
 

Portlet Specification 

 Version 1.0 (20030429) 

Send comments about this document to: jsr168-comments@jcp.org 

 5 

 

 

Community Review 
DRAFT 

 10 

 

 

April 29, 2003 

Alejandro Abdelnur (alejandro.abdelnur@sun.com)  
Stefan Hepper (sthepper@de.ibm.com)  15 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) iii

JavaTM Portlet Specification ("Specification")  

Version: 1.0 

Status: Pre-FCS  

Specification Lead: Sun Microsystems, Inc. and IBM Corporation ("Specification Lead")  

Release: April 29, 2003 5 

Copyright 2003 Sun Microsystems, Inc. and IBM Corporation  

All rights reserved.  

NOTICE  

The Specification is protected by copyright and the information described therein may be protected by one 
or more U.S. patents, foreign patents, or pending applications.  Except as provided under the following 10 
license, no part of the Specification may be reproduced in any form by any means without the prior written 
authorization of the Specification Lead and its licensors, if any.  Any use of the Specification and the 
information described therein will be governed by the terms and conditions of this license and the Export 
Control and General Terms as set forth in the Specification Lead website Legal Terms.  By viewing, 
downloading or otherwise copying the Specification, you agree that you have read, understood, and will 15 
comply with all of the terms and conditions set forth herein.  

Subject to the terms and conditions of this license, the Specification Lead hereby grants you a fully-paid, 
non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense) under 
Specification Lead intellectual property rights to review the Specification internally for the purposes of 
evaluation only.  Other than this limited license, you acquire no right, title or interest in or to the 20 
Specification or any other intellectual property of the Specification Lead.  The Specification contains the 
proprietary and confidential information of Specification Lead and may only be used in accordance with 
the license terms set forth herein.  This license will expire ninety (90) days from the date of Release listed 
above and will terminate immediately without notice from Specification Lead if you fail to comply with 
any provision of this license.  Upon termination, you must cease use of or destroy the Specification.  25 

TRADEMARKS  

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors, 
the Specification Lead or the Specification Lead's licensors is granted hereunder.  Sun, Sun Microsystems, 
the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the U.S. and other countries. 30 

DISCLAIMER OF WARRANTIES  

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN 
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE 
SPECIFICATION LEAD.  THE SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR 
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, 35 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY 
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT 
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER 



Portlet Specification CR draft, version 1.0 (4/29/2003) iv

RIGHTS.  This document does not represent any commitment to release or implement any portion of the 
Specification in any product.  

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL 
ERRORS.  CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE 
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.  5 
THE SPECIFICATION LEAD MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE 
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME.  
Any use of such changes in the Specification will be governed by the then-current license for the applicable 
version of the Specification.  

LIMITATION OF LIABILITY  10 

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE SPECIFICATION LEAD 
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, 
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, 
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE 
THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, 15 
MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF THE SPECIFICATION LEAD 
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

You will indemnify, hold harmless, and defend the Specification Lead and its licensors from any claims 
based on your use of the Specification for any purposes other than those of internal evaluation, and from 
any claims that later versions or releases of any Specification furnished to you are incompatible with the 20 
Specification provided to you under this license.  

RESTRICTED RIGHTS LEGEND  

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime 
contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying 
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 25 
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 
(for non-DoD acquisitions).  

REPORT  

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with 
your evaluation of the Specification ("Feedback").  To the extent that you provide the Specification Lead 30 
with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant the Specification Lead a perpetual, non-exclusive, worldwide, fully paid-
up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, 
disclose, and use without limitation the Feedback for any purpose related to the Specification and future 
versions, implementations, and test suites thereof.  35 

(LFI#117882/Form ID#011801) 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) v

Contents 

Portlet Specification............................................................................................................ 1 
PLT.1  Preface ...................................................................................................................... 9 

PLT.1.1 Additional Sources............................................................................................ 9 
PLT.1.2 Who Should Read This Specification............................................................... 9 5 
PLT.1.3 API Reference................................................................................................. 10 
PLT.1.4 Other Java™ Platform Specifications............................................................. 10 
PLT.1.5 Other Important References............................................................................ 10 
PLT.1.6 Terminology ................................................................................................... 11 
PLT.1.7 Providing Feedback ........................................................................................ 11 10 
PLT.1.8 Acknowledgements......................................................................................... 11 

PLT.2  Overview ................................................................................................................ 13 
PLT.2.1 What is a Portal? ............................................................................................. 13 
PLT.2.2 What is a Portlet?............................................................................................ 13 
PLT.2.3 What is a Portlet Container? ........................................................................... 13 15 
PLT.2.4 An Example .................................................................................................... 14 
PLT.2.5 Relationship with Java 2 Platform, Enterprise Edition................................... 14 

PLT.3  Relationship with the Servlet Specification............................................................ 15 
PLT.3.1 Bridging from Portlets to Servlets/JSPs ......................................................... 16 
PLT.3.2 Relationship Between the Servlet Container and the Portlet Container ......... 17 20 

PLT.4  Concepts ................................................................................................................. 19 
PLT.4.1 Elements of a Portal Page ............................................................................... 19 
PLT.4.2 Portal Page Creation ....................................................................................... 20 
PLT.4.3 Portal Page Request Sequence........................................................................ 20 

PLT.5  The Portlet Interface ............................................................................................... 21 25 
PLT.5.1 Number of Portlet Instances ........................................................................... 21 
PLT.5.2 Portlet Life Cycle............................................................................................ 21 

PLT.5.2.1 Loading and Instantiation ........................................................................ 21 
PLT.5.2.2 Initialization ............................................................................................. 22 
PLT.5.2.3 Portlet Window ........................................................................................ 23 30 
PLT.5.2.4 Request Handling..................................................................................... 23 
PLT.5.2.5 End of Service.......................................................................................... 28 

PLT.6  Portlet Config ......................................................................................................... 31 
PLT.6.1 Initialization Parameters ................................................................................. 31 
PLT.6.2 Portlet Resource Bundle ................................................................................. 31 35 

PLT.7  Portlet URLs ........................................................................................................... 33 
PLT.7.1 PortletURL...................................................................................................... 33 

PLT.7.1.1 Including a Portlet Mode or a Window State........................................... 34 
PLT.7.1.2 Portlet URL security ................................................................................ 34 

PLT.8  Portlet Modes.......................................................................................................... 37 40 
PLT.8.1 VIEW Portlet Mode.................................................................................... 37 
PLT.8.2 EDIT Portlet Mode.................................................................................... 37 
PLT.8.3 HELP Portlet Mode.................................................................................... 38 



Portlet Specification CR draft, version 1.0 (4/29/2003) vi

PLT.8.4 Custom Portlet Modes .................................................................................... 38 
PLT.8.5 GenericPortlet Render Handling..................................................................... 39 
PLT.8.6 Defining Portlet Modes Support ..................................................................... 39 

PLT.9  Window States ........................................................................................................ 41 
PLT.9.1 NORMAL Window State ............................................................................. 41 5 
PLT.9.2 MAXIMIZED Window State...................................................................... 41 
PLT.9.3 MINIMIZED Window State...................................................................... 41 
PLT.9.4 Custom Window States................................................................................... 41 

PLT.10  Portlet Context ...................................................................................................... 43 
PLT.10.1 Scope of the Portlet Context ......................................................................... 43 10 
PLT.10.2 Portlet Context functionality......................................................................... 43 
PLT.10.3 Relationship with the Servlet Context .......................................................... 43 

PLT.10.3.1 Correspondence between ServletContext and PortletContext methods 44 
PLT.11  Portlet Requests .................................................................................................... 45 

PLT.11.1 PortletRequest Interface................................................................................ 45 15 
PLT.11.1.1 Request Parameters................................................................................ 45 
PLT.11.1.2 Extra Request Parameters ...................................................................... 46 
PLT.11.1.3 Request Attributes.................................................................................. 46 
PLT.11.1.4 Request Properties ................................................................................. 47 
PLT.11.1.5 Request Context Path............................................................................. 47 20 
PLT.11.1.6 Security Attributes ................................................................................. 47 
PLT.11.1.7 Response Content Types........................................................................ 48 
PLT.11.1.8 Internationalization ................................................................................ 48 
PLT.11.1.9 Portlet Mode .......................................................................................... 49 
PLT.11.1.10 Window State....................................................................................... 49 25 

PLT.11.2 ActionRequest Interface ............................................................................... 49 
PLT.11.2.1 Retrieving Uploaded Data...................................................................... 49 

PLT.11.3 RenderRequest Interface............................................................................... 50 
PLT.11.4 Lifetime of the Request Objects ................................................................... 50 

PLT.12  Portlet Responses .................................................................................................. 51 30 
PLT.12.1 PortletResponse Interface ............................................................................. 51 

PLT.12.1.1 Response Properties ............................................................................... 51 
PLT.12.1.2 URLs encoding ...................................................................................... 51 

PLT.12.2 ActionResponse Interface............................................................................. 52 
PLT.12.2.1 Redirections ........................................................................................... 52 35 
PLT.12.2.2 Portlet Modes and Window State Changes............................................ 52 
PLT.12.2.3 Render Parameters ................................................................................. 52 

PLT.12.3 RenderResponse Interface ............................................................................ 53 
PLT.12.3.1 Content Type.......................................................................................... 53 
PLT.12.3.2 Output Stream and Writer Objects......................................................... 53 40 
PLT.12.3.3 Buffering................................................................................................ 54 
PLT.12.3.4 Namespace encoding ............................................................................. 55 
PLT.12.3.5 Portlet Title ............................................................................................ 55 

PLT.12.4 Lifetime of Response Objects....................................................................... 55 
PLT.13 Portal Context ...................................................................................................... 57 45 
PLT.14  Portlet Preferences ................................................................................................ 59 



Portlet Specification CR draft, version 1.0 (4/29/2003) vii

PLT.14.1 PortletPreferences Interface.......................................................................... 59 
PLT.14.2 Preference Attributes Scopes........................................................................ 60 
PLT.14.3 Preference Attributes definition.................................................................... 61 

PLT.14.3.1 Localizing Preference Attributes ........................................................... 61 
PLT.14.4 Validating Preference values ........................................................................ 62 5 

PLT.15  Sessions................................................................................................................. 65 
PLT.15.1 Creating a Session......................................................................................... 65 
PLT.15.2 Session Scope ............................................................................................... 66 
PLT.15.3 Binding Attributes into a Session ................................................................. 66 
PLT.15.4 Relationship with the Web Application HttpSession ................................... 67 10 

PLT.15.4.1 HttpSession Method Mapping ............................................................... 67 
PLT.15.5 Reserved HttpSession Attribute Names........................................................ 67 
PLT.15.6 Session Timeouts .......................................................................................... 68 
PLT.15.7 Last Accessed Times .................................................................................... 68 
PLT.15.8 Important Session Semantics........................................................................ 68 15 

PLT.16  Dispatching Requests to Servlets and JSPs .......................................................... 69 
PLT.16.1 Obtaining a PortletRequestDispatcher.......................................................... 69 

PLT.16.1.1 Query Strings in Request Dispatcher Paths ........................................... 69 
PLT.16.2 Using a Request Dispatcher.......................................................................... 70 
PLT.16.3 The Include Method...................................................................................... 70 20 

PLT.16.3.1 Included Request Parameters................................................................. 70 
PLT.16.3.2 Included Request Attributes................................................................... 71 
PLT.16.3.3 Request and Response objects for Included Servlets/JSPs.................... 71 
PLT.16.3.4 Error Handling ....................................................................................... 72 

PLT.17  User Information ................................................................................................... 73 25 
PLT.17.1 Defining User Attributes............................................................................... 73 
PLT.17.2 Accessing User Attributes ............................................................................ 74 
PLT.17.3 Important Note on User Information ............................................................ 74 

PLT.18  Caching ................................................................................................................. 75 
PLT.18.1 Expiration Cache .......................................................................................... 75 30 

