
SA

e

d it

ava
ote

e not
son
nnot

ese
ile

d by
ither
Jini™ Technology Surrogat
Architecture Specification

SA.1 Introduction

In order for a hardware or software component to join in a network of JiniTM tech-
nology-enabled services (Jini network), it must satisfy several critical require-
ments: it must be able to participate in the Jini discovery and join protocols, an
must be able to download and execute classes written in the JavaTM programming
language. In addition, it may need the ability to export classes written in the J
programming language so that they are available for downloading to a rem
entity. For many hardware or software components, these requirements ar
difficult to meet; however, there is a category of components that, for one rea
or another, cannot satisfy one or more of the requirements and therefore ca
participate directly in a Jini network. TheJiniTM Technology Surrogate Architec-
ture Specificationaddresses this problem by defining a means by which th
components, with the aid of a third party, can participate in a Jini network wh
still maintaining the plug-and-work model of Jini technology.

The common attribute of the hardware or software components targete
the surrogate architecture is the inability to download code, because of e
computational resource or network connectivity limitations.

SA.1.1 Requirements

The following requirements for the surrogate architecture can be stated:
1

2 DEFINITIONS

p-
pa-

to
ype
the

he
the
ted

the
rces.

e,
ntity

ine
ents
al

urro-
nts in

or
gate

ote
y for

ate
for a
ame
• Device Type Independence- The surrogate architecture must be able to su
port a wide range of hardware and software components with different ca
bilities.

• Network Type Independence- The surrogate architecture must be able
accommodate a diverse range of connectivity technologies. Network t
independence includes support for different protocols simultaneously on
same physical transport.

• Preserve Plug-and-Work- The surrogate architecture must preserve t
plug-and-work model of Jini technology. The Jini architecture includes
concepts of discovery, code downloading, and leasing of distribu
resources.

SA.1.2 Definitions

In this specification, the following terms are defined to mean:

• The termdevicerefers to ahardwareor softwarecomponent that is not capa-
ble of directly participating in a Jini network.

• A surrogateis an object that represents a device. The implementation of
object may be a collection of Java software components and other resou

• A host-capable machineis a system that allows the downloading of cod
can run a surrogate, is part of a Jini network, and is accessible to the e
offering the surrogate.

• Thesurrogate hostis a framework that resides on the host-capable mach
and provides a Java application environment for executing the compon
of the surrogate architecture. In addition to providing computation
resources, an execution environment, and life-cycle management, the s
gate host may also provide other host resources to assist the compone
the architecture.

• An export serveris a component or set of components, that works with,
is part of, the surrogate host that provides the means by which surro
resources are exported so that they are available for downloading to rem
entities. The export of resources, particularly class files, are necessar
many Jini technology operations.

• An interconnectis the logical and physical connection between the surrog
host and a device. There may be more than one interconnect defined
physical connection. It is also possible for the interconnect to be on the s
physical connection that forms the Jini network.

3JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

or

capa-
. By
ecute
can

rro-
echa-
ork
, how-

ost-
that

for a
into
e

ol is

Jini N
• A interconnect protocolincludes the interconnect-specific mechanisms f
discovery, retrieval of the surrogate, and liveness.

SA.1.3 Overview

The first assumption of the surrogate architecture is that there exists a host-
ble machine that is connected to both the interconnect and the Jini network
definition, the host-capable machine has the computational resources to ex
code written in the Java programming language on behalf of the device, and
provide the necessary resources that such code might need.

The following text describes, in general terms, the components of the su
gate architecture, the relationships between those components, and the m
nism for running a surrogate. In this description, the interconnect and Jini netw
are described as two separate paths to the host-capable machine. They could
ever, be the same path.

The initial state illustrated in figure 1.1, shows a surrogate host on a h
capable machine. The surrogate host monitors the interconnect. It is possible
a single surrogate host may monitor more than one interconnect.

FIGURE 1.1: Surrogate Architecture Components

SA.1.3.1 Discovery and Surrogate Loading

The surrogate host is responsible for implementing the interconnect protocol
specific interconnect. The first part of the interconnect protocol that comes
play is discovery1. Discovery, in this context, is the protocol that is used by th
device and surrogate host to find each other. A particular discovery protoc

Surrogate Host

Host-capable Machine

DeviceInterconnect

etwork Host Resources
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

4 OVERVIEW

dis-
vice.
gate
vice

s not
st to

may

also
tion

ro-
TTP

ry on
also

Jini Ne
interconnect specific and may be very different from any other interconnect’s
covery protocol, depending on the capabilities of the interconnect and the de
A likely scenario would be for the device to broadcast a request for a surro
host over an interconnect. The surrogate host would respond letting the de
know that there is a surrogate host available. If the device or interconnect doe
support device-initiated discovery, it might be necessary for the surrogate ho
detect the arrival of the device on the interconnect.

Once discovery has been performed, the device’s surrogate must beretrieved.
Again, depending on the interconnect and device’s capabilities this operation
be apush(the device uploads the surrogate to the surrogate host) orpull (the sur-
rogate host must extract, or download, the surrogate from the device). It is
possible for the device to specify that the surrogate be retrieved from a loca
other than the device.

FIGURE 1.2: Discovery and Surrogate Download

SA.1.3.2 Surrogate Execution

The surrogate isactivatedby the surrogate host and may use the resources p
vided by the surrogate host. Examples of these resources might be an H
server or the Jini technology classes.

Once the surrogate has been activated, it may perform any task necessa
behalf of the device, including accessing the Jini network. The surrogate may

1 Note that the termdiscovery, in this context, does not refer to the Jini lookup discovery protocol. When
this document must refer to the Jini lookup discovery protocol it always uses the terms Jini discovery
or Jini discovery protocol.

Surrogate Host

Host-capable Machine

Device
Surrogate Interconnect Protocol

twork Host Resources

5JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

t is

e host
on
t both
ither
ct, or

lure,
that it
o-
mote

the
, or a
ould
are

Jini Ne
communicate back to the device, using any (possibly private) protocol tha
appropriate.

