PRIMIX SOLUTIONS

Core Labs

Tapestry
Tutorial

CORE LABS

Tapestry Tutorial

© Primix Solutions
One Arsenal Marketplace
Phone (617) 923-6639 ¢ Fax (617) 923-5139

Table of Contents

Lintroduction 2l
lSettj.ng_up_Kawa_and_l
ber.v.letExec_D.ebugger—ﬂ
|! . | POt |
LEETV"'E‘[‘E’(‘EC‘B‘EUU‘Q‘Q‘EI—GJ

Llnlln \Aorld 1 ﬂl
AppticatiorrSbject J.UI
AppticatiorrServiet J.J.I

ByrmarmmcPageState 32

State-Sessions 33

ExceptiomHardting 3%

IA plication ’27'
T

AppticatiomrSpecification T+ |_hampI@;Em:ms_and_O.L¢pu.t_4.Z|

HomePageSpecification 12

I-rome-Pa-ge+errrp1-a-re—r2]
I_—crurrch'ﬁervfetﬁxetﬁebuggm—rsj

hyn:\mir\ Content 1 Rl
. . |
Eaorrectimg the Apptication 29

- |
[|

Pooting 30

Survey 56
SurveybDatabase ot+|
SurveyApptcation o4|
SurveyPage DDI
Resuits 01+|

I:Ill’fhﬂr Q'hlr*l\}/ 7’)|

TAPESTRY TUTORIAL

Introduction

T apestry is a new application framework developed at Primix Solutions.

Tapestry uses a component object model to represent the pages of a web application.
This is similar to spirit to using the Java Swing component object model to build GUIs.

Just like using a GUI toolkit, there's some preparation and some basic ideas that must be cleared
before going to more ambitious things. Nobody writes a word processor off the top of their head
as their first GUI project; nobody should attempt a full-featured e-commerce site as their first
attempt at Tapestry.

The goal of Tapestry is to eliminate most of the coding in a web application. Under Tapestry,
nearly all code is directly related to application functionality, with very little “"plumbing™. If you
have previously developed a web application using Microsoft Active Server Pages, JavaServer
Pages or Java Servlets, you may take for granted all the plumbing: writing servlets, assembling
URLSs, parsing URLS, managing objects inside the session, etc.

Tapestry takes care of nearly all of that, for free. It allows for the development of rich, highly
interactive applications.

This tutorial will start with basic concepts, such as the "Hello World" application, and will
gradually build up to more sophisticated examples.

These examples were developed using the Kawa IDE, JDK 1.2.2 and ServletExec Debugger 2.2.

TAPESTRY TUTORIAL

Setting up Kawa and
ServletExec Debugger

Before we can get started writing servlets, we must have an environment
for running them.

D\ Wor k. If this is not convenient, any directory may be chosen, but the reader will be

F irst, create a working directory. In these examples, we'll use the working directory
responsible for adjusting the paths appropriately.

Directories within the working directory each store a Kawa project. In addition, the directory
D\ Wor k\ 1i b will contain copies of several Jar files needed when compiling and executing the
tutorial.

Jar Description

gnu-regexp.jar GNU Regular Expression parser for Java, version 1.0.8. Used by the
Tapestry framework.

Xerces.jar Xerces XML parser, available from apache.org.

ServletExecDebugger.jar ServletExec Debugger, version 2.2. Includes the Java Servlet API
version 2.1.1.

Tapestry.jar Tapestry framework.

PrimixFoundation.jar PrimixFoundation framework (provides supporting classes for
Tapestry).

Extract the Tutorial files to D: \ Wor k\ Tut ori al . You may have received the Tutorial files in a
Zip file, or you may check them out of the CVS repository using WinCVS.

TAPESTRY TUTORIAL

Setting up the Tutorial Project

Start with an empty Kawa workspace:

E Kawa

Eile Edt “iew Test Proect Buld Packages Info Customize

[= E ﬁl J'E E“attrihuteg j
W= S

512
=423 kawa Frojects

Now, create the Tutorial project by selecting Project * New ... from the menu.

Navigate into the D:\ Work\ Tut ori al directory, and enter Tutori al . kpx to create the new
Project (you must specify the extension because of the naming conflict with the tutorial directory).

NewProject @R
Save in: IﬁTUthiEﬂ = ﬁl
|1 tutorial

File name: ITutu:uriaI.kp:-c Save I
Save as type: IKawa Files [* kpx) j Cancel |

You now have a Kawa Project with no Java files. We'll now set up a list of files for the Tutorial
project:

Select the Tutorial project, then select Project » Add Directory ... from the menu.

We want to pick up not just the Java source files, but also Tapestry component specification files
(jwc), application specification (.application) and HTML templates (.html).

TAPESTRY TUTORIAL

AddDirectory Ed

Directaries:
o: ok Stutornal
Cancel
= dh = =N
[= wark
= Tutonal
£ tutarial

File Types separated by '

I". java;” jwe;” himl:, applicatior]

Dinives:

I = d j M etwork... |

Kawa will locate these files and organize them into appropriate folders. You can then expand
some folders to see the contents:

Kawa - kawa - Tutonal - [D:\.. \hello\HelloWorldS ervlet. java)

== File Edt Wiew Text Project Buld Packages [nfo Customize

D& @@ + 5 B ||[BooksFor ~|| &
I S At B T
B 5| 2 |

= tutanial
+- 2] adder
+-\2] border
=14 hello
B Helcworld application
—-B HeloWorlddpplication java
+-M Hellworldépplication extends Simplefipplicz
=B HeloworldServlet.java
+- MM HelldworldS erviet extends Application’S ervlel
B Home html
B Homejwc

B Makefie -
“| | b

Now we have to setup the class path for compiling this project.

L]

Select the Tutorial project and then choose Project * Classpath ... from the menu.

Initially, the class path is empty (except for classes provided by the JDK):

TAPESTRY TUTORIAL

Project clazzpath |

— Current Clazspath Setup

fawell

Fi e [Er

ElEte

LR L

KN i
—Add/Mew Claszzpath
| alell] csfziz
Add Dir... | Add File... Optiorns... | [Earicel |

(] | Cancel

We need to add a few Jar files to the class path. Click on the "Add File..." button towards the
bottom of the panel:

You can select multiple files by holding down the control key while clicking:

select File to Add 7| x|

Look in: |ﬁ lits j = EF -
griu-reqexp. jar @ SessionTracker-deploy jar »

@ j2ee.jar . Tapeskry.jar

@ log. jar @ Tesks.jar
PrimixFoundation. jar @ Tutarial jar

@ ServletExecDebugger. jar @ YlibEeans,jar

@ SessionTracker.jar @ YWlibEeans-deploy . jar

Jl | i

File name: I":-ceru:es.iar" "Primi=F oundation.jar'" ''T apesty. jar' Dpen I
Files of type: [Jar Files [*jar) =] Cancel |

Change i g
Directory to I j Project Dir |

After returning to the previous panel, click "Update". The Jar files selected will be added to the
class path:

A

TAPESTRY TUTORIAL

Project classpath |

— Current Clazspath Setup

FaD: workh
[w] O Sfork slibhS ervletE secDebugger. jar
[w| D Sforkslibhgnu-regesp.jar

[w| O Sk SiESP rimisF oundation. jar

[w| D Sforklibhmerces.jar Delete

fave g

tave Down

i

i
—&dd/Mew Clazzpath
D ~Work-lib~Tapestrv. jar fdddpdate
Add Dir... Add File... Options... | Cancel |

ak.

Cancel |

The order may be different, but that's irrelevant to Kawa and to the JDK. Kawa allows Jars to be
easily added to or removed from the class path using the checkboxes, but we want all of these
Jars.

You can set many compilation options from within Kawa. Select the Tutorial project and choose
Project » Compiler Options... from the menu.

TAPESTRY TUTORIAL

Java Options

Compiler l Interpreter] Javadu:u:]

Compilation output directony [-d)

=]

Debugging tables [-g)

Don't dizplay warmnings [-nowarnk

Optimize compiled code [-0]
Printz out meszages [-verboze]
Deprecated AP [-deprecation]

Custom options [sent as is] -

A L S S Y I A

=1»|

Ok | Cancel |

Turn on debugging output (for later, when we use Kawa to debug our application).

The project should now be compiled using the Project » Rebuild All or Project * Rebuild Dirty
menu items.

ServietExec Debugger

ServletExec Debugger requires setting up two directories outside of the IDE. The first directory
Is where ServletExec Debugger stores configuration information about the different servlets. The
second directory is the "web server" root directory (ServletExec Debugger acts as a simple web
server, providing access to static resources such as GIF files as well as dynamic content from
servlets).

You don't need to create these directories first; ServletExec Debugger will create them the first
time it starts up.

In my case, D: \ Wor k was my main working directory, so I used D:\ Wr k\ Ser vl et Debug for
configuration, and the project directory as my web server root directory.

TAPESTRY TUTORIAL

If you chose to put these files in a different directory, you'll have to adjust some of the examples
in later chapters.

When we want to run or debug our applications, we don't execute a specific class for our
application, we instead run the ServletExec Debugger, which acts as a simple web server and
servlet container.

To set this up, you must select the Project * Interpreter Options ... menu item, and update the
command line arguments and Java class name.

Java Options

Compiler Interpreter l Javadoc]

Basic l Advanced]

[Debug [-debug)

[Mo Garbage Collection [-noaspncge)
[Yerbose GC [-verbosegc)

[“erbose mode [-verboze)

[+ Command Line Arguments

|-h-:ume . AServletDebug -root ﬂ ﬂ
[v JavaClazs Name to Bun

|newatlanta.sedebugger.SewletE wecD ebugger

[Ewecute program in directon

| Bl

[Custom Options sent as is including JOB

ak. | Cancel

Don't forget to click the checkboxes; as with the class path, Kawa allows you to easily include or
exclude options used when running the program using those checkboxes; if they aren't checked,
the option won't be included.

TAPESTRY TUTORIAL

Hello World

We will develop a very simple, completely static web application as an
introduction to the basic concepts of Tapestry.

have any real functionality but it'll demonstrate the simplest possible variation of a number

I n this first example, we'll create a very simple "Hello World" kind of application. It won't
of key aspects of the framewaork.

Even this simple Tapestry application requires two objects:
» -An application object that runs our (very simple) application
» Aservlet that bridges between the servlet container and our application

After that, we'll define our application, define the lone page of our application, configure
everything and launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, ie,
D:\Work\ Tutorial\tutorial\hello.

