simply another
part of the application (the drop-down list of pages will include the Inspector page itself). The
Inspector is most often used to debug HTML generation by viewing the HTML templates.

The Inspector consists of three sections. The Component Navigation allows the page to be
selected (using the drop-down list), and then shows the page, or component on the page, being
inspected.

The View Selection selects one of four views of the component to be selected. Finally, the View
Details section shows detailed information about the component, as selected.

The ShowInspector component and the Inspector page are built-into the Tapestry framework.
Any Tapestry application can make use of the Inspector by simply adding a ShowInspector
component to any page. Most commonly, the ShowInspector component is added to a persistent
navigation component, such as the Border component (in these examples).

Specification View
The specification tab show the basic information about the component, plus its formal and
informal parameters (and how they are bound), and any assets.

T A P E S T R Y T U T O R I A L

 51515151

A more complicated component may also show informal parameters and assets.

Components View
The components view provides a list of the components embedded in the currently inspected
component. Clicking the name of a component inspects that component.

T A P E S T R Y T U T O R I A L

 52525252

Template View
The template view shows the template (if known) for the component. It is formatted much like
the examples in this document, with <jwc> tags in bold. In addition, component names are links,
showing the template (if any) for the embedded component.

T A P E S T R Y T U T O R I A L

 53535353

Properties View
The properties view shows all persistent properties for the page.

The component column is usually blank, except in the rare case that a component has its own
persistent properties, in which case the component's id path is displayed.

T A P E S T R Y T U T O R I A L

 54545454

T A P E S T R Y T U T O R I A L

 55555555

Complex Forms and Output
Demonstrates more of Tapestry's abilitities to build and process form
information, and produce complex output.

apestry includes a number of components designed to simplify interactions with the
client, especially when handling forms.

In this chapter, we'll build a survey-taking application that collects information from the
user, stores it in an in-memory database, and produces tabular results summarizing what has been
entered.

We'll see how to validate input from the client, how to create radio groups and pop-up selections
and how to organize information for display.

The application has three main screens; the first is a home page:

The second page is for entering survey data:

Chapter

T

T A P E S T R Y T U T O R I A L

 56565656

The last page is used to present results collected from many surveys:

T A P E S T R Y T U T O R I A L

 57575757

In addition, we are re-using the Border component from the previous chapter.

The application does not use an actual database; the survey information is stored in memory (the
amount of work to set up a JDBC database is beyond the scope of this tutorial).

The source code for this chapter is in the tutorial.survey package.

Survey
At the root of this application is an object that represents a survey taken by a user. We want to
collect the name (which is optional), the sex and the race, the age and lastly, which pets the survey
taker prefers.

Survey.java
package tutorial.survey;

import java.util.*;
import com.primix.tapestry.*;
import java.io.*;

public class Survey implements Serializable, Cloneable
{

private Object primaryKey;
private String name;
private int age = 0;
private Sex sex = Sex.MALE;

T A P E S T R Y T U T O R I A L

 58585858

private Race race = Race.CAUCASIAN;

private boolean likesDogs = true;
private boolean likesCats;
private boolean likesFerrits;
private boolean likesTurnips;

public Object getPrimaryKey()
{

return primaryKey;
}

public void setPrimaryKey(Object value)
{

primaryKey = value;
}

public String getName()
{

return name;
}

public void setName(String value)
{

name = value;
}

public int getAge()
{

return age;
}

public void setAge(int value)
{

age = value;
}

public void setSex(Sex value)
{

sex = value;
}

public Sex getSex()
{

return sex;
}

public void setRace(Race value)
{

race = value;
}

public Race getRace()
{

return race;
}

T A P E S T R Y T U T O R I A L

 59595959

public boolean getLikesCats()
{

return likesCats;
}

public void setLikesCats(boolean value)
{

likesCats = value;
}

public boolean getLikesDogs()
{

return likesDogs;
}

public void setLikesDogs(boolean value)
{

likesDogs = value;
}

public boolean getLikesFerrits()
{

return likesFerrits;
}

public void setLikesFerrits(boolean value)
{

likesFerrits = value;
}

public boolean getLikesTurnips()
{

return likesTurnips;
}

public void setLikesTurnips(boolean value)
{

likesTurnips = value;
}

/**
* Validates that the survey is acceptible; throws an {@link

IllegalArgumentException}
* if not valid.
*
*/

public void validate()
throws IllegalArgumentException
{

if (race == null)
throw new IllegalArgumentException("Race must be

specified.");

if (sex == null)
throw new IllegalArgumentException("Sex must be

specified.");