PLT.19  Portlet Applications .............................................................................................. 77 
PLT.19.1 Relationship with Web Applications ............................................................ 77 
PLT.19.2 Relationship to PortletContext...................................................................... 77 
PLT.19.3 Elements of a Portlet Application................................................................. 77 
PLT.19.4 Directory Structure ....................................................................................... 77 35 
PLT.19.5 Portlet Application Classloader .................................................................... 78 
PLT.19.6 Portlet Application Archive File................................................................... 78 
PLT.19.7 Portlet Application Deployment Descriptor ................................................. 78 
PLT.19.8 Replacing a Portlet Application.................................................................... 78 
PLT.19.9 Error Handling .............................................................................................. 78 40 
PLT.19.10 Portlet Application Environment................................................................ 78 

PLT.20  Security ................................................................................................................. 79 
PLT.20.1 Introduction................................................................................................... 79 
PLT.20.2 Roles ............................................................................................................. 79 
PLT.20.3 Programmatic Security ................................................................................. 79 45 
PLT.20.4 Specifying Security Constraints ................................................................... 80 



Portlet Specification CR draft, version 1.0 (4/29/2003) viii

PLT.20.5 Propagation of Security Identity in EJBTM Calls.......................................... 81 
PLT.21  Packaging and Deployment Descriptor................................................................. 83 

PLT.21.1 Portlet and Web Application Deployment Descriptor.................................. 83 
PLT.21.2 Packaging...................................................................................................... 83 

PLT.21.2.1 Example Directory Structure ................................................................. 84 5 
PLT.21.2.2 Version Information............................................................................... 84 

PLT.21.3 Portlet Deployment Descriptor Elements ..................................................... 84 
PLT.21.4 Rules for processing the Portlet Deployment Descriptor ............................. 85 
PLT.21.5 Deployment Descriptor................................................................................. 85 
PLT.21.6 Pictures of the structure of a Deployment Descriptor .................................. 95 10 
PLT.21.7 Uniqueness of Deployment Descriptor Values............................................. 97 
PLT.21.8 Localization .................................................................................................. 97 

PLT.21.8.1 Localization of Deployment Descriptor Values .................................... 97 
PLT.21.8.2 Supported Locales by the Portlet ........................................................... 97 

PLT.21.9 Deployment Descriptor Example ................................................................. 98 15 
PLT.21.10 Resource Bundles ....................................................................................... 99 
PLT.21.11 Resource Bundle Example........................................................................ 100 

PLT.22 Portlet Tag Library............................................................................................. 101 
PLT.22.1 defineObjects Tag....................................................................................... 101 
PLT.22.2 actionURL Tag ........................................................................................... 102 20 
PLT.22.3 renderURL Tag........................................................................................... 102 
PLT.22.4 encode Tag.................................................................................................. 103 
PLT.22.5 param Tag ................................................................................................... 104 

PLT.23  Technology Compatibility Kit Requirements ..................................................... 105 
PLT.23.1 TCK Test Components ............................................................................... 105 25 
PLT.23.2 TCK Requirements ..................................................................................... 106 

PLT.23.2.1 Declarative configuration of the portal page for a TCK test ............... 106 
PLT.23.2.2 Programmatic configuration of the portal page for a test .................... 108 
PLT.23.2.3 Test Portlets Content............................................................................ 109 
PLT.23.2.4 Test Cases that Require User Identity.................................................. 109 30 

PLT.A  Custom Portlet Modes.......................................................................................... 111 
PLT.B  Markup Fragments ............................................................................................... 115 
PLT.C  CSS Style Definitions .......................................................................................... 117 
PLT.D  User Information Attribute Names ...................................................................... 121 
PLT.E  TCK Assertions .................................................................................................... 123 35 
 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 9

PLT.1  

Preface 

This document is the Portlet Specification, v1.0. The standard for the Java portlet API is 
described here. 

PLT.1.1 Additional Sources 5 

The specification is intended to be a complete and clear explanation of Java portlets, but 
if questions remain the following may be consulted: 

• A reference implementation (RI) has been made available which provides a 
behavioral benchmark for this specification. Where the specification leaves 
implementation of a particular feature open to interpretation, implementators may 10 
use the reference implementation as a model of how to carry out the intention of 
the specification 

• A Technology Compatibility Kit (TCK) has been provided for assessing whether 
implementations meet the compatibility requirements of the Java portlet API 
standard. The test results have normative value for resolving questions about 15 
whether an implementation is standard 

• If further clarification is required, the working group for the Java portlet API 
under the Java Community Process should be consulted, and is the final arbiter of 
such issues 

Comments and feedback are welcomed, and will be used to improve future versions. 20 

PLT.1.2 Who Should Read This Specification 

The intended audience for this specification includes the following groups: 

• Portal server vendors that want to provide portlet engines that conform to this 
standard 

• Authoring tool developers that want to support web applications that conform to 25 
this specification 

• Experienced portlet authors who want to understand the underlying mechanisms 
of portlet technology 



Portlet Specification CR draft, version 1.0 (4/29/2003) 10

We emphasize that this specification is not a user’s guide for portlet developers and is not 
intended to be used as such.  

PLT.1.3 API Reference 

An accompanying javadoc™ , includes the full specifications of classes, interfaces, and 
method signatures. 5 

PLT.1.4 Other Java™ Platform Specifications 

The following Java API specifications are referenced throughout this specification: 

• Java 2 Platform, Enterprise Edition, v1.3 (J2EE™ ) 
• Java Servlet™, v2.3 
• JavaServer Pages™, v1.21 (JSP™ ) 10 

These specifications may be found at the Java 2 Platform,Enterprise Edition website: 
http://java.sun.com/j2ee/. 

PLT.1.5 Other Important References 

The following Internet specifications provide information relevant to the development 
and implementation of the portlet API and standard portlet engines: 15 

• RFC 1630 Uniform Resource Identifiers (URI) 
• RFC 1738 Uniform Resource Locators (URL) 
• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax 
• RFC 1808 Relative Uniform Resource Locators 
• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0) 20 
• RFC 2045 MIME Part One: Format of Internet Message Bodies 
• RFC 2046 MIME Part Two: Media Types 
• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text 
• RFC 2048 MIME Part Four: Registration Procedures 
• RFC 2049 MIME Part Five: Conformance Criteria and Examples 25 
• RFC 2109 HTTP State Management Mechanism 
• RFC 2145 Use and Interpretation of HTTP Version Numbers 
• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1) 
• RFC 2617 HTTP Authentication: Basic and Digest Authentication 
• ISO 639 Code for the representation of names of languages 30 
• ISO 3166 Code (Country) list 
• OASIS Web Services for Remote Portlets (WSRP) 



Portlet Specification CR draft, version 1.0 (4/29/2003) 11

Online versions of these RFC and ISO documents are at: 

• http://www.rfc-editor.org/ 
• http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt 
• http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html 

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of 5 
HTTP related information affecting this specification and its implementations. 

The WSRP specification can be found in the OASIS web site  
(http://www.oasis-open.org/).  

The Extensible Markup Language (XML) is used for the specification of the Deployment 
Descriptors described in Chapter 13 of this specification. More information about XML 10 
can be found at the following websites: 

http://java.sun.com/xml 
http://www.xml.org/ 

PLT.1.6 Terminology 

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 15 
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be 
interpreted as described in [RFC2119].  

PLT.1.7 Providing Feedback 

We welcome any and all feedback about this specification. Please e-mail your comments 
to jsr168-comments@sun.com. 20 

Please note that due to the volume of feedback that we receive, you will not normally 
receive a reply from an engineer. However, each and every comment is read, evaluated, 
and archived by the specification team. 

PLT.1.8 Acknowledgements 

The formulation of this community draft is the result of the teamwork of the JSR168 25 
Expert Group. 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) 13

PLT.2  

Overview  

PLT.2.1 What is a Portal? 

A portal is a web based application that –commonly- provides personalization, single 
sign on, content aggregation from different sources and hosts the presentation layer of 5 
Information Systems. Aggregation is the action of integrating content from different 
sources within a web page. A portal may have sophisticated personalization features to 
provide customized content to users. Portal pages may have different set of portlets 
creating content for different users. 

PLT.2.2 What is a Portlet? 10 

A portlet is a Java technology based web component, managed by a portlet container, that 
processes requests and generates dynamic content. Portlets are used by portals as 
pluggable user interface components that provide a presentation layer to Information 
Systems. 

The content generated by a portlet is also called a fragment. A fragment is a piece of 15 
markup (e.g. HTML, XHTML, WML) adhering to certain rules and can be aggregated 
with other fragments to form a complete document. The content of a portlet is normally 
aggregated with the content of other portlets to form the portal page. The lifecycle of a 
portlet is managed by the portlet container.  

Web clients interact with portlets via a request/response paradigm implemented by the 20 
portal. Normally, users interact with content produced by portlets, for example by 
following links or submitting forms, resulting in portlet actions being received by the 
portal, which are forwarded by it to the portlets targeted by the user's interactions. 

The content generated by a portlet may vary from one user to another depending on the 
user configuration for the portlet.  25 

PLT.2.3 What is a Portlet Container? 

A portlet container runs portlets and provides them with the required runtime 
environment. A portlet container contains portlets and manages their lifecycle. It also 
provides persistent storage for portlet preferences. A portlet container receives requests 
from the portal to execute requests on the portlets hosted by it. 30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 14

A portlet container is not responsible for aggregating the content produced by the 
portlets. It is the  responsibility of the portal to handle the aggregation. 

A portal and a portlet container can be built together as a single component of an 
application suite or as two separate components of a portal application. 

PLT.2.4 An Example 5 

The following is a typical sequence of events, initiated when users access their portal 
page: 

• A client (e.g., a web browser) after being authenticated makes an HTTP request to 
the portal 

• The request is received by the portal 10 
• The portal determines if the request contains an action targeted to any of the 

portlets associated with the portal page 
• If there is an action targeted to a portlet, the portal requests the portlet container to 

invoke the portlet to process the action  
• A portal invokes portlets, through the portlet container, to obtain content 15 

fragments that can be included in the resulting portal page 
• The portal aggregates the output of the portlets in the portal page and sends the 

portal page back to the client 

PLT.2.5 Relationship with Java 2 Platform, Enterprise Edition 

The Portlet API v1.0 is based on the Java 2 Platform, Enterprise Edition, v1.3. Portlet 20 
containers and portlets meet the requirements, described in the J2EE specification, for 
executing in a J2EE environment. 

Due to the analogous functionality of servlets, concepts, names and behavior of the 
portlet will be similar to the ones defined in the Servlet Specification 2.3 whenever 
applicable.  25 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 15

PLT.3  

Relationship with the Servlet Specification 

The Servlet Specification v2.3 defines servlets as follows: 

“A servlet is a Java technology based web component, managed by a container, that 
generates dynamic content. Like other Java-based components, servlets are platform 5 
independent Java classes that are compiled to platform neutral bytecode that can be 
loaded dynamically into and run by a Java enabled web server. Containers, sometimes 
called servlet engines, are web server extensions that provide servlet functionality. 
Servlets interact with web clients via a request/response paradigm implemented by the 
servlet container.”  10 

Portlets share many similarities with servlets: 

• Portlets are Java technology based web components 
• Portlets are managed by a specialized container 
• Portlets generate dynamic content 
• Portlets lifecycle is managed by a container 15 
• Portlets interact with web client via a request/response paradigm 

Portlets differ in the following aspects from servlets: 

• Portlets only generate markup fragments, not complete documents. The Portal 
aggregates portlet markup fragments into a complete portal page 

• Portlets are not directly bound to a URL 20 
• Web clients interact with portlets through a portal system 
• Portlets have a more refined request handling, action requests and render requests 
• Portlets have predefined portlet modes and window states that indicate the 

function the portlet is performing and the amount of real state in the portal page 
• Portlets can exist many times in a portal page 25 



Portlet Specification CR draft, version 1.0 (4/29/2003) 16

Portlets have access to the following extra functionality not provided by servlets: 

• Portlets have means for accessing and storing persistent configuration and 
customization data 

• Portlets have access to user profile information 
• Portlets have URL rewriting functions for creating hyperlinks within their 5 

content, which allow portal server agnostic creation of links and actions in page 
fragments 

• Portlets can store transient data in the portlet session in two different scopes: the 
application-wide scope and the portlet private scope 

Portlets do not have access to the following functionality provided by servlets: 10 

• Setting the character set encoding of the response 
• Setting HTTP headers on the response 
• The URL of the client request to the portal 

Because of these differences, the Expert Group has decided that portlets needs to be a 
new component. Therefore, a portlet is not a servlet. This allows defining a clear 15 
interface and behavior for portlets.  