Application Object

As each new client connects to the application, an instance of the application object is created for
them. The application object is used to track that client's activity within the application.

The application object is an instance, or subclass of, the Tapestry class
com prim x.tapestry. app. Si npl eAppl i cati on.

In these first few examples, we have no additional behavior to add to the provided base class, so
we simply use Si npl eAppl i cat i on as our application’s class.

10

TAPESTRY TUTORIAL

Application Servlet

The application servlet is a "bridge" between the servlet container and the application object. Its
job is simply to create (on the first request) or locate (on subsequent requests) the application
object.

The application servlet must subclass com.primix.tapestry.ApplicationServlet and implement two
methods: getApplicationSpecificationPath() and createApplication(). The first method provides
the path to the application specification file; the servlet reads this file when it is initialized.

The second method creates the application instance (on the first request from the client).
Tapestry will store the application instance into the HttpSession so that it will be available on
subsequent requests from the client.

HelloWorldServlet.java

package tutorial . hello;

i mport com primx.tapestry.*;
i mport com primXx.tapestry. app. *;

public class Hell oWrl dServl et extends ApplicationServl et

{ protected String getApplicati onSpecificationPath()
{ return "/tutorial/hello/HelloWrld.application";
}
protected | Application createApplicati on(Request Cont ext context)
{ return new Sinpl eApplication(context, null);
: }

Application Specification

The application specification is used to describe the application to the Tapestry framework. It
provides the application with a name, and a list of pages.

This specification is a file that is located on the Java class path. In a deployed Tapestry
application, the specification lives with the application's class files: either in a Jar file, or in the
VEB- | NF/ ¢l asses directory of a war (Web Application Archive).

HelloWorld.application

<?xm version="1.0"?>

<! DOCTYPE appl i cati on PUBLI C
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.conm dtd/ Tapestry 1 0.dtd">

<appl i cati on>
<nanme>Hel | o Worl d Tut ori al </ nane>

11

TAPESTRY TUTORIAL

<page>
<nane>Home</ name>
<speci ficati on-path>/tutorial/hell o/ Hne.jwc
</ speci fi cati on- pat h>
</ page>
</ applicati on>

Our application is very simple; we give the application a name and define a single page, named
"Home" and identify the component that is used for that page. In Tapestry, components are
specified with the path to their specification file (a file that end with ' jwc').

Page "Home" has a special meaning to Tapestry; when you first launch a Tapestry application, it
loads and displays the "Home" page. All Tapestry applications are required to have such a home

page.

Home Page Specification

The page specification defines the Tapestry component responsible for the page. In this first
example, our component is very simple:

<?xm version="1.0""?>

<! DOCTYPE speci fi cation PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>com pri m x. t apest ry. BasePage</ cl ass>
</ speci fi cati on>

This simply says that Home is a kind of page. We use the supplied Tapestry class
com pri m x. t apest ry. BasePage since we aren't adding any behavior to the page.

Home Page Template

Finally, we get to the content of our application. This file is also a Java resource; it isn't directly
visible to the web server. It has the same location and name as the component specification,
except that it ends in "html",

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM_ 4.0 Transitional //EN'>

<htm >
<head>
<title>Hello Wrld</title>
</ head>
<body>

Wl conme to your first Tapestry Application.

12

TAPESTRY TUTORIAL

</ body>
</htm >

Launch ServletExec Debugger

The ServletExec Debugger server is launched using the "Run Java" toolbar button, by selecting
Build » Run from the menu, or by hitting F4.

Tool: EJBE Window Help
hh |0 Sé %@%"‘

Once launched, the output window will show the progress as the server starts up:

C\jdkl.2.2\bin\java.exe newatl anta. sedebugger. Servl et ExecDebugger - hone
../ Servl et Debug -r oot
Wrking Directory - D \Wrk\Tutorial\
Class Path -
D:\Work\Ilib\Tapestry.jar; DD\Wrk\Ilib\jaxp.jar; D\Wrk\Iib\parser.jar; D \Wr
k\I'i b\ Ser vl et ExecDebugger . j ar; D: \ Wor k\ I i b\ gnu-
regexp.jar;.;d:\tool s\ Kawa5. Obet al\ kawacl asses. zi p; C:\jdk1. 2. 2\l i b\t ool s. j a
r;C\jdkl.2.2\jre\lib\rt.jar;C\jdk1l.2.2\jre\lib\i18n.jar
New At |l anta Servl et Exec Debugger 2.2
Copyright (c) 1997-1999 New Atl anta Communi cations, LLC
Al rights reserved. htt p: // ww. newat | ant a. conf
ServletExec 2.2 initialized
Servl et Exec Servl et Exec |istening on port 8080

Like any servlet engine, servlets must be configured before they can be invoked. ServietExec
Debugger includes a servlet for administrating and configuring its environment. This is accessed
with the following URL:

http://I1 ocal host: 8080/ servl et/ adm n

The administration interface allows several aspects of the servlet container to be managed; we're
mostly interpreted in mapping servlets to Java servlet classes, and to mapping URL fragments to
servlets.

13

TAPESTRY TUTORIAL

3 ServietE xec Admin - Microzoft Internet Explorer

| Ele Edt View Favoites TIooks Help

J = - m - @ A | (%] @ | E) Js‘-‘t;ldress @ hitp: /Mlocalho st 8080/ servietadmin

ServletExec

Help

Register
About

View Logs

Serviets

Configure
Aliases
Filters

Logging

Server-Side

ServletExec” Ad:
Configure Servlets

Enter data into the top (blank) form to configure a new servl
existing serviets. To delete a serviet, edit its data so all text £
15 available at the bottom of the page.

Servlet Name: I

Servlet Class: |

Cnde Rase: |

We need to create a new servlet named "HelloWorld" that maps to the Java servlet class we've

created:

servlet Wame: |HEIIDWDrId

Servlet Class: [tutorial hello. HelloWarldSenlet

Code Base: ||

Initialization
Arguments:

Init Load Order: I

=

[" Loaded Submit | Reset |

Next we need to create a URL alias for the servlet:

14

TAPESTRY TUTORIAL

Servlets
Configure
Filters
Loggi
Alias Servlet Name(s)
|hello [Hellowarld

LI U

Finally, we can use the servlet alias to build a URL.:

phttp://1 ocal host: 8080/ hel | of

Which will result in the following page:

#¥ Hello World - Microsoft Intemet Explorer
| Eile Edt View Favertes Tools Hel |

|&e-2 -0 4|53 S | |adies @] b/ focahost5060/helo =] || Links |

Welcotne to vour first Tapestry Application,

-

|E] Daone ' | |_'I"ﬂ Local infranet i

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's
a start. Remember, there was no JavaServer page here, and now HTML directly visible to the
web server. There was an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

15

http://localhost:8080/hello

TAPESTRY TUTORIAL

Dynamic Content

This example will add a tiny amount of interactivity, as well as some very
simple dynamic content ... content that is different each time the ‘page’ is
viewed.

n this section, we'll create a new web application that will show some dynamic content. We'll
also begin to show some interactivity by adding a link to the page.

Our dynamic content will simply be to show the current date and time. The interactivity will
be a link to refresh the page. It all looks like this:

<} Simple - Microzoft Intemnet Explorer

-2 -Qd 3 A |_Agd:ass [€] hitp:/ o alhost 8080/ simple =] | Links
=l

This application demonstrates some dynamic behawor using Tapestry components
The cwrent date and tme 15: Tue Jul 11 14:23:53 EDT 2000

Chclc here to refresh.

=

&) Done " [Ta Local intraret g

Clicking the word "here™ will update the page showing the new data and time. Not incredibly
interactive, but it's a start.

The code for this section of the tutorial is in the package tutorial.simple.

16

TAPESTRY TUTORIAL

We need to create a new servlet and application object, but they're almost identical to our earlier
ones (only the parts marked in blue are different). The real action in this section will be the new
version of the home page.

SimpleServlet.java

package tutorial . sinple;

i mport com primx.tapestry.*;
i mport com primXx.tapestry.app.*;

public class SinpleServlet extends ApplicationServl et

{ protected String get Applicati onSpecificati onPath()
{ return "/tutorial/sinplelSinple.application”
}
protected | Application createApplicati on(Request Cont ext context)
{ return new Sinpl eApplication(context, null);
; }

The bold text identifies the only significant changes from the previous HelloWorldServlet class.

The application specification is also straight forward:

Simple.application
<?xm version="1.0"?>
<! DOCTYPE applicati on PUBLI C
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<appl i cati on>
<nane>Si npl e Tutori al </ nanme>

<page>
<name>Hore</ nane>
<speci fication-path>/tutorial/sinple/Hone.jw
</ speci fi cati on- pat h>

</ page>

</ application>

Things only begin to get more interesting when we look at the HTML template for the home
page:

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<ht m >
<head>
<title>Sinple</title>

17

TAPESTRY TUTORIAL

</ head>

<body>

This application denonstrates some dynam c behavi or usi ng Tapestry
conponent s.

<p>The current date and tine is: <jwc id="insertDate"/>
<p>dick <gwe id="refresh">here</jwc> to refresh

</ body>
</htm >

This looks like ordinary HTML, except for the special <jwc> tags (shown in bold). "jwc" is an
abbreviation for "Java Web Component"; these tags are placeholders for the dynamic content
provided by Tapestry components.

We have two components. The first inserts the current date and time. The second component
creates a hyperlink that refreshes the page.

One of the goals of Tapestry is that the HTML should have the minimum amount of special
markup. This is demonstrated here ... the <jwc> tags blend into the standard HTML of the
template. We also don't confuse the HTML by explaining exactly what an insertDate or refresh
is; that comes out of the specification (described shortly). The ids used here are meaningful only
to the developer, the particular type and configuration of each component is defined in the
component specification.

Very significant is the fact that a Tapestry component can wrap around other elements of the
template. The refresh component wraps around the word "here”. What this means is that the
refresh component will get a chance to emit some HTML (an <a> hyperlink tag), then emit the
HTML it wraps (the word "here"), then get a chance to emit more HTML (the "" closing

tag).

What's more important is that the component can not only wrap static HTML from the template
(as shown in this example), but may wrap around other Tapestry components ... and those
components may themselves wrap text and components, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more
components inside of it. In a real application, the single page of HTML produced by the
framework may be the product of dozens of components, effectively "weaved™" from dozens of
HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static
HTML that will be passed directly back to the client web browser, with a few placeholders (the
<jwc> tags) for where dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data
moves between the application, page and any components.