FIGURE 1.3: Surrogate Execution

SA.1.3.3 Liveness

Once a surrogate is loaded and activated, either the surrogate or the surrogat
monitors the device forliveness. Liveness means that a usable communicati
path exists between the surrogate and the device that it represents and tha
entities are active. Loss of the communication path could be the result of e
normal or error conditions in the surrogate host, the surrogate, the interconne
the device.

If the device is no longer reachable, because of interconnect or device fai
or because the device has been disconnected or shut down, the surrogate
represents must bedeactivatedso that the resources allocated to it by the surr
gate host can be reclaimed. Also, the surrogate should release any re
resources that it holds, such as lookup service registrations.

The device must be able to determine that it is no longer in contact with
surrogate, possibly because of an interconnect failure, a fault in the surrogate
surrogate host failure or shut down. In any one of these events, the device sh
resume discovery (if it supports device-initiated discovery) or otherwise prep
to upload a new surrogate.

Surrogate Host

Host-capable Machine

Device
Surrogate Private Protocol

twork Host Resources
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

6 SPECIFICATIONS

nect

n
o the
ation

the
nect
SA.1.4 Specifications

The complete specification of a surrogate architecture for a particular intercon
requires the following two documents:

• theJini™ Technology Surrogate Architecture Specification(this document)
and,

• an interconnect specification for the target interconnect.

The interconnect specificationdescribes the interconnect protocol betwee
the device and the surrogate host as well as interconnect-specific additions t
surrogate programming model. The requirements of an interconnect specific
are enumerated in Section SA.4, “Interconnect Specification”.

All compliant implementations of the surrogate architecture must satisfy
requirements described in this specification as well as one or more intercon
specifications.

7JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

forms
n an
d by
ribes
ram-

e

pec-
ing

sup-
the

up.
time
irtual
the
SA.2Jini Technology-Enabled Surrogate

A surrogate is a Java language object that represents a device and per
actions on behalf of the device. A surrogate may be retrieved from a device i
interconnect-specific manner or from some other appropriate source specifie
the device, and loaded into the surrogate host for execution. This section desc
the surrogate host execution environment and, therefore, the surrogate prog
ming model.

Thesurrogate programming modelrefers to the programming model availabl
to surrogate developers. This programming model is defined by:

• The Java 2 platform runtime environment

• The APIs as specified by the Jini specifications (Jini APIs)

• The export server

• The surrogate APIs

• The packaging of the surrogate

• Security

The surrogate programming model may be extended by an interconnect s
ification, as described in Section SA.4.2, “Interconnect-Specific Programm
Model”.

SA.2.1 Java 2 Platform Runtime Environment

The surrogate host must provide the surrogate with a Java 2 platform that can
port the Jini APIs defined in the next section. The minimal Java 2 platform is
Java 2 Standard Edition, v1.2.2 or greater.

Each surrogate is given its own thread that may be in its own thread gro
Any method call made to the surrogate must be in its own thread. The run
environment can be either a separate thread within the surrogate host’s Java v
machine (JVM) or a thread in a separate JVM. This choice is dependent on
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

8 JINI APIS

ould

n of
any
am-

ate
ntext
king

f the
e and
the

tion
ust

ons:

tate

ugh
same
implementation of the surrogate host. Therefore, the surrogate developer sh
not assume or depend upon a particular implementation.

Each surrogate is instantiated in its own class loader. The implementatio
the Jini APIs, the surrogate APIs (described in the following sections), and
interconnect specific APIs (see Section SA.4.2, “Interconnect-Specific Progr
ming Model”) must be available through this class loader.

In order to maintain RMI call semantics it may be necessary for the surrog
host to set the context class loader to be the surrogate’s class loader. The co
class loader is a thread local variable, therefore all threads created for ma
method calls to the surrogate must have the context class loader set.

SA.2.2 Jini APIs

The surrogate host must provide implementations of the Jini APIs as part o
surrogate execution environment to decrease the storage burden on the devic
to optimize the downloading of the surrogate. This requirement also enables
same surrogate to run on different platforms, each with a different implementa
of Jini technology. The set of Jini API implementations the surrogate host m
provide are those defined by version 1.1 or greater of the following specificati

• JiniTM Technology Core Platform Specification

• JiniTM Discovery Utilities Specification

• JiniTM Entry Utilities Specification

• JiniTM Lease Utilities Specification

• JiniTM Join Utilities Specification

• JiniTM Service Discovery Utilities Specification

• JiniTM Lookup Discovery Service

• JiniTM Lookup Attribute Schema Specification

• JiniTM Lease Renewal Service Specification

• JiniTM Event Mailbox Service Specification

• JavaSpacesTM Service Specification

Implementations of the Jini APIs must not allow a surrogate to affect the s
seen by other surrogates.

Before a surrogate is loaded, the Jini API classes must be available thro
the surrogate’s class loader. The Jini API classes must be annotated with the
codebase as the surrogate.

9JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

s are
the

s: it
each

ani-

ed
default
d by
urro-

or a
rro-
rence

and
rver.
at of

must

g
ncy on

set
to

iors.

t the
The

ate
to the
SA.2.3 Export Server

The surrogate host’s export server is the means by which surrogate resource
exported so that they are available for downloading to remote entities (through
surrogate’s codebase annotation). The export server provides two function
exports resources and it provides Universal Resource Locators (URLs) for
exported resource.

The surrogate specifies which resources are to be exported through the m
fest header described in Section SA.2.5.2, “Surrogate-Codebase Header”. If the
Surrogate-Codebase header is present, the URLs provided for the specifi
resources are used to set the surrogate’s codebase annotation. Because of
security behavior of RMI-downloaded code, the codebase annotation provide
the export server (the URLs) must reference the same host machine that the s
gate, is running on. The URLs must also be usable in a distributed system.

Each unique resource that is exported must be given a unique URL. F
given implementation of a surrogate host this URL must be unique across su
gates and unique across time. This is because a remote client can hold a refe
to a URL long after a surrogate host has been shut down and restarted.

The exact form of the generated URL is not mandated in this specification
is dependent on the implementation and target deployment of the export se
The surrogate developer must not assume or depend on any particular form
the generated URL.

