

Page 1 of 37

Web Services Reliable Messaging Protocol
(WS-ReliableMessaging)
February 2005

Authors

Ruslan Bilorusets, BEA
Don Box, Microsoft
Luis Felipe Cabrera, Microsoft
Doug Davis, IBM
Donald Ferguson, IBM
Christopher Ferris, IBM (Editor)
Tom Freund, IBM
Mary Ann Hondo, IBM
John Ibbotson, IBM
Lei Jin, BEA
Chris Kaler, Microsoft
David Langworthy, Microsoft (Editor)
Amelia Lewis, TIBCO Software
Rodney Limprecht, Microsoft
Steve Lucco, Microsoft
Don Mullen, TIBCO Software
Anthony Nadalin, IBM
Mark Nottingham, BEA
David Orchard, BEA
Jamie Roots, IBM
Shivajee Samdarshi, TIBCO Software
John Shewchuk, Microsoft
Tony Storey, IBM

Copyright Notice
(c) 2002-2005 BEA Systems, IBM, Microsoft Corporation, Inc, and TIBCO Software Inc..
All rights reserved.

Permission to copy and display the Web Services Reliable Messaging Protocol
Specification (the “Specification”, which includes WSDL and schema documents), in any
medium without fee or royalty is hereby granted, provided that you include the following
on ALL copies of the Specification that you make:

1. A link or URL to the Specification at one of the Authors’ websites

2. The copyright notice as shown in the Specification.

BEA Systems, IBM, Microsoft and TIBCO Software (collectively, the “Authors”) each
agree to grant you a license, under royalty-free and otherwise reasonable, non-
discriminatory terms and conditions, to their respective essential patent claims that they
deem necessary to implement the Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT

http://www.bea.com/
http://www.ibm.com/
http://www.microsoft.com/
http://www.tibco.com/

Page 2 of 37

LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Specification will at all times remain
with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification (WS-ReliableMessaging) describes a protocol that allows messages to
be delivered reliably between distributed applications in the presence of software
component, system, or network failures. The protocol is described in this specification in
a transport-independent manner allowing it to be implemented using different network
technologies. To support interoperable Web services, a SOAP binding is defined within
this specification.

The protocol defined in this specification depends upon other Web services specifications
for the identification of service endpoint addresses and policies. How these are identified
and retrieved are detailed within those specifications and are out of scope for this
document.

Composable Architecture
By using the SOAP [SOAP] and WSDL [WSDL] extensibility model, SOAP-based and
WSDL-based specifications are designed to be composed with each other to define a rich
Web services environment. As such, WS-ReliableMessaging by itself does not define all
the features required for a complete messaging solution. WS-ReliableMessaging is a
building block that is used in conjunction with other specifications and application-
specific protocols to accommodate a wide variety of protocols related to the operation of
distributed Web services.

Status
WS-ReliableMessaging and related specifications are provided for use as-is and for
review and evaluation only. BEA, IBM, Microsoft, and TIBCO Software will solicit your
contributions and suggestions in the near future. BEA, IBM, Microsoft, and TIBCO
Software make no warrantees or representations regarding the specification in any
manner whatsoever.

Page 3 of 37

Status

Acknowledgements
The following individuals have provided invaluable input into the design of the WS-
ReliableMessaging specification:

Keith Ballinger, Microsoft
Stefan Batres, Microsoft
Allen Brown, Microsoft
Michael Conner, IBM
George Copeland, Microsoft
Francisco Curbera, IBM
Paul Fremantle, IBM
Steve Graham, IBM
Pat Helland, Microsoft
Rick Hill, Microsoft
Scott Hinkelman, IBM
Tim Holloway, IBM
Efim Hudis, Microsoft
Gopal Kakivaya, Microsoft
Johannes Klein, Microsoft
Frank Leymann, IBM
Martin Nally, IBM
Peter Niblett, IBM
Jeffrey Schlimmer, Microsoft
James Snell, IBM
Keith Stobie, Microsoft
Satish Thatte, Microsoft
Stephen Todd, IBM
Sanjiva Weerawarana, IBM
Roger Wolter, Microsoft

We wish to thank the participants of the WS-ReliableMessaging Feedback and Interop
Workshops for their valuable feedback.

We also wish to thank the technical writers and development reviewers who provided
feedback to improve the readability of the specification.

Table of Contents

Copyright Notice
Abstract
Composable Architecture

Acknowledgements
1. Introduction

1.1 Notational Conventions
1.2 Namespace

2. Reliable Messaging Model
2.1 Glossary

Page 4 of 37

2.2 Protocol Preconditions
2.3 Protocol Invariants
2.4 Example Message Exchange

3. RM Protocol Elements
3.1 Sequences
3.2 Sequence Acknowledgement
3.3 Request Acknowledgement
3.4 Sequence Creation
3.5 Sequence Termination

4. Faults
4.1 SequenceFault Element
4.2 Sequence Terminated
4.3 Unknown Sequence
4.4 Invalid Acknowledgement
4.5 Message Number Rollover
4.6 Last Message Number Exceeded
4.7 Create Sequence Refused

5. Security Considerations
6. References
Appendix A Schema
Appendix B Message Examples

B.1 Create Sequence
B.2 Initial Transmission
B.3 First Acknowledgement
B.4 Retransmission
B.5 Termination

Appendix C WSDL

1. Introduction
It is often a requirement for two Web services that wish to communicate to do so
reliably in the presence of software component, system, or network failures. The
primary goal of this specification is to create a modular mechanism for reliable message
delivery. It defines a messaging protocol to identify, track, and manage the reliable
delivery of messages between exactly two parties, a source and a destination. It also
defines a SOAP binding that is required for interoperability. Additional bindings may be
defined.

Page 5 of 37

This mechanism is extensible allowing additional functionality, such as security, to be
tightly integrated. This specification integrates with and complements the WS-Security,
WS-Policy, and other Web services specifications. Combined, these allow for a broad
range of reliable, secure messaging options.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [KEYWORDS].

Namespace URIs of the general form "some-URI" represents some application-
dependent or context-dependent URI as defined in RFC2396 [URI].

This specification uses an informal syntax to describe the XML grammar of the XML
fragments below:

• The syntax appears as an XML instance, but the values indicate the data types
instead of values.

• Element names ending in "..." (such as <element.../> or <element...>) indicate
that attributes irrelevant to the context are being omitted.

• Element content ending in "..." indicates that elements irrelevant to the context are
being omitted.

• Grammar in bold has not been introduced earlier in the document, or is of particular
interest in an example.