<?xm version="1.0"?>

18

TAPESTRY TUTORIAL

<! DOCTYPE speci fi cation PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci ficati on>
<cl ass>tutorial . si npl e. Hone</ cl ass>

<conponent s>
<conponent >
<i d>i nsert Dat e</ i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<pr opert y- pat h>curr ent Dat e</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id>refresh</id>
<t ype>Page</t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<name>page</ nanme>
<val ue>Horne</ val ue>
</static-bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

</ speci fi cati on>

Here's what all that means: The Home page is implemented with a custom class,
tutorial.simple.Home. It contains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to
specify what should be inserted into the HTML produced by the page. The insertDate
component has its value parameter bound to a JavaBeans property of its container (the page), the
currentDate property.

The refresh component is type Page, meaning it creates a link to some other page in the
application. Page components have a parameter, also named page, which defines the name of the
page to navigate to. The name is matched against a page named in the application specification.

In this case, we only have one page in our application (named "Home™), so we can use a static
binding for the page parameter.

That just leaves the implementation of the Home page component:

19

TAPESTRY TUTORIAL

Home.java

package tutorial . sinple;

i mport java.util.*;
i nport com prim Xx.tapestry. spec. *;
i mport com primXx.tapestry.*;

public class Hone extends BasePage

{
public Home(l Application application
Conmponent Speci fi cati on conponent Speci fi cati on)
{

super (appl i cati on, conponent Speci ficati on);

public Date get CurrentDate()
{

return new Date();

}
}

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate
that the insertDate component needs. When asked for the current date, the Home object returns
a new instance of the j ava. uti | . Dat e object.

The insertDate component converts objects into strings by invoking t oSt ri ng() on the object.
Now all the bits and pieces are working together.

To run this new Tapestry application, you'll have to map servlet 'Simple’ to class
'tutorial.simple.SimpleServlet' and map alias '/simple’ to servlet 'Simple’. You can then use the
following URL to try out the dynamic web application:

http://I ocal host: 8080/ si npl e

Run the application, and use the View Source command to examine the HTML generated by
Tapestry:

<I DOCTYPE HTM. PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<ht m >
<head>
<title>Sinple</title>
</ head>
<body>

This application denonstrates some dynam c behavi or usi ng Tapestry
conponent s.

<p>The current date and time is: Wed Jul 19 10:48: 26 EDT 2000</ b>

<p>d i ck
here</ a> to refresh

</ body>
</htm >

20

TAPESTRY TUTORIAL

This should look very familiar. Text which was generated dynamically, by Tapestry components,
is in bold font. As you can see, Tapestry not only inserted simple text (the current date and time,
obtained from an j ava. uti | . Dat e object), but the refresh component inserted the <a> and
</ a> tags, and created an appropriate URL for the href attribute.

21

TAPESTRY TUTORIAL

Interactive Application

A more ambitious example, we'll build a simple adding machine.

will demonstrate many of the more interesting features of Tapestry, including

N ow it's time to build a real, interactive application. We'll still use just a single page, but it
maintenance of server side page state.

Our application allows the user to sum up a list of numbers.

fa' Adder Tutonal - Microzoft Intemet Exploraer

| File Edi View Favoites Took Help

|- = - 2] o} | S = “A,dd'resslﬁ hitp: A flocabost B0E0/ adderd aclionFome1 A0 ﬂ |_Unks”

=
Value: |
At [ist
Items
2.0
FR
2.6
_ /|
2] Dore T8t Local intranet y

The user enters a number into the value field and clicks "Add to list". The number is added to the
list of items and factored into the total.

A Form component containing a TextField component will be used to collect information from

the user. A Foreach component will be used to run though the list of items, and Insert
components will be used to present each item in the list, as well as the total.

If the user enter in a non-number, then an error message is displayed.

22

TAPESTRY TUTORIAL

/3 Adder Tutorial - Microsoft Internet Explorer 10| x|
J File Edit Wiew Fawvorites Tools Help |
| &~ - Q| 68| S || addess [£] hpy127.0.0,1:8080)adderctionjhomef1jo] | |Links
-
Please enter a valid number, ‘
Walue: IfDD
Add to list |
Items
187
187
|-
|&] Done I_l_lﬂ Internst v

As with the previous examples, the servlet and application objects are simple variations on the
previous two sets (they are ommited here).

The application specification is, likewise, a variation on the prior example.
The code for this section is in the tutorial.adder package.
We'll start with the HTML template for the home page:

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<ht m >
<head>
<title>Adder Tutorial</title>
</ head>
<body>

<jwc id="ifError">
<t abl e border=1>

<tr>
<td bgcol or=red>

<jwc id="insertError"/>
</ span>
</td>
</tr>
</t abl e>
<p>
</jwc>

<jwc id="forni>

23

TAPESTRY TUTORIAL

<t abl e>
<tr>
<td align=right>Val ue: </td>
<t d><j wc id="i nput Newval ue"/></td>
</[tr>
<tr>
<td> </td>
<t d><i nput type=subnit value="Add to list"></td>
</tr>
</t abl e>

</jwc>

<t abl e>
<tr> <th>ltems</th> </tr>
<jwe id="e">
<tr align=right>
<t d>
<jwc id="insertCurrent Val ue"/>
</td>
</tr>
</jwc>

<tr align=right>
<t d>
<hr >

<jwc id="insertTotal "/>
</td>
</[tr>
</tabl e>

</ body>
</htm >

Again, Tapestry takes care of most of the details. The form component will turn into an HTML
<FORM> element, and the correct URL is automatically generated. The textfield component
will become an <INPUT TYPE=TEXT>, with the necessary smarts to collect the value
submitted by the user and provide it to the page.

The e component is a Foreach, used for running through a list of elements (supplied as a List,
Iterator or an array of Java objects). We've already see the Insert component.

Next we have the specification:

<?xm version="1.0"?>
<! DOCTYPE speci fication PUBLIC "-//Prim x Sol utions//Tapestry Specification
1.0/ /EN'

"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci ficati on>
<cl ass>tutori al . adder . Hone</ cl ass>

<conponent s>

24

TAPESTRY TUTORIAL

<conponent >
<id>ifError</id>
<t ype>Condi ti onal </ type>

<bi ndi ngs>
<bi ndi ng>
<nane>condi ti on</ nane>
<property- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<id>i nsertError</id>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr operty- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>f ornmx/i d>
<t ype>For nx/ t ype>

<bi ndi ngs>
<bi ndi ng>
<name>| i st ener </ nanme>
<pr operty- pat h>f or nLi st ener </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Newval ue</i d>
<t ype>Text Fi el d</type>

<bi ndi ngs>
<bi ndi ng>
<nane>t ext </ name>
<pr opert y- pat h>newVal ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>e</i d>
<t ype>For each</t ype>

<bi ndi ngs>
<bi ndi ng>
<name>sour ce</ name>
<pr operty- pat h>i t ens</ property- pat h>
</ bi ndi ng>

25

TAPESTRY TUTORIAL

</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Current Val ue</i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<pr operty- pat h>conponent s. e. val ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsertTotal </i d>
<type>l nsert</type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<property- pat h>t ot al </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

</ speci fi cati on>

We only want to display the error message if there is one, so the ifText is conditional on there
being a non-null error message (the Conditional component treats null as false).

For the form component, all we have to do is supply a listener, an object that is informed when
the form is submitted.

For the textfield component, we provide a text parameter that provides the default value for the
<INPUT> element, as well as a place to put the value submitted on the form. This must be of
type java.lang.String, so we need to do a little translation (in our Java class), since internally we
want to store the value as a double.

For the e component, we supply a binding for the source parameter. For each item in the source
list, it will update its value property, which is later accessed by the Insert component. The
property path components.e.value accomplishes this: the page has a component property, which
is a Map of the components on the page. e is the id of a component, and a key in the Map. It has
a property named value, which is the current item from the source list.

A Foreach also has a parameter named value. By creating a binding for this parameter, the
Foreach can update a property of the page, or some other component. This is more commonly
used when the items in the list are business objects and the application needs to invoke business
methods on them.

Finally, the Java code for the home page puts everything together:

26

TAPESTRY TUTORIAL

Home.java

package tutorial . adder;

i mport com primx.tapestry.*;

i mport com prim x.tapestry. conponents. *;
i nport com prim Xx.tapestry. spec. *;

i mport java.util.*;

public class Hone extends BasePage

{

private List itens;
private String newal ue;
private String error;

public Home(l Application application, Conponent Specification
speci fi cation)

{

super (appl i cati on, specification);

public List getltens()

{
return items;
}
public void setltens(List val ue)
{
items = val ue;
fireCbservedChange("itens", val ue);
}
public void set Newal ue(String val ue)
{
newval ue = val ue;
}
public String get Newal ue()
{
return newval ue;
}
public void detachFromAppl i cation()
{
itens = null;
newal ue = nul | ;
error = null;
super . det achFromAppl i cati on();
}
public void addlten(doubl e val ue)
{
if (itens == null)
{

items = new Arraylist();

27

TAPESTRY TUTORIAL

fireCbservedChange("itens", itens);

}

i tenms. add(new Doubl e(val ue));

fireCbservedChange();

}
publ i c doubl e get Tot al ()
{
Iterator i;
Doubl e item
doubl e result = 0.0;
if (itens !'= null)
{
i =itens.iterator();
whil e (i.hasNext())
{
item = (Doubl e)i.next();
result += item doubl eVal ue();
}
}
return result;
}
public | ActionListener getFornListener()
{

return new | Acti onLi st ener ()

{
public void actionTriggered(l Conponent conponent,
| Request Cycl e cycl e)

{
try
{
doubl e item = Doubl e. par seDoubl e(newval ue) ;
addlten(iten);
newval ue = nul | ;
}
cat ch (Nunber For mat Excepti on e)
{
error = "Please enter a valid nunber.";
}
}
b
}
public String getError()
{
return error;
}

28

TAPESTRY TUTORIAL

That may seem like a lot of code for what we're doing, but in reality, very much is going that we
don't have to write:

* Processing the submitted form
Storing the List of items persistently between request cycles
» Encoding and decoding URLS

» Very robust exception support

Tapestry components, using JavaBeans properties, take care of moving data to and from the
HTML form. Our application merely has to supply the logic to properly respond when the form
Is submitted. In this case, converting the text into a double that can be added to the list.

