
PRIMIX SOLUTIONS
Core Labs

Java Build
Environment

C O R E L A B S

Java Build Environment

 Primix Solutions
One Arsenal Marketplace

Phone (617) 923-6639 • Fax (617) 923-5139

Table of Contents
Introduction 2
Installation and Configuration 4

Environment Variables 4
Configuration 4

Using JBE 6

Jar modules 8
War modules 9
WebLogic modules 11

 2222

Introduction
What is a build environement?.

s envisioned but most tool makers, the life of a Java developer is a solitary one. Parked
at his or her desk, with only his trusty tools, IDEs and the command line, the developer
creates the wonderful applets, applications and frameworks possible using Java.

The developer has and requires great freedom; each tool in his or her arsenal may have come
from a different company; each tool may have been installed into a directory of his or her liking.
This is not a problem because the developer is only accountable to him- or her-self, and these
selections of tools and locations will only aftect one person.

Alas, in the real world, developers work on teams and share code using source code repositories.
They may even make conflicting changes to code.

What's needed is a system that can adjust for local differences in developer's environments and
allow for "clean builds" of projects directly from source. That's what the Java Build Environment
(JBE) is for.

JBE is designed to start with basic Java source and utlimately produce a Java Archive (JAR) or
Web Archive (WAR) ready for testing or deployment. This may involve many steps, including
compiling Java code, creating RMI stubs and skeletons, using application-server specific tools
(such as WebLogic ejbc), combining the results into a Jar file ... even creating Javadoc.

JBE includes many hooks to allow custom directories, compiliation options or other
configuration to be specified. Other hooks allow for additional processing, such as signing a JAR.

JBE is designed to be portable, meaning the same source files and Makefiles will work across
multiple developer's workstations ... even when using different operating systems (such as
Windows, Linux and Solaris).

JBE is useful with medium to large scale Java projects. It has no support for compiling anything
but Java; projects which use native code are beyond its scope.

Chapter

A

 3333

 4444

Installation and Configuration
BE is distributed as a small ZIP or tar-ball containing this document and a collection of
Makefiles. These files should be extracted to a permanent directory.

Under Windows, it is necessary to perform a separate installation to provide the necessary
GNU tools, including GNU Make. These tools are available as the Cygwin framework, which
can be downloaded from the Red Hat web site. JBE was developed under Windows NT 4.0,
using Cygwin b20.

On any operating system it is necessary to have a JDK installed. JBE was developed using Sun's
JDK 1.2.2.

Environment Variables
After installation create an environment variable SYS_MAKEFILE_DIR that points to the
installation directory of the JBE. Use forward slashes as the path seperator, even under Windows.
A typical value for this is "D:/JBE".

Under Windows, add an additional environment varialble MAKE_MODE with the value unix.

Configuration
Configuration is accomplished by creating additional files used by GNU Make at runtime.

First, create a sub-directory of the JBE directory and name it config.

Create a new file, SiteConfig.mk, in the directory. This file is primarily used to specify the
platform for the local workstation.

Example:

config/SiteConfig.mk
Defines the local platform.

SITE_PLATFORM := Cygwin_NT

Chapter

J

 5555

Platforms correspond with the Platform.name.mk file in the main JBE directory.

This file may also be used to store addtiional, site-wide options (typically, variables that start with
the prefix SITE_). Such options will apply to all modules built on the local workstation.

In a multiple-developer environment, all developers on the same platform will use identical copies
of the SiteConfig.mk file.

A second configuration file, LocalConfig.mk, is used to establish the directories into which
related tools have been installed. For example:

config/LocalConfig.mk
TOOLS_DIR := C:/Cygnus/cygwin-b20/H-i586-cygwin32/bin

JDK_DIR := C:/jdk1.2.2

WEBLOGIC_DIR = C:/WebLogic

The first variable, TOOLS_DIR, is the directory for the GNU tools. JDK_DIR identifies where the
Sun JDK was installed. WEBLOGIC_DIR identifies where the WebLogic application server was
installed ... this is only needed if modules will be built against Weblogic.