• Characters are appended to elements and attributes as follows: "|", (choice), "?" (0
or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are used to
indicate that contained items are to be treated as a group with respect to the "|",
"?", "*", or "+" characters.

• The XML namespace prefixes (defined below) are used to indicate the namespace of
the element being defined.

• Examples starting with <?xml> contain enough information to conform to this
specification; others examples are fragments and require additional information to be
specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars
[xml-schema1] [WSDL].

1.2 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

http://schemas.xmlsoap.org/ws/2005/02/rm

The namespace prefix "wsrm" used in this specification is associated with this URI.

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

http://www.w3.org/2003/05/soap-envelope

Page 6 of 37

S11 http://schemas.xmlsoap.org/soap/envelope/

wsrm http://schemas.xmlsoap.org/ws/2005/02/rm

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd

The normative schema for WS-Reliable Messaging can be found at:

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm.xsd

All sections explicitly noted as examples are informational and are not to be considered
normative.

If an action URI is used, and one is not already defined per the rules of the WS-
Addressing specification [WS-Addressing], then the action URI MUST consist of the
reliable messaging namespace URI concatenated with the "/" character and the element
name. For example:

http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement

2. Reliable Messaging Model
Many errors may interrupt a conversation. Messages may be lost, duplicated or
reordered. Further the host systems may experience failures and lose volatile state.

WS-ReliableMessaging provides an interoperable protocol that a Reliable Messaging (RM)
Source and Reliable Messaging (RM) Destination use to provide Application Source and
Destination a guarantee that a message that is sent will be delivered. The guarantee is
specified as a delivery assurance. The protocol supports the endpoints in providing
these delivery assurances. It is the responsibility of the RM Source and RM Destination
to fulfill the delivery assurances, or raise an error. The protocol defined here allows
endpoints to meet this guarantee for the delivery assurances defined below.

Persistence considerations related to an endpoint's ability to satisfy the delivery
assurances defined below are the responsibility of the implementation and do not affect
the wire protocol. As such, they are out of scope of this specification.

There are four basic delivery assurances that endpoints can provide:

AtMostOnce Messages will be delivered at most once without duplication or an error
will be raised on at least one endpoint. It is possible that some messages in a sequence
may not be delivered.

AtLeastOnce Every message sent will be delivered or an error will be raised on at least
one endpoint. Some messages may be delivered more than once.

ExactlyOnce Every message sent will be delivered without duplication or an error will
be raised on at least one endpoint. This delivery assurance is the logical "and" of the
two prior delivery assurances.

InOrder Messages will be delivered in the order that they were sent. This delivery
assurance may be combined with any of the above delivery assurances. It requires that
the sequence observed by the ultimate receiver be non-decreasing. It says nothing
about duplications or omissions.

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/ws/2005/02/rm
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/@@@/rm/wsrm.xsd

The diagram below illustrates the entities and events in a simple reliable message
exchange. First, the Application Source Sends a message for reliable delivery. The
Reliable Messaging (RM) Source accepts the message and Transmits it one or more
times. After receiving the message, the RM Destination Acknowledges it. Finally, the
RM Destination delivers the message to the Application Destination. The exact roles the
entities play and the complete meaning of the events will be defined throughout this
specification.

Figure 1: Reliable Messaging Model

2.1 Glossary
The following definitions are used throughout this specification:

Endpoint: A referencable entity, processor, or resource where Web service messages
are originated or targeted.

Application Source: The endpoint that Sends a message.

Application Destination: The endpoint to which a message is Delivered.

Delivery Assurance: The guarantee that the messaging infrastructure provides on the
delivery of a message.

RM Source: The endpoint that transmits the message.

RM Destination: The endpoint that receives the message.

Send: The act of submitting a message to the RM Source for reliable delivery. The
reliability guarantee begins at this point.

Deliver: The act of transferring a message from the RM Destination to the Application
Destination. The reliability guarantee is fulfilled at this point.

Transmit: The act of writing a message to a network connection.

Receive: The act of reading a message from a network connection.

Acknowledgement: The communication from the RM Destination to the RM Source
indicating the successful receipt of a message.

Page 7 of 37

2.2 Protocol Preconditions
The correct operation of the protocol requires that a number of preconditions MUST be
established prior to the processing of the initial sequenced message:

• The RM Source MUST have an endpoint reference that uniquely identifies the RM
Destination endpoint; correlations across messages addressed to the unique
endpoint MUST be meaningful.

• The RM Source MUST have knowledge of the destination's policies, if any, and the
RM Source MUST be capable of formulating messages that adhere to this policy.

• If a secure exchange of messages is required, then the RM Source and RM
Destination MUST have a security context.

2.3 Protocol Invariants
During the lifetime of the protocol, two invariants are REQUIRED for correctness:

• The RM Source MUST assign each reliable message a sequence number (defined
below) beginning at 1 and increasing by exactly 1 for each subsequent reliable
message.

• Every acknowledgement issued by the RM Destination MUST include within an
acknowledgement range or ranges the sequence number of every message
successfully received by the RM Destination and MUST exclude sequence numbers of
any messages not yet received.

2.4 Example Message Exchange
The following figure illustrates a possible message exchange between two reliable
messaging endpoints.

Page 8 of 37

Page 9 of 37

Figure 2: The WS-ReliableMessaging Protocol

1. The protocol preconditions are established. These include policy exchange, endpoint
resolution, establishing trust.

2. The RM Source requests creation of a new Sequence.

3. The RM Destination creates a Sequence by returning a globally unique identifier.

4. The RM Source begins sending messages beginning with MessageNumber 1. In the
figure the RM Source sends 3 messages.

5. Since the 3rd message is the last in this exchange, the RM Source includes a
<LastMessage> token.

6. The 2nd message is lost in transit.

7. The RM Destination acknowledges receipt of message numbers 1 and 3 in response
to the RM Source's <LastMessage> token.

8. The RM Source retransmits the 2nd message. This is a new message on the
underlying transport, but since it has the same sequence identifier and message
number so the RM Destination can recognize it as equivalent to the earlier message,
in case both are received.

9. The RM Source includes an <AckRequested> element so the RM Destination will
expedite an acknowledgement.

10. The RM Destination receives the second transmission of the message with
MessageNumber 2 and acknowledges receipt of message numbers 1, 2, and 3 which
carried the <LastMessage> token.

11. The RM Source receives this acknowledgement and sends a TerminateSequence
message to the RM Destination indicating that the sequence is completed and
reclaims any resources associated with the Sequence.