If a surrogate is deactivated, any resources being exported on its behalf
no longer be downloadable.

If there is a fault in the export server that renders it incapable of fulfillin
export requests, the host must deactivate all surrogates that have a depende
the export server.

SA.2.4 Surrogate APIs

The activating and deactivating of the surrogate by the host is controlled by a
of APIs called thesurrogate APIs. These APIs also provide a surrogate access
its environment. The next sections describe those interfaces and their behav

The Surrogate interface and theGetCodebase interface are to be imple-
mented by the surrogate object. Both of these interfaces define methods tha
surrogate host calls to control the surrogate and setup its environment.
HostContext interface is implemented by an object provided by the surrog
host and passed to the surrogate. This object provides the surrogate access
environment in which the surrogate executes. The use of theSurrogate,
GetCodebase, andHostContext interfaces are interconnect independent.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

10 SURROGATE APIS

he
e

host.
n the

the
envi-

or any

ort to
c-
o-

d
object

ro-
s and

rro-
TheKeepAliveManagement andKeepAliveHandler interfaces provide facil-
ities to help a surrogate manage its liveness obligations. T
KeepAliveManagement interface is implemented by an object provided by th
surrogate host and passed to the surrogate. TheKeepAliveHandler is imple-
mented by an object provided by the surrogate and passed to the surrogate
These two interfaces are interconnect specific in that their use depends o
interconnect that the surrogate is being written for.

SA.2.4.1 TheSurrogate Interface

The net.jini.surrogate.Surrogate interface defines theactivate and
deactivate methods, used by the surrogate host to control the execution of
surrogate. This interface also provides the surrogate access to its execution
ronment. The surrogate class must implement theSurrogate interface.

The surrogate host may create an instance of the surrogate as needed. F
instance of the surrogate, theactivate method is only called once. If the
activate method executes successfully, the surrogate host makes its best eff
invoke that same instance’sdeactivate method when the surrogate is to be dea
tivated. Thedeactivate method is only called once for any instance of a surr
gate.

The class implementing theSurrogate interface must be a public class an
must have a public constructor that takes no parameters, so that a surrogate
can be created byClass.newInstance().

package net.jini.surrogate;

public interface Surrogate {

 void activate(HostContext hostContext,

 Object context)

 throws Exception;

 void deactivate();

}

The Semantics

• Theactivate method is called by the surrogate host to activate the sur
gate. Surrogate developers should use this method to allocate resource
start any threads that the surrogate needs.

Theactivate method is called once by the surrogate host to activate su
gate. This call must return in a timely manner. If theactivate method

11JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

the

cep-

the
e of
on-

see

ur-

no
ely

ate

ned
sur-
ate

The
e

ss

ple-
throws an exception, the surrogate host callsdeactivate and discards the
surrogate.

ThehostContext parameter provides access to the execution context of
surrogate being activated. This parameter implements theHostContext

interface (see Section SA.2.4.3, “TheHostContext Interface”).

The surrogate host must provide a non-null hostContext parameter. If
null is passed in, the surrogate should throw an appropriate run time ex
tion.

Thecontext parameter provides access to surrogate-specific context of
surrogate being activated. The type of this object is dependent on the typ
interconnect utilized by the associated device. The type for a given interc
nect would be defined by the specification for that interconnect (
Section SA.4.2, “Interconnect-Specific Programming Model”).

Depending on the interconnect, thecontext object might also implement
the KeepAliveManagement interface (see Section SA.2.4.7, “The
KeepAliveManagement Interface”).

• Thedeactivatemethod is called by the surrogate host to deactivate the s
rogate. In general, this method should undo the work done by theactivate

method. When thedeactivate method returns, the surrogate must have
active thread. This method must complete and return to its caller in a tim
manner.

Thedeactivate method is called once by the surrogate host to deactiv
the surrogate.

After the deactivate method returns, the states of thehostContext and
context objects, originally passed to theactivate method, are undefined,
meaning that future calls to methods on those objects will produce undefi
results or exceptions. In addition, the surrogate host is free to destroy the
rogate execution environment, including the destruction of any surrog
threads and the JVM that the surrogate is running in.

SA.2.4.2 TheGetCodebase Interface

Each surrogate is assigned a codebase annotation.
net.jini.surrogate.GetCodebase interface provides a method that allows th
surrogate to set its codebase.

TheGetCodebase interface is optionally implemented by the surrogate cla
(the same class implementing theSurrogate interface). Implementing this inter-
face indicates that the surrogate is specifying its codebase. If the surrogate im
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

12 SURROGATE APIS

ate’s

te

rn

ur-
ked

es

the
ents

cep-

the
nect

be
ter-
ments this interface, the surrogate host invokes thegetCodebase method and uses
the returned URLs to set the surrogate’s codebase before the surrog
activate method is invoked.

If a Surrogate-Codebase header is present in the manifest of the surroga
JAR file (see Section SA.2.5.2, “Surrogate-Codebase Header”) and the surro-
gate implements theGetCodebase interface, the surrogate host uses the retu
value of thegetCodebase method to set the surrogate’s codebase annotation.

package net.jini.surrogate;

public interface GetCodebase {

 java.net.URL[] getCodebase(HostContext hostContext,

 Object context)

 throws Exception;

}

The Semantics

• ThegetCodebase method returns an array ofjava.net.URLs that are used
as the codebase of the surrogate.

ThegetCodebase method is called once per surrogate instance by the s
rogate host and must return in a timely manner. This method is invo
before theactivate method is called.

If thegetCodebase method throws an exception, the surrogate host assum
that the surrogate cannot be activated. In this event, theactivate method is
not invoked and the surrogate is discarded.

ThehostContext parameter provides access to the execution context of
surrogate. This parameter is provided by the surrogate host and implem
theHostContext interface (see Section SA.2.4.3, “TheHostContext Inter-
face”).

The surrogate host must provide a non-null hostContext parameter. If
null is passed in, the surrogate should throw an appropriate run time ex
tion.