Because we let Tapestry set the names of our form elements, there's no possibility of mismatched
names between the Java code (setting defaults and interpreting the posted request) and the
HTML template.

Launching the Application

Run the application, then use the ServletExec Admin page to configure the servlet. Map serviet
"Adder" to "tutorial.adder.AdderServlet" and map alias "/adder" to servlet "Adder".

Enter the following URL to start the application:

http:/ /| ocal host : 8080/ adder |

Enter a few values into the text field to see how the application works, adding them together into
an ever larger list.

Adding Interactivity using Listeners

To understand the relationship between the home page specification, the home page class and the
components used by the home page, it is necessary to understand the JavaBeans properties
provided by the home page class.

We implement several JavaBeans properties on this page:

Property Type R/W Description
name
newltem String R/W Stores the string entered into the form.

29

http://localhost:8080/adder

TAPESTRY TUTORIAL

items List (of R/W Items in the list. Persists between request
Double) cycles.
formListener IActionListener Read Informed when form is submitted.
Only
total double Read Total of items; computed on the fly.
Only

This example demonstrates how to provide interactivity to an application. For Tapestry,
interactivity is defined as a request cycle initiated by a user clicking on a hyperlink or submitting a
form.

In our case, we want to know when the form containing the TextField is submitted so that we can
provide application specific behavior -- adding the value enterred in the TextField to the list of
items.

This is accomplished using a listener, an object that implements the Java interface
| Acti onLi stener. This interface defines a single method, acti onTri ggered(). When the
form is submitted, all the components wrapped by the form (in this case, the TextField) are given
a chance to retrieve their values from the request and update properties of the application (the
TextField sets the currentltem property). The form then gets its listener and invokes the
actionTri gger ed() method.

In the specification, the listener parameter was bound to the formListener property of the page.
The code in the get For nLi st ener () method creates an anonymous inner class and returns it.

Inner classes have access to the private fields and methods of the class. In this case, the inner
class invokes the additen() method to add the currentltem (with a value provided by the
TextField component) to the items List.

A listener is free to do anything it wants. It can change the state of the application, or can retrieve
other pages (by name) from the request cycle object, and can change properties of those pages. It
can even chose a different page to render, by invoking set Page() on the request cycle.

Persistant Page State and Page Pooling

The home page of this application uses a persistant page property, a Li st that contains
j ava. | ang. Doubl es, the items in the list.

Persistent page state is one of the most important concepts in Tapestry. Each page in the
application (and in fact, even components within the page) has some properties that should
persist between requests. This can be values such as the user's name and address, or (in this case)
the list of numbers enterred so far.

30

TAPESTRY TUTORIAL

In traditional JavaServer Pages or servlet applications, a good chunk of code must be written to
manage this. The values must be encoded in cookies, as hidden form fields, as named attributes
of the Ht t pSessi on, or stored into a server-side flat file or database. Each servlet, or page, or
whatever was directly responsible for managing this ... which leads to many half realized, ad-hoc
solutions and an avalanche of bugs and even security holes.

With Tapestry, the framework takes care of these persistence issues. When a persistent property
of a page is changed the accessor method also invokes the method fi r eCbser vedChange() .
This method informs a special object, the page's recorder, about the property and its new value.

When the page is next used, the value is restored automatically. Within the Tapestry framework,
all of these pages, components, specifications and templates are converted into objects.
Assembling a page is somewhat expensive: it involves reading all those specifications and
templates, creating and initializating component objects, creating binding objects for the
components, and organizing the components into a hierarchy.

Creating a page object for just one request cycle only to discard it is simply unacceptible. Pages
should be kept around as long as they are needed; they should be re-used in subsequent request
cycles, both for the same client session, or for other sessions.

The Tapestry framework accomplishes this by pooling instances of page objects; there could
concievably be a handful of different instances being shared by thousands of client sessions. This
is a kind of shell game that is important to maintain scalability.

What this means for the developer is some minor extra work. On each request cycle, a different
instance of the page object may be used to handle the request. This means that data can't simply
be stored in the instance variables of the page between request cycles.

Tapestry seperates the persistent state of a page from the actual page objects. The state is stored
seperately, making use of the page recorder objects. When needed, a page can be created or
reclaimed from the page pool and have all of its persistant properties set by the page recorder.

The developer has three responsibilities when coding a page with persistant state:

» The property must be serializable; this includes Java scalar types (boolean, int, double,
etc.), Strings, common collection classes (ArrayLi st, HashMap, etc.) and user-defined
classes that implement j ava. i 0. Seri al i zabl e.

* When the value of the property changes, the fi r eCbser vedChange() method must be
invoked, to inform the page recorder about the change.

* When the request cycle ends and the page is returned to the pool, the persistant state
must be reset to its initial value (as if the page object was newly instantiated). This is done
in the det achFr omAppl i cat i on() method.

31

TAPESTRY TUTORIAL

Dynamic Page State

This page has a bit of dynamic state; state that changes as the page is being renderred. The value
property of the Foreach component takes on different values from the items List as the page is
renderred. Dynamic state is easier to handle than persistant state; for completeness, it must also
be reset in the det achFr omAppl i cat i on() method.

32

TAPESTRY TUTORIAL

Tapestry Run Time Errors

Tapestry has some rich support for detecting and presenting errors at
runtime.

One of the benefits to developing using Tapestry is its robust exception handling support.

We'll demonstrate these by creating invalid URLS.

Stale Sessions

As we just demonstrated, Tapestry is quite careful about conversational state. What happens if all
the conversation state is lost?

Start up adder application then enter a few numbers. Go back to the Kawa IDE and stop, then
restart, ServletExec Debugger. This wipes out all session information.

Now, try to add an additional number to the list.

33

TAPESTRY TUTORIAL

/Z session Timeout - Microsoft Internet Explorer 10| x|
J File Edit Wiew Favorites Tools Help |
| &~ - Q2| 68| S || addess [£] hipy127.0.0, 18080/ adderctionjhomefzio] | |Links

Tour session has timed out.

Web applcations store mformation about what you are doing on the server. This mformation 1z

called the session.

Web servers must track many, many sessions. I you are mactive for a long enough tune (usually, a

fewr runubes), this information 1z discarded to malce room for active users.

At this point wou may restart the session to contine.

|-

|&] Done I_l_lﬂ Internst 5

Because Tapestry can't find any information about your session, it assumes the session timed out
and was discarded, and so presents the default error page for this situation.

Remember that most Tapestry URLSs are very conversational, they only make sense as the most
recent request in a series of requests exchanged between the client and the server.

This means that most pages in a Tapestry application can't be bookmarked; the URL that would
be stored in the client's web browser is not meaningful. Creating bookmarkable pages is a subject
of a later tutorial.

Exception Handling

Tapestry handles exceptions, catching them when they occur and formatting a readable page with
all the details. Of course, in your own application, such exceptions will never occur, or will be
caught and handled by your own code.

Still, it's nice that Tapestry can assist when debugging during development, when exception may
in fact be thrown.

To demonstrate what Tapestry does for exceptions, we need to do a little bit of sneaky work.

First, enter a few numbers into the Adder application:

34

TAPESTRY TUTORIAL

3 Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Fawvorites Tools Help |
|- -=»- @8 | IS |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/ adder factionfhome/1/0 ¥ | |JLinks =
=
1\uraluna:|
Add to list |
Items
230
11.0
340
id
|&] Done I_l_lﬂ Internst 5

Now, edit the URL in the Address field, and change the word "action™ to "acton™ (i.e, remove the
letter 'i') and hit return.

/3§ Exception - Microsoft Internet Explorer 10| x|

J File Edit Wiew Favorites Tools Help |
|&-=»- @8 | S| S |Jﬁ'-ddress I@ hitp:/f127.0,0,1:8080/adderfacton/homef1/0 ¥ | |JLinks =

An exception has occured. :I
Tou may continue by restarting the session.

Name: com. primix tapestry. ApphcatonBuntimeEzception
MMessage: Lpplication does not implement a service named acton
Trace:

« COM.primixtapestry.app AbstractApplication.getService
(AbstractApplication java: 59%)

« COMprimixtapestry. app AbstractApplication service
(Abstractpplication java 906)

. com.Drimix.tamestw.ADDIicationSewIet.dOGetmDDIicationSewIet.iawa:Bd’l‘J _ILl
4 »
|&] Done I_l_lﬂ Internst 5

Tapestry has discovered that the URL was invalid ... in this case that the word "action™ was
changed to "acton”. Since Tapestry normally produces all the URLSs it must later consume, it
doesn't make an effort to pretty this up (as it does with stale links and sessions), instead it throws
an exception which is caught and displayed.

35

TAPESTRY TUTORIAL

As you may notice, the exception report is extremely complex. Tapestry displays all the
information it can about the exception that was thrown ... it can even break apart nested
exceptions and dig down to the deepest one. It shows the stack trace where the deepest
exception was thrown. It also provides information about the H: t pRequest, H t pSessi on,
Ser vl et Cont ext and Java VM.

Finally, it includes a link that will destroy the current HttpSession and restart the application from
scratch.

36

TAPESTRY TUTORIAL

Debugging a Tapestry
Application

We'll show how to debug a Tapestry application while it runs, by running
the servlet container inside Kawa's debugger.

e're going to make a quick detour and discuss debugging a Tapestry application using
Kawa.

We'll continue using the previous example, this time setting a breakpoint to
demonstrate how the Foreach component updates the page property ‘currentltem’.

First, edit the file t ut ori al / adder / Horre. j ava. Navigate to the method set Newval ue() and

set a breakpoint by clicking F9 or the menu item Build » Breakpoint Set/UnSet. A red marker
appears in the gutter along the left edge:

37

TAPESTRY TUTORIAL

& - Tutorial - [D:h...\ adder’Home.javal

digw Text Project Build Packages Info Customize Plugin Tools Window Help

[ﬁl 3 B ||HDSuchCDmpDnentExj| @l & R ||311 | L S = 5

B@® L || W %

i
?l super{application, specification});
rojects - ¥
‘orial .)
Makefile public Li=st getltemns()
%ﬂlifﬂ return items:
adder =

- &dder. application

B Adderbpplication java public woid setltems({list walue)

1

E AdderServlet java items = walue:

- [& Haome.htrnl

'"E Haome. java fireObservedChangs("itens", walue):
e Harre. e

%EDTE' public woid setHewValue(String walue)
x] hello

] simple] newWValue = valus:

3] survey

§Bwld En*_ﬂronmenl public String getHewValu=()

JiFoundation i

ey return newWalus:

PIETRIC T lateed 1

At this point, you can launch the debugger, using the Build » Debug * Run menu item, or by
hitting F5, or by clicking the debug icon on the toolbar.