12. The RM Destination receives the TerminateSequence message indicating that the RM
Source will not be sending any more messages, and reclaims any resources
associated with the Sequence.

Now that the basic model has been outlined, the details of the elements used in this
protocol are now provided.

3. RM Protocol Elements
The protocol elements define extensibility points at various places. Additional children
and/or attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. If a receiver does not
recognize an extension, the receiver SHOULD ignore the extension.

3.1 Sequences
The RM protocol uses a <Sequence> header block to track and manage the reliable
delivery of messages. Messages for which the delivery assurance applies MUST contain
a <Sequence> header block. Each Sequence MUST have a unique <Identifier>
element and each message within a Sequence MUST have a <MessageNumber> element
that increments by 1 from an initial value of 1. These values are contained within a

Page 10 of 37

<Sequence> header block accompanying each message being delivered in the context of
a Sequence. In addition to mandatory <Identifier> and <MessageNumber> elements,
the header MAY include a <LastMessage> element.

There MUST be no more than one <Sequence> header block in any message.

The purpose of the <LastMessage> element is to signal to the RM Destination that the
message represents the last message in the Sequence.

A following exemplar defines its syntax:

<wsrm:Sequence ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 <wsrm:MessageNumber> xs:unsignedLong </wsrm:MessageNumber>

 <wsrm:LastMessage/>?

 ...

</wsrm:Sequence>

The following describes the content model of the Sequence header block.

/wsrm:Sequence
This is the element containing Sequence information for WS-ReliableMessaging. The
<wsrm:Sequence> element MUST be understood by the RM Destination. The
<wsrm:Sequence> element MUST have a mustUnderstand attribute from the
namespace corresponding to the version of SOAP to which the <wsrm:Sequence>
SOAP header block is bound.

/wsrm:Sequence/wsrm:Identifier
This required element MUST contain an absolute URI conformant with RFC2396 that
uniquely identifies the Sequence.

/wsrm:Sequence/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:Sequence/wsrm:MessageNumber
This required element MUST contain an unsignedLong representing the ordinal
position of the message within a Sequence. Sequence MessageNumbers start at 1
and monotonically increase throughout the Sequence. If the message number
exceeds the internal limitations of an RM Source or RM Destination or reaches the
maximum value of an unsignedLong (18,446,744,073,709,551,615), the RM Source
or Destination MUST issue a MessageNumberRollover fault.

/wsrm:Sequence/wsrm:LastMessage
This element MAY be included by the RM Source endpoint. The <LastMessage>
element has no content.

/wsrm:Sequence/{any}
This is an extensibility mechanism to allow different types of information, based on a
schema, to be passed.

/wsrm:Sequence/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

Page 11 of 37

A RM Source endpoint MUST include a <LastMessage> element in the <Sequence>
element for the last message in a Sequence. An RM Destination endpoint MUST respond
with a <SequenceAcknowledgement> upon receipt of a <LastMessage> element. A
Sequence MUST NOT use a <MessageNumber> value greater than that which
accompanies a <LastMessage> element. An RM Destination MUST generate a
LastMessageNumberExceeded fault upon receipt of such a message. In the event that
an RM Source needs to close a Sequence and there is no application message, the RM
Source MAY send a message with an empty body containing <Sequence> header with the
<LastMessage> element. In this usage, the action URI MUST be:

http://schemas.xmlsoap.org/ws/2005/02/rm/LastMessage

in preference to the pattern defined in Section 1.2.

The following example illustrates a Sequence header block.

<wsrm:Sequence>

 <wsrm:Identifier>http://fabrikam123.com/abc</wsrm:Identifier>

 <wsrm:MessageNumber>10</wsrm:MessageNumber>

 <wsrm:LastMessage/>

</wsrm:Sequence>

3.2 Sequence Acknowledgement
The RM Destination informs the RM Source of successful message receipt using a
<SequenceAcknowledgement> header block. The <SequenceAcknowledgement> header
block MAY be transmitted independently or included on return messages. The RM
Destination MAY send a <SequenceAcknowledgement> header block at any point. The
timing of acknowledgements can be advertised using policy and acknowledgements can
be explicitly requested using the <AckRequested> directive.

The following exemplar defines its syntax:

<wsrm:SequenceAcknowledgement ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 [<wsrm:AcknowledgementRange ...

 Upper="xs:unsignedLong"

 Lower="xs:unsignedLong"/> +

 | <wsrm:Nack> xs:unsignedLong </wsrm:Nack> +]

 ...

</wsrm:SequenceAcknowledgement>

The following describes the content model of the <SequenceAcknowledgement> header
block.

/wsrm:SequenceAcknowledgement
This element contains the Sequence acknowledgement information.

/wsrm:SequenceAcknowledgement/wsrm:Identifier
This required element MUST contain an absolute URI conformant with RFC2396 that
uniquely identifies the Sequence.

Page 12 of 37

/wsrm:SequenceAcknowledgement/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgementRange
This optional element, if present, can occur 1 or more times. It contains a range of
message Sequence MessageNumbers successfully received by the receiving endpoint
manager. The ranges SHOULD NOT overlap. This element MUST NOT be present if
<Nack> is also present as a child of <SequenceAcknowledgement>.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgementRange/@Upper
This required attribute contains an unsignedLong representing the <MessageNumber>
of the highest contiguous message in a Sequence range.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgementRange/@Lower
This required attribute contains an unsignedLong representing the <MessageNumber>
of the lowest contiguous message in a Sequence range.

/wsrm:SequenceAcknowledgement/wsrm:AcknowledgementRange/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:SequenceAcknowledgement/wsrm:Nack
This optional element, if present, MUST contain an unsignedLong representing the
<MessageNumber> of an unreceived message in a Sequence. This element MUST NOT
be present if the <AcknowledgementRange> is also present as a child of
<SequenceAcknowledgement>. The <Nack> element permits the gap analysis of the
<AcknowledgementRange> elements to be performed at the RM Destination rather
than at the RM Source which may yield performance benefits in certain
environments.

/wsrm:SequenceAcknowledgement/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:SequenceAcknowledgement/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

The following examples illustrate <SequenceAcknowledgement> elements:

• Message numbers 1...10 inclusive in a Sequence have been received by the RM
Destination.

<wsrm:SequenceAcknowledgement>

 <wsrm:Identifier>http://fabrikam123.com/abc</wsrm:Identifier>

 <wsrm:AcknowledgementRange Upper="10" Lower="1"/>

</wsrm:SequenceAcknowledgement>

• Message numbers 1..2, 4..6, and 8..10 inclusive in a Sequence have been received
by the RM Destination, messages 3 and 7 have not been received.