Thecontext parameter provides access to surrogate-specific context of
surrogate. The type of this object is dependent on the type of intercon
utilized by the associated device. The type for a given interconnect would
defined by the specification for that interconnect (see Section SA.4.2, “In
connect-Specific Programming Model”).

13JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

s
ple-

e

the

o-
e to

the
ate
calls

t.

he
SA.2.4.3 TheHostContext Interface

The net.jini.surrogate.HostContext interface provides methods to acces
the execution environment provided by the surrogate host. An object that im
mentsHostContext is passed as a parameter to the surrogate’sactivate method
and to thegetCodebase method of theGetCodebase interface.

package net.jini.surrogate;

import net.jini.discovery.DiscoveryManagement;

public interface HostContext {

 DiscoveryManagement getDiscoveryManager();

 void cancelActivation();

 SurrogateController newSurrogate(InputStream surrogate,

 Object context,

 DeactivationListener listener)

 throws SurrogateCreationException;

}

The Semantics

• ThegetDiscoveryManager method returns an object that implements th
net.jini.discovery.DiscoveryManagement interface. This object
defines the Jini discovery management policy for this surrogate (see
DiscoveryManagement interface defined in theJiniTM Service Discovery
Utilities Specification). Multiple calls to thegetDiscoveryManager method
return the same instance of the discovery management object.

• ThecancelActivation method informs the surrogate host that the surr
gate must be deactivated. An active surrogate calls this method at anytim
request that it be removed from the surrogate host. When
cancelActivation method is called, the surrogate host marks the surrog
for deactivation and returns. The surrogate host then asynchronously
the surrogate’sdeactivate method.

OncecancelActivation is called, any additional calls will have no effec

If the surrogate is to remove itself from the surrogate host while still in t
getCodebase method ofGetCodebase, it should throw an exception instead
of calling cancelActivation. If cancelActivation is called before the
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

14 SURROGATE APIS

ate

tract

arent

-
f the
class
ron-
n-

the

ur-
kag-

ted
e

The

he
activate is invoked, the surrogate is discarded without itsdeactivate

method being called.

• ThenewSurrogate method requests that the surrogate host load and activ
a new surrogate. This method returns after the new surrogate’sactivate

method returns successfully. The new surrogate conforms to the con
defined by this specification, with the following two exceptions:

• The new surrogate is guaranteed to be activated in the same JVM as p
surrogate. Theparent surrogateis defined to be the caller of the
newSurrogate method. The newchild surrogate will have the same secu
rity permissions as the parent surrogate. Furthermore, the parent o
class loader created for the child surrogate is set by the host to be the
loader of the parent surrogate. This deviates from the execution envi
ment described in Section SA.2.1, “Java 2 Platform Runtime Enviro
ment”.

• The type of thecontext parameter of theactivate andgetCodebase
methods of the child surrogate is determined by the caller of
newSurrogate method. This deviates fromactivate andgetCodebase
method contracts in Section SA.2.4.1, “TheSurrogate Interface” and
Section SA.2.4.2, “TheGetCodebase Interface”.

Thesurrogate parameter is an input stream that is interpreted to be a s
rogate JAR file as described in section Section SA.2.5, “Surrogate Pac
ing”.

The context parameter is passed to the child surrogate as thecontext

parameter in the activate and getCodebase methods (see
Section SA.2.4.1, “TheSurrogate Interface” and Section SA.2.4.2, “The
GetCodebase Interface”). The context parameter may benull. The host
does not access or otherwise interpret this parameter.

Thelistener parameter is an object that is called when the newly crea
surrogate’sdeactivate method is called (see Section SA.2.4.4, “Th
DeactivationListener Interface”). The value ofnull is passed in if no
listener is required.

An object implementing theSurrogateController interface is returned if
the child surrogate is successfully activated (see Section SA.2.4.5, “
SurrogateController Interface”).

A SurrogateCreationException is thrown if any error occurs during the
loading or activation of the surrogate (see Section SA.2.4.6, “T
SurrogateCreationException Class”).

15JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

child
ebase

d the

ur-
ly

the
e

If the surrogate host invokes the parent surrogate'sdeactivate method, the
surrogate host must first call the child surrogate'sdeactivate method.

Like the Jini classes provided by the host, any classes exported by the
surrogate that are present in the parent surrogate must have their cod
annotation set to the new surrogate's codebase annotation.

If the surrogate has been deactivated because the surrogate host invoke
surrogate’sdeactivate method, the state of thehostContext object is unde-
fined.

SA.2.4.4 TheDeactivationListener Interface

The net.jini.surrogate.DeactivationListener interface allows a parent
surrogate to be notified when its child surrogate is deactivated.

package net.jini.surrogate

public interface DeactivationListener {

 public void deactivated();

}

The Semantics

• Thedeactivated method is called by the surrogate host after the child s
rogate’sdeactivate method has returned. This call must return in a time
manner.

SA.2.4.5 TheSurrogateController Interface

Thenet.jini.surrogate.SurrogateController interface allows a parent sur-
rogate to deactivate a child surrogate. An object implementing
SurrogateController interface is returned from a successful call to th
newSurrogate method of theHostContext interface.

package net.jini.surrogate

public interface SurrogateController {

 public void deactivate();

}

JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

16 SURROGATE APIS

hild
pon
host

e

tion,

h-

d by
The Semantics

• Thedeactivate method requests that the surrogate host deactivate the c
surrogate this controller represents. This method returns immediately u
making the request. If the child surrogate has not been deactivated, the
must deactivate the child surrogate by calling it’sdeactivate method.

If the controller’sdeactivate method had previously been called or th
child surrogate has already been deactivated, any calls to thedeactivate

method have no effect.

SA.2.4.6 TheSurrogateCreationException Class

A net.jini.surrogate.SurrogateCreationException is thrown if there is
any failure during the call to thenewSurrogate method of theHostContext inter-
face.

package net.jini.surrogate;

public class SurrogateCreationException

 extends java.lang.Exception {

 public SurrogateCreationException(String message) {...}

 public SurrogateCreationException(String message,

 Throwable nestedException) {...}

 public String getMessage();

 public Throwable getNestedException();

}

The Semantics

• ThegetMessage method returns the message associated with the excep
including the message from the nested exception if there is one.