& @

Start/Conk - F5

At this point, Kawa will reconfigure itself slightly, adding a "JVMDI Watch™ window (this is
window that allows values to be displayed while debugging).

Launch the Adder application (from the previous chapter) with the URL.:

http://1 ocal host : 8080/ adder |

When the form comes up, enter a value and click the submit button.

The Kawa window will raise itself, and the Project pane (along the left side of the window) will
show the stack trace leading upto the break point.

38

http://localhost:8080/adder

TAPESTRY TUTORIAL

ﬁcompﬁmampeﬂwcnmpmmanemﬂﬂdmndaﬂ2ﬁ fireObservedChange! "itens", waluel;
Ba com. primix. tapestiy. binding. PropertyBinding: setString: 209
B‘:I com. primix. tapestiy. binding, PropertpBinding: sefy alus: 224
Ba com. primix. foundation. prop. PropertyHelper: set: 504
EH com. primis. foundation. prop. Propertpd coeszon set 153 | newValue = wvalue:
- java lang. reflect Method:irwake: -1
&- uitarial adder Home: seth ew alus:34))
B:‘:I--this=instance of tutorial. adder. Home(id=663), Object | public String getNewWValus()
oyalue="23", Sting - {

tput | Buid | Findin Files

Torking Directory — D ~Work~Tutorial*

“lassFath — D ~Work~lib~Tapestry.jar;D ~Work-lib“ServletEzecDebugger . jar ;D “Work>lib“gnu
Worl~lib~FrimizFoundation. jar:D:~Work-lib~zxerce=s. jar:D ~Worl~Tutorial~.build~classe=s; .
«tools. jar;c:~jdkl. 2. 2jre~lib~rt . jar;c:~jdkl. 2. 2~jre~lib~118n.jar;c:~Kawad . K l-kawaclasse
‘roperties - —Xbootclasspath:c:™~jdkl .2 2~1lib~tools. jar;c:~jdkl. 2. 2~jre~lib“~rt . jar:c:~jdk
~118n.jar:

Jebug Start. .

Jew Atlanta ServletEzec Debugger 2072

public woid setHewValue(String walue)

return newValue;

I;I

|

You can use the stack track to inspect the object, or see the parameters to the method.

Hit the continue button (or Build » Debug » Cont menu item, or F5) to allow ServletExec and
Tapestry to finish the response.

Changing templates and specifications

Part of the normal development process is often "tweaking" Tapestry specifications and HTML
templates, correcting minor errors that affect the application (even when code changes are not
necessary).

Tapestry caches, in memory, component specifications and templates. This means that changing
a file on disk won't change the running application ... the previously cached version of the
specification or template will continue to be used.

You can force a running Tapestry application to discard its cached component specifications and
templates by invoking the reset service. This is done by entering the URL

http://host: port/servl et-path/reset

In our previous examples, the URL would be http://1 ocal host: 8080/ hel | o/ reset Or
http://1 ocal host: 8080/ adder/reset.

This clears cached data and invalidates the current session, then starts a new one. It’s the same as
starting a new session on a fresh server. This does not reload any changed Java code and it does
not reload the application specification.

Also, the developer must be aware of the classpath, especially when using the Java Build
Environment (JBE). The JBE copies resource files (templates and specifications) to a directory
that may be earilier on the classpath than the developer's working directory. This means that
changes to the working files may be obscured by the out-of-date copies; the developer should
perform a make after changing any such files.

39

TAPESTRY TUTORIAL

Re-usable Components

Tapestry is designed to facilitate the creation of re-usable comopnents; this
chapter will show an example of such a component.

components it to create a common “border” for the application that includes basic

navigatiﬂn. We'll be creating a simple, three page application with a navigation bar down the
left sider.

I n this tutorial, we'll show how to create a re-usable component. One common use of

/3 Feusable Component Tutorial - Microzoft Internet Explorer

| Eile Edt Wiew Favoites Tools Hep E

e -2 084 535S | Addess[€] hip/Aocahost800/border <] || Links »
=
H

|E'| Cone r—"r"—ﬁﬂ Local mtranet i

Navigating to another page results in a similar display:

1 These screen shots are slightly out of date; the names of the pages (which appear down the left side) are now capitalized.

40

TAPESTRY TUTORIAL

-’j Reuzable Component Tutonal - Microsoft Internet Explorer

| Fie Edt View Favoites Tooks Help -
| LERERC ﬂ @ al | = EI =) |_#§drﬂ&¢ |@ hitp: /facahost BOB0 bander/page/credo ﬂJ Links *
=

=

&] Dane | [T Local intranet i

Each page's content is confined to the silver area in the center. Note that the border adapts itself
to each page: the title "Home" or "Credo™ is specific to the page, and the current page doesn't
have an active link.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files.
The complete source of the tutorial examples is available seperately, in the tutorial.border package.

Each of the three pages has a similar HTML template:

Home.html

<jwc id="border">

Not hi ng much doi ng here on the hone page. Visit one of our other
fine
pages.

</jwc>

What we're doing here is wrapping the entire page inside the border. Note that we don't specify
an <HTML> or <BODY> tags; those are provided by the border (as well as the matching close
tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds
the Border component (as we'll see in the Home page's specification). However, the Border
component wraps the content of the Home page ... the Home page HTML template indicates
the order in which components (and static HTML elements) get a chance to render. On the
Home page, the Border component 'bats' first and cleanup.

The construction of the Border component is based on how it differs from page to page. You'll
see that on each page, the title (in the upper left corner) changes. The names of all three pages are

41

TAPESTRY TUTORIAL

displayed, but only two of the three will have links (the third, the current page, is just text). Lastly,
each page contains the specific content from its own HTML template.

Border.html

<HTM_>
<head>
<title><jwc id="insertApplicationNane"/></title>
</ head>
<body>
<t abl e border=0 bgcol or=gray cel | spaci ng=0 cel | paddi ng=4>
<tr valign=top>
<td col span=3 al i gn=l eft>
<jw id="insertPageTitle"/>
</td>
</tr>
<tr valign=top>
<td align=right>
<f ont col or=white>
<jwe id="e">

<jwc id="link"><jwc id="insertNane"/></]jwc>
</jwc>

</td>
<td val i gn=top bgcol or=si | ver >
<jwc id="w apped"/>
</td>
<td wi dt h=4></td>
</tr>
<tr>
<td col span=3 hei ght =4></t d>
</tr>
</t abl e>
</ body>
</ HTML>

The insertApplicationName and insertPageTitle components provides the name of the
application, and the title of the page within the application.

The e, link and insertName components provide the inter-page navigation links. Lastly, the
wrapped component provides the actual content for the page.

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard
code the list of page names. These must be provided to the border component. In fact, the
application object provides the list.

<?xm version="1.0"?>
<! DOCTYPE specification PUBLIC "-//Prim x Sol utions//Tapestry Specification
1.0/ /EN'

"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci ficati on>
<cl ass>tutori al . border. Border </ cl ass>

42

TAPESTRY TUTORIAL

<par anet er s>
<al | ow i nf or mal - par anet er s>no</ al | ow- i nf or nal - par anet er s>

<par anet er >
<nane>titl e</ name>
<j ava-type>j ava. |l ang. Stri ng</j ava-t ype>
<requi red>yes</requi red>

</ par anet er >

<par anet er >
<nane>pages</ nhane>
<requi red>yes</requi red>
</ par anet er >
</ par anet er s>

<conponent s>
<conponent >
<i d>i nsert Appl i cati onNane</i d>
<type>l nsert </type>

<bi ndi ngs>

<bi ndi ng>
<name>val ue</ name>
<property-
pat h>page. appl i cati on. speci fi cati on. nane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>i nsert PageTitle</id>
<type>l nsert</type>

<bi ndi ngs>
<i nheri t ed- bi ndi ng>
<nane>val ue</ name>
<par anet er - name>t i t | e</ par anet er - name>
</i nheri t ed- bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>e</i d>
<t ype>For each</t ype>

<bi ndi ngs>
<i nheri t ed- bi ndi ng>
<name>sour ce</ name>
<par anet er - name>pages</ par anet er - nanme>
</i nheri t ed- bi ndi ng>

<bi ndi ng>

<name>val ue</ name>

<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>

43

TAPESTRY TUTORIAL

</ bi ndi ngs>
</ conponent >

<conponent >
<i d>link</id>
<t ype>Page</t ype>

<bi ndi ngs>
<bi ndi ng>
<name>page</ nanme>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>

<bi ndi ng>
<name>enabl ed</ name>
<pr oper t y- pat h>enabl ePageLi nk</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Nanme</i d>
<type>l nsert</type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>wr apped</i d>
<t ype>l nsert W apped</t ype>
</ conponent >
</ conponent s>
</ speci fi cati on>

So, the specification for the Border component must identify the parameters it needs, but also the
components it uses and how they are configured.

We start by declaring two parameters: title and pages. The first is the title that will appear on the
page. The second is the list of page names for the navigation area. We don't specify a type for
pages because we want to allow all the possibilites (List, Iterator, Java array) that are acceptible as
the source parameter to a Foreach.

The insertApplicationName doesn't get its value from a parameter; it jumps from the page, to the
application, to the application specification and gets the name of the application.

Further down we see that the insertPageTitle component inherits the title parameter from its
container, the border component. Whatever binding is provided for the title parameter of the
border will also be used as the value parameter of the insertPageTitle component. Using these
inherited bindings simplifies the process of creating complex components from simple ones.

44

TAPESTRY TUTORIAL

Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from
the Border component's pages parameter. It has been configured to store each succesive page
name into the pageName property of the Border component; this is necessary so that the Border
component can determine which page link to disable (it disables the current page since we're
already there).

The link component creates the link to the other pages. It has an enabled parameter; when false
the link component doesn't create the hyperlink (though it still allows the elements it wraps to
render). The Java class for the Border component, t ut ori al . bor der . Bor der, provides a
method, get Enabl ePageLi nk(), that returns true unless the pageName parameter (set by the e
component) matches the current page's name.