T A P E S T R Y T U T O R I A L

 60606060

if (age < 1)
throw new IllegalArgumentException("Age must be at least

one.");
}

public Object clone()
{

try
{

return super.clone();
}
catch (CloneNotSupportedException e)
{

return null;
}

}
}

The race and sex properties are defined in terms of the Race and Sex classes, which are derived
from com.primix.foundation.Enum. Enum classes act like C enum types; a specific number of
pre-defined values are declared by the class (as static final constants of the class).

Race.java
package tutorial.survey;

import com.primix.foundation.Enum;

/**
* An enumeration of different races.
*
*/

public class Race extends Enum
{

public static final Race CAUCASIAN = new Race("CAUCASIAN");
public static final Race AFRICAN = new Race("AFRICAN");
public static final Race ASIAN = new Race("ASIAN");
public static final Race INUIT = new Race("INUIT");
public static final Race MARTIAN = new Race("MARTIAN");

private Race(String enumerationId)
{

super(enumerationId);
}

private Object readResolve()
{

return getSingleton();
}

}

This is better than using String or int constants because of type safety; the Java compiler will

T A P E S T R Y T U T O R I A L

 61616161

notice if you pass Race.INUIT as a parameter that expects an instance of Sex ... if they were both
encoded as numbers, the compiler wouldn't know that there was a programming error.

SurveyDatabase
The SurveyDatabase class is a mockup of a database for storing Surveys, it has methods such as
addSurvey() and getAllSurveys(). To emulate a database, it even allocates primary keys for
surveys. Additionally, when surveys are added to the database, they are copied and when surveys
are retrieved from the database, they are copied (that is, modifying a Survey instance after adding
it to, or retrieving it from, the database doesn't affect the persistently stored Surveys within the
database ... just as if they were in external storage).

SurveyApplication
The database is accessed via the SurveyApplication object.

SurveyApplication.java (excerpt)
private transient SurveyDatabase database;

public SurveyDatabase getDatabase()
{

return database;
}

protected void setupForRequest(RequestContext context)
{

super.setupForRequest(context);

if (database == null)
{

String name = "Survey.database";
ServletContext servletContext;

servletContext =
context.getServlet().getServletContext();

database =
(SurveyDatabase)servletContext.getAttribute(name);

if (database == null)
{

database = new SurveyDatabase();
servletContext.setAttribute(name, database);

}
}

}

The SurveyDatabase instance is stored as a named attribute of the ServletContext, a shared space
available to all sessions.

T A P E S T R Y T U T O R I A L

 62626262

SurveyPage
The SurveyPage is where survey information is collected. It initially creates an Survey instance as
a persistent page property. It uses Form and a number of other components to edit the survey.

When the survey is complete and valid, it is added to the database and the results page is used as
an acknowledgment.

The SurveyPage also demonstrates how to validate data from a TextField component, and how to
display validation errors. If invalid data is enterred, then the user is notified (after submitting the
form):

The HTML template for the page is relatively short. All the interesting stuff comes later, in the
specification and the Java class.