• ThegetNestedException returns the nested exception, if there is one, ot
erwisenull is returned.

SA.2.4.7 TheKeepAliveManagement Interface

The use of theKeepAliveManagement (as well as theKeepAliveHandler,
described in the next section) is interconnect-specific and is therefore specifie

17JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

Pro-
ss is
ion,
ese
that

ation

e
ler.
can

ter
alled

r-

the

ur-
to
an interconnect specification (see Section SA.4.2, “Interconnect-Specific
gramming Model”). The use of these interfaces is dependent on how livene
defined for an interconnect. If the surrogate is involved in the liveness funct
the keep-alive interfaces can aid the surrogate in fulfilling its obligations. Th
interfaces also allow the host to control the amount of liveness-related activity
goes on between the device and the surrogate.

The net.jini.surrogate.KeepAliveManagement interface provides a
method to the surrogate to set a keep-alive handler. If an interconnect specific
specifies that thecontext parameter implement theKeepAliveManagement inter-
face, an object that implementsKeepAliveManagement is passed as thecontext
parameter to the surrogate’sactivate method and to thegetCodebase method of
GetCodebase. A surrogate for that interconnect should use th
KeepAliveManagement interface to set a surrogate-supplied keep-alive hand
Once a keep-alive handler is set, it is called periodically so that the surrogate
perform liveness-related work, including communicating with the device. Af
the first call to the keep-alive handler, the time between subsequent calls is c
thekeep-alive period.

package net.jini.surrogate;

public interface KeepAliveManagement {

 void setKeepAliveHandler(KeepAliveHandler handler);

}

The Semantics

• ThesetKeepAliveHandler method sets the keep-alive handler for this su
rogate. The object passed in as thehandler parameter must either imple-
ment theKeepAliveHandler interface or benull (see Section SA.2.4.8,
“The KeepAliveHandler Interface”).

To set a keep-alive handler the surrogate calls this method with a non-null

handler. ThekeepAlive method of that handler is called periodically. If a
keep-alive handler was set in a previous call tosetKeepAliveHandler, that
handler is no longer called, the keep-alive period is recalculated, and
nextkeepAlive call is made to the new handler.

A null handler indicates that no keep-alive handler is to be set for this s
rogate. If a keep-alive handler was set in a previous call
setKeepAliveHandler that handler is no longer called.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

18 SURROGATE APIS

itial
er’s

p-
g
.

live
.4.2,

ra-
n the
n of

must

his

es

or
sur-
The keep-alive period is determined by the caller of the handler. The in
keep-alive period is provided to the surrogate in the first call to the handl
keepAlive method.

The handler’s keepAlive method is called immediately after the
setKeepAliveHandler method has returned in order to initialize the kee
alive period. If the surrogate’sactivate method has not been called, callin
the handler must be deferred until afteractivate has executed successfully

SA.2.4.8 TheKeepAliveHandler Interface

The net.jini.surrogate.KeepAliveHandler interface provides a method to
aid the surrogate in fulfilling its liveness obligations. The use of the keep-a
mechanism is specified by the interconnect specification (see Section SA
“Interconnect-Specific Programming Model”).

The surrogate must provide an object that implements theKeepAliveHandler

interface to thesetKeepAliveHandler method ofKeepAliveManagement. The
keepAlive method is called periodically so that the surrogate may perform ope
tions related to liveness. The exact nature of those operations is dependent o
requirements specified in the interconnect specification and the implementatio
the surrogate and device.

If the surrogate finds that the device is no longer reachable, the surrogate
shut itself down by calling thecancelActivation method of thehostContext
object that was passed into the surrogate’sactivate method.

package net.jini.surrogate;

public interface KeepAliveHandler {

 void keepAlive(long period) throws java.lang.Exception;

}

The Semantics

• ThekeepAlive method is called periodically. The surrogate should use t
call to perform operations related to liveness.

Theperiod parameter is the maximum time, in milliseconds, that elaps
beforekeepAlive is called again. Theperiod value may change from call
to call.

Theperiod value can be used to inform the device on how long to wait f
the surrogate to check back again. If the device does not hear from the

19JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

r in

a
ot

-

e

r
lasses
ch as

ca-
rogate within the specified time the device can assume that it is no longe
contact with the surrogate.

If the keepAlive method is about to be invoked, and a previous call to
keep-alive handler’skeepAlive method has not returned, the caller must n
call keepAlive and must deactivate the surrogate.

If an exception is thrown by thekeepAlive method, the caller must deacti
vate the surrogate.

SA.2.4.9 Serialized Forms

SA.2.5 Surrogate Packaging

A surrogate is packaged in a JAR file. This JAR file contains:

• A manifest file containing at least the following elements:

• a single, mandatorySurrogate-Class header specifying the name of the
surrogate class and

• an optionalSurrogate-Codebase header, specifying the resources of th
surrogate’s codebase.

• A class that implements theSurrogate interface, as well as any othe
resources that implement the surrogate. These resources may be c
written in the Java programming language, as well as any other data su
HTML files or icons.

The manifest of the surrogate JAR file must not contain aClass-Path header.
If this header is present the surrogate JAR file is discarded.

How the surrogate JAR file is retrieved is defined by an interconnect specifi
tion.

Class serialVersionUID Serialized Fields

SurrogateCreationException -1866927322476603821L Throwable

 nestedException
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

20 SURROGATE PACKAGING

e

an be

R
er has

o an
ne
names

ce of
re

ver”).
-

ets
set of
o they
the

ed in
JAR

de-

the
SA.2.5.1 Surrogate-Class Header

The requiredSurrogate-Class header provides the fully qualified name of th
class within the surrogate JAR file that implements theSurrogate interface. The
surrogate host uses this information to locate the surrogate class so that it c
instantiated and activated. For example:

Surrogate-Class: com.acme.surrogate.mySurrogate

The surrogate manifest file must contain only oneSurrogate-Class header;
therefore, there may be only one surrogate in a JAR file.