<wsrm:SequenceAcknowledgement>

 <wsrm:Identifier>http://fabrikam123.com/abc</wsrm:Identifier>

Page 13 of 37

 <wsrm:AcknowledgementRange Upper="2" Lower="1"/>

 <wsrm:AcknowledgementRange Upper="6" Lower="4"/>

 <wsrm:AcknowledgementRange Upper="10" Lower="8"/>

</wsrm:SequenceAcknowledgement>

• Message number 3 in a Sequence has not been received by the RM Destination.

<wsrm:SequenceAcknowledgement>

 <wsrm:Identifier>http://fabrikam123.com/abc</wsrm:Identifier>

 <wsrm:Nack>3</wsrm:Nack>

</wsrm:SequenceAcknowledgement>

3.3 Request Acknowledgement
The purpose of the <AckRequested> header block is to signal to the RM Destination that
the RM Source is requesting that a <SequenceAcknowledgement> be returned.

At any time, the RM Source may request an acknowledgement message from the RM
Destination point using an <AckRequested> header block.

The RM Source endpoint requests this acknowledgement by including an
<AckRequested> header block in the message. An RM Destination that receives a
message that contains an <AckRequested> header block MUST respond with a message
containing a <SequenceAcknowledgement> header block.

The following exemplar defines its syntax:

<wsrm:AckRequested ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 <wsrm:MessageNumber> xs:unsignedLong </wsrm:MessageNumber> ?

 ...

</wsrm:AckRequested>

/wsrm:AckRequested
This element requests an acknowledgement for the identified sequence.

/wsrm:AckRequested/wsrm:Identifier
This required element MUST contain an absolute URI, conformant with RFC2396, that
uniquely identifies the Sequence to which the request applies.

/wsrm:AckRequested/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:AckRequested/wsrm:MessageNumber
This optional element, if present, MUST contain an xs:unsignedLong representing the
highest <MessageNumber> sent by the RM Source within a Sequence. If present, it
MAY be treated as a hint to the RM Destination as an optimization to the process of
preparing to transmit a <SequenceAcknowledgement>.

/wsrm:AckRequested/{any}

Page 14 of 37

This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:AckRequested/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

3.4 Sequence Creation
The RM Source MUST request creation of an outbound Sequence by sending a
<CreateSequence> element in the body of a message to the RM Destination which in
turn responds either with a <CreateSequenceResponse> or a CreateSequenceRefused
fault in the body of the response message. <CreateSequence> MAY carry an offer to
create an inbound sequence which is either accepted or rejected in the
<CreateSequenceResponse>.

The RM Destination of the outbound sequence is the WS-Addressing EndpointReference
to which <CreateSequence> is sent. The RM Destination of the inbound sequence is the
WS-Addressing <wsa:ReplyTo> of the <CreateSequence>.

The following exemplar defines the <CreateSequence> syntax:

<wsrm:CreateSequence ...>

 <wsrm:AcksTo ...> wsa:EndpointReferenceType </wsrm:AcksTo>

 <wsrm:Expires ...> xs:duration </wsrm:Expires> ?

 <wsrm:Offer ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 <wsrm:Expires ...> xs:duration </wsrm:Expires> ?

 ...

 </wsrm:Offer> ?

 ...

 <wsse:SecurityTokenReference>

 ...

 </wsse:SecurityTokenReference> ?

 ...

</wsrm:CreateSequence>

/wsrm:CreateSequence
This element requests creation of a new Sequence between the RM Source that
sends it, and the RM Destination to which it is sent. This element MUST NOT be sent
as a header block. The RM Destination MUST respond either with a
<CreateSequenceResponse> response message or a CreateSequenceRefused fault.

/wsrm:CreateSequence/wsrm:AcksTo

This required element, of type wsa:EndpointReferenceType as specified by WS-
Addressing [WS-ADDR] specifies the endpoint reference to which

Page 15 of 37

<SequenceAcknowledgement> messages and faults related to the created Sequence
are to be sent.

/wsrm:CreateSequence/wsrm:Expires

This element, if present, of type xs:duration specifies the RM Source's requested
duration for the Sequence. The RM Destination MAY either accept the requested
duration or assign a lesser value of its choosing. A value of 'P0S' indicates that the
Sequence will never expire. Absence of the element indicates an implied value of
'P0S'.

/wsrm:CreateSequence/wsrm:Expires/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:CreateSequence/wsrm:Offer

This element, if present, enables an RM Source to offer a corresponding Sequence
for the reliable exchange of messages transmitted from RM Destination to RM
Source.

/wsrm:CreateSequence/wsrm:Offer/wsrm:Identifier

This required element MUST contain an absolute URI conformant with RFC2396 that
uniquely identifies the offered Sequence.

/wsrm:CreateSequence/wsrm:Offer/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:CreateSequence/wsrm:Offer/wsrm:Expires

This element, if present, of type xs:duration specifies the duration for the
Sequence. A value of 'P0S' indicates that the Sequence will never expire. Absence of
the element indicates an implied value of 'P0S'.

/wsrm:CreateSequence/wsrm:Offer/wsrm:Expires/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:CreateSequence/wsrm:Offer/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequence/wsrm:Offer/@{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequence/wsse:SecurityTokenReference
This optional element uses the extensibility mechanism defined next to communicate
an explicit reference to the security token to be used to authorize messages for the
created outbound Sequence and if offered the inbound Sequence, using a
<wsse:SecurityTokenReference> as documented in WS-Security [WSSecurity]. All
subsequent messages in the outbound Sequence and if offered the inbound
Sequence MUST demonstrate proof-of-possession of the referenced key.

/wsrm:CreateSequence/{any}

Page 16 of 37

This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequence/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

A <CreateSequenceResponse> is sent in the body of a response message by an RM
Destination in response to receipt of a <CreateSequence> request message. It carries
the <Identifier> of the created Sequence and indicates that the RM Source may begin
sending messages in the context of the identified Sequence.

The following exemplar defines the <CreateSequenceResponse> syntax:

<wsrm:CreateSequenceResponse ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 <wsrm:Expires> xs:duration </wsrm:Expires> ?

 <wsrm:Accept ...>

 <wsrm:AcksTo ...> wsa:EndpointReferenceType </wsrm:AcksTo>

 ...

 </wsrm:Accept> ?

 ...