SurveyPage.html
<jwc id="border">

<jwc id="ifError">
<table border=1>
<tr>
<td bgcolor=red>

<jwc id="insertError"/>

T A P E S T R Y T U T O R I A L

 63636363

 </tr> </tr> </table>
</jwc>

<jwc id="surveyForm">

<table border=0>

<tr valign=top> <th>Name</th>
<td colspan=3><jwc id="inputName"/></td></tr>

<tr valign=top> <th>Age</th>
<td colspan=3><jwc id="inputAge"/></td></tr>

<tr valign=top> <th>Sex</th>
<td> <jwc id="inputSex"/>
</td>

<th>Race</th>

<td><jwc id="inputRace"/>
</td> </tr>

<tr valign=top> <th>Favorite Pets</th>
<td colspan=3>
<jwc id="inputCats"/> Cats

<jwc id="inputDogs"/> Dogs

<jwc id="inputFerrits"/> Ferrits

<jwc id="inputTurnips"/> Turnips</td> </tr>
<tr>
<td></td>
<td colspan=3><input type=submit value="Submit"></td> </tr>
</table>

</jwc>
</jwc>

Most of this page is wrapped by the surveyForm component which is of type Form. The form
contains two text fields (nameField and ageField), a group of radio buttons (ageSelect) and a pop-
up list (raceSelect), and a number of check boxes (cats, dogs, ferrits and turnips).

Most of these components are pretty straight forward: nameField and ageField are setting String
properties, and the check boxes are setting boolean properties. The two other components,
raceSelect and ageSelect, are more interesting.

Both of these are of type PropertySelection; they are used for setting a specific property of some
object to one of a number of possible values.

The PropertySelection component has some difficult tasks: It must know what the possible
values are (including the correct order). It must also know how to display the values (that is, what
labels to use on the radio buttons or in the pop up).

This information is provided by a model (an object that implement
com.primix.tapestry.components.IPropertySelectionModel), an object that exists just
to provide this information to a PropertySelection component.

T A P E S T R Y T U T O R I A L

 64646464

There's a secondary question with PropertySelection: how the component is rendered. By default,
it creates a pop-up list but this can be changed by providing an alternate renderer (using the
component's renderer parameter). In our case, we used a secondary, radio-button renderer.
Applications can also create their own renders, if they need to do something special with fonts,
styles or images.

First, let's review the specification for the SurveyPage:

SurveyPage.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC "-//Primix Solutions//Tapestry Specification
1.0//EN"