In order to reuse as much as possible of the existing servlet infrastructure, the Portlet 
Specification leverages functionality provided by the Servlet Specification wherever 
possible. This includes deployment, classloading, web applications, web application 
lifecycle management, session management and request dispatching. Many concepts and 20 
parts of the portlet API have been modeled after the servlet API.  

Portlets, servlets and JSPs are bundled in an extended web application called portlet 
application. Portlets, servlets and JSPs within the same portlet application share 
classloader, application context and session. 

PLT.3.1 Bridging from Portlets to Servlets/JSPs 25 

Portlets can leverage servlets, JSPs and JSP tag-libraries for generating content. 

A portlet can call servlets and JSPs just like a servlet can invoke other servlets and JSPs 
using a request dispatcher (see ### Dispatching Requests to Servlets and JSPs Chapter). 
To enable a seamless integration between portlets and servlets the portlet specification 
leverages many of the servlet objects. 30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 17

When a servlet or JSP is called from within a portlet, the servlet request given to the 
servlet or JSP is based on the portlet request and the servlet response given to the servlet 
or JSP is based on the portlet response. For example: 

• Attributes set in the portlet request are available in the included servlet request 
(see ### Dispatching Requests to Servlets and JSPs Chapter),  5 

• The portlet and the included servlet or JSP share the same output stream (see ### 
Dispatching Requests to Servlets and JSPs Chapter). 

• Attributes set in the portlet session are accessible from the servlet session and vice 
versa (see ### Portlet Session Chapter). 

PLT.3.2 Relationship Between the Servlet Container and the 10 
Portlet Container 

The portlet container is an extension of the servlet container. As such, a portlet container 
can be built on top of an existing servlet container or it may implement all the 
functionality of a servlet container. Regardless of how a portlet container is implemented, 
its runtime environment is assumed to support Servlet Specification 2.3. 15 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) 19

PLT.4  

Concepts 

PLT.4.1 Elements of a Portal Page 

A portlet generates markup fragments. A portal normally adds a title, control buttons and 
other decorations to the markup fragment generated by the portlet, this new fragment is 5 
called a portlet window. Then the portal aggregates portlet windows into a complete 
document, the portal page. 

Figure 4-1 Elements of a Portal Page 

<Portlet content>

<Title> M m E Hδδδδ

<Portlet content>

<Title> M m E Hδδδδ

<Portlet content>

<Title> M m E Hδδδδ

<Portlet content>

<Title> M m E Hδδδδ Portal page

Portlet fragment

Portlet window

Decorations and controls

 

 10 



Portlet Specification CR draft, version 1.0 (4/29/2003) 20

A

B C

D

Portal Page

Portlet Windows

Portal
Server

Portlet A

Portlet B

Portlet C

Portlet D

Client Device

Portlet
Container

PLT.4.2 Portal Page Creation 

Portlets run within a portlet container. The portlet container receives the content 
generated by the portlets. Typically, the portlet container hands the portlet content to a 
portal. The portal server creates the portal page with the content generated by the portlets 
and sends it to the client device (i.e. a browser) where it is displayed to the user. 5 

FIGURE 4-2 Portal Page Creation 

 

 

 

 10 

 

 

 

 

PLT.4.3 Portal Page Request Sequence 15 

Users access a portal by using a client device such as an HTML browser or a  
web-enabled phone. Upon receiving the request, the portal determines the list of portlets 
that need to be executed to satisfy the request. The portal, through the portlet container, 
invokes the portlets. The portal creates the portal page with the fragments generated by 
the portlets and the page is returned to the client where it is presented to the user. 20 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 21

PLT.5  

The Portlet Interface 

The Portlet interface is the main abstraction of the portlet API. All portlets implement 
this interface either directly or, more commonly, by extending a class that implements the 
interface.  5 

The portlet API includes a GenericPortlet class that implements the Portlet interface 
and provides default functionality. Developers should extend, directly or indirectly, the 
GenericPortlet class to implement their portlets. 

PLT.5.1 Number of Portlet Instances 

The portlet definition sections in the deployment descriptor of a portlet application 10 
control how the portlet container creates portlet instances. 

For a portlet, not hosted in a distributed environment (the default), the portlet container 
musti use only one portlet object per portlet definition.  

In the case where a portlet is deployed as part of a portlet application marked as 
distributable, in the web.xml deployment descriptor, a portlet container may instantiate 15 
only one portlet object per portlet definition-in the deployment descriptor- per virtual 
machine (VM). ii 

PLT.5.2 Portlet Life Cycle 

A portlet is managed through a well defined life cycle that defines how it is loaded, 
instantiated and initialized, how it handles requests from clients, and how it is taken out 20 
of service. This life cycle of a portlet is expressed through the init, processAction, 
render and destroy methods of the Portlet interface. 

PLT.5.2.1 Loading and Instantiation 

The portlet container is responsible for loading and instantiating portlets. The loading and 
instantiation can occur when the portlet container starts the portlet application, or delayed 25 
until the portlet container determines the portlet is needed to service a request.  



Portlet Specification CR draft, version 1.0 (4/29/2003) 22

The portlet container must load the portlet class using the same ClassLoader the servlet 
container uses for the web application part of the portlet application.iii After loading the 
portlet classes, the portlet container instantiates them for use. 

PLT.5.2.2 Initialization 

After the portlet object is instantiated, the portlet container must initialize the portlet 5 
before invoking it to handle requests.iv Initialization is provided so that portlets can 
initialize costly resources (such as backend connections), and perform other one-time 
activities. The portlet container must initialize the portlet object by calling the init method 
of the Portlet interface with a unique (per portlet definition) object implementing the 
PortletConfig interface. This configuration object provides access to the initialization 10 
parameters and the ResourceBundle defined in the portlet definition in the deployment 
descriptor. Refer to ### Portlet Config Chapter for information about the PortletConfig 
interface. The configuration object also gives the portlet access to a context object that 
describes the portlet’s runtime environment. Refer to ### Portlet Context Chapter for 
information about the PortletContext interface. 15 

PLT.5.2.2.1 Error Conditions on Initialization 

During initialization, the portlet object may throw an UnavailableException or a 
PortletException. In this case, the portlet container must not place the portlet object 
into active service and it must release the portlet object.v The destroy method must not 
be called because the initialization is considered unsuccessful.vi 20 

The portlet container may attempt to instantiate and initialize the portlets at any time after 
a failure. The exception to this rule is when an UnavailableException indicates a 
minimum time of unavailability. When this happens the portlet container must wait for 
the specified time to pass before creating and initializing a new portlet object.vii 

A RuntimeException thrown during initialization must be handled as a 25 
PortletException.viii  

PLT.5.2.2.2 Tools Considerations 

The triggering of static initialization methods when a tool loads and introspects a portlet 
application is to be distinguished from the calling of the init method. Developers should 
not assume that a portlet is in an active portlet container runtime until the init method of 30 
the Portlet interface is called. For example, a portlet should not try to establish 
connections to databases or Enterprise JavaBeans™ containers when static (class) 
initialization happens. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 23

PLT.5.2.3 Portlet Window 

The portlet definition may include a set of preference attributes with their default values. 
They are used to create a preferences objects (see ### Portlet Preferences Chapter). 

At runtime, when serving requests, a portlet object is associated with a preferences 
object. Normally, a portlet customizes its behavior and the content it produces based on 5 
the attributes of the associated preference object. The portlet may read, modify and add 
preference attributes.  

By default, a preferences object is built using the initial preferences values defined in the 
portlet deployment descriptor. A portal/portlet-container implementation may provide 
administrative means to create new preferences objects based on existing ones. 10 
Portal/portlet-container created preferences objects may have their attributes further 
customized. 

When a portlet is placed in a portal page, a preferences object is also associated with it. 
The occurrence of a portlet and preferences-object in a portal page is called a portlet 
window. The portal/portlet-container implementation manages this association. 15 

A portal page may contain more than one portlet window that references the same portlet 
and preferences-object. 

Administration, management and configuration of preferences objects and creation of 
portlet windows is left to the portal/portlet-container implementation. It is also left to the 
implementation to provide advanced features, such as hierarchical management of 20 
preferences objects or cascading changes on preference attributes. 

PLT.5.2.4 Request Handling 

After a portlet object is properly initialized, the portlet container may invoke the portlet 
to handle client requests.  

The Portlet interface defines two methods for handling requests, the processAction 25 
method and the render method. 

When a portal/portlet-container invokes the processAction method of a portlet, the 
portlet request is referred to as an action request. When a portal/portlet-container invokes 
the render method of a portlet, the portlet request is referred to as a render request. 

Commonly, client requests are triggered by URLs created by portlets. These URLs are 30 
called portlet URLs. A portlet URL is targeted to a particular portlet. Portlet URLs may 
be of two types, action URLs or render URLs. Refer to ### Portlet URLs Chapter 
for details on portlet URLs. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 24

Normally, a client request triggered by an action URL translates into one action request 
and many render requests, one per portlet in the portal page. A client request triggered by 
a render URL translates into many render requests, one per portlet in the portal page. 

If the client request is triggered by an action URL, the portal/portlet-container must first 
trigger the action request by invoking the processAction method of the targeted 5 
portlet.ix The portal/portlet-container must wait until the action request finishes. Then, the 
portal/portlet-container must trigger the render request by invoking the render method 
for all the portlets in the portal page with the possible exception of portlets for which 
their content is being cached.x The render requests may be executed sequentially or in 
parallel without any guaranteed order. 10 

If the client request is triggered by a render URL, the portal/portlet-container must invoke 
the render method for all the portlets in the portal page with the possible exception of 
portlets for which their content is being cached.xi The portal/portlet-container must not 
invoke the processAction of any of the portlets in the portal page for that client request. 

If a portlet has caching enabled, the portal/portlet-container may not invoke the render 15 
method. The portal/portlet-container may instead use the portlet’s cached content. Refer 
to ### Caching Chapter for details on caching. 

A portlet object placed into service by a portlet container may end up not handling any 
request during its lifetime. 

Figure 5-1 Request Handling Sequence 20 



Portlet Specification CR draft, version 1.0 (4/29/2003) 25

Portal/
Portlet Container

Portlet 
AClient

Portlet 
B

Client Request

Portlet 
C

Portal Page

processAction()

The render requests 
are triggered in no 
specific order. 
They may be fired 
one after the other or 
in parallel. 

NOT DEFINED BY THE PORTLET SPECIFICATION

Fragment

Fragment

render()

render()

The action request 
must finish before the 
render requests start. 

render()

Fragment

 

PLT.5.2.4.1 Action Request 

Typically, in response to an action request, a portlet updates state based on the 
information sent in the action request parameters.  5 

The processAction method of the Portlet interface receives two parameters, 
ActionRequest and ActionResponse.  

The ActionRequest object provides access to information such as the parameters of the 
action request, the window state, the portlet mode, the portlal context, the portlet session 
and the portlet preferences data. 10 

While processing an action request, the portlet may instruct the portal/portlet-container to 
redirect the user to a specific URL. If the portlet issues a redirection, when the 
processAction method concludes, the portal/portlet-container must send the redirection 
back to the user agentxii and it must finalize the processing of the client request. 

A portlet may change its portlet mode and its window state during an action request. This 15 
is done, using the ActionResponse object. The change of portlet mode or window state 
should be effective for the following render request the portlet receives. Portlets cannot 



Portlet Specification CR draft, version 1.0 (4/29/2003) 26

assume that subsequent renders will be called in the set portlet mode or window state as 
the portal/portlet-container could override these changes. 