</wsrm:CreateSequenceResponse>

/wsrm:CreateSequenceResponse
This element is sent in the body of the response message in response to a
<CreateSequence> request message. It indicates that the RM Destination has
created a new Sequence at the request of the RM Source. This element MUST NOT
be sent as a header block.

/wsrm:CreateSequenceResponse/wsrm:Identifier
This required element MUST contain an absolute URI conformant with RFC2396 of
the Sequence that has been created by the RM Destination.

/wsrm:CreateSequenceResponse/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:CreateSequenceResponse/wsrm:Expires
This element, if present, of type xs:duration accepts or refines the RM Source's
requested duration for the Sequence. A value of 'P0S' indicates that the Sequence
will never expire. Absence of the element indicates an implied value of 'P0S'. This
value MUST be equal or lesser than the value requested by the RM Source in the
corresponding <CreateSequence> message.

/wsrm:CreateSequenceResponse/wsrm:Expires/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

/wsrm:CreateSequenceResponse/wsrm:Accept
This element, if present, enables an RM Destination to accept the offer of a
corresponding Sequence for the reliable exchange of messages transmitted from RM

Page 17 of 37

Destination to RM Source. This element MUST be present if the corresponding
<CreateSequence> message contained an <Offer> element.

/wsrm:CreateSequenceResponse/wsrm:Accept/wsrm:AcksTo
This required element, of type wsa:EndpointReferenceType as specified by WS-
Addressing [WS-ADDR], specifies the endpoint reference to which
<SequenceAcknowledgement> messages related to the accepted Sequence are to be
sent.

/wsrm:CreateSequenceResponse/wsrm:Accept/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequenceResponse/wsrm:Accept/@{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequenceResponse/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:CreateSequenceResponse/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

3.5 Sequence Termination
After an RM Source receives the <SequenceAcknowledgement> acknowledging the
complete range of messages in a Sequence, it sends a <TerminateSequence> element,
in the body of a message to the RM Destination to indicate that the Sequence is
complete, and that it will not be sending any further messages related to the Sequence.
The RM Destination can safely reclaim any resources associated with the Sequence upon
receipt of the <TerminateSequence> message.

The following exemplar defines the TerminateSequence syntax:

<wsrm:TerminateSequence ...>

 <wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

 ...

</wsrm:TerminateSequence>

/wsrm:TerminateSequence
This element is sent by an RM Source after it has received the final
<SequenceAcknowledgement> covering the full range of a Sequence. It indicates that
the RM Destination can safely reclaim any resources related to the identified
Sequence. This element MUST NOT be sent as a header block.

/wsrm:TerminateSequence/wsrm:Identifier
This required element MUST contain an absolute URI conformant with RFC2396 of
the Sequence that is being terminated.

/wsrm:TerminateSequence/wsrm:Identifier/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

Page 18 of 37

/wsrm:TerminateSequence/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

/wsrm:TerminateSequence/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

4. Faults
The fault definitions defined in this section reference certain abstract properties, such as
[fault endpoint], that are defined in section 3 of the WS-Addressing [WS-Addressing]
specification. Endpoints compliant with this specification MUST include required
message information headers on all fault messages.

Sequence creation uses a CreateSequence, CreateSequenceResponse request reply.
Faults for this operation are treated as defined in WS-Addressing.
CreateSequenceRefused is a possible fault reply for this operation. UnknownSequence is
a fault generated by endpoints when messages carrying RM header blocks targeted at
unrecognized sequences are detected, these faults are also treated as defined in WS-
Addressing. All other faults in this section relate to the processing of RM header blocks
targeted at known sequences and are collectively referred to as sequence faults.
Sequence faults SHOULD be sent to the same [destination] as
<SequenceAcknowledgement> messages. These faults are correlated using the sequence
identifier carried in the detail.

WS-ReliableMessaging faults MUST include as the [action] property the default fault
action URI defined in the version of WS-Addressing used in the message. The value
from the current version is below for informational purposes:

http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

The faults defined in this section are generated if the condition stated in the preamble is
met. Fault handling rules are defined in section 4 of WS-Addressing.

The definitions of faults use the following properties:

[Code] The fault code.

[Subcode] The fault subcode.

[Reason] The English language reason element.

[Detail] The detail element. If absent, no detail element is defined for the fault.

The [Code] property MUST be either "Sender" or "Receiver". These properties are
serialized into text XML as follows:

SOAP Version Sender Receiver

SOAP 1.1 S11:Client S11:Server

SOAP 1.2 S:Sender S:Receiver

The properties above bind to a SOAP 1.2 fault as follows:

Page 19 of 37

<S:Envelope>

 <S:Header>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

 </wsa:Action>

 <!-- Headers elided for clarity. -->

 </S:Header>

 <S:Body>

 <S:Fault>

 <S:Code>

 <S:Value> [Code] </S:Value>

 <S:Subcode>

 <S:Value> [Subcode] </S:Value>

 </S:Subcode>

 </S:Code>

 <S:Reason>

 <S:Text xml:lang="en"> [Reason] </S:Text>

 </S:Reason>

 <S:Detail>

 [Detail]

 ...

 </S:Detail>

 </S:Fault>

 </S:Body>

</S:Envelope>

The properties above bind to a SOAP 1.1 fault as follows when the fault is triggered by
processing an RM header block:

<S11:Envelope>

 <S11:Header>

 <wsrm:SequenceFault>

 <wsrm:FaultCode> wsrm:FaultCodes </wsrm:FaultCode>

 ...

 </wsrm:SequenceFault>

 <!-- Headers elided for clarity. -->

 </S11:Header>

 <S11:Body>

Page 20 of 37

 <S11:Fault>

 <faultcode> [Code] </faultcode>

 <faultstring> [Reason] </faultstring>

 </S11:Fault>

 </S11:Body>

</S11:Envelope>

The properties bind to a SOAP 1.1 fault as follows when the fault is generated as a result
of processing a <CreateSequence> request message:

<S11:Envelope>

 <S11:Body>

 <S11:Fault>

 <faultcode> [Subcode] </faultcode>

 <faultstring xml:lang="en"> [Reason] </faultstring>

 </S11:Fault>

 </S11:Body>

</S11:Envelope>

4.1 SequenceFault Element
The purpose of the <SequenceFault> element is to carry the specific details of a fault
generated during the reliable messaging specific processing of a message belonging to a
Sequence. The <SequenceFault> container MUST only be used in conjunction with the
SOAP1.1 fault mechanism. It MUST NOT be used in conjunction with the SOAP1.2
binding.