The final mystery is the wrapped component. It is used to render the elements wrapped by the
border on the page containing the border. Those elements will vary from page to page; running
the application shows that they are different on the home, credo and legal pages (different text
appears in the central light-grey box). There is no limitation on the elements either .. Tapestry is
specifically designed to allow components to wrap other components in this way, without any
arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all,
not just static HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is
static, the literal value "Home" (this isn't the best approach if localization is a concern).

<?xm version="1.0""?>

<! DOCTYPE speci fi cation PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.conm dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>com pri m x. t apest ry. BasePage</ cl ass>

<conponent s>
<conponent >
<i d>bor der </ i d>
<t ype>Bor der </ t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nane>titl e</ name>
<val ue>Hone</ val ue>
</static-bi ndi ng>

<bi ndi ng>
<nane>pages</ name>
<property- pat h>appl i cati on. pageNanmes</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

45

TAPESTRY TUTORIAL

</ speci fi cati on>

The pages property is retrieved from the application, which implments a pageNames property:

BorderApplication.java (excerpt)

private static final String[] pageNanes =
{ "Home", "COredo", "Legal" };

public String[] getPageNanes()
{

return pageNanes;

}

How did Tapestry know that the type 'Border' (shown in bold in the page specification)
corresponded to the specification / t ut ori al / bor der / Bor der . j we? Only because we defined
an alias in the application specification:

Border.application (excerpt)

<conponent >
<al i as>Bor der </ al i as>
<type>/tutorial/border/Border.jw</type>
</ conponent >

Had we failed to do this, we would have had to specify the complete resource path,
/tutorial/border/Border.jwc, on each page's specification, instead of the short alias
'Border’. There is no magic about the existing Tapestry component types (Insert, Foreach, Page,
etc.) ... they each have an alias pre-registered into every application specification. These short
aliases are simply a convienience.

46

TAPESTRY TUTORIAL

Complex Forms and Output

Demonstrates more of Tapestry's abilitities to build and process form
information, and produce complex output.

apestry includes a number of components designed to simplify interactions with the
client, especially when handling forms.

In this chapter, we'll build a survey-taking application that collects information from the
user, stores it in an in-memory database, and produces tabular results summarizing what has been
entered.

We'll see how to validate input from the client, how to create radio groups and pop-up selections
and how to organize information for display.

The application has three main screens; the first is a home page:

47

TAPESTRY TUTORIAL

a Survey Tutorial - Microsoft Internet Explorer

J File Edit Wiew Favorites Tools Help |

J & - D) | G ¢# [| = J.ﬁ.gldress @p:,l',l'12?.|:l.|:|.I:SDED,IISLIrVE‘:.-',I'pagE,I'thEj

Welcome to the Survey Tutorial.

5 surveys in the datahase.
Pleaze take our survey.

Hote: mformation is not collected mto a permanent database; for the purposes
of this tutorial, we are using an in-memory class to represent the database.

B

|@ Done I_I_lﬂ Internet

The second page is for entering survey data:

48

TAPESTRY TUTORIAL

<% Survey Tutorial - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help

[- = - @D [2 |G 85| S || addess [@] hepuri27.0.0.180800surveyipagefsurvey] | |Links >

sSurvey

Caucasian «

SLWEY

ol

€] Done |_|_|. Internet

The last page is used to present results collected from many surveys:

49

TAPESTRY TUTORIAL

3 Survey Tutorial - Microsoft Internet Explorer) [=] B2

J File Edit Wiew Favorites Tools Help |
J oA @ | = @ L | = J.ﬁ.gldress @ http:,l',l'lE?.El.El.I:SDSD,I'survey,l'actiDn,I'SLj JLinks b

summary of 5 surveys:

| Result __|Count| %_
3

R
wex: Male E0%0
=ex : Female 2 A0%%
=ex Transgender 0 1% |

results

wex Asexual 0] 0545
Face : Caucasian 4 B0%0
EFace : Affican 1%
Eace 20%%0
Eace : Inw %%

Face

|@ Done I_I_lﬂ Internet

a L

In addition, we are re-using the Border component from the previous chapter.

The application does not use an actual database; the survey information is stored in memory (the
amount of work to set up a JDBC database is beyond the scope of this tutorial).

The source code for this chapter isin the t ut or i al . sur vey package.

Survey

At the root of this application is an object that represents a survey taken by a user. We want to
collect the name (which is optional), the sex and the race, the age and lastly, which pets the survey

taker prefers.

package tutorial . survey;

i nport java.util.*;
i mport com primXx.tapestry.*;
i mport java.io.*;

public class Survey inplements Serializable, doneable
{
private Cbject primaryKey;
private String nane;
private int age = 0;
private Sex sex = Sex. MALE;

50

TAPESTRY TUTORIAL

private Race race = Race. CAUCASI AN,

private bool ean |i kesDogs = true;
private bool ean |ikesCats;
private bool ean |ikesFerrits;
private bool ean |ikesTurni ps;

public Cbject getPrimaryKey()

{
return pri maryKey;
}
public void setPrimaryKey(Cbj ect val ue)
{
pri maryKey = val ue;
}
public String get Name()
{
return nane;
}
public void set Name(String val ue)
{
name = val ue;
}
public int getAge()
{
return age;
}
public void set Age(int val ue)
{
age = val ue;
}
public void set Sex(Sex val ue)
{
sex = val ue;
}
public Sex get Sex()
{
return sex;
}
public voi d set Race(Race val ue)
{
race = val ue;
}
publ i c Race get Race()
{
return race;
}

51

TAPESTRY TUTORIAL

publ i ¢ bool ean getLi kesCat s()

{
return |ikesCats;
}
public void setLikesCat s(bool ean val ue)
{
l'i kesCats = val ue;
}
publ i ¢ bool ean get Li kesDogs()
{
return |ikesDogs;
}
public void setLi kesDogs(bool ean val ue)
{
l'i kesDogs = val ue;
}
publ i c bool ean getLi kesFerrits()
{
return likesFerrits;
}
public void setLikesFerrits(bool ean val ue)
{
l'i kesFerrits = val ue;
}
publ i ¢ bool ean get Li kesTur ni ps()
{
return |ikesTurnips;
}
public void setLikesTurni ps(bool ean val ue)
{
l'i kesTurni ps = val ue;
}
/**

* Validates that the survey is acceptible; throws an {@i nk
I I'l egal Argument Except i on}
* if not valid.

*

*/
public void validate()
throws |11 egal Argunent Excepti on
{
if (race == null)
throw new I | | egal Ar gunent Excepti on("Race nust be
specified.");
if (sex == null)
throw new I || egal Argunent Excepti on("Sex nust be
specified.");

52

TAPESTRY TUTORIAL

if (age < 1)
throw new I I | egal Argunment Excepti on("Age nust be at | east
one.");
}
public Chject clone()
{
try
{
return super.clone();
E:at ch (d oneNot Support edExcepti on e)
{ return null;
}
}
}

The race and sex properties are defined in terms of the Race and Sex classes, which are derived
from com pri m x. f oundat i on. Enum Enumclasses act like C enum types; a specific number of
pre-defined values are declared by the class (as static final constants of the class).

Race.java

package tutorial . survey;

i mport com prim x. foundati on. Enum

/**

* An enuneration of different races.

*

*/
public class Race extends Enum
{
public static final Race CAUCASI AN = new Race(" CAUCASI AN') ;
public static final Race AFRI CAN = new Race("AFR CAN');
public static final Race ASI AN = new Race("ASI AN');
public static final Race INUT = new Race("INU T");
public static final Race MARTI AN = new Race(" MARTI AN") ;
private Race(String enunerationld)
{
super (enuner ati onl d) ;
}
private Object readResol ve()
{
return get Singleton();
}
}

This is better than using String or int constants because of type safety; the Java compiler will

53

TAPESTRY TUTORIAL

notice if you pass Race. | NUI T as a parameter that expects an instance of Sex ... if they were both
encoded as numbers, the compiler wouldn't know that there was a programming error.

SurveyDatabase

The Sur veyDat abase class is a mockup of a database for storing Surveys, it has methods such as
addSurvey() and getAllSurveys(). To emulate a database, it even allocates primary keys for
surveys. Additionally, when surveys are added to the database, they are copied and when surveys
are retrieved from the database, they are copied (that is, modifying a Survey instance after adding
it to, or retrieving it from, the database doesn't affect the persistently stored Surveys within the
database ... just as if they were in external storage).

SurveyApplication

The database is accessed via the Sur veyAppl i cat i on object.

SurveyApplication.java (excerpt)

private transi ent SurveyDatabase dat abase;

publ i c SurveyDat abase get Dat abase()

{ return database;
}
prot ected voi d set upFor Request (Request Cont ext cont ext)
{ super . set upFor Request (cont ext) ;
i f (database == null)
{ String name = "Survey. dat abase";

Ser vl et Cont ext ser vl et Cont ext ;

servl et Cont ext =
cont ext . get Servl et (). get Servl et Cont ext () ;

dat abase =
(SurveyDat abase) ser vl et Cont ext . get At tri but e(nane) ;

i f (database == null)

{

dat abase = new SurveyDat abase();
servl et Cont ext . set Attri but e(nanme, database);

The SurveyDatabase instance is stored as a named attribute of the ServletContext, a shared space
available to all sessions.

54

TAPESTRY TUTORIAL

SurveyPage

The SurveyPage is where survey information is collected. It initially creates an Survey instance as
a persistent page property. It uses Form and a number of other components to edit the survey.

When the survey is complete and valid, it is added to the database and the results page is used as
an acknowledgment.

The SurveyPage also demonstrates how to validate data from a TextField component, and how to
display validation errors. If invalid data is enterred, then the user is notified (after submitting the
form):

2} Survey Tutorial - Microsoft Internet Explorer

J File Edit ‘iew Favoribes Tools Help |

| -= - D[|55 | S ||addess [rep:yi127.0.0.1:8080050rvey 7] ||

Walue entered for age 15 not a number.

|H|:|ward

old

& hfale Race I Caucasian 'I

" Fermale

O Transgender

" Non-=exual
Favorite Pets [Cats

W Dogs

I~ Fernts

™ Turnips

Submit |

w |

|@ Done |_|_|ﬂ Internet

The HTML template for the page is relatively short. All the interesting stuff comes later, in the
specification and the Java class.