SA.2.5.2 Surrogate-Codebase Header

The optionalSurrogate-Codebase header in the manifest of the surrogate JA
file specifies the resources that comprise the surrogate’s codebase. The head
the following syntax:

Surrogate-Codebase: resource[resource]*

resource is a name that represents a resource. The name must refer t
entry in the surrogate JAR file. The entry must be a JAR file. More than o
resource name may specified and are separated by a space. If the resource
are not unique from each other, the results are undefined.

When the surrogate is loaded, the surrogate host checks for the existen
the Surrogate-Codebase header. If it is present, the specified resources a
passed to the surrogate host’s export server (see Section SA.2.3, “Export Ser
If a resource in anSurrogate-Codebase header is not found, the surrogate is dis
carded.

Before theactivate method of the surrogate is called the surrogate host s
the codebase annotation for the surrogate. This annotation is expressed as a
URLs and is used to annotate the surrogate’s Java classes that are exported s
are available for downloading to remote entities. This set of URLs consists of
URLs that are generated by the export server for all of the resources specifi
the Surrogate-Codebase header. These entries are assumed to represent
files containing the export Java classes of the surrogate. If there is noSurrogate-

Codebase header in the manifest of the surrogate JAR file, the surrogate’s co
base annotation isnull.

The codebase annotation can also be set by the surrogate through
GetCodebase interface (see Section SA.2.4.2, “TheGetCodebase Interface”)

21JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

and
ach
g and
sur-
lities

ain-
t the
The

tween
ion is
ur-
t not
t not

sec-
sur-

hread

t stor-
sions
, such
out-
SA.2.6 Security

There are many aspects of security. First, for the surrogate host to be reliable
robust, it should protect itself from broken or malicious surrogates. Likewise, e
surrogate should be isolated from other surrogates that the host is managin
from the host itself. Lastly, all parties should be protected from code that the
rogate may download. These security considerations impact the capabi
granted to the surrogate and are discussed next.

SA.2.6.1 Surrogate Isolation

The surrogate host must provide a Java 2 platform runtime environment that m
tains adequate isolation of the surrogate. In this context, isolation means tha
action, outside of defined interfaces, of one entity does not affect any other.
need for isolation is between the surrogate host and the surrogate and be
each surrogate being managed by the host. The basic mechanism for isolat
described in Section SA.2.1, “Java 2 Platform Runtime Environment”. Any f
ther isolation is dependent on the surrogate host implementation and mus
impact the surrogate programming model. The surrogate developer mus
assume nor depend on a particular isolation mechanism.

SA.2.6.2 Permissions

In general, the surrogate has limited access to its runtime environment. This
tion describes the minimal set of capabilities and permissions provided to the
rogate by the surrogate host.

Threads

The surrogate must have permission to create new threads in the same t
group as the thread in which the surrogate’sactivate method is invoked. The
surrogate must also have permission to interrupt any thread that it creates.

Persistent Storage

The surrogate developer must not assume that there is any type of persisten
age provided by the surrogate host or that the surrogate is granted any permis
to access persistent storage. If the surrogate needs to persist any information
as its service ID, it should store that information on the device itself or use an
side persistent storage service.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

22 SECURITY

dis-
may

gate
ion

urro-
is not

o-
Jini

ow-

e to
on-

oxy,
ack-
ded

the
ed in
Jini Discovery Permission

It is recommended that the surrogate use theDiscoveryManagement object
returned by thegetDiscoveryManager method ofHostContext. This Jini dis-
covery management object must be able to perform Jini lookup service group
covery using the groups configured for that surrogate host. The surrogate
choose to perform Jini discovery using its own selection of groups, if the surro
is granted group Jini discovery permission. The following example permiss
allows Jini discovery of all groups:

net.jini.discovery.DiscoveryPermission “*”

If the surrogate does not use the Jini discovery management object, the s
gate must be prepared to handle a security exception because the host
required to grant any Jini discovery permission to the surrogate.

Connection Permissions

The implementation of thenet.jini classes and interfaces provided by the surr
gate host might require that the surrogate have connection permission for the
discovery protocol. If they do the host must grant those permissions. The foll
ing is an example of connection permissions that might be required:

java.net.SocketPermission “224.0.1.84”, “connect,accept”

java.net.SocketPermission “224.0.1.85”, “connect,accept”

Connection permission to HTTP servers must be granted in order for cod
be downloaded to the surrogate. The following example permissions allow c
nections to HTTP servers on commonly used ports:

java.net.SocketPermission “*.80”, “connect,accept”

java.net.SocketPermission “*:1024-”, “connect,accept”

Code downloaded into the surrogate, such as the Jini lookup service pr
may need connection permission back to the machine that is providing the b
end of the proxy. Since the back-end locations are not known it is recommen
that general connection permission be granted to the surrogate.

Interconnect-Specific Permissions

There might be additional permissions required by the surrogate due to
requirements of a particular interconnect. These permissions must be describ
the interconnect specification for that interconnect.

23JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

ost
curity
ach
must
te is
SA.2.6.3 Security Manager

The implementation of thenet.jini classes and interfaces that the surrogate h
provides may require that a security manager be installed to manage the se
considerations related to foreign code downloaded into the JVM in which e
surrogate is executed. If a security manager is required, the surrogate host
properly set the system security manager on the JVM in which the surroga
run.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

24 SECURITY

25JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

ional

cess

tory

nal

pro-
nno-
fied

and

d or
SA.3Surrogate Programming Considerations

This section describes some of the behavior of the surrogate host and addit
programming considerations for the surrogate developer.

SA.3.1 Surrogate Activation and Deactivation

Putting the previous sections together, it is possible to describe the overall pro
that takes place when a surrogate is activated and when it is deactivated.

SA.3.1.1 Activation

The following steps are taken by the surrogate host to activate a surrogate:

1. The manifest of the surrogate JAR file is searched for the manda
Surrogate-Class header. If theSurrogate-Class header is not present,
the surrogate JAR file is discarded.