The portlet may also set, in the ActionResponse object, render parameters during the 
processing of an action request. Refer to ### Request Parameters Section for details on 
render parameters. 5 

PLT.5.2.4.2 Render Request 

Commonly, during a render request, portlets generate content based on their current state.  

The render method of the Portlet interface receives two parameters, RenderRequest 
and RenderResponse.  

The RenderRequest object provides access to information such as the parameters of the 10 
render request, the window state, the portlet mode, the portal context, the portlet session 
and the portlet preferences data. 

The portlet can produce content using the RenderResponse writer or it may delegate the 
generation of content to a servlet or a JSP. Refer to ### Dispatching Requests to Servlets 
and JSPs Chapter for details on this. 15 



Portlet Specification CR draft, version 1.0 (4/29/2003) 27

PLT.5.2.4.2.1 GenericPortlet  

The GenericPortlet abstract class provides default functionality and convenience 
methods for handling render requests. 

The render method in the GenericPortlet class sets the title specified in the portlet 
definition in the deployment descriptor and invokes the doDispatch method. 5 

The doDispatch method in the GenericPortlet class implements functionality to aid in 
the processing of requests based on the portlet mode the portlet is currently in (see ### 
Portlet Modes Chapter). These methods are: 

• doView for handling VIEW requestsxiii 
• doEdit for handling EDIT requestsxiv 10 
• doHelp for handling HELP requestsxv 

If the window state of the portlet (see ### Window States Chapter) is MINIMIZED, the 
render method of the GenericPortlet does not invoke any of the portlet mode 
rendering methods.xvi 

Typically, portlets will extend the GenericPortlet class directly or indirectly and they 15 
will override the doView, doEdit, doHelp, doCustom and getTitle methods instead of 
the render and doDispatch methods. 

PLT.5.2.4.3 Multithreading Issues During Request Handling 

The portlet container handles concurrent requests to the same portlet by concurrent 
execution of the request handling methods on different threads. Portlet developers must 20 
design their portlets to handle concurrent execution from multiple threads from within the 
processAction and render methods at any particular time. 

PLT.5.2.4.4 Exceptions During Request Handling 

A portlet may throw either a PortletException, a PortletSecurityException or an 
UnavailableException during the processing of a request.  25 

A PortletException signals that an error has occurred during the processing of the 
request and that the portlet container should take appropriate measures to clean up the 
request. If a portlet throws an exception in the processAction method, all operations on 
the ActionResponse must be ignored and the render method must not be invoked within 
the current client request.xvii The portal/portlet-container should continue processing the 30 
other portlets visible in the portlet page.  

A PortletSecurityException indicates that the request has been aborted because the user 
does not have sufficient rights. Upon receiving a PortletSecurityException, the portlet-
container should handle this exception in an appropiate maner. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 28

An UnavailableException signals that the portlet is unable to handle requests either 
temporarily or permanently. 

If a permanent unavailability is indicated by the UnavailableException, the portlet 
container must remove the portlet from service immediately, call the portlet’s destroy 
method, and release the portlet object.xviii A portlet that throws a permanent 5 
UnavailableException must be considered unavailable until the portlet application 
containing the portlet is restarted.  

When temporary unavailability is indicated by the UnavailableException, then the 
portlet container may choose to not route any requests to the portlet during the time 
period of the temporary unavailability. 10 

The portlet container may choose to ignore the distinction between a permanent and 
temporary unavailability and treat all UnavailableExceptions as permanent, thereby 
removing a portlet object that throws any UnavailableException from service. 

A RuntimeException thrown during the request handling must be handled as a 
PortletException.xix 15 

When a portlet throws an exception, or when a portlet becomes unavailable, the 
portal/portlet-container may include a proper error message in the portal page returned to 
the user. 

PLT.5.2.4.5 Thread Safety 

Implementations of the request and response objects are not guaranteed to be thread safe. 20 
This means that they must only be used within the scope of the thread invoking the 
processAction and render methods. 

To remain portable, portlet applications should not give references of  the request and 
response objects to objects executing in other threads as the resulting behavior may be 
non-deterministic. 25 

PLT.5.2.5 End of Service 

The portlet container is not required to keep a portlet loaded for any particular period of 
time. A portlet object may be kept active in a portlet container for a period of 
milliseconds, for the lifetime of the portlet container (which could be a number of days, 
months, or years), or any amount of time in between. 30 

When the portlet container determines that a portlet should be removed from service, it 
calls the destroy method of the Portlet interface to allow the portlet to release any 
resources it is using and save any persistent state. For example, the portlet container may 
do this when it wants to conserve memory resources, or when it is being shut down. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 29

Before the portlet container calls the destroy method, it should allow any threads that 
are currently processing requests within the portlet object to complete execution.To avoid 
waiting forever, the portlet container can optionally wait for a predefined time before 
destroying the portlet object. 

Once the destroy method is called on a portlet object, the portlet container must not 5 
route any requests to that portlet object.xx If the portlet container needs to enable the 
portlet again, it must do so with a new portlet object, which is a new instance of the 
portlet’s class.xxi 

If the portlet object throws a RuntimeException within the execution of the destroy 
method the portlet container must consider the portlet object successfully destroyed.xxii 10 

After the destroy method completes, the portlet container must release the portlet object 
so that it is eligible for garbage collection.xxiii Portlet implementations should not use 
finalizers. 

 

15 





Portlet Specification CR draft, version 1.0 (4/29/2003) 31

PLT.6  

Portlet Config 

The PortletConfig object provides the portlet object with information to be used during 
initialization. It also provides access to the portlet context and the resource bundle that 
provides title-bar resources. 5 

PLT.6.1 Initialization Parameters 

The getInitParameterNames and getInitParameter methods of the PortletConfig 
interface return the initialization parameter names and values found in the portlet 
definition in the deployment descriptor. 

PLT.6.2 Portlet Resource Bundle 10 

Portlets must may specify, in their deployment descriptor definition, some basic 
information that can be used for the portlet title-bar and for the portal’s categorization of 
the portlet. The specification defines a few resource elements for these purposes, title, 
short-title, description and keywords (see the ### Resource Bundles Section). 

These resource elements can be defined in one of two ways in the deployment descriptor. 15 
They can be directly included in the portlet definition in the deployment descriptor, or 
they can be placed in a resource bundle with a reference to the resource bundle in the 
deployment portlet definition in the descriptor. 

If the resources are included inline the deployment descriptor, the portlet container must 
use this information for all Locales.xxiv. An example of a deployment descriptor defining 20 
portlet information inline could be: 

<portlet> 
  ... 
  <portlet-info> 
    <title>Stock Quote Portlet</title> 25 
    <short-title>Stock</short-title> 
    <keywords>finance,stock market</keywords> 
  </portlet-info> 
  ... 
</portlet> 30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 32

If the resources are defined in a resource bundle, the portlet must provide the name of the 
resource bundle containing the localized values. An example of a deployment descriptor 
defining portlet information in resource bundles could be: 

<portlet> 
  ... 5 
  <resource-bundle>com.foo.myApp.QuotePortlet</resource-bundle> 
  ... 
  <portlet-info> 
    <resource-bundle>QuotePortlet</resource-bundle> 
  </portlet-info> 10 
  ... 
</portlet> 

The portlet-container must look these values first in the ResourceBundle if a 
ResourceBundle is defined. If the ResourceBundle does not contain the resources or if the 
ResourceBundle is not defined, the portlet portainer must look for the resources inline. If 15 
the resources are not defined in the ResourceBundle or inline, the portlet container must 
return an empty String. 

Regardless of what mechanism is used for providing this information, the portlet access 
this information using the getResourceBundle method of the PortletConfig interface. 
If the information is defined inline in the deployment descriptor, the portlet container 20 
must create a ResourceBundle and populate it, with the inline values, using the keys 
defined in the ### Resource Bundles Section.xxv 

The render method of the GenericPortlet uses the ResourceBundle object of the 
PortletConfig to retrieve the title of the portlet from the portlet definition. 

 25 



Portlet Specification CR draft, version 1.0 (4/29/2003) 33

PLT.7  

Portlet URLs 

As part of its content, a portlet may need to create URLs that reference the portlet itself. 
For example, when a user acts on a URL that references a portlet (i.e., by clicking a link 
or submitting a form) the result is a new client request to the portal targeted to the portlet. 5 
Those URLs are called portlet URLs. 

PLT.7.1 PortletURL 

The portlet API defines the PortletURL interface. Portlets must create portlet URLs 
using PortletURL objects. A portlet creates PortletURL objects invoking the 
createActionURL and the createRenderURL methods of the RenderResponse interface. 10 
The createActionURL method creates action URLs. The createRenderURL method 
creates render URLs. 

Portlet developers should not code forms using HTTPthe GET methods as it GET may 
lead to non-deterministic behavior because in some portal/portlet-containers 
implementations maythat encode internal state as part of the URL query string. 15 

A render URL is an optimization for a special type of action URLs. The portal/portlet-
container must not invoke the processAction method of the targeted portlet.xxvi The 
portal/portlet-container must ensure that all the parameters set when constructing the 
render URL become parameters of the subsequent render requests for the portlet.xxvii 

Render URLs should not be used for tasks that are not idempotent from the portlet 20 
perspective. Error conditions, cache expirations and changes of external data may affect 
the content generated by a portlet as result of a request triggered by a render URL. 
Render URLs should not be used within forms as the portal/portlet-container may ignore 
form parameters. 

Portlets can add application specific parameters to the PortletURL objects using the 25 
addParameter method. All the parameters a portlet adds to a PortletURL object must be 
made available to the portlet as request parameters.xxviii It is the responsibility of portlet 
developers to "x-www-form-urlencoded" encoding parameter names and values when 
necessary. If a portal/portlet-container encodes additional information as parameters, it 
must encode them properly to avoid collisions with the parameters set and used by the 30 
portlet.xxix 



Portlet Specification CR draft, version 1.0 (4/29/2003) 34

Using the toString method, a portlet can obtain the string representation of the 
PortletURL for its inclusion in the portlet content.  

An example of creating a portlet URI would be: 

... 
PortletURL url = response.createRenderURL(); 5 
url.addParameter(“customer”,”foo.com”); 
url.addParameter(“show”,”summary”); 
writer.print(“<A HREF=”+url.toString()+”>Summary</A>”); 
... 

Portlet developers should be aware that the string representation of a PortletURL may not 10 
be a well formed URL but special a tokens at the time the portlet is generating its content. 
Portal servers often use a technique called URL rewriting that post-processes the content 
resolving tokens into real URLs. 

PLT.7.1.1 Including a Portlet Mode or a Window State 

A portlet URL can include a specific portlet mode (see ### Portlet Modes Chapter) or 15 
window state (see ### Window States Chapter). If a portlet URL containing a portlet 
mode or a window state is requested by the user, the portal/portlet-container must invoke 
the portlet using the specified portlet mode and window state. The PortletURL interface 
has the setWindowState and setPortletMode methods for setting the portlet mode and 
window state in the portlet URL. For example: 20 

... 
PortletURL url = response.createActionURL(); 
url.addParameter(“paymentMethod”,”creditCardInProfile”); 
url.setWindowState(WindowState.MAXIMIZED); 
writer.print(“<FORM METHOD=POST ACTION=”+ url.toString()+”>”); 25 
... 

A portlet cannot create a portlet URL using a portlet mode that is not defined as 
supported by the portlet or that the user it is not allowed to use. The setPortletMode 
methods must throw a PortletModeException in that situation.xxx.  

A portlet cannot create a portlet URL using a window state that is not supported by the 30 
portlet container. The setWindowState method must throw a WindowStateException if 
that is the case.xxxi 

Portlets cannot assume that subsequent renders will be called in the set portlet mode or 
window state as the portal/portlet-container could override these changes. 