"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">
<specification>

<class>tutorial.survey.SurveyPage</class>
<components>

<component>
<id>border</id>
<type>Border</type>
<bindings>

<static-binding>
<name>title</name>
<value>Survey</value>

</static-binding>
<binding>

<name>pages</name>
<property-

path>application.pageNames</property-path>
</binding>

</bindings>
</component>
<component>

<id>ifError</id>
<type>Conditional</type>
<bindings>

<binding>
<name>condition</name>
<property-path>error</property-path>

</binding>
</bindings>

</component>
<component>

<id>insertError</id>
<type>Insert</type>
<bindings>

<binding>
<name>value</name>
<property-path>error</property-path>

</binding>
</bindings>

</component>
<component>

<id>surveyForm</id>
<type>Form</type>
<bindings>

T A P E S T R Y T U T O R I A L

 65656565

<binding>
<name>listener</name>
<property-path>formListener</property-path>

</binding>
</bindings>

</component>
<component>

<id>inputName</id>
<type>TextField</type>
<bindings>

<static-binding>
<name>displayWidth</name>
<value>30</value>

</static-binding>
<static-binding>

<name>maximumWidth</name>
<value>100</value>

</static-binding>
<binding>

<name>text</name>
<property-path>survey.name</property-path>

</binding>
</bindings>

</component>
<component>

<id>inputAge</id>
<type>TextField</type>
<bindings>

<static-binding>
<name>displayWidth</name>
<value>4</value>

</static-binding>
<static-binding>

<name>maximumWidth</name>
<value>4</value>

</static-binding>
<binding>

<name>text</name>
<property-path>age</property-path>

</binding>
</bindings>

</component>
<component>

<id>inputSex</id>
<type>PropertySelection</type>
<bindings>

<binding>
<name>value</name>
<property-path>survey.sex</property-path>

</binding>
<binding>

<name>model</name>
<property-path>sexModel</property-path>

</binding>
<binding>

<name>renderer</name>

T A P E S T R Y T U T O R I A L

 66666666

<property-
path>components.inputSex.defaultRadioRenderer</property-path>

</binding>
</bindings>

</component>
<component>

<id>inputRace</id>
<type>PropertySelection</type>
<bindings>

<binding>
<name>value</name>
<property-path>survey.race</property-path>

</binding>
<binding>

<name>model</name>
<property-path>raceModel</property-path>

</binding>
</bindings>

</component>
<component>

<id>inputCats</id>
<type>Checkbox</type>
<bindings>

<binding>
<name>selected</name>
<property-path>survey.likesCats</property-

path>
</binding>

</bindings>
</component>
<component>

<id>inputDogs</id>
<type>Checkbox</type>
<bindings>

<binding>
<name>selected</name>
<property-path>survey.likesDogs</property-

path>
</binding>

</bindings>
</component>
<component>

<id>inputFerrits</id>
<type>Checkbox</type>
<bindings>

<binding>
<name>selected</name>
<property-

path>survey.likesFerrits</property-path>
</binding>

</bindings>
</component>
<component>

<id>inputTurnips</id>
<type>Checkbox</type>
<bindings>

<binding>

T A P E S T R Y T U T O R I A L

 67676767

<name>selected</name>
<property-

path>survey.likesTurnips</property-path>
</binding>

</bindings>
</component>

</components>
</specification>

Several of the components, such as inputName and inputTurnips, modify properties of the survey
directly. The SurveyPage class has a survey property, which allows for property paths like
survey.name and survey.likesTurnips.

The age field is more complicated, since it must be converted from a String to an int before being
assigned to the survey's age property ... and the page must check that the user enterred a valid
number as well.

Finally, the SurveyPage class shows how all the details fit together:

SurveyPage.java
package tutorial.survey;

import com.primix.tapestry.*;
import com.primix.tapestry.components.*;
import com.primix.tapestry.spec.*;
import java.util.*;

public class SurveyPage extends BasePage
{

private Survey survey;
private String error;
private String age;
private IPropertySelectionModel sexModel;
private IPropertySelectionModel raceModel;

public SurveyPage(IApplication application, ComponentSpecification
specification)

{
super(application, specification);

}

public IPropertySelectionModel getRaceModel()
{

if (raceModel == null)
raceModel = new EnumPropertySelectionModel(

new Race[]
{

Race.CAUCASIAN, Race.AFRICAN,
Race.ASIAN, Race.INUIT, Race.MARTIAN

}, page.getLocale(),
"tutorial.survey.SurveyStrings", "Race");

return raceModel;
}

T A P E S T R Y T U T O R I A L

 68686868

public IPropertySelectionModel getSexModel()
{

if (sexModel == null)
sexModel = new EnumPropertySelectionModel(

new Sex[]
{

Sex.MALE, Sex.FEMALE, Sex.TRANSGENDER,
Sex.ASEXUAL

}, getLocale(),
"tutorial.survey.SurveyStrings", "Sex");

return sexModel;
}

public IActionListener getFormListener()
{

return new IActionListener()
{

public void actionTriggered(IComponent component,
IRequestCycle cycle)

{
try
{

survey.setAge(Integer.parseInt(age));

survey.validate();
}
catch (NumberFormatException e)
{

// NumberFormatException doesn't provide
any useful data

setError(
"Value entered for age is not a number.");

return;
}
catch (Exception e)
{

setError(e.getMessage());
return;

}

// Survey is OK, add it to the database.

((SurveyApplication)getApplication()).getDatabase().addSurvey(survey
);

setSurvey(null);

// Jump to the results page to show the totals.

cycle.setPage("results");
}

};

T A P E S T R Y T U T O R I A L

 69696969

}

public Survey getSurvey()
{

if (survey == null)
setSurvey(new Survey());

return survey;
}

public void setSurvey(Survey value)
{

survey = value;
fireObservedChange("survey", survey);

}

public void detachFromApplication()
{

super.detachFromApplication();

survey = null;
error = null;
age = null;