2. The manifest of the surrogate JAR file is searched for the optio
Surrogate-Codebase header. If theSurrogate-Codebase header is
present in the specified resources are extracted from the JAR file and
vided to the export server. The resulting URLs is used as the codebase a
tation of the surrogate. If the host is unable to locate any of the speci
resources, the surrogate is discarded. If theSurrogate-Codebase header is
not present, the codebase annotation isnull.

3. A suitable execution environment is created that contains a new thread
a class loader for the surrogate.

4. The surrogate object is instantiated. If the surrogate class is not foun
some other error occurs the surrogate is discarded.

5. The surrogate object is checked to see if it implements theGetCodebase

interface. If it does, thegetCodebase method is invoked and the return
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

26 SURROGATE ACTIVATION AND DEACTIVATION

the

it is
ds in
te

the
-

:

ll
ote

re

sso-
the

iron-
VM.

For
e the
t the
itiate

ally,
g

value is used to set the codebase annotation of the surrogate. If
getCodebase method throws an exception, the surrogate is discarded.

If the surrogate object does not implement theGetCodebase interface the
result of the search for theSurrogate-Codebase header is used to set the
surrogate’s codebase annotation.

6. The surrogate’sactivate method is invoked. If theactivate method
throws an exception, the surrogate’sdeactivate method is called and the
surrogate is discarded.

Because of the possibility that the surrogate may be discarded after
instantiated, it is strongly recommended that the surrogate not start any threa
its constructor or in thegetCodebase method. For the same reason, the surroga
should not inform the device that it has started until theactivate method is
called. If it is the responsibility of the surrogate host to inform the device that
surrogate has activated, it must do so after theactivate method returns success
fully.

SA.3.1.2 Deactivation

The following steps are taken by the surrogate host to deactivate a surrogate

1. The surrogate’sdeactivate method is invoked. The surrogate preforms a
necessary cleanup including stopping of threads, releasing of rem
resources. Upon returning fromdeactivate, the states of the
hostContext and thecontext objects for the deactivated surrogate a
undefined.

2. Oncedeactivate returns, the surrogate is discarded and all resources a
ciated with it are released, including the resources being exported by
export server. The host may also destroy the surrogate execution env
ment, including destroying any surrogate threads and the surrogate’s J

A surrogate host may initiated deactivation for a number of reasons.
example, the host may be in the process of shutting down, or in the case wher
host is responsible for liveness, it may have determined that the device tha
surrogate represents it no longer reachable. An active surrogate can also in
deactivation by calling thecancelActivation method on thehostContext
object.

Because of the possibility that the surrogate might stop execution abnorm
without its deactivate method being called, a device must not rely on bein

27JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

eacti-

y not
it is
and
ckly
d take
sur-

ss in

m-
ions
va 2

rvice,
t reg-
ser-

on
ated
m a
use

o the
writ-
informed by the surrogate or the surrogate host that its surrogate has been d
vated.

SA.3.2 Non-responsiveness

When the surrogate host calls a method of the surrogate, the method ma
return. Although these methods are required to return in a “timely manner”,
up to the specific surrogate host implementation to determine what is “timely”
reasonable for its environment. If a surrogate method does not return qui
enough, the host may decide that the surrogate is non-responsive and shoul
implementation-dependent steps to remedy the problem. For example, if the
rogate is run in its own JVM, the surrogate host could destroy the sub-proce
which the JVM is running.

SA.3.3 Logging

There are no explicit logging facilities provided by the surrogate host. It is reco
mended that if the surrogate wishes to publish information about error condit
or debugging, that it either locate a logging service or use facilities in the Ja
SDK, such asSystem.out andSystem.err.

SA.3.4 Service ID

If the device, through the surrogate, registers as a Jini technology-enabled se
the convention is that the service should use the same service ID each time i
isters, if it is the same service. There are two things to consider: obtaining a
vice ID and persisting the ID for future registrations.

The device or surrogate may create its own service ID, possibly based
some unique information within the device, or it can obtain one that is gener
when the service is registered for the first time. If the service ID is obtained fro
Jini lookup service registration, it should be stored so that future registrations
the same ID. The surrogate host does not provide any persistence facility s
surrogate should either locate a persistence service or, if the device has some
able persistent store, pass the service ID back to the device.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

28 DOWNLOADED CLASSES

ni-
tion

ified
rogate

te
tion
rence
from
run-
uni-

the
is-

ion. If
urro-
sur-
SA.3.5 Downloaded Classes

By default, a class downloaded via RMI is only granted permission to commu
cate with the machine from where the class was downloaded. This restric
impacts the capabilities of any class (proxy) that a surrogate exports.

The host machine from where a surrogate’s proxy is downloaded is spec
in the surrogate’s codebase annotation. The codebase annotation of the sur
is set by the surrogate host. This annotation is either specified in theSurrogate-

Codebase manifest header or retrieved through theGetCodebase interface (see
Section SA.2.5.2, “Surrogate-Codebase Header” and Section SA.2.4.2, “The
GetCodebase Interface”).

If the Surrogate-Codebase header is present in the manifest of the surroga
JAR file, the surrogate host, will use the export server to provide the annota
for the resources described in the header. The provided annotation must refe
the host machine on which the surrogate is running. So a proxy downloaded
this codebase may only have permission to communicate with the surrogate
ning on the host machine, and the proxy might not have permission to comm
cate directly with the device its surrogate represents.

If the surrogate specifies its own codebase annotation through
GetCodebase interface, a proxy exported by that surrogate may only have perm
sion to communicate to the host machine described in that codebase annotat
the specified host machine is different than the host machine on which the s
gate is running, the proxy might not have permission to communicate with its
rogate.

29JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

ol
hese
efined

. In
ect-

iven
ter-

roto-
oto-
This
ts of

ust be
tware

ain-

hen
rogate
, the
nnect
SA.4Interconnect Specification

As defined in Section SA.1.2, “Definitions”, the term interconnect protoc
defines the mechanisms for discovery, surrogate retrieval, and liveness. T
mechanisms are device and interconnect dependent and are, therefore, not d
in this specification. However, for each interconnect there must be aninterconnect
specificationthat fully describes discovery, surrogate retrieval, and liveness
addition, an interconnect specification must also fully describe any interconn
specific additions to the surrogate programming model.