55

TAPESTRY TUTORIAL

SurveyPage.html

<jwc id="border">

<jwc id="ifError">

<t abl e border=1>

<tr>

<td bgcol or=red>

<jwc id="insertError"/>
 </tr> </tr> </tabl e>
</ jwc>

<jwc id="surveyForm >
<t abl e bor der =0>

<tr valign=top> <t h>Nane</t h>
<td col span=3><jwc i d="i nput Name"/></td></tr>

<tr valign=top> <th>Age</th>
<td col span=3><jwc i d="i nput Age"/></td></tr>

<tr valign=top> <th>Sex</th>
<td> <jwc id="inputSex"/>
</td>

<t h>Race</ t h>

<t d><jwc id="input Race"/>
</td> </[tr>

<tr valign=top> <th>Favorite Pets</th>
<td col span=3>
<jwc id="inputCats"/> Cats

<jwc i d="i nput Dogs"/> Dogs

<jwc id="inputFerrits"/> Ferrits

<jwc id="inputTurnips"/> Turnips</td> </tr>
<tr>
<td></td>
<td col span=3><i nput type=submt val ue="Submt"></td> </tr>
</t abl e>

</jwc>
</jwc>

Most of this page is wrapped by the surveyForm component which is of type Form. The form
contains two text fields (nameField and ageField), a group of radio buttons (ageSelect) and a pop-
up list (raceSelect), and a number of check boxes (cats, dogs, ferrits and turnips).

Most of these components are pretty straight forward: nameField and ageField are setting String
properties, and the check boxes are setting boolean properties. The two other components,
raceSelect and ageSelect, are more interesting.

Both of these are of type PropertySelection; they are used for setting a specific property of some
object to one of a number of possible values.

56

TAPESTRY TUTORIAL

The PropertySelection component has some difficult tasks: It must know what the possible
values are (including the correct order). It must also know how to display the values (that is, what
labels to use on the radio buttons or in the pop up).

This information is provided by a model (an object that implement
com pri m x. tapestry. conponents. | PropertySel ecti onMbdel), an object that exists just
to provide this information to a PropertySelection component.

First, let's review the specification for the SurveyPage:

SurveyPage.jwc
<?xm version="1.0"?>
<! DOCTYPE speci fi cation PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci ficati on>
<cl ass>tutorial . survey. SurveyPage</ cl ass>

<conponent s>
<conponent >
<i d>bor der </ i d>
<t ype>Bor der </ t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<name>titl e</ name>
<val ue>Sur vey</ val ue>
</static-bi ndi ng>

<bi ndi ng>
<nane>pages</ nhane>
<pr operty- pat h>appl i cat i on. pageNames</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id> fError</id>
<t ype>Condi ti onal </ type>

<bi ndi ngs>
<bi ndi ng>
<nane>condi ti on</ name>
<property- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>i nsertError</id>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>

57

TAPESTRY TUTORIAL

<name>val ue</ name>
<pr operty- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>sur veyFor nx/ i d>
<t ype>For nx/ t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>l i st ener </ nanme>
<pr operty- pat h>f or nLi st ener </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Nane</ i d>
<t ype>Text Fi el d</t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nane>di spl ayW dt h</ nanme>
<val ue>30</ val ue>
</static-bi ndi ng>

<st ati c- bi ndi ng>
<nanme>naxi mumV dt h</ nane>
<val ue>100</ val ue>

</static-bi ndi ng>

<bi ndi ng>
<name>t ext </ name>
<pr operty- pat h>sur vey. nane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Age</i d>
<t ype>Text Fi el d</type>

<bi ndi ngs>
<st ati c- bi ndi ng>
<name>di spl ayW dt h</ name>
<val ue>4</ val ue>
</ stati c- bi ndi ng>

<st ati c- bi ndi ng>
<pame>nmaxi nrumV dt h</ name>
<val ue>4</ val ue>

</ stati c- bi ndi ng>

<bi ndi ng>

58

TAPESTRY TUTORIAL

<name>t ext </ name>
<pr opert y- pat h>age</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Sex</i d>
<t ype>Pr opert ySel ecti on</t ype>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<property- pat h>survey. sex</ property- pat h>
</ bi ndi ng>
<bi ndi ng>
<nane>nodel </ name>
<property- pat h>sexMdel </ property- pat h>
</ bi ndi ng>

<st ati c- bi ndi ng>
<name>r adi o</ nanme>
<val ue>t r ue</ val ue>
</ stati c- bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Race</i d>
<t ype>Pr opert ySel ecti on</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ nane>

<pr operty- pat h>survey. r ace</ property- pat h>
</ bi ndi ng>

<bi ndi ng>
<nane>nodel </ nane>

<pr opert y- pat h>r aceMbdel </ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Cat s</i d>
<t ype>Checkbox</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>sel ect ed</ nanme>
<pr operty- pat h>survey. | i kesCat s</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>

59

TAPESTRY TUTORIAL

</ conponent >

<conponent >
<i d>i nput Dogs</ i d>
<t ype>Checkbox</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>sel ect ed</ name>
<pr operty- pat h>survey. | i kesDogs</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d> nputFerrits</id>
<t ype>Checkbox</t ype>

<bi ndi ngs>
<bi ndi ng>
<name>sel ect ed</ name>
<property- pat h>survey. | i kesFerrits</property-path>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Tur ni ps</i d>
<t ype>Checkbox</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>sel ect ed</ name>
<pr operty- pat h>survey. | i kesTur ni ps</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

</ conponent s>

</ speci fi cati on>

Several of the components, such as inputName and inputTurnips, modify properties of the survey
directly. The SurveyPage class has a survey property, which allows for property paths like
survey.name and survey.likesTurnips.

The age field is more complicated, since it must be converted from a String to an int before being
assigned to the survey's age property ... and the page must check that the user enterred a valid
number as well.

Finally, the SurveyPage class shows how all the detalils fit together:

SurveyPage.java

package tutorial . survey;

60

TAPESTRY TUTORIAL

i mport com primx.tapestry.*;

i mport com prim x.tapestry. conponents. *;
i mport com prim x.tapestry. spec. *;

i mport java.util.*;

public class SurveyPage extends BasePage
{
private Survey survey;
private String error;
private String age;
private |PropertySel ecti onMdel sexModel ;
private |PropertySel ecti onMbdel raceMdel;

public SurveyPage(l Application application, ConponentSpecification
speci ficati on)

super (appl i cation, specification);

}
public |PropertySel ecti onModel get RaceModel ()
{
if (raceModel == null)
raceMobdel = new EnunPropertySel ecti onMbdel (
new Race[]
{
Race. CAUCASI AN, Race. AFRI CAN,
Race. ASI AN, Race.|NU T, Race. VARTI AN
}., page. get Local e(),
"tutorial.survey. SurveyStrings", "Race");
return racehModel;
}
public |PropertySel ecti onMddel get SexModel ()
{
if (sexMbdel == null)
sexMbdel = new EnunPropertySel ecti onModel (
new Sex|[]
{
Sex. MALE, Sex. FEMALE, Sex. TRANSGENDER,
Sex. ASEXUAL
}, getlLocal e(),
“"tutorial.survey. SurveyStrings", "Sex");
return sexModel ;
}

public I ActionListener getFornListener()
{

return new | Acti onLi st ener ()

public void actionTriggered(l Conponent conponent,
| Request Cycl e cycl e)
{
try

61

TAPESTRY TUTORIAL

survey. set Age(| nt eger. parsel nt (age)) ;
survey. val i date();
cat ch (Nunber For mat Excepti on e)

/1 Nunber For mat Excepti on doesn't provide
any useful data

set Error (

"Val ue entered for age is not a nunber.");
return;

catch (Exception e)

{
set Error (e. get Message()):

return;

}

/1 Survey is OK add it to the database

((SurveyApplication)get Application()).getDatabase().addSurvey(survey

set Survey(nul |');
/1 Junp to the results page to show the totals.

cycl e. set Page("resul ts");

}
i
}
public Survey get Survey()
{
if (survey == null)
set Survey(new Survey());
return survey;
}
public void set Survey(Survey val ue)
{
survey = val ue;
fireCbservedChange("survey", survey);
}
public void detachFromApplication()
{

super . det achFromAppl i cati on();

survey = null;
error = null;
age = null;

62

TAPESTRY TUTORIAL

/1l W keep the nodels, since they are stateless

}
public void setError(String val ue)
{
error = val ue;
}
public String getError()
{
return error;
}
public String getAge()
{
i nt ageVal ue;
if (age == null)
ageVal ue = get Survey() . get Age();
i f (ageVal ue == 0)
age = "";
el se
age = Integer.toString(ageVal ue);
}
return age;
}
public void set Age(String val ue)
{
age = val ue;
}

}

A few notes. First, the raceModel and sexModel properties are created on-the-fly as needed. The
EnunPr oper t ySel ect i onMbdel is a provided class that simplifies using a PropertySelection
component to set an Enumtyped property. We provide the list of possible values, and the
information needed to extract the corresponding labels from a properties file, in this case,
SurveyStrings. properties:

SurveyStrings.properties
Race. CAUCASI AN=Caucasi an
Race. AFRI CAN=Afri can
Race. ASI ANEAsi an
Race. | NU T=I nui t
Race. MARTI AN=Mar t i an

Sex. ASEXUAL=Non- Sexual

Sex. MALE=Mal e

Sex. FEMALE=Fenal e

Sex. TRANSGENDER=Tr ansgender

Only survey is a persistent page property. The error property is transient (it is set to null at the

63

TAPESTRY TUTORIAL

end of the request cycle). The error property doesn't need to be persistent ... it is generated during
a request cycle and is not used on a subsequent request cycle (because the survey will be re-
validated).

Likewise, the age property isn't page persistent. If an invalid value is submitted, then its value will
come up from the H t pSer vl et Request parameter and be plugged into the age property of the
page. If validation of the survey fails, then the SurveyPage will be used to render the HTML
response, and the invalid age value will still be there.

In the det achFr omAppl i cati on() method, the survey, error and age properties are properly
cleared. The raceModel and ageModel properties are not ... they are stateless and leaving them in
place saves the trouble of creating identical objects later.

Results

Displaying results is broken up into two parts. In the first part, the database is queries for all
surveys, and totals in a number of categories are prepared.

In the second part, those interrum results are incorporated into the HTIML response page.