// We keep the models, since they are stateless
}

public void setError(String value)
{

error = value;
}

public String getError()
{

return error;
}

public String getAge()
{

int ageValue;

if (age == null)
{
ageValue = getSurvey().getAge();

if (ageValue == 0)
age = "";

else
age = Integer.toString(ageValue);

}

return age;
}

public void setAge(String value)
{

age = value;

T A P E S T R Y T U T O R I A L

 70707070

}
}

A few notes. First, the raceModel and sexModel properties are created on-the-fly as needed. The
EnumPropertySelectionModel is a provided class that simplifies using a PropertySelection
component to set an Enum-typed property. We provide the list of possible values, and the
information needed to extract the corresponding labels from a properties file, in this case,
SurveyStrings.properties:

SurveyStrings.properties
Race.CAUCASIAN=Caucasian
Race.AFRICAN=African
Race.ASIAN=Asian
Race.INUIT=Inuit
Race.MARTIAN=Martian

Sex.ASEXUAL=Non-Sexual
Sex.MALE=Male
Sex.FEMALE=Female
Sex.TRANSGENDER=Transgender

Only survey is a persistent page property. The error property is transient (it is set to null at the
end of the request cycle). The error property doesn't need to be persistent ... it is generated during
a request cycle and is not used on a subsequent request cycle (because the survey will be re-
validated).

Likewise, the age property isn't page persistent. If an invalid value is submitted, then its value will
come up from the HttpServletRequest parameter and be plugged into the age property of the
page. If validation of the survey fails, then the SurveyPage will be used to render the HTML
response, and the invalid age value will still be there.

In the detachFromApplication() method, the survey, error and age properties are properly
cleared. The raceModel and ageModel properties are not ... they are stateless and leaving them in
place saves the trouble of creating identical objects later.

Results
Displaying results is broken up into two parts. In the first part, the database is queries for all
surveys, and totals in a number of categories are prepared.

In the second part, those interrum results are incorporated into the HTML response page.

Results.html
<jwc id="border">

Summary of <jwc id="insertSurveyCount"/> surveys:

<jwc id="e-results">
<jwc id="ifFirst">

<table border=0>

T A P E S T R Y T U T O R I A L

 71717171

<tr bgcolor=black>
<th>Result</th>
<th>Count</th>
<th>%</th>

</tr>
</jwc>
<jwc id="results-row">
<td>

<jwc id="insertResult"/>
</td>
<td>

<jwc id="insertCount"/>
</td>
<td align=right>

<jwc id="insertPercent"/>
</td>
</jwc>
<jwc id="ifLast">

</table>
</jwc>

</jwc>

</jwc>

This template shows how those results will be provided to a Foreach component (e-results) that
will iterate through them, and use a set of three Insert components. The ifFirst and ifLast
components are used to generate the start and end of the HTML table (if the results are empty
then the table doesn't get rendered at all).

The results-row component will take the place of the normal <TR> element in a table. It exists
to vary the HTML bgcolor attribute, alternating between white and grey backgrounds for
readability.

Results.jwc
<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry_1_0.dtd">

<specification>
<class>tutorial.survey.Results</class>

<components>
<component>

<id>border</id>
<type>Border</type>

<bindings>
<static-binding>

<name>title</name>
<value>Results</value>

</static-binding>

<binding>
<name>pages</name>

T A P E S T R Y T U T O R I A L

 72727272

<property-
path>application.pageNames</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertSurveyCount</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-

path>database.surveyCount</property-path>
</binding>

</bindings>
</component>

<!-- The results is a List of Maps. -->

<component>
<id>e-results</id>
<type>Foreach</type>

<bindings>
<binding>

<name>source</name>
<property-path>results</property-path>

</binding>
</bindings>

</component>

<component>
<id>ifFirst</id>
<type>Conditional</type>

<bindings>
<binding>

<name>condition</name>
<property-path>components.e-

results.first</property-path>
</binding>

</bindings>
</component>

<!-- This stands in for the TR element, but handles the
bgcolor. -->

<component>
<id>results-row</id>
<type>Any</type>

<bindings>
<static-binding>

<name>element</name>
<value>tr</value>

T A P E S T R Y T U T O R I A L

 73737373

</static-binding>

<binding>
<name>bgcolor</name>
<property-path>rowColor</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertResult</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-path>components.e-