PLT.7.1.2 Portlet URL security 35 

The setSecure method of the PortletURL interface allows a portlet to indicate if the 
portlet URL has to be a secure URL or not (i.e. HTTPS or HTTP). If the setSecure 



Portlet Specification CR draft, version 1.0 (4/29/2003) 35

method is not used, the portlet URL must be of the same security level of the current 
request.xxxii 





Portlet Specification CR draft, version 1.0 (4/29/2003) 37

PLT.8  

Portlet Modes 

A portlet mode indicates the function a portlet is performing. Normally, portlets perform 
different tasks and create different content depending on the function they are currently 
performing. A portlet mode advises the portlet what task it should perform and what 5 
content it should generate. When invoking a portlet, the portlet container provides the 
current portlet mode to the portlet. Portlets can programmatically change their portlet 
mode when processing an action request.  

The Portlet Specification defines three portlet modes, VIEW, EDIT, and HELP. The 
PortletMode class defines constants for these portlet modes.  10 

The availability of the portlet modes, for a portlet, may be restricted to specific user roles 
by the portal. For example, anonymous users could be allowed to use the VIEW and HELP 
portlet modes but only authenticated users could use the EDIT portlet mode. 

PLT.8.1 VIEW Portlet Mode 

The expected functionality for a portlet in VIEW portlet mode is to generate markup 15 
reflecting the current state of the portlet. For example, the VIEW portlet mode of a portlet 
may include one or more screens that the user can navigate and interact with, or it may 
consist of static content that does not require any user interaction.  

Portlet developers should implement the VIEW portlet mode functionality by overriding 
the doView method of the GenericPortlet class.  20 

Portlets must support the VIEW portlet mode. 

PLT.8.2 EDIT Portlet Mode 

Within the EDIT portlet mode, a portlet should provide content and logic that lets a user 
customize the behavior of the portlet. The EDIT portlet mode may include one or more 
screens among which users can navigate to enter their customization data.  25 

Typically, portlets in EDIT portlet mode will set or update portlet preferences. Refer to 
### Portlet Preferences Chapter for details on portlet preferences. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 38

Portlet developers should implement the EDIT portlet mode functionality by overriding 
the doEdit method of the GenericPortlet class.  

PLT.8.3 HELP Portlet Mode 

When in HELP portlet mode, a portlet should provide help information about the portlet. 
This help information could be a simple help screen explaining the entire portlet in 5 
coherent text or it could be context-sensitive help.  

Portlet developers should implement the HELP portlet mode functionality by overriding 
the doHelp method of the GenericPortlet class.  

PLT.8.4 Custom Portlet Modes 

Portal vendors may define custom portlet modes for vendor specific functionality.  10 

Portlets can only use portlet modes that are defined by the portal. Portlets must define the 
custom portlet modes they intend to use in the deployment descriptor using the custom-
portlet-mode element. At deployment time, the custom portlet modes defined in the 
deployment descriptors should be mapped to custom portlet modes supported by the 
portal implementation.  15 

If a custom portlet mode defined in the deployment descriptor is not mapped to a custom 
portlet mode provided by the portal, portlets must not be invoked in that portlet mode. 

For example, the deployment descriptor for a portlet application containing portlets that 
support clipboard and config custom portlet modes would have the following definition:  

<portlet-app> 20 
  ... 
  <custom-portlet-mode> 
    <description>Creates content for Cut and Paste</description> 
    <name>clipboard</name> 
  </custom-portlet-mode> 25 
 
  <custom-portlet-mode> 
    <description>Provides administration functions</description> 
    <name>config</name> 
  </custom-portlet-mode> 30 
  ... 
</portlet-app> 

The ### Extended Portlet Modes appendix defines a list of portlet mode names and their 
suggested utilization. Portals implementing these predefined custom portlet modes could 
do an automatic mapping when custom portlet modes with those names are defined in the 35 
deployment descriptor.  



Portlet Specification CR draft, version 1.0 (4/29/2003) 39

PLT.8.5 GenericPortlet Render Handling 

The GenericPortlet class implementation of the render method dispatches requests 
to the doView, doEdit or doHelp method depending on the portlet mode indicated in the 
request using the doDispatch method.xxxiii If the portlet provides support for custom 
portlet modes, the portlet should override the doDispatch method of the 5 
GenericPortlet.  

PLT.8.6 Defining Portlet Modes Support 

Portlets must describe within their definition, in the deployment descriptor, the portlet 
modes they can handle for each markup type they support. As all portlets must support 
the VIEW portlet mode, VIEW does not have to be indicated.xxxiv The portlet-container must 10 
not be invoked a portlet in a portlet mode that has not been declared as supported for a 
given markup type.xxxv  

The following example shows a snippet of the portlet modes a portlet defines as 
supporting in its deployment descriptor definition: 

... 15 
<supports> 
    <mime-type>text/html</mime-type> 
    <portlet-mode>edit</portlet-mode> 
    <portlet-mode>help</portlet-mode> 
    ... 20 
</supports> 
<supports> 
    <mime-type>text/vnd.wap.wml</mime-type> 
    <portlet-mode>help</portlet-mode> 
    ... 25 
</supports> 
... 

For HTML markup, this portlet supports the EDIT and HELP portlet modes in addition to 
the required VIEW portlet mode. For WML markup, it supports the VIEW and HELP portlet 
modes.  30 

The portlet container must ignore all references to custom portlet modes that are not 
supported by the portal implementation, or that have no mapping to portlet modes 
supported by the portal.xxxvi  

 

35 





Portlet Specification CR draft, version 1.0 (4/29/2003) 41

PLT.9  

Window States 

A window state is an indicator of the amount of portal page space that will be assigned to 
the content generated by a portlet. When invoking a portlet, the portlet-container provides 
the current window state to the portlet. The portlet may use the window state to decide 5 
how much information it should render. Portlets can programmatically change their 
window state when processing an action request.  

The Portlet Specification defines three window states, NORMAL, MAXIMIZED and 

MINIMIZED. The WindowState class defines constants for these window states. 

PLT.9.1 NORMAL Window State 10 

The NORMAL window state indicates that a portlet may be sharing the page with other 
portlets. It may also indicate that the target device has limited display capabilities. 
Therefore, a portlet should restrict the size of its rendered output in this window state.  

PLT.9.2 MAXIMIZED Window State 

The MAXIMIZED window state is an indication that a portlet may be the only portlet being 15 
rendered in the portal page, or that the portlet has more space compared to other portlets 
in the portal page. A portlet may generate richer content when its window state is 
MAXIMIZED.  

PLT.9.3 MINIMIZED Window State 

When a portlet is in MINIMIZED window state, the portlet should only render minimal 20 
output or no output at all.  

PLT.9.4 Custom Window States 

Portal vendors may define custom window states.  

Portlets can only use window states that are defined by the portal. Portlets must define the 
custom window states they intend to use in the deployment descriptor using the custom-25 
window-state element. At deployment time, the custom window states defined in the 



Portlet Specification CR draft, version 1.0 (4/29/2003) 42

deployment descriptors should be mapped to custom window states supported by the 
portal implementation.  

If a custom window state defined in the deployment descriptor is not mapped to a custom 
window state provided by the portal, portlets must not be invoked in that window 
state.xxxvii 5 

For example, the deployment descriptor for a portlet application containing portlets that 
use a custom half_page window state would have the following definition:  

<portlet-app> 
  ... 
  <custom-window-state> 10 
    <description>Occupies 50% of the portal page</description> 
    <name>half_page</name> 
  </custom-window-state> 
  ... 
</portlet-app> 15 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 43

PLT.10  

Portlet Context 

The PortletContext interface defines a portlet’s view of the portlet application within 
which the portlet is running. Using the PortletContext object, a portlet can log events, 
obtain portlet application resources, and set and store attributes that other portlets and 5 
servlets in the portlet application can access. 

PLT.10.1 Scope of the Portlet Context 

There is one instance of the PortletContext interface associated with each portlet 
application deployed into a portlet container.xxxviii In cases where the container is 
distributed over many virtual machines, a portlet application will have an instance of the 10 
PortletContext interface for each VM.xxxix 

PLT.10.2 Portlet Context functionality 

Through the PortletContext interface, it is possible to access context initialization 
parameters, retrieve and store context attributes, obtain static resources from the portlet 
application and obtain a request dispatcher to include servlets and JSPs. 15 

PLT.10.3 Relationship with the Servlet Context 

A portlet application is an extended web application. As a web application, a portlet 
application also has a servlet context. The portlet context leverages most of its 
functionality from the servlet context of the portlet application.  

The initialization parameters are the same initialization parameters of the servlet context 20 
and the context attributes are shared with the servlet context. Therefore, they must be 
defined in the web application deployment descriptor (the web.xml file). The 
initialization parameters accessible through the PortletContext must be same that are 
accessible through the ServletContext of the portlet application.xl 

Context attributes set using the PortletContext must be stored in the ServletContext 25 
of the portlet application. A direct consequence of this is that data stored in the 
ServletContext by servlets or JSPs is accessible to portlets through the 
PortletContext and vice versa.xli 



Portlet Specification CR draft, version 1.0 (4/29/2003) 44

The PortletContext must offer access to the same set of resources the 
ServletContext exposes.xlii 

The PortletContext must handle the same temporary working directory the 
ServletContext handles. It must be accessible as a context attribute using the same 
constant defined in the Servlet Specification 2.3 SVR 3 Servlet Context Chapter, 5 
javax.servlet.context.tempdir.xliii The portlet context must follow the same 
behavior and functionality that the servlet context has for virtual hosting and reloading 
considerations. (see Servlet Specification 2.3 SVR 3 Servlet Context Chapter)xliv: 

PLT.10.3.1 Correspondence between ServletContext and 
PortletContext methods 10 

The following methods of the PortletContext should be based on the methods of the 
ServletContext of similar name: getAttribute, getAttributeNames, 
getInitParameter, getInitParameterNames, getMimeType, getRealPath, 
getResource, getResourcePaths, getResourceAsStream, log, removeAttribute 
and setAttribute.  15 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 45

PLT.11  

Portlet Requests 

The request objects encapsulate all information about the client request, parameters, 
request content data, portlet mode, window state, etc. A request object is passed to 
processAction and render methods of the portlet. 5 

PLT.11.1 PortletRequest Interface 

The PortletRequest interface defines the common functionality for the ActionRequest 
and RenderRequest interfaces. 

PLT.11.1.1 Request Parameters 

If a portlet receives a request from a client request targeted to the portlet itself, the 10 
parameters must be the string parameters sent by the client to the portlet as part of the 
client request.xlv The parameters the request object returns must be "x-www-form-
urlencoded" decoded. 

The portlet-container must not propagate parameters received in an action request to 
subsequent render requests of the portlet.xlvi If a portlet wants to do that, it can use render 15 
URLs or it must use the setRenderParameter or setRenderParameters methods of 
the ActionResponse object within the processAction call. 

If a portlet receives a render request that is the result of a client request targeted to 
another portlet in the portal page, the parameters must be the same parameters of the 
previous render request.xlvii 20 

If a portlet receives a render request following an action request as part of the same client 
request, the parameters received with  render request must be the render parameters set 
during the action request.xlviii  

Commonly, portals provide controls to change the portlet mode and the window state of 
portlets. The URLs these controls use are generated by the portal. Client requests 25 
triggered by those URLs must be treated as render URLs and the existing render 
parameters must be preserved.xlix 

A portlet must not see any parameter targeted to other portlets.l 



Portlet Specification CR draft, version 1.0 (4/29/2003) 46

The parameters are stored as a set of name-value pairs. Multiple parameter values can 
exist for any given parameter name. The following methods of the PortletRequest 
interface are available to access parameters: 

• getParameter 
• getParameterNames 5 
• getParameterValues 
• getParameterMap 

The getParameterValues method returns an array of String objects containing all the 
parameter values associated with a parameter name. The value returned from the 
getParameter method must be the first value in the array of String objects returned by 10 
getParameterValues li. If there is a single parameter value associated with a parameter 
name the method returns must return an array of size one containing the parameter 
value.lii. The getParameterMap method must return an unmodifiable Map object. If the 
request does not have any parameter, the getParameterMap must return an empty Map 
object. 15 

PLT.11.1.2 Extra Request Parameters 

The portal/portlet-container implementation may add extra parameters to portlet URLs to 
help the portal/portlet-container route and process client requests. 