The following exemplar defines its syntax:

<wsrm:SequenceFault ...>

 <wsrm:FaultCode> wsrm:FaultCodes </wsrm:FaultCode>

 ...

</wsrm:SequenceFault>

The following describes the content model of the SequenceFault element.

/wsrm:SequenceFault
This is the element containing Sequence information for WS-ReliableMessaging

/wsrm:SequenceFault/wsrm:FaultCode
This element, if present, MUST contain a qualified name from the set of fault codes
defined below.

/wsrm:SequenceFault/{any}
This is an extensibility mechanism to allow different (extensible) types of
information, based on a schema, to be passed.

Page 21 of 37

/wsrm:SequenceFault/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas,
to be added to the element.

4.2 Sequence Terminated
This fault is sent by either the RM Source or the RM Destination to indicate that the
endpoint that generates the fault has either encountered an unrecoverable condition, or
has detected a violation of the protocol and as a consequence, has chosen to terminate
the sequence. The endpoint that generates this fault should make every reasonable
effort to notify the corresponding endpoint of this decision.

Properties:

[Code] Sender or Receiver

[Subcode] wsrm:SequenceTerminated

[Reason] The Sequence has been terminated due to an unrecoverable error.

[Detail]

<wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

4.3 Unknown Sequence
This fault is sent by either the RM Source or the RM Destination in response to a
message containing an unknown sequence identifier.

Properties:

[Code] Sender

[Subcode] wsrm:UnknownSequence

[Reason] The value of wsrm:Identifier is not a known Sequence identifier.

[Detail]

<wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

4.4 Invalid Acknowledgement
This fault is sent by the RM Source in response to a <SequenceAcknowledgement> that
violates the cumulative acknowledgement invariant. An example of such a violation
would be a SequenceAcknowledgement covering messages that have not been sent.

[Code] Sender

[Subcode] wsrm:InvalidAcknowledgement

[Reason] The SequenceAcknowledgement violates the cumulative acknowledgement
invariant.

[Detail]

<wsrm:SequenceAcknowledgement ...> ... </wsrm:SequenceAcknowledgement>

Page 22 of 37

4.5 Message Number Rollover
This fault is sent to indicate that message numbers for a sequence have been
exhausted. It is an unrecoverable error and terminates the Sequence.

Properties:

[Code] Sender

[Subcode] wsrm:MessageNumberRollover

[Reason] The maximum value for wsrm:MessageNumber has been exceeded.

[Detail]

<wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

4.6 Last Message Number Exceeded
This fault is sent by an RM Destination to indicate that it has received a message that
has a <MessageNumber> within a Sequence that exceeds the value of the
<MessageNumber> element that accompanied a <LastMessage> element for the
Sequence. This is an unrecoverable error and terminates the Sequence.

Properties:

[Code] Sender

[Subcode] wsrm:LastMessageNumberExceeded

[Reason] The value for wsrm:MessageNumber exceeds the value of the MessageNumber
accompanying a LastMessage element in this Sequence.

[Detail]

<wsrm:Identifier ...> xs:anyURI </wsrm:Identifier>

4.7 Create Sequence Refused
This fault is sent in response to a create sequence request that cannot be satisfied.

Properties:

[Code] Sender

[Subcode] wsrm:CreateSequenceRefused

[Reason] The create sequence request has been refused by the RM Destination.

[Detail] empty

5. Security Considerations
It is strongly recommended that the communication between services be secured using
the mechanisms described in WS-Security. In order to properly secure messages, the
body and all relevant headers need to be included in the signature. Specifically, the
<wsrm:Sequence> header needs to be signed with the body in order to "bind" the two

Page 23 of 37

together. The <wsrm:SequenceAcknowledgement> header may be signed independently
because a reply independent of the message is not a security concern.

Because Sequences are expected to exchange a number of messages, it is
recommended that a security context be established using the mechanisms described in
WS-Trust and WS-SecureConversation. If a Sequence is bound to a specific endpoint,
then the security context needs to be established or shared with the endpoint servicing
the Sequence. While the context can be established at any time, it is critical that the
messages establishing the Sequence be secured even if they precede security context
establishment. However, it is recommended that the security context be established
first. Security contexts are independent of reliable messaging Sequences.
Consequently, security contexts can come and go independent of the lifetime of the
Sequence. In fact, it is recommended that the lifetime of a security context be less than
the lifetime of the Sequence unless the Sequence is very short-lived.

It is common for message Sequences to exchange a number of messages (or a large
amount of data). As a result, the usage profile of a Sequence is such that it is
susceptible to key attacks. For this reason it is strongly recommended that the keys be
changed frequently. This "re-keying" can be effected a number of ways. The following
list outlines four common techniques:

• Closing and re-establishing a security context

• Exchanging new secrets between the parties

• Using a derived key sequence and switch "generations"

• Attaching a nonce to each message and using it in a derived key function with the
shared secret

The security context may be re-established using the mechanisms described in WS-Trust
and WS-SecureConversation. Similarly, secrets can be exchanged using the
mechanisms described in WS-Trust. Note, however, that the current shared secret
should not be used to encrypt the new shared secret. Derived keys, the preferred
solution from this list, can be specified using the mechanisms described in WS-
SecureConversation.

There is a core tension between security and reliable messaging that can be problematic
if not considered in implementations. That is, one aspect of security is to prevent
message replay and the core tenet of reliable messaging is to replay messages until they
are acknowledged. Consequently, if the security sub-system processes a message but a
failure occurs before the reliable messaging sub-system records the message (or the
message is considered "processed"), then it is possible (and likely) that the security sub-
system will treat subsequent copies as replays and discard them. At the same time, the
reliable messaging sub-system will likely continue to expect and even solicit the missing
message(s). Care should be taken to avoid and prevent this race condition.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

Page 24 of 37

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy and WS-SecurityPolicy).

• Authentication – Authentication is established using the mechanisms described in
WS-Security and WS-Trust. Each message is authenticated using the mechanisms
described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key and
algorithms being used. In many cases, a strong symmetric key provides sufficient
accountability. However, in some environments, strong PKI signatures are required.

• Availability – All reliable messaging services are subject to a variety of availability
attacks. Replay detection is a common attack and it is recommended that this be
addressed by the mechanisms described in WS-Security. (Note that because of
legitimate message replays, detection should include a differentiator besides
message id such as a timestamp). Other attacks, such as network-level denial of
service attacks are harder to avoid and are outside the scope of this specification.
That said, care should be taken to ensure that minimal state is saved prior to any
authenticating sequences.