results.value.name</property-path>
</binding>

</bindings>
</component>

<component>
<id>insertCount</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-path>components.e-

results.value.count</property-path>
</binding>

</bindings>
</component>

<component>
<id>insertPercent</id>
<type>Insert</type>

<bindings>
<binding>

<name>value</name>
<property-path>components.e-

results.value.percent</property-path>
</binding>

</bindings>
</component>

<component>
<id>ifLast</id>
<type>Conditional</type>

<bindings>
<binding>

<name>condition</name>

T A P E S T R Y T U T O R I A L

 74747474

<property-path>components.e-
results.last</property-path>

</binding>
</bindings>

</component>

</components>

</specification>

The presentation relies on the Java class providing a results property. This property is a List of
Maps. Each Map has three keys: name, count and percent. The rest of the logic is simply to break
apart this List into Maps (as property-path components.e-results.value), and to pull out the values
for the three keys.

Creating this results property consumes the bulk of the class:

Results.java
package tutorial.survey;

import com.primix.tapestry.*;
import java.util.*;
import com.primix.tapestry.spec.*;
import java.text.*;
import java.awt.Color;

public class Results extends BasePage
{

private SurveyDatabase surveyDatabase;
private boolean oddRow = false;
private NumberFormat percentFormat;

public Results(IApplication application, ComponentSpecification
specification)

{
super(application, specification);

}

public SurveyDatabase getDatabase()
{

if (surveyDatabase == null)
{

SurveyApplication surveyApplication;

surveyApplication = (SurveyApplication)application;

surveyDatabase = surveyApplication.getDatabase();
}

return surveyDatabase;
}

public void detachFromApplication()
{

super.detachFromApplication();

T A P E S T R Y T U T O R I A L

 75757575

surveyDatabase = null;
oddRow = false;

}

public String getRowColor()
{

Color color;
String result;

if (oddRow)
color = Color.lightGray;

else
color = Color.white;

result = RequestContext.encodeColor(color);

oddRow = !oddRow;

return result;
}

public List getResults()
{

int raceAfrican = 0;
int raceAsian = 0;
int raceCaucasian = 0;
int raceInuit = 0;
int raceMartian = 0;
int sexAsexual = 0;
int sexFemale = 0;
int sexMale = 0;
int sexTransgender = 0;
int likesCats = 0;
int likesDogs = 0;
int likesFerrits = 0;
int likesTurnips = 0;
int ageToTeen = 0; // 1 - 18
int ageEarlyAdult = 0; // 19 - 28
int ageToMiddle = 0; // 29 - 35
int ageMiddle = 0; // 36 - 49
int ageOlder = 0; // 50 - 64
int ageRetire = 0; // 65 - 80
int ageOld = 0; // 81 - 100
Survey[] surveys;
Survey survey;
List result;
Race race;
Sex sex;
int count;
int i;
int age;

surveys = getDatabase().getAllSurveys();
if (surveys == null ||

surveys.length == 0)
return null;

T A P E S T R Y T U T O R I A L

 76767676

count = surveys.length;
for (i = 0; i < count; i++)
{

survey = surveys[i];

race = survey.getRace();
if (race == Race.AFRICAN)

raceAfrican++;

if (race == Race.ASIAN)
raceAsian++;

if (race == Race.CAUCASIAN)
raceCaucasian++;

if (race == Race.INUIT)
raceInuit++;

if (race == Race.MARTIAN)
raceMartian++;

sex = survey.getSex();
if (sex == Sex.MALE)

sexMale++;

if (sex == Sex.FEMALE)
sexFemale++;

if (sex == Sex.TRANSGENDER)
sexTransgender++;

if (sex == Sex.ASEXUAL)
sexAsexual++;

if (survey.getLikesCats())
likesCats++;

if (survey.getLikesDogs())
likesDogs++;

if (survey.getLikesFerrits())
likesFerrits++;

if (survey.getLikesTurnips())
likesTurnips++;

age = survey.getAge();

if (age < 19)
ageToTeen++;

if (age >= 19 && age <= 28)
ageEarlyAdult++;

if (age >= 29 && age <= 35)
ageToMiddle++;