Extra parameters used by the portal/portlet-container must be invisible to the portlets 
receiving the request. liii 20 

It is the responsibility of the portal/portlet-container to properly encode these extra 
parameters to avoid name collisions with parameters the portlets define. 

PLT.11.1.3 Request Attributes 

Request attributes are objects associated with a portlet during a single request. Request 
Attributes may be set by the portlet or the portlet container to express information that 25 
otherwise could not be expressed via the API. . Request attributes can be used to share 
information with a servlet or JSP being included via the PortletRequestDispatcher.  

Attributes are set, obtained and removed using the following methods of the 
PortletRequest interface: 

• getAttribute 30 
• getAttributeNames 
• setAttribute 
• removeAttribute 

Only one attribute value may be associated with an attribute name. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 47

Attribute names beginning with the “javax.portlet.” prefix are reserved for definition 
by this specification. It is suggested that all attributes placed into the attribute set be 
named in accordance with the reverse domain name convention suggested by the Java 
Programming Language Specification 1 for package naming. 

PLT.11.1.4 Request Properties 5 

A portlet can access portal/portlet-container specific properties and, if available, the 
headers of the HTTP client request through the following methods of the methods of the 
PortletRequest interface: 

• getProperty 
• getProperties  10 
• getPropertyNames 

There can be multiple properties with the same name. If there are multiple properties with 
the same name, the getProperty method returns the first property value. The 
getProperties method allows access to all the property values associated with a 
particular property name, returning an Enumeration of String objects.  15 

Depending on the underlying web-server/servlet-container and the portal/portlet-
container implementation, client request HTTP headers may not be always available. 
Portlets should not rely on the presence of headers to function properly. The 
PortletRequest interface provides specific methods to access information normally 
available as HTTP headers: character-encoding, content-length, content-type, 20 
localeaccept-language. Portlets should use the specific methods for retrieving those 
values as the portal/portlet-container implementation may use other means to determine 
that information. 

PLT.11.1.5 Request Context Path 

The context path of a request is exposed via the request object. The context path is the 25 
path prefix associated with the portlet context that this portlet is a part of. If this context 
is the “default” context rooted at the base of the web server URL namespace, this path 
will be an empty string.liv Otherwise, if the context is not rooted at the root of the server’s 
namespace, the path starts with a’/’ character but does not end with a’/’ character.lv 

PLT.11.1.6 Security Attributes 30 

The PortletRequest interface offers a set of methods that provide security information 
about the user and the connection between the user and the portal. These methods are: 

• getAuthType 
• getRemoteUser 
• getUserPrincipal 35 
• isUserInRole 
• isSecure 



Portlet Specification CR draft, version 1.0 (4/29/2003) 48

The getAuthType indicates the authentication scheme being used between the user and 
the portal. It may return one of the defined constants (BASIC_AUTH, DIGEST_AUTH, 
CERT_AUTH and FORM_AUTH) or another String value that represents a vendor provided 
authentication type. If the user is not authenticated the getAuthType method must return 
null.lvi 5 

The getRemoteUser method returns the login name of the user making this request. 

The getUserPrincipal method returns a java.security.Principal object containing 
the name of the authenticated user. 

The isUserInRole method indicates if an authenticated user is included in the specified 
logical role. 10 

The isSecure method indicates if the request has been transmitted over a secure protocol 
such as HTTPS. 

PLT.11.1.7 Response Content Types 

Portlet developers may code portlets to support multiple content types. A portlet can 
obtain, using the getResponseContentType method of the request object, a string 15 
representing the default content type the portlet container assumes for the output. 

If the portlet container supports additional content types for the portlet’s output, it must 
declare the additional content types through the getResponseContentTypes method of 
the request object. The returned Enumeration of strings should contain the content types 
the portlet container supports in order of preference. The first element of the enumeration 20 
must be the same content type returned by the getResponseContentType method.lvii 

If a portlet defines support for all content types using a wildcard and the portlet container  
supports all content types, the getResponseContentType may return the wildcard or the 
portlet container preferred content type.  

PLT.11.1.8 Internationalization 25 

The portal/portlet-container decides what locale will be used for creating the response for 
a user. The portal/portlet-container may use information that the client sends with the 
request. For example the Accept-Language header along with other mechanisms 
described in the HTTP/ 1.1 specification. The getLocale method is provided in the 
PortletRequest interface to inform the portlet about the locale of user the portal/portlet-30 
container has chosen. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 49

PLT.11.1.9 Portlet Mode 

The getPortletMode method of the PortletRequest interface allows a portlet to find 
out its current portlet mode. A portlet may be restricted to work with a subset of the 
portlet modes supported by the portal/portlet-container. A portlet can use the 
isPortletModeAllowed method of the PortletRequest interface to find out if the 5 
portlet is allowed to use a portlet mode. A portlet mode is not allowed if the portlet mode 
is not in the portlet definition or portlet or user has been constrained further.  

PLT.11.1.10 Window State 

The getWindowState method of the PortletRequest interface allows a portlet to find 
out its current window state. 10 

A portlet may be restricted to work with a subset of the window states supported by the 
portal/portlet-container. A portlet can use the isWindowStateAllowed method of the 
PortletRequest interface to find out if the portlet is allowed to use a window state.  

PLT.11.2 ActionRequest Interface 

The ActionRequest interface extends the PortletRequest interface and is used in the 15 
processAction method of the Portlet interface. In addition to the functionality 
provided by the PortletRequest interface, the ActionRequest interface gives access to 
the input stream of the request.  

PLT.11.2.1 Retrieving Uploaded Data 

The input stream is useful when the client request contains HTTP POST data of type 20 
other than application/x-www-form-urlencoded. For example, when a file is 
uploaded to the portlet as part of a user interaction. 

As a convenience to the portlet developer, the ActionRequest interface also provides a 
getReader method that retrieves the HTTP POST data as character data according to 
the character encoding defined in the user request. 25 

Only one of the two methods, getPortletInputStream or getReader, can be used 
during an action request. If the input stream is obtained, a call to the getReader must 
throw an IllegalStateExcepion. Similarly, if the reader is obtained, a call to the 
getPortletInputStream must throw an IllegalStateException.lviii  

30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 50

To help manage the input stream, the ActionRequest interface also provides the 
following methods: 

• getContentType 
• getCharacterEncoding 
• setCharacterEncoding 5 
• getContentLength 

The setCharacterEncoding method only sets the character set for the Reader that the 
getReader method returns. 

If the user request HTTP POST data is of type application/x-www-form-urlencoded, 
this data has been already processed by the portal/portlet-container and is available as 10 
request parameters. The getPortletInputStream and getReader methods must throw 
an IllegalStateException if called.lix 

PLT.11.3 RenderRequest Interface 

The RenderRequest interface extends the PortletRequest interface and is used in the 
render method of the Portlet interface.  15 

PLT.11.4 Lifetime of the Request Objects 

Each request object is valid only within the scope of a particular processAction or 
render method call. Containers commonly recycle request objects in order to avoid the 
performance overhead of request object creation. The developer must be aware that 
maintaining references to request objects outside the scope described above may lead to 20 
non-deterministic behavior. 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 51

PLT.12  

Portlet Responses 

The response objects encapsulate all information to be returned from the portlet to the 
portlet container during a request: a redirection, a portlet mode change, title, content, etc. 
The portal/portlet-container will use this information to construct the response –usually a 5 
portal page- to be returned to the client. A response object is passed to processAction 
and render methods of the portlet.  

PLT.12.1 PortletResponse Interface 

The PortletResponse interface defines the common functionality for the 
ActionResponse and RenderResponse interfaces. 10 

PLT.12.1.1 Response Properties 

Properties can be used by portlets to send vendor specific information to the 
portal/portlet-container. 

A portlet can set properties using the following methods of the PortletResponse 
interface:  15 

• setProperty 
• addProperty 

The setProperty method sets a property with a given name and value. A previous 
property is replaced by the new property. Where a set of property values exist for the 
name, the values are cleared and replaced with the new value. The addProperty method 20 
adds a property value to the set with a given name. If there are no property values already 
associated with the name, a new set is created. 

PLT.12.1.2 URLs encoding 

Portlets may generate content with URLs referring to other resources within the portal, 
such as servlets, JSPs, images and other static files. Some portal/portlet-container 25 
implementation may require those URLs to contain implementation specific data encoded 
in it. Because of that, portlets should use the encodeURL method to create such URLs. 
The encodeURL method may include the session ID and other portal/portlet-container 
specific information into the URL. If encoding is not needed, it returns the URL 
unchanged. 30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 52

PLT.12.2 ActionResponse Interface 

The ActionResponse interface extends the PortletResponse interface and it is used in 
the processAction method of the Portlet interface. This interface allows a portlet to 
redirect the user to another URL, set render parameters, change the window state of the 
portlet and change the portlet mode of the portlet. 5 

PLT.12.2.1 Redirections 

The sendRedirect method instructs the portal/portlet-container to set the appropriate 
headers and content body to redirect the user to a different URL. A fully qualified URL 
or a full path URL must be specified. If a relative path URL is given, an 
IllegalArgumentException must be thrown.lx 10 

If the sendRedirect method is called after the setPortletMode, setWindowState, 
setRenderParameter or setRenderParameters methods of the ActionResponse 
interface, an IllegalStateException must be thrown and the redirection must not be 
executed.lxi 

PLT.12.2.2 Portlet Modes and Window State Changes 15 

The setPortletMode method allows a portlet to change its current portlet mode. The 
new portlet mode wouldill be effective in the following render request. If a portlet 
attempts to set a portlet mode that is not allowed to switch to, a PortletModeException 
must be thrown.lxii 

The setWindowState method allows a portlet to change its current window state. The 20 
new window state wouldill be effective in the following render request. If a portlet 
attempts to set a window state that it is not allowed to switch to, a 
WindowStateException must be thrown.lxiii 

Portlets cannot assume that subsequent renders will be called in the set portlet mode or 
window state as the portal/portlet-container could override these changes. 25 

If the setPortletMode or setWindowState methods are called after the sendRedirect 
method has been called and IllegalStateException must be thrown.lxiv If the 
exception is caught by the portlet, the redirection must be executed.lxv If the exception is 
propagated back to the portlet-container, the redirection must not be executed.lxvi 

PLT.12.2.3 Render Parameters 30 

Using the setRenderParameter and setRenderParameters methods of the 
ActionResponse interface portlets may set render parameters during an action request. 
These parameters will be used in all subsequent render requests untils a new client 



Portlet Specification CR draft, version 1.0 (4/29/2003) 53

request targets the portlet. If no render parameters are set during the processAction 
invocation, the render request must not contain any request parameters.lxvii 

PLT.12.3 RenderResponse Interface 

The RenderResponse interface extends the PortletResponse interface and it is used in 
the render method of the Portlet interface. This interface allows a portlet to set its title 5 
and generate content. 

PLT.12.3.1 Content Type 

A portlet  must set the content type of the response using the setContentType method of 
the RenderResponse interface. The setContentType method must throw an 
IllegalArgumentException if the content type set does not match (including wildcard 10 
matching) any of the content types returned by the getResponseContentType method of 
the PortleRequest objectlxviii. The portlet container must ignore any character encoding 
specified as part of the content type.lxix 

If the getWriter or getPortletOutputStream methods are called before the setContentType 
method, they must throw an IllegalStateException. 15 

The setContentType method must be called before the getWriter or 
getPortletOutputStream methods., iIf called after, it should be ignored. 

If the portlet has set a content type, the getContentType method must return it. Otherwise, 
the getContentType method must return null.lxx 

PLT.12.3.2 Output Stream and Writer Objects 20 

A portlet may generate its content by writing to the OutputStream or to the Writer of 
the RenderResponse object. 