6. References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[WS-Policy]
D. Box, et al, "Web Services Policy Framework (WS-Policy)," September 2004.

 [WS-PolicyAttachment]
D. Box, et al, "Web Services Policy Attachment (WS-PolicyAttachment)," September
2004.

 [WS-Addressing]
D. Box, et al, "Web Services Addressing (WS-Addressing)," August 2004.

[WSSecurity]

"OASIS Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)",
Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, Ronald Monzillo, eds, OASIS
Standard 200401, March 2004.

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://ietf.org/rfc/rfc2396
http://ietf.org/rfc/rfc2396
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Page 25 of 37

[SecureConversation]
S. Anderson, et al, "Web Services Secure Conversation Language (WS-
SecureConversation)," May 2004.

[SecurityPolicy]
G. Della-Libra, "Web Services Security Policy Language (WS-SecurityPolicy),"
December 2002.

 [Tanenbaum]
"Computer Networks," Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

[WSDL]
W3C Note, "Web Services Description Language (WSDL 1.1)," 15 March 2001.

Appendix A Schema
The normative schema for WS-ReliableMessaging is located at:

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm.xsd

The following copy is provided for reference.

<xs:schema targetNamespace="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>

 <!-- Protocol Elements -->

 <xs:complexType name="SequenceType">

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:element name="MessageNumber" type="xs:unsignedLong"/>

 <xs:element name="LastMessage" minOccurs="0">

 <xs:complexType>

 <xs:sequence/>

 </xs:complexType>

 </xs:element>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:element name="Sequence" type="wsrm:SequenceType"/>

 <xs:element name="SequenceAcknowledgement">

http://schemas.xmlsoap.org/ws/2004/04/sc/
http://schemas.xmlsoap.org/ws/2004/04/sc/
http://schemas.xmlsoap.org/ws/2002/12/secext
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Page 26 of 37

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:choice>

 <xs:element name="AcknowledgementRange" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence/>

 <xs:attribute name="Upper" type="xs:unsignedLong"

use="required"/>

 <xs:attribute name="Lower" type="xs:unsignedLong"

use="required"/>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Nack" type="xs:unsignedLong"

maxOccurs="unbounded"/>

 </xs:choice>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="AckRequestedType">

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:element name="MaxMessageNumberUsed" type="xs:unsignedLong"

minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:element name="AckRequested" type="wsrm:AckRequestedType"/>

 <xs:element name="Identifier">

 <xs:complexType>

 <xs:annotation>

Page 27 of 37

 <xs:documentation>

This type is for elements whose [children] is an anyURI and can have

arbitrary attributes.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="xs:anyURI">

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <!-- Fault Container and Codes -->

 <xs:simpleType name="FaultCodes">

 <xs:restriction base="xs:QName">

 <xs:enumeration value="wsrm:UnknownSequence"/>

 <xs:enumeration value="wsrm:SequenceTerminated"/>

 <xs:enumeration value="wsrm:InvalidAcknowledgement"/>

 <xs:enumeration value="wsrm:MessageNumberRollover"/>

 <xs:enumeration value="wsrm:CreateSequenceRefused"/>

 <xs:enumeration value="wsrm:LastMessageNumberExceeded"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="SequenceFaultType">

 <xs:sequence>

 <xs:element name="FaultCode" type="xs:QName"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:element name="SequenceFault" type="wsrm:SequenceFaultType"/>

 <xs:element name="CreateSequence" type="wsrm:CreateSequenceType"/>

 <xs:element name="CreateSequenceResponse"

type="wsrm:CreateSequenceResponseType"/>

 <xs:element name="TerminateSequence" type="wsrm:TerminateSequenceType"/>

Page 28 of 37

 <xs:complexType name="CreateSequenceType">

 <xs:sequence>

 <xs:element ref="wsrm:AcksTo"/>

 <xs:element ref="wsrm:Expires" minOccurs="0"/>

 <xs:element name="Offer" type="wsrm:OfferType" minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>

It is the authors intent that this extensibility be used to transfer a

Security Token Reference as defined in WS-Security.

</xs:documentation>

 </xs:annotation>

 </xs:any>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="CreateSequenceResponseType">

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:element ref="wsrm:Expires" minOccurs="0"/>

 <xs:element name="Accept" type="wsrm:AcceptType" minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="TerminateSequenceType">

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:element name="AcksTo" type="wsa:EndpointReferenceType"/>

Page 29 of 37

 <xs:complexType name="OfferType">

 <xs:sequence>

 <xs:element ref="wsrm:Identifier"/>

 <xs:element ref="wsrm:Expires" minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="AcceptType">

 <xs:sequence>

 <xs:element ref="wsrm:AcksTo"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:complexType>

 <xs:element name="Expires">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:duration">

 <xs:anyAttribute namespace="##other" processContents="lax"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

Appendix B Message Examples

B.1 Create Sequence
Create Sequence

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

Page 30 of 37

 <wsa:MessageID>

 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546817

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

<wsa:Action>http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence</wsa:A

ction>

 <wsa:ReplyTo>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:ReplyTo>

 </S:Header>

 <S:Body>

 <wsrm:CreateSequence>

 <wsrm:AcksTo>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsrm:AcksTo>

 </wsrm:CreateSequence>

 </S:Body>

</S:Envelope>

 Create Sequence Response

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:To>http://Business456.com/serviceA/789</wsa:To>

 <wsa:RelatesTo>

 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8a7c2eb546817

 </wsa:RelatesTo>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceResponse

 </wsa:Action>

 </S:Header>

 <S:Body>

 <wsrm:CreateSequenceResponse>

Page 31 of 37

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 </wsrm:CreateSequenceResponse>

 </S:Body>

</S:Envelope>

 B.2 Initial Transmission
The following example WS-ReliableMessaging headers illustrate the message exchange
in the above figure. The three messages have the following headers; the third message
is identified as the last message in the sequence:

Message 1

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://Business456.com/guid/71e0654e-5ce8-477b-bb9d-34f05cfcbc9e

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

 <wsa:From>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:From>

 <wsa:Action>http://fabrikam123.com/serviceB/123/request</wsa:Action>

 <wsrm:Sequence>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:MessageNumber>1</wsrm:MessageNumber>

 </wsrm:Sequence>

 </S:Header>

 <S:Body>

 <!-- Some Application Data -->

 </S:Body>

</S:Envelope>

Message 2

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

Page 32 of 37

 <S:Header>

 <wsa:MessageID>

 http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

 <wsa:From>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:From>

 <wsa:Action>http://fabrikam123.com/serviceB/123/request</wsa:Action>

 <wsrm:Sequence>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:MessageNumber>2</wsrm:MessageNumber>