The other makefiles, especially Platform.name.mk, uses this information to locate the GNU and
JDK tools needed for builds.

 6666

Using JBE
JBE performs builds on modules. For JBE, a module is a directory which contains a number of
Java packages. The source code in all the packages should be compiled and eventually combined
into a single JAR file (or, in some cases a WAR file).

JBE requires a master Makefile in the module directory, whose job is to set global options for the
entire module, and to identify the Java packages. Each package also has a Makefile, which is used
to identify the Java source files, resource files and RMI classes for that package.

For example, take the following

� Module Directory

� Makefile

� com

� example

� snood

� Makefile

� SnoodClient.java

� ISnood.java

� server

� Makefile

� SnoodImpl.java

� SnoodClient.properties

This lays out a module with two package directories. The first, com.example.snood contains
SnoodClient.java and ISnood.java and a resource file SnoodClient.properties. The
second package, com.example.snood.server contains SnoodImpl.java..

Chapter

 7777

A module makefile must provide a name for the module (which is used to name the JAR or WAR
file) and a list of packages. It may provide additional options used when compiling, generating
Javadoc or installing the JAR.

Makefile
MODULE_NAME = Snood

PACKAGES = \
com.example.snood \
com.example.snood.server

include $(SYS_MAKEFILE_DIR)/Jar.mk

The last line identifies this module as a Jar module; one that builds a JAR file.

The other two Makefiles identify that Java source files in the package, any resource files that
should be copied into the JAR, and any classes that must be compiled with the RMI compiler.

com/example/snood/Makefile
JAVA_FILES = *.java

RESOURCE_FILES = *.properties

include $(SYS_MAKEFILE_DIR)/Package.mk

com/example/snood/server/Makefile
JAVA_FILES = *.java

RMI_CLASSES = SnoodImpl

include $(SYS_MAKEFILE_DIR)/Package.mk

Building this module executes a sequence of commands:

make

*** Cataloging package com.example.snood ... ***

*** Cataloging package com.example.snood.server ... ***

*** Compiling ... ***

C:/jdk1.2.2/bin/javac.exe -d .build/classes -classpath
"D:/Temp/Snood;D:/Temp/Snood/.build/classes" com/example/snood/ISnood.java
com/example/snood/SnoodClient.java com/example/snood/server/SnoodImpl.java

*** Compiling RMI stubs and skeletons ... ***

C:/jdk1.2.2/bin/rmic.exe -d .build/classes -classpath
"D:/Temp/Snood;D:/Temp/Snood/.build/classes" \

com.example.snood.server.SnoodImpl

 8888

*** Copying package resources ...***

Copying: SnoodClient.properties

*** Building Snood.jar ... ***

C:/jdk1.2.2/bin/jar.exe cf Snood.jar -C .build/classes .

When a module is first built, JBE catalogs the Java source files, resource files and RMI classes in
the package. It then uses this information to perform all the remaining work from the module
directory.

Here is compiled all the Java files in one pass, built the RMI stubs and skeletons, then copied
resource files, and created the final JAR file.

On a subsequent build, only files which had changed since the previous build would be
recompiled or re-copied.

JBE creates .build directories in the module directory and each package directory. It directs
compilation to this directory and copies resource files into it. It just becomes a matter of using
the JDK jar tool to create a JAR from the directory. WARs are generated the same way (but with
a different structure).

Jar modules
The most basic type of JBE module is the Jar module, which builds a JAR file that can be used as
a framework or standalone application. The JAR file is created in the module directory (though it
can be removed by make clean).

A Jar module Makefile should define the following values:

Variable Description

INSTALL_DIR The directory to which the final JAR should be copied after it is built.

LOCAL_CLASSPATH A space seperated list of the classpath entries (typically, other JAR
files) used when compiling. Absolute or relative pathnames may be
used. Use the forward slash as the path seperator (even on
Windows).