The raw OutputStream is available because of some servlet container implementations 
requirements and for portlets that do not generate markup fragments. If a portlet utilizes 
the OutputStream, the portlet is responsible of using the proper character encoding.A 25 
portlet must use only one of these objects. The portlet container must throw an 
IllegalStateException if a portlet attempts to use both.lxxi 

The termination of the render method of the portlet indicates that the portlet has satisfied 
the request and that the output object is to be closed. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 54

PLT.12.3.3 Buffering 

A portlet container is allowed, but not required, to buffer output going to the client for 
efficiency purposes. Typically servers that do buffering make it the default, but allow 
portlets to specify buffering parameters. 

The following methods in the RenderResponse interface allow a portlet to access and set 5 
buffering information: 

• getBufferSize 
• setBufferSize 
• isCommitted 
• reset 10 
• resetBuffer 
• flushBuffer 

These methods are provided on the RenderResponse interface to allow buffering 
operations to be performed whether the portlet is using an OutputStream or a Writer. 

The getBufferSize method returns the size of the underlying buffer being used. If no 15 
buffering is being used, this method must return the int value of 0 (zero).lxxii 

The portlet can request a preferred buffer size by using the setBufferSize method. The 
buffer assigned is not required to be the size requested by the portlet, but must be at least 
as large as the size requested.lxxiii This allows the container to reuse a set of fixed size 
buffers, providing a larger buffer than requested if appropriate. The method must be 20 
called before any content is written using a OutputStream or Writer. If any content has 
been written, this method must throw an IllegalStateException.lxxiv 

The isCommitted method returns a boolean value indicating whether any response bytes 
have been returned to the client. The flushBuffer method forces content in the buffer to 
be written to the client. 25 

The reset method clears data in the buffer when the response is not committed. 
Properties set by the portlet prior to the reset call must be cleared as well.lxxv The 
resetBuffer method clears content in the buffer if the response is not committed 
without clearing the properties. 

If the response is committed and the reset or resetBuffer method is called, an 30 
IllegalStateException must be thrown.lxxvi The response and its associated buffer 
must be unchanged.lxxvii 

When using a buffer, the container must immediately flush the contents of a filled buffer 
to the client.lxxviii If this is the first data is sent to the client, the response must be 
considered as committed. 35 



Portlet Specification CR draft, version 1.0 (4/29/2003) 55

PLT.12.3.4 Namespace encoding 

Within their content, portlets may include elements that must be unique within the whole 
portal page. JavaScript functions and variables are an example of this. 

The encodeNamespace method provides the portlet with a mechanism that ensures the 
uniqueness of the returned string in the whole portal page. For example, the 5 
encodeNamespace method could append a unique ID to the received string.  

If the string passed to the encodeNamespace method is a valid identifier as defined in the 
3.8 Identifier Section of the Java Language Specification Second Edition, the returned 
string must also be a valid identifier.lxxix 

PLT.12.3.5 Portlet Title 10 

A portlet may indicate to the portal/portlet-container its preferred title. It is up to the 
portal/portlet-container to use the preferred title set by the portlet. 

The setTitle method must be called before the output of the portlet has been commited, 
if called after it should be ignored.lxxx 

PLT.12.4 Lifetime of Response Objects 15 

Each response object is valid only within the scope of a particular processAction or 
render method call. Containers commonly recycle request objects in order to avoid the 
performance overhead of response object creation. The developer must be aware that 
maintaining references to response objects outside the scope described above may lead to 
non-deterministic behavior. 20 

 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) 57

PLT.13 Portal Context 

The PortalContext interface provides information about the portal that is invoking the 
portlet.  

The getPortalInfo method returns information such as the portal vendor and portal 
version. The returned string should start with the vendor and version information, 5 
'vendorname.majorversion.minorversion.'. 

The getProperty and getPropertyNames methods return portal properties. 

The getSupportedPortletModes method returns the portlet modes supported by the 
portal.  

The getSupportedWindowState method returns the window states supported by the 10 
portal. 

A portlet obtains a PortalContext object from the request object using 
getPortalContext method. 

 

 15 





Portlet Specification CR draft, version 1.0 (4/29/2003) 59

PLT.14  

Portlet Preferences 

Portlets are commonly configured to provide a customized view or behavior for different 
users. This configuration is represented as a persistent set of name-value pairs and it is 
referred as portlet preferences. The portlet container is responsible for the details of 5 
retrieving and storing these preferences.  

Portlet preferences are intended to store basic configuration data for portlets. It is not the 
purpose of the portlet preferences to replace general purpose databases. 

PLT.14.1 PortletPreferences Interface 

Portlets have access to their preferences attributes through the PortletPreferences 10 
interface. Portlets have access to the associated PortletPreferences object when it is 
processing requests. A portlet may only modify preferences attributes during a 
processAction invocation. 

Preference attributes are String array objects. 

To access and manipulate preference attributes, the PortletPreferences interface 15 
provides the following methods:  

• getNames 
• getValue 
• setValue 
• getValues 20 
• setValues 
• isModifiable 
• reset 
• store 

The getValue and setValue methods are convenience methods for dealing with single 25 
values. If a preference attribute has multiple values, the getValue method returns the 
first value. The setValue method sets a single value into a preferences attribute. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 60

The following code sample demonstrates how a stock quote portlet would retrieve from 
its preferences object, the preferred stock symbols, the URL of the backend quoting 
services and the quote refresh frequency.  

PortletPreferences prefs = req.getPreferences(); 
String[] symbols = 5 
    prefs.getValues(”preferredStockSymbols”, 
                    new String[]{”ACME”,”FOO”}); 
String url = prefs.getValue(”quotesFeedURL”,null); 
int refreshInterval =  
    Integer.parseInt(prefs.getValue(”refresh”,”10”)); 10 

The reset method must reset a preference attribute to its default value. If there is no 
default value, the preference attribute must be deleted.lxxxi It is left to the vendor to 
specify how and from where the default value is obtained.  

If a preference attribute is not modifiable, the setValue, setValues and reset methods 
must throw an UnmodifiableException when the portlet is in any of the standard 15 
modes.lxxxii 

The store method must persist all the changes made to the PortletPreferences object 
in the persistent store.lxxxiii If the call returns successfully, it is safe to assume the changes 
are permanent. The store method must be conducted as an atomic transaction regardless 
of how many preference attributes have been modified.lxxxiv The portlet container 20 
implementation is responsible for handling concurrent writes to avoid inconsistency in 
portlet preference attributes. All changes made to PortletPreferences object not 
followed by a call to the store method must be discarded when the portlet finishes the 
processAction method. lxxxv If the store method is invoked within the scope of a 
render method invocation, it must throw an UnsupportedOperationException.lxxxvi 25 

The PortletPreferences object must reflect the current values of the persistent store 
when the portlet container invokes the processAction and render methods of the 
portlet. lxxxvii 

PLT.14.2 Preference Attributes Scopes 

Portlet Specification assumes preference attributes are user specific, it does not make any 30 
provision at API level or at semantic level for sharing preference attributes among users. 
If a portal/portlet-container implementation provides an extension mechanism for sharing 
preference attributes, it should be well documented how the sharing of preference 
attributes works. Sharing preference attributes may have significant impact on the 
behavior of a portlet. In many circumstances it could be inappropriate sharing attributes 35 
that are meant to be private or confidential to the user. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 61

PLT.14.3 Preference Attributes definition 

The portlet definition may define the preference attributes a portlet uses.  

A preference attribute definition may include initial default values. A preference attribute 
definition may also indicate if the attribute is non-modifiable. 

An example of a fragment of preferences attributes definition in the deployment 5 
descriptor would be:  

<portlet> 
... 
  <!—- Portlet Preferences --> 
  <portlet-preferences> 10 
    <preference> 
      <description>Preferred stock symbols</description> 
      <name>PreferredStockSymbols</name> 
      <value>FOO</value> 
      <value>XYZ</value> 15 
      <modifiable>0</modifiable> 
    </preference> 
    <preference> 
      <description>Quotes Service URL</description> 
      <name>quotesFeedURL</name> 20 
      <value>http://www.foomarket.com/quotes</value> 
    </preference> 
  </portlet-preferences> 
</portlet> 

If a preference attribute definition does not contain the modifiable element set to 0, the 25 
preference attribute is modifiable when the portlet is processing a request in any of the 
standard portlet modes (VIEW, EDIT or HELP).lxxxviii Portlets may change the value of 
modifiable preference attributes using the setValue, setValues and reset methods of 
the PortletPreferences interface. Deployers may use the modifiable element set to 
0 to fix certain preference values at deployment time. Portal/portlet-containers may allow 30 
changing non-modifiable preference attributes while performing administration tasks. 

Portlets are not restricted to use preference attributes defined in the deployment 
descriptor. They can programmatically add preference attributes using names not defined 
in the deployment descriptor. These preferences attributes must be treated as modifiable 
attributes. lxxxix 35 

Portal administration and configuration tools may use and change, default preference 
attributes when creating a new portlet preferences objects. 

PLT.14.3.1 Localizing Preference Attributes 

The Portlet Specification does not define a specific mechanism for localizing preference 
attributes. It leverages the J2SEDK ResourceBundle classes. 40 



Portlet Specification CR draft, version 1.0 (4/29/2003) 62

To enable localization support of preference attributes for administration and 
configuration tools, developers should adhere to the following naming convention for 
entries in the portlet’s ResourceBundle (see the ### Resource Bundles Section). 

Entries for preference attribute descriptions should be constructed as 
‘javax.portlet.preference.<attribute-name>.description', where 5 
<attribute-name> is the preference attribute name. 

Entries for preference attribute names should be constructed as 
‘javax.portlet.preference.<attribute-name>', where <attribute-name> is the 
preference attribute name. These values should be used as localized preference display 
names. 10 

Entries for preference attribute values that require localization should be constructed as 
'javax.portlet.preference.<attribute-name>.<attribute-value>', where 
<attribute-name> is the preference attribute name and <attribute-value> is the 
localized preference attribute value. 

If using Properties based resource bundles, attribute names and attribute value must not 15 
contain white-space characters or the = (equal) sign. 

PLT.14.4 Validating Preference values 

A class implementing the PreferencesValidator interface can be associated with the 
preferences definition in the deployment descriptor, as shown in the following example: 

<!—- Portlet Preferences --> 20 
<portlet-preferences> 
    ... 
    <validator>com.foo.portlets.XYZValidator</validator> 
</portlet-preferences> 

A PreferencesValidator implementation must be coded in a thread safe manner as the 25 
portlet container may invoke concurrently from several requests. If a portlet definition 
includes a validator, the portlet container must create a single validator instance per 
portlet definition .xc If the application is a distributed application, the portlet container 
must create an instance per VM.xci 

When a validator is associated with the preferences of a portlet definition, the store 30 
method of the PortletPreferences implementation must invoke the validate method 
of the validator before writing the changes to the persistent store.xcii If the validation fails, 
the PreferencesValidator implementation must throw a ValidatorException. If a 
ValidatorException is thrown, the portlet container must cancel the store 
operation and it must propagate the exception to the portlet.xciii If the validation is 35 
successful, the store operation must be completed.xciv 



Portlet Specification CR draft, version 1.0 (4/29/2003) 63

When creating a ValidatorException, portlet developers may include the set of 
preference attributes that caused the validator to fail. It is left to the developers to indicate 
the first preference attribute that failed or the name of all the invalid preference attributes. 

 

5 





Portlet Specification CR draft, version 1.0 (4/29/2003) 65

PLT.15  

Sessions 

To build effective portlet applications, it is imperative that requests from a particular 
client be associated with each other. There are many session tracking approaches such as 
HTTP Cookies, SSL Sessions or URL rewriting. To free the programmer from having to 5 
deal with session tracking directly, this specification defines a PortletSession interface 
that allows a portal/portlet-container to use any of the approaches to track a user’s session 
without involving the developers in the nuances of any one approach. 

PLT.15.1 Creating a Session 

A session is considered “new” when it is only a prospective session and has not been 10 
established. Because the portlet specification is designed around a request-response based 
protocol (HTTP would be an example of this type of protocol) a session is considered to 
be new until a client “joins” it. A client joins a session when session tracking information 
has been returned to the server indicating that a session has been established. Until the 
client joins a session, it cannot be assumed that the next request from the client will be 15 
recognized as part of a session.  

