

Architecture of Obliterate

Julian Foad

WANdisco

Overview

● Server or Client
● Tell Server to Obliterate r50?
● DB Transactions
● Authorization
● Client Issues
● Protocol Extensions

Server or Client (1/3)

client
server

WC
repo

svnadmin

Server or Client (2/3)

Client side (on-line)

client
server

repo

svnadmin

WC

Server or Client (3/3)

Server side (off-line)

client
server

WC
repo

svnadmin

Tell Server to Oblit r50? (1/2)

Present client-server protocol
● says “create a new HEAD revision”
● cannot say “modify revision 50”
● server doesn't know how to.

Tell Server to Oblit r50? (2/2)

We need
● new function in server libraries

� perform a “primitive” obliteration

● new command in network protocol
� describe a “primitive” obliteration

● new UI in client
� interpret what the user wants

� send obliteration commands

Normal Transaction (1/1)

Illustrate the basic new-head transaction
● Repo has r0, r1, r2=HEAD

� Client knows what repo has (up to r2)

● Client tells server to
� CONSTRUCT a tree based on r2

� COMMIT this tree as the new HEAD
● server checks HEAD is r2 or compatible
● server links the txn in as r3

Obliterate Txn (1/5)

Shape:

“replace old revision N with ...”

● Pro:
� same shape as existing transactions

● Con:
� some obliterations involve many revs

Obliterate Txn (2/5)

● Steps
� construct a replacement for r50

� guarantee consistency

� link in between r49 and r51

� destroy the old unlinked txn

Obliterate Txn (3/5)

Consistency
● check each node reference is valid
● check them all again in finalization

Obliterate Txn (4/5)

Finalize
● check all node references are valid
● replace the old r50 with this txn
● destroy the old unlinked txn

� mark orphaned nodes as invalid

� enables space recovery
● doesn't necessarily recover space

Obliterate Txn (5/5)

Alternative shape:

“replace history of object X with ...”

● Pro:
� obliterate a node's history in one go

● Con:
� doesn't seem to fit the FS schema

Authorization

●

●

Client Issues

Coping with history changes
●

Protocol Extensions

●

●

 1

Architecture of Obliterate

Julian Foad

WANdisco

 2

Overview

● Server or Client
● Tell Server to Obliterate r50?
● DB Transactions
● Authorization
● Client Issues
● Protocol Extensions

 3

Server or Client (1/3)

client
server

WC
repo

svnadmin

 4

Server or Client (2/3)

Client side (on-line)

client
server

repo

svnadmin

WC

Repo is on line.
● MUST access repo through the running server
● full potential for all use cases
● extend the existing net protocols

● could instead provide the server with a totally
different interface, but doesn't seem sensible

● extend the existing client(s)
● could instead write a separate client, but doesn't

seem sensible
Paranoia:
● will likely want a server-side “obliterate on/off

switch”, for when net authn/authz considered
insufficient

 5

Server or Client (3/3)

Server side (off-line)

client
server

WC
repo

svnadmin

Repo is off line
● This solution is suitable for planned maintenance

only.
● Simpler design and implementation – no

concurrency issues.

 6

Tell Server to Oblit r50? (1/2)

Present client-server protocol
● says “create a new HEAD revision”
● cannot say “modify revision 50”
● server doesn't know how to.

 7

Tell Server to Oblit r50? (2/2)

We need
● new function in server libraries

� perform a “primitive” obliteration

● new command in network protocol
� describe a “primitive” obliteration

● new UI in client
� interpret what the user wants

� send obliteration commands

 8

Normal Transaction (1/1)

Illustrate the basic new-head transaction
● Repo has r0, r1, r2=HEAD

� Client knows what repo has (up to r2)

● Client tells server to
� CONSTRUCT a tree based on r2
� COMMIT this tree as the new HEAD

● server checks HEAD is r2 or compatible
● server links the txn in as r3

 9

Obliterate Txn (1/5)

Shape:

“replace old revision N with ...”

● Pro:
� same shape as existing transactions

● Con:
� some obliterations involve many revs

● Server needs to construct and commit a new kind
of txn, one that changes an existing revision

 10

Obliterate Txn (2/5)

● Steps
� construct a replacement for r50
� guarantee consistency

� link in between r49 and r51
� destroy the old unlinked txn

 11

Obliterate Txn (3/5)

Consistency
● check each node reference is valid
● check them all again in finalization

 12

Obliterate Txn (4/5)

Finalize
● check all node references are valid
● replace the old r50 with this txn
● destroy the old unlinked txn

� mark orphaned nodes as invalid

� enables space recovery
● doesn't necessarily recover space

The check needs to be done in normal transactions
as well as in obliterate transactions.

To reduce cost of the check: an “obliteration serial
number” (meta-revision of repository) could help.
(Check again only if any obliteration happened
since txn began.)

 13

Obliterate Txn (5/5)

Alternative shape:

“replace history of object X with ...”

● Pro:
� obliterate a node's history in one go

● Con:
� doesn't seem to fit the FS schema

 14

Authorization

●

●

 15

Client Issues

Coping with history changes
●

 16

Protocol Extensions

●

●

	Title
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