Results.html

<jwc id="border">
Summary of <jwc id="insertSurveyCount"/> surveys:

<jwc id="e-results">
<jwc id="ifFirst">
<t abl e bor der =0>
<tr bgcol or=bl ack>
<t h><f ont col or =whi t e>Resul t </ f ont ></ t h>
<t h><f ont col or =whi t e>Count </ f ont ></ t h>
<t h><f ont col or =whi t e>%/ f ont ></ t h>

</tr>
</ jwc>
<jwc id="results-row'>
<t d>
<jwc id="insertResult"/>
</td>
<t d>
<jwc id="insertCount"/>
</td>
<td align=right>
<jwc id="insertPercent"/>
</td>
</jwc>
<jwc id="ifLast">
</t abl e>
</jwc>
</jwc>
</jwc>

64

TAPESTRY TUTORIAL

This template shows how those results will be provided to a Foreach component (e-results) that
will iterate through them, and use a set of three Insert components. The ifFirst and ifLast
components are used to generate the start and end of the HTML table (if the results are empty
then the table doesn't get rendered at all).

The results-row component will take the place of the normal <TR> element in a table. It exists
to vary the HTML bgcolor attribute, alternating between white and grey backgrounds for
readability.

Results.jwc

<?xm version="1.0""?>

<! DOCTYPE speci fi cation PUBLIC
“"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. primx.com dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>tutorial . survey. Resul t s</ cl ass>

<conponent s>
<conponent >
<i d>bor der </ i d>
<t ype>Bor der </ t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nanme>tit | e</ nane>
<val ue>Resul t s</ val ue>
</static-bi ndi ng>

<bi ndi ng>
<nane>pages</ name>
<property-
pat h>appl i cat i on. pageNanes</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert SurveyCount </ i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<property-
pat h>dat abase. sur veyCount </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<l-- The results is a List of Maps. -->

<conponent >
<i d>e-resul ts</id>

65

TAPESTRY TUTORIAL

<t ype>For each</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>sour ce</ nane>

<pr operty- pat h>resul t s</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id>ifFirst</id>
<t ype>Condi ti onal </ type>

<bi ndi ngs>
<bi ndi ng>
<nane>condi t i on</ nanme>

<pr operty- pat h>conponent s. e-
resul ts. first</property-path>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<I-- This stands in for the TR el enent, but handl es the
bgcolor. -->

<conponent >
<id>results-row</id>
<t ype>Any</t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nane>el emrent </ nane>
<val ue>tr </ val ue>
</ stati c- bi ndi ng>

<bi ndi ng>
<name>bgcol or </ name>

<pr opert y- pat h>r owCol or </ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Resul t</i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ nane>

<pr opert y- pat h>conponent s. e-
resul ts. val ue. nane</ property- pat h>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

66

TAPESTRY TUTORIAL

<conponent >
<i d>i nsert Count </ i d>
<type>l nsert</type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>conponent s. e-
resul ts. val ue. count </ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Percent </i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<pr operty- pat h>conponents. e-
resul ts. val ue. percent </ propert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i f Last</id>
<t ype>Condi ti onal </ type>

<bi ndi ngs>
<bi ndi ng>
<nane>condi ti on</ name>
<pr operty- pat h>conponent s. e-
resul ts. | ast </ property-pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

</ conponent s>

</ speci fi cati on>

The presentation relies on the Java class providing a results property. This property is a Li st of
Maps. Each Map has three keys: name, count and percent. The rest of the logic is simply to break
apart this Li st into Maps (as property-path components.e-results.value), and to pull out the values
for the three keys.

Creating this results property consumes the bulk of the class:

Results.java

package tutorial . survey;

i mport com primx.tapestry.*;
i mport java.util.*;

67

TAPESTRY TUTORIAL

i nport com prim Xx.tapestry. spec. *;
i mport java.text.*;
i mport java.aw . Col or;

public class Results extends BasePage

{

private SurveyDat abase surveyDat abase;
private bool ean oddRow = fal se;
private Nunmber For mat percent For mat ;

public Results(lApplication application, Conponent Specification
speci fi cati on)

{
super (appl i cati on, specification);
}
publ i ¢ SurveyDat abase get Dat abase()
{
i f (surveyDatabase == null)
SurveyAppl i cation surveyApplication;
surveyAppl i cati on = (SurveyApplication)application;
surveyDat abase = surveyAppl i cati on. get Dat abase();
}
return surveyDat abase;
}
public void detachFromApplication()
{
super . det achFr omAppl i cati on();
surveyDat abase = nul | ;
oddRow = fal se;
}
public String get RowCol or ()
{
Col or col or;
String result;
i f (oddRow)
color = Color.|ightQ ay;
el se
color = Col or. white;
result = Request Cont ext . encodeCol or (col or);
oddRow = ! oddRow;
return result;
}
public List getResults()
{

68

TAPESTRY TUTORIAL

nt raceAfrican =
nt raceAsian = 0

nt raceCaucasi an = O;
nt racelnuit = 0

nt raceMarti an =

nt sexAsexual
nt sexFemal e
nt sexMal e = O;

nt sexTransgender = O;
nt |ikesCats = 0;
nt |ikesDogs = O;
nt |ikesFerrits =
nt |ikesTurnips =
nt ageToTeen = 0; // 1 - 18

nt ageEarlyAdult = 0; // 19 - 28
nt ageToMddle =0; // 29 - 35
nt ageMddle = 0; // 36 - 49

nt agedder = 0; // 50 - 64

nt ageRetire = 0; // 65 - 80

nt agedd =0; // 81 - 100
Survey[] surveys;

Survey survey;

Li st result;

Race race;

Sex sex;

i nt count;

int i;

i nt age;

0
0
/

surveys = get Dat abase().get Al l Surveys();

if (surveys == null ||
surveys. |l ength == 0)
return null;

count = surveys. | ength;
for (i =0; i < count; i++)

{

survey = surveys[i];

race = survey. get Race();
if (race == Race. AFRI CAN)
raceAfri can++;

if (race == Race. AS|I AN)
raceAsi an++;

if (race == Race. CAUCASI AN
raceCaucasi an++;

if (race == Race. | NUIT)
racel nui t ++;

if (race == Race. MARTI AN)
raceMarti an++;

sex = survey. get Sex();
if (sex == Sex. MVALE)

69

TAPESTRY TUTORIAL

sexMal e++;

if (sex == Sex. FEMALE)
sexFemal e++;

if (sex == Sex. TRANSGENDER)
sexTr ansgender ++;

if (sex == Sex. ASEXUAL)
sexAsexual ++;

i f (survey. getLikesCats())
| i kesCat s++;

i f (survey. getLi kesDogs())
| i kesDogs++;

i f (survey. getLikesFerrits())
l'i kesFerrits++;

i f (survey. getLikesTurnips())
|'i kesTur ni ps++;

age = survey. get Age() ;

if (age < 19)
ageToTeen++;

if (age >= 19 && age <= 28)
ageEar | yAdul t ++;

if (age >= 29 && age <= 35)
ageToM ddl e++;

if (age >= 36 && age <= 49)
ageM ddl e++;

if (age >= 50 && age <= 64)
aged der ++;

if (age >= 65 && age <= 80)
ageRet i re++;

if (age >= 81)
aged d++;
}
result = new Arraylist();

resul t.add(bui |l dResul t ("Sex : Mal e", sexMale, count));

resul t.add(bui |l dResul t ("Sex : Femal e", sexFenale, count));

resul t.add(buil dResul t ("Sex : Transgender", sexTransgender,
count));

resul t.add(bui |l dResul t ("Sex : Asexual ", sexAsexual, count));

70

TAPESTRY TUTORIAL

resul t.add(bui | dResul t ("Race : Caucasi an", raceCaucasi an
count));

resul t.add(buil dResul t ("Race : African", raceAfrican, count));
resul t.add(buil dResul t ("Race : Asian", raceAsian, count));
resul t.add(bui | dResult("Race : Inuit", racelnuit, count));
resul t.add(bui | dResul t ("Race : Martian", raceMartian, count));
resul t.add(buil dResul t ("Age: to 18", ageToTeen, count));
resul t.add(bui |l dResul t ("Age: 19 - 28", ageEarl yAdult, count));
resul t.add(bui |l dResul t ("Age: 29 - 35", ageToM ddl e, count));
resul t.add(bui | dResul t ("Age: 36 - 49", ageM ddle, count));
resul t.add(bui | dResul t ("Age: 50 - 64", aged der, count));
resul t.add(buil dResul t ("Age: 65 - 80", ageRetire, count));
resul t.add(buil dResul t ("Age: 80 and up", aged d, count));
resul t.add(bui | dResul t ("Li kes cats", |ikesCats, count));
resul t.add(bui | dResul t ("Li kes dogs", |ikesDogs, count));
resul t.add(buil dResul t ("Li kes ferrits", likesFerrits, count));
resul t.add(bui |l dResul t ("Li kes turnips", |ikesTurnips, count));
return result;

}

private Map buil dResult(String name, int count, int total)

{
Map result;
result = new HashMap(3)

resul t. put (" nane",
resul t. put ("count",

i f (percent For nat

name) ;
new | nt eger (count));

nul |)
per cent For mat =

Nunber For mat . get Per cent | nst ance(get Local e()) ;

resul t. put ("percent"”,
(doubl e)total));

return result;

per cent For mat . f or mat ((doubl e) count /

71

TAPESTRY TUTORIAL

Further Study

The preceding chapters cover many of the basic aspects of Tapestry. You should be comfortable
with basic Tapestry concepts:

» Seperation of presentation, business and control logic
» Use of JavaBeans properties as the source of dynamic data
» How bindings access JavaBeans properties to provide data to components

e How components wrap each other, allowing for the creation of very complicated
components

» Different types of page properties (transient, dynamic, persistent)

Tapestry is capable of quite a bit more. Also available within the Tapestry Examples package
(along with the tutorial code and this document) is the Primix Virtual Library application (Vlib).

Vlib is a full-blown J2EE application, that makes use of Tapestry as its front end, and a set of
session and entity Enterprise JavaBeans as its back end.

Vlib also demonstrates some of the other aspects of developing a Tapestry application. It shows
how to create pages that are bookmarkable (meaning that their URL includes enough information
to reconstruct them in a subsequent session). 1t shows how to handle logging in to an application,
and how to protect pages from being accessed until the user is logged in. It shows how to
manage EJB references and handles.

72

	Setting up the Tutorial Project
	ServletExec Debugger
	Application Object
	Application Servlet
	Application Specification
	Home Page Specification
	Home Page Template
	Launch ServletExec Debugger
	Launching the Application
	Adding Interactivity using Listeners
	Persistant Page State and Page Pooling
	Dynamic Page State
	Stale Sessions
	Exception Handling
	Changing templates and specifications
	Survey
	SurveyDatabase
	SurveyApplication
	SurveyPage
	Results