 </wsrm:Sequence>

 </S:Header>

 <S:Body>

 <!-- Some Application Data -->

 </S:Body>

</S:Envelope>

Message 3

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546819

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

 <wsa:From>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:From>

 <wsa:Action>http://fabrikam123.com/serviceB/123/request</wsa:Action>

 <wsrm:Sequence>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:MessageNumber>3</wsrm:MessageNumber>

 <wsrm:LastMessage/>

Page 33 of 37

 </wsrm:Sequence>

 </S:Header>

 <S:Body>

 <!-- Some Application Data -->

 </S:Body>

</S:Envelope>

B.3 First Acknowledgement
Message number 2 has not been received by the RM Destination due to some
transmission error so it responds with an acknowledgement for messages 1 and 3:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://fabrikam123.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546810

 </wsa:MessageID>

 <wsa:To>http://Business456.com/serviceA/789</wsa:To>

 <wsa:From>

 <wsa:Address>http://fabrikam123.com/serviceB/123</wsa:Address>

 </wsa:From>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement

 </wsa:Action>

 <wsrm:SequenceAcknowledgement>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:AcknowledgementRange Upper="1" Lower="1"/>

 <wsrm:AcknowledgementRange Upper="3" Lower="3"/>

 </wsrm:SequenceAcknowledgement>

 </S:Header>

 <S:Body/>

</S:Envelope>

B.4 Retransmission
The sending endpoint discovers that message number 2 was not received so it resends
the message and requests an acknowledgement:

Page 34 of 37

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://Business456.com/guid/daa7d0b2-c8e0-476e-a9a4-d164154e38de

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

 <wsa:From>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:From>

 <wsa:Action>http://fabrikam123.com/serviceB/123/request</wsa:Action>

 <wsrm:Sequence>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:MessageNumber>2</wsrm:MessageNumber>

 </wsrm:Sequence>

 <wsrm:AckRequested>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 </wsrm:AckRequested>

 </S:Header>

 <S:Body>

 <!-- Some Application Data -->

 </S:Body>

</S:Envelope>

B.5 Termination
The RM Destination now responds with an acknowledgement for the complete sequence
which can then be terminated:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://fabrikam123.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546811

Page 35 of 37

 </wsa:MessageID>

 <wsa:To>http://Business456.com/serviceA/789</wsa:To>

 <wsa:From>

 <wsa:Address>http://fabrikam123.com/serviceB/123</wsa:Address>

 </wsa:From>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2005/02/rm/SequenceAcknowledgement

 </wsa:Action>

 <wsrm:SequenceAcknowledgement>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 <wsrm:AcknowledgementRange Upper="3" Lower="1"/>

 </wsrm:SequenceAcknowledgement>

 </S:Header>

 <S:Body/>

</S:Envelope>

Terminate Sequence

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

 <S:Header>

 <wsa:MessageID>

 http://Business456.com/guid/0baaf88d-483b-4ecf-a6d8-a7c2eb546812

 </wsa:MessageID>

 <wsa:To>http://fabrikam123.com/serviceB/123</wsa:To>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2005/02/rm/TerminateSequence

 </wsa:Action>

 <wsa:From>

 <wsa:Address>http://Business456.com/serviceA/789</wsa:Address>

 </wsa:From>

 </S:Header>

 <S:Body>

 <wsrm:TerminateSequence>

 <wsrm:Identifier>http://Business456.com/RM/ABC</wsrm:Identifier>

 </wsrm:TerminateSequence>

Page 36 of 37

 </S:Body>

</S:Envelope>

Appendix C WSDL
The non-normative WSDL definition for WS-ReliableMessaging is located at:

http://schemas.xmlsoap.org/ws/2005/02/rm/wsdl/wsrm.wsdl

The following non-normative copy is provided for reference.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:rm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:tns="http://schemas.xmlsoap.org/ws/2005/02/rm/wsdl"

targetNamespace="http://schemas.xmlsoap.org/ws/2005/02/rm/wsdl">

<wsdl:types>

 <xs:schema>

 <xs:import namespace="http://schemas.xmlsoap.org/ws/2005/02/rm"

schemaLocation="http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm.xsd"/>

 <xs:import

namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"

schemaLocation="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="CreateSequence">

 <wsdl:part name="create" element="rm:CreateSequence"/>

 </wsdl:message>

 <wsdl:message name="CreateSequenceResponse">

 <wsdl:part name="createResponse" element="rm:CreateSequenceResponse"/>

 </wsdl:message>

 <wsdl:message name="TerminateSequence">

 <wsdl:part name="terminate" element="rm:TerminateSequence"/>

 </wsdl:message>

 <wsdl:portType name="SequenceAbsractPortType">

 <wsdl:operation name="CreateSequence">

 <wsdl:input message="tns:CreateSequence"

wsa:Action="http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequence"/>

 <wsdl:output message="tns:CreateSequenceResponse"

wsa:Action="http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceRespons

e"/>

Page 37 of 37

 </wsdl:operation>

 <wsdl:operation name="TerminateSequence">

 <wsdl:input message="tns:TerminateSequence"

wsa:Action="http://schemas.xmlsoap.org/ws/2005/02/rm/CreateSequenceRespons

e"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

	Web Services Reliable Messaging Protocol (WS-ReliableMessagi
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Acknowledgements
	1. Introduction
	1.1 Notational Conventions
	1.2 Namespace

	2. Reliable Messaging Model
	2.1 Glossary
	2.2 Protocol Preconditions
	2.3 Protocol Invariants
	2.4 Example Message Exchange

	3. RM Protocol Elements
	3.1 Sequences
	3.2 Sequence Acknowledgement
	3.3 Request Acknowledgement
	3.4 Sequence Creation
	3.5 Sequence Termination

	4. Faults
	4.1 SequenceFault Element
	4.2 Sequence Terminated
	4.3 Unknown Sequence
	4.4 Invalid Acknowledgement
	4.5 Message Number Rollover
	4.6 Last Message Number Exceeded
	4.7 Create Sequence Refused

	5. Security Considerations
	6. References
	Appendix A Schema
	Appendix B Message Examples
	B.1 Create Sequence
	B.2 Initial Transmission
	B.3 First Acknowledgement
	B.4 Retransmission
	B.5 Termination

	Appendix C WSDL