T A P E S T R Y T U T O R I A L

 77777777

if (age >= 36 && age <= 49)
ageMiddle++;

if (age >= 50 && age <= 64)
ageOlder++;

if (age >= 65 && age <= 80)
ageRetire++;

if (age >= 81)
ageOld++;

}

result = new ArrayList();

result.add(buildResult("Sex : Male", sexMale, count));
result.add(buildResult("Sex : Female", sexFemale, count));
result.add(buildResult("Sex : Transgender", sexTransgender,

count));
result.add(buildResult("Sex : Asexual", sexAsexual, count));

result.add(buildResult("Race : Caucasian", raceCaucasian,
count));

result.add(buildResult("Race : African", raceAfrican, count));
result.add(buildResult("Race : Asian", raceAsian, count));
result.add(buildResult("Race : Inuit", raceInuit, count));
result.add(buildResult("Race : Martian", raceMartian, count));

result.add(buildResult("Age: to 18", ageToTeen, count));
result.add(buildResult("Age: 19 - 28", ageEarlyAdult, count));
result.add(buildResult("Age: 29 - 35", ageToMiddle, count));
result.add(buildResult("Age: 36 - 49", ageMiddle, count));
result.add(buildResult("Age: 50 - 64", ageOlder, count));
result.add(buildResult("Age: 65 - 80", ageRetire, count));
result.add(buildResult("Age: 80 and up", ageOld, count));

result.add(buildResult("Likes cats", likesCats, count));
result.add(buildResult("Likes dogs", likesDogs, count));
result.add(buildResult("Likes ferrits", likesFerrits, count));
result.add(buildResult("Likes turnips", likesTurnips, count));

return result;
}

private Map buildResult(String name, int count, int total)
{

Map result;

result = new HashMap(3);
result.put("name", name);
result.put("count", new Integer(count));

if (percentFormat == null)
percentFormat =

NumberFormat.getPercentInstance(getLocale());

T A P E S T R Y T U T O R I A L

 78787878

result.put("percent", percentFormat.format((double)count /
(double)total));

return result;
}

}

T A P E S T R Y T U T O R I A L

 79797979

Further Study
The preceding chapters cover many of the basic aspects of Tapestry. You should be comfortable
with basic Tapestry concepts:

• Seperation of presentation, business and control logic

• Use of JavaBeans properties as the source of dynamic data

• How bindings access JavaBeans properties to provide data to components

• How components wrap each other, allowing for the creation of very complicated
components

• Different types of page properties (transient, dynamic, persistent)

Tapestry is capable of quite a bit more. Also available within the Tapestry Examples package
(along with the tutorial code and this document) is the Primix Virtual Library application (Vlib).

Vlib is a full-blown J2EE application, that makes use of Tapestry as its front end, and a set of
session and entity Enterprise JavaBeans as its back end.

Vlib also demonstrates some of the other aspects of developing a Tapestry application. It shows
how to create pages that are bookmarkable (meaning that their URL includes enough information
to reconstruct them in a subsequent session). It shows how to handle logging in to an application,
and how to protect pages from being accessed until the user is logged in. It also shows how to
manage EJB references and handles.

Chapter

	Setting up the Tutorial Project
	ServletExec Debugger
	Application Object
	Application Servlet
	Application Specification
	Home Page Specification
	Home Page Template
	Launch ServletExec Debugger
	Launching the Application
	Adding Interactivity using Listeners
	Persistant Page State and Page Pooling
	Dynamic Page State
	Stale Sessions
	Exception Handling
	Changing templates and specifications
	Specification View
	Components View
	Template View
	Properties View
	Survey
	SurveyDatabase
	SurveyApplication
	SurveyPage
	Results