META_RESOURCES The names of any resources that should be copied into the JAR's
META-INF directory.

MODULE_NAME The name used when building the JAR, and as the sub-directory
when building Javadoc.

 9999

PACKAGES The names of all packages in the module.

A Jar module has a number of standard Make targets:

Target Description

catalog Rebuild the catalog of Java files, resource files and RMI classes. Used after adding or
removing such files from a package.

clean Remove JAR, .build directory (in module and in each package)

compile Compile changed Java source files, then compile any changed RMI classes.

default Alias for compile

force compile all, not just dirty, then compile all RMI classes

install jar; then copy JAR to INSTALL_DIR

jar compile; then copy resources and build JAR

javadoc Generate Javadoc for the contents of the JAR

War modules
A War module is similar to a Jar module, except that the final file has the extension ".war" instead
of ".jar" and the internal layout is different. A Web Application Archive (WAR) is a file that can
be deployed into a J2EE compatible application server; it contains servlets and other Java code as
well as context resources (images and other assets that are visible to the web server).

In a WAR, classes are stored in the directory WEB-INF/classes, rather than at the root. Context
resources go in the root of the WAR. There will deployment descriptor files that must also be
copied from the module directory into the WEB-INF directory as well, and a WAR can include
libraries of code in its WEB-INF/lib directory.

Variable Description

CONTEXT_RESOURCES The names of individual files or directories that should be copied
into the root of the WAR. Relative pathnames will be maintained
when copied. Directories are copied recusively (but directories
named 'CVS' are pruned).

INSTALL_DIR The directory to which the final WAR should be copied after it is
built.

 10101010

INSTALL_LIBRARIES A space seperated list of libraries that should be installed into the
WEB-INF/lib directory. The entries here may overlap
LOCAL_CLASSPATH.

LOCAL_CLASSPATH A space seperated list of the classpath entries (typically, other JAR
files) used when compiling. Absolute or relative pathnames may
be used. Use the forward slash as the path seperator (even on
Windows).

META_RESOURCES The names of any resources that should be copied into the
WAR's META-INF directory.

MODULE_NAME The name used when building the WAR, and as the sub-directory
when building Javadoc.

PACKAGES The names of all packages in the module.

WEB_INF_RESOURCES The names of files that should be copied into the WEB-INF
directory. This should include the application-server specific
deployment descriptor. The J2EE deployment descriptor,
web.xml, is automatically copied.

War modules have similar targets as Jar modules:

Target Description

catalog Rebuild the catalog of Java files, resource files and RMI classes. Used after adding or
removing such files from a package.

clean Remove WAR, .build directory (in module and in each package)

compile Compile changed Java source files, then compile any changed RMI classes.

default Alias for compile

force compile all, not just dirty, then compile all RMI classes

install war; then copy WAR to INSTALL_DIR

javadoc Generate Javadoc for the contents of the WAR

war compile; then copy resources and build WAR

 11111111

WebLogic modules
The WebLogic module type is a specialization of the Jar type used to create deployable EJB JARS
for use with the WebLogic application server. To use it, the WEBLOGIC_DIR variable must be set,
usually in LocalConfig.mk.

For the most part, Jar works the same as WebLogic. However, the jar rule is changed to not only
build the normal JAR, but also build the depoyable JAR. It does this by running the WebLogic
ejbc command, which provides all the WebLogic specific classes needed to deploy (such as stubs
and skeletons for EJBs, and a variety of files to support container managed persistence).

The deployable JAR is called MODULE_NAME-deploy.jar. The install rule copies both JARs to
the install directory.

The WebLogic module automatically adds the files ejb-jar.xml and weblogic-ejb-jar.xml
to the list of META_RESOURCES. It also adds two entries to the compilation classpath:
WEBLOGIC_DIR/lib/weblogicaux.jar and WEBLOGIC_DIR/classes.

	Environment Variables
	Configuration
	Jar modules
	War modules
	WebLogic modules