A device or surrogate host that uses the surrogate architecture for a g
interconnect must comply with both an interconnect specification for that in
connect and theJini™ Technology Surrogate Architecture Specification.

SA.4.1 Interconnect Protocol Requirements

The following sections describe the required components of a interconnect p
col. In defining these components for a particular interconnect, the existing pr
cols of that interconnect may be used or new protocols may be developed.
choice depends on the ability of the existing protocols to meet the requiremen
discovery, retrieval, and liveness.

SA.4.1.1 Discovery

The mechanism by which a device and a surrogate host locate one another m
specified. This mechanism is necessary and may consist of hardware or sof
protocols, or other means that are appropriate to the specific interconnect to m
tain the plug-and-work model.

The discovery mechanism must define a way in which a device, w
attached to an interconnect, can either: announce its presence such that a sur
host can detect it, or detect a surrogate host on that interconnect. Likewise
mechanism must define a way that a surrogate host attaching to an interco
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

30 INTERCONNECT-SPECIFIC PROGRAMMING MODEL

es on

n of
order
sup-

are
ust

n this
spe-
is

ect,

ing
nec-
w for
ger
m is
ogate.
act
rro-

odel
nect
end-
led
PIs

hich
can announce its presence or, through some other means, find all of the devic
the interconnect.

The discovery mechanisms must operate without requiring administratio
the surrogate host. This means that no external action should be required in
for the surrogate host to recognize a new device on the interconnect that it
ports.

SA.4.1.2 Surrogate Retrieval

All interconnect specifications must define how surrogate components
retrieved. The surrogate retrieval portion of the interconnect specification m
describe a mechanism that is device independent. Device independence i
context means that the surrogate host does not need prior knowledge of any
cific device that implements the interconnect specification. This restriction
important in order to introduce a new device type for an existing interconn
without requiring changes to the surrogate host.

SA.4.1.3 Liveness

All interconnect specifications must specify the mechanism for determin
whether the device is still reachable on the interconnect. This requirement is
essary to maintain the surrogate’s residency in the surrogate host and to allo
the deactivation of the surrogate if the device is no longer functioning, is no lon
attached to the interconnect, or if the interconnect has failed. This mechanis
also necessary to allow the release of any leased resources held by the surr
Liveness also includes the ability of the device to determine if it is still in cont
with its surrogate. It may be the responsibility of the surrogate host or the su
gate to determine liveness.

SA.4.2 Interconnect-Specific Programming Model

The interconnect-specific programming model refers to the programming m
for a surrogate that is to be used with a specific interconnect. An intercon
specification may define an interconnect-specific programming model by ext
ing the programing model defined in Section SA.2, “Jini Technology-Enab
Surrogate” by specifying additional required Java programming language A
and surrogate APIs.

There may also be security considerations related to the interconnect w
must be fully described.

31JINI™ TECHNOLOGY SURROGATE ARCHITECTURE SPECIFICATION, VERSION 1.0

pro-
ed
that

For
om-

all
host
’s class
base

pes

s
ive-

rwise

po-
nect,
ions
ogate
SA.4.2.1 Java Programming Language APIs

It is permissible for the interconnect specification to extend the surrogate
gramming model by including the definition of additional APIs that are requir
to be made available to the surrogate. This set may be any required APIs
would not be included in the set of APIs already defined in this specification.
example, this set may include such things as utility or extension classes for c
municating over the interconnect.

If additional APIs are specified, their implementation must be provided by
surrogate hosts conforming to the interconnect specification. The surrogate
must ensure that the necessary classes are accessible through the surrogate
loader. If any classes are meant to be exported they must have their code
annotation set to the same codebase annotation of the surrogate.

SA.4.2.2 Surrogate APIs

The interconnect specification may define one or more object or interface ty
for thecontext parameter of the surrogate’sactivate andgetCodebase meth-
ods to provide the surrogate access to the interconnect-specific context.

The interconnect specification may also specify that thecontext object must
implement theKeepAliveManagement interface. The use of this interface depend
on how liveness is defined for the interconnect. If the surrogate is involved in l
ness, theKeepAliveManagement and theKeepAliveHandler can aid the surro-
gate in performing this task.

The state of thecontext object is undefined after the surrogate’sdeactivate

method has been called by the surrogate host or if the surrogate has othe
been discarded.

SA.4.2.3 Security

The interconnect specification may contain interconnect-specific security com
nents such as mechanisms for secure communication over the intercon
authentication, and encryption. It may also include programming considerat
for the surrogate such as additional permissions to be granted by the surr
host.
JINI™ TECHNOLOGY SURROGATE ARCHITECTURE

32 INTERCONNECT-SPECIFIC PROGRAMMING MODEL

not
the

ted
-
e
r the
License

Copyright 2001-2006 Sun Microsystems, Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may
use this file except in compliance with the License. You may obtain a copy of
License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distribu
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRAN
TIES OR CONDITIONS OF ANY KIND, either express or implied. See th
License for the specific language governing permissions and limitations unde
License.

	Jini™ Technology Surrogate Architecture Specification
	SA.1 Introduction
	SA.1.1 Requirements
	SA.1.2 Definitions
	SA.1.3 Overview
	SA.1.4 Specifications

	SA.2 Jini Technology-Enabled Surrogate
	SA.2.1 Java 2 Platform Runtime Environment
	SA.2.2 Jini APIs
	SA.2.3 Export Server
	SA.2.4 Surrogate APIs
	SA.2.5 Surrogate Packaging
	SA.2.6 Security

	SA.3 Surrogate Programming Considerations
	SA.3.1 Surrogate Activation and Deactivation
	SA.3.2 Non-responsiveness
	SA.3.3 Logging
	SA.3.4 Service ID
	SA.3.5 Downloaded Classes

	SA.4 Interconnect Specification
	SA.4.1 Interconnect Protocol Requirements
	SA.4.2 Interconnect-Specific Programming Model