The session is considered to be “new” if either of the following is true: 

• The client does not yet know about the session 
• The client chooses not to join a session 

These conditions define the situation where the portlet container has no mechanism by 20 
which to associate a request with a previous request. A portlet developer must design the 
application to handle a situation where a client has not, cannot, or will not join a session. 

For portlets within the same portlet application, a portlet container must ensure that every 
portlet request generated as result of a group of requests originated from the portal to 
complete a single client request receive or acquire the same session.xcv In addition, if 25 
within these portlet requests more than one portlet creates a session, the session object 
must be the same for all the portlets in the same portlet application.xcvi 



Portlet Specification CR draft, version 1.0 (4/29/2003) 66

PLT.15.2 Session Scope 

PortletSession objects must be scoped at the portlet application context level.xcvii 

Each portlet application has its own distinct PortletSession object per user session. 
The portlet container must not share the PortletSession object or the attributes stored 
in it among different portlet applications or among different user sessions.xcviii 5 

PLT.15.3 Binding Attributes into a Session 

A portlet can bind an object attribute into a PortletSession by name.  

The PortletSession interface defines two scopes for storing objects, 
APPLICATION_SCOPE and PORTLET_SCOPE. 

Any object stored in the session using the APPLICATION_SCOPE is available to any other 10 
portlet that belongs to the same portlet application and that handles a request identified as 
being a part of the same session.xcix 

Objects stored in the session using the PORTLET_SCOPE must be available to the portlet 
during requests for the same portlet window that the objects where stored from.c The 
object must be stored in the PORTLET_SCOPE with the following fabricated attribute name 15 
‘javax.portlet.p.<ID>?<ATTRIBUTE_NAME>’. <ID> is a unique identification for the 
portlet window (assigned by the portal/portlet-container) that must not contain a ‘?’ 
character.ci <ATTRIBUTE_NAME> is the attribute name used to set the object in the 
PORTLET_SCOPE of the portlet session. 

Attributes stored in the PORTLET_SCOPE are not protected from other web components 20 
of the portlet application. They are just conveniently namespaced. 

The setAttribute method of the PortletSession interface binds an object to the 
session into the specified scope. For example: 

PortletSession session = request.getSession(true); 
URL url = new URL(“http://www.foo.com”); 25 
session.setAttribute(“home.url”,url,session.APPLICATION_SCOPE); 
session.setAttribute(“bkg.color”,”RED”,session.PORTLET_SCOPE); 

The getAttribute method from the PortletSession interface is used to retrieve 
attributes stored in the session.  

To remove objects from the session, the removeAttribute method is provided by the 30 
PortletSession interface. 

Objects that need to know when they are placed into a session, or removed from a session 
must implement the HttpSessionBindingListener of the servlet API (see Servlet 
Specification 2.3, SRV.7.4 Section). The PortletSessionUtils class provides utility 



Portlet Specification CR draft, version 1.0 (4/29/2003) 67

methods to help determine the scope of the object in the PortletSession. If the object 
was stored in the PORTLET_SCOPE, the PortletSessionUtils allows retrieving the 
attribute name without any portlet-container fabricated prefix. Portlet developers should 
always use the PortletSessionUtils class to deal with attributes in the PORTLET_SCOPE 
when accessing them through the servlet API. 5 

PLT.15.4 Relationship with the Web Application HttpSession 

A Portlet Application is also a Web Application. The Portlet Application may contain 
servlets and JSPs in addition to portlets. Portlets, servlets and JSPs may share information 
through their session. 

The PortletSession must store all attributes in the HttpSession of the portlet 10 
application. A direct consequence of this is that data stored in the HttpSession by 
servlets or JSPs is accessible to portlets through the PortletSession in the portlet 
application scope.cii Conversely, data stored by portlets in the PortletSession in the 
portlet application scope is accessible to servlets and JSPs through the HttpSession. ciii 

If the HttpSession object is invalidated, the PortletSession object must also be invalidated 15 
by the portlet container.civ If the PortletSession object is invalidated by a portlet, the 
portlet container must invalidate the associated HttpSession object.cv 

PLT.15.4.1 HttpSession Method Mapping 

The following methods of the PortletSession interface must be based on the methods 
of the HttpSession interface of identical names: getCreationTime, getId, 20 
getLastAccessedTime, getMaxInactiveInterval, invalidate, isNew and 
setMaxInactiveInterval. 

The getAttribute, setAttribute, removeAttribute and getAttributeNames 
methods of the PortletSession interface must be based on the HttpSession interface 
methods of identical names adhering to the following rules: 25 

• The attribute names must be the same if APPLICATION_SCOPE scope is used.cvi 
• The attribute name has to conform with the specified prefixing if 

PORTLET_SCOPE is used.cvii 
• The variant of these methods that does not receive a scope must be treated as 

PORTLET_SCOPE.cviii 30 

PLT.15.5 Reserved HttpSession Attribute Names 

Session attribute names starting with “javax.portlet.” are reserved for usage by the 
Portlet Specification and for Portlet Container vendors. A Portlet Container vendor may 
use this reserved namespace to store implementation specific components. Application 
Developers must not use attribute names starting with this prefix. 35 



Portlet Specification CR draft, version 1.0 (4/29/2003) 68

PLT.15.6 Session Timeouts 

The portlet session follows the timeout behavior of the servlet session as defined in the 
Servlet Specification 2.3, SRV.7.5 Section. 

PLT.15.7 Last Accessed Times 

The portlet session follows the last accessed times behavior of the servlet session as 5 
defined in the Servlet Specification 2.3, SRV.7.6 Section. 

PLT.15.8 Important Session Semantics 

The portlet session follows the same semantic considerations as the servlet session as 
defined in the Servlet Specification 2.3, SRV.7.7.3 Section. 

These considerations include Threading Issues, Distributed Environments and Client 10 
Semantics.cix 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 69

PLT.16  

Dispatching Requests to Servlets and JSPs 

Portlets can delegate the creation of content to servlets and JSPs. The 
PortletRequestDispatcher interface provides a mechanism to accomplish this. 

PLT.16.1 Obtaining a PortletRequestDispatcher 5 

A portlet may use a PortletRequestDispatcher object only when executing the 
render method of the Portlet interface. PortletRequestDispatcher objects may be 
obtained using one of the following methods of the PortletContext object: 

• getRequestDispatcher 
• getNamedDispatcher 10 

The getRequestDispatcher method takes a String argument describing a path within 
the scope of the PortletContext of a portlet application. This path must begin with a ‘/’ 
and it is relative to the PortletContext root. cx 

The getNamedDispatcher method takes a String argument indicating the name of a 
servlet known to the PortletContext of the portlet application. 15 

If no resource can be resolved based on the given path or name the methods must return 
null.cxi 

PLT.16.1.1 Query Strings in Request Dispatcher Paths 

The getRequestDispatcher method of the PortletContext that creates 
PortletRequestDispatcher objets using path information allows the optional attachment of 20 
query string information to the path. For example, a Developer may obtain a 
PortletRequestDispatcher by using the following code: 

String path = "/raisons.jsp?orderno=5"; 
PortletRequestDispatcher rd = context.getRequestDispatcher(path); 
rd.include(request, response); 25 

Parameters specified in the query string used to create the PortletRequestDispatcher take 
precedence over other portlet render parameters of the same name passed to the included 



Portlet Specification CR draft, version 1.0 (4/29/2003) 70

servlet or JSP. The parameters associated with a PortletRequestDispatcher are scoped to 
apply only for the duration of the include call.cxii 

PLT.16.2 Using a Request Dispatcher 

To include a servlet or a JSP, a portlet calls the include method of the 
PortletRequestDispatcher interface. The parameters to these methods must be the 5 
request and response arguments that were passed in via the render method of the 
Portlet interface.cxiii 

The portlet container must ensure that the servlet or JSP called through a 
PortletRequestDispatcher is called in the same thread as the PortletRequestDispatcher 
include invocation.cxiv 10 

PLT.16.3 The Include Method 

The include method of the PortletRequestDispatcher interface may be called at any 
time and multiple times within the render method of the Portlet interface. The servlet 
or JSP being included can make a limited use of the received HttpServletRequest and 
HttpServletResponse objects. 15 

Servlets and JSPs included from portlets should not use the servlet RequestDispatcher 
forward method as it behavior may be non-deterministic. 

PLT.16.3.1 Included Request Parameters 

Except for servlets obtained by using the getNamedDispatcher method, a servlet or JSP 
being used from within an include call has access to the path used to obtain the 20 
PortletRequestDispatcher. The following request attributes must be setcxv: 

javax.servlet.include.request_uri 
javax.servlet.include.context_path 
javax.servlet.include.servlet_path 
javax.servlet.include.path_info 25 
javax.servlet.include.query_string 

These attributes are accessible from the included servlet via the getAttribute method 
on the request object. 

If the included servlet was obtained by using the getNamedDispatcher method these 
attributes are not set. 30 



Portlet Specification CR draft, version 1.0 (4/29/2003) 71

PLT.16.3.2 Included Request Attributes 

In addition to the request attributes specified in Servlet Specification 2.3, SRV.8.3.1 
Section, the included servlet or JSP must have the following request attributes set: 

Request Attribute Type 5 
 

javax.portlet.config javax.portlet.PortletConfig 
javax.portlet.request javax.portlet.RenderRequest 
javax.portlet.response javax.portlet.RenderResponse 

 10 

These attributes must be the same portlet API objects accessible to the portlet doing the 
include call.cxvi They are accessible from the included servlet or JSP via the 
getAttribute method on the HttpServletRequest object. 

PLT.16.3.3 Request and Response objects for Included Servlets/JSPs 

The target servlet or JSP of portlet request dispatcher has access to a limited set of 15 
methods of the request and the response objects. 

The following methods of the HttpServletRequest must return null: getProtocol, 
getRemoteAddr, getRemoteHost, getRealPath, and getRequestURL.cxvii 

The following methods of the HttpServletRequest must return the path and query 
string information used to obtain the PortletRequestDispatcher object: 20 
getPathInfo, getPathTranslated, getQueryString, getRequestURI and 
getServletPath.cxviii 

The following methods of the HttpServletRequest must be equivalent to the methods 
of the PortletRequest of similar name: getScheme, getServerName, 
getServerPort, getAttribute, getAttributeNames, setAttribute, 25 
removeAttribute, getLocale, isSecure, getAuthType, getContextPath, 
getRemoteUser, getUserPrincipal, getRequestedSessionId, 
isRequestedSessionIdValid.cxix 

The following methods of the HttpServletRequest must be equivalent to the methods 
of the PortletRequest of similar name with the provision defined in Section PLT.16.1.1 30 
Query Strings in Request Dispatcher Paths: getParameter, getParameterNames, 
getParameterValues and getParameterMap.cxx 

The following methods of the HttpServletRequest must do no operations and return 
null: getCharacterEncoding, setCharacterEncoding, , getContentType, 

getInputStream and getReader.cxxi The getContentLength method of the 35 
HttpServletRequest must return 0.cxxii 



Portlet Specification CR draft, version 1.0 (4/29/2003) 72

The getLocales method of HttpServletRequest must return an Enumeration of one 
element containing the same Locale returned by the getLocale method of the 
PortletRequest.cxxiii 

The following methods of the HttpServletRequest must be based on the properties 
provided by the getProperties method of the PortletRequest interface: getHeader, 5 
getHeaders, getHeaderNames, getCookies, getDateHeaders and 
getIntHeaders.cxxiv.  

The following methods of the HttpServletRequest must provide the functionality 
defined by the Servlet Specification 2.3: getRequestDispatcher, getMethod, 
isUserInRole, getSession, isRequestedSessionIdFromCookie, 10 
isRequestedSessionIdFromURL and isRequestedSessionIdFromUrl.cxxv 

The following methods of the HttpServletResponse must return null: 

encodeRedirectURL and encodeRedirectUrl.cxxvi 

The following methods of the HttpServletResponse must be equivalent to the methods 
of the RenderResponse of similar name: getCharacterEncoding, setBufferSize, 15 
flushBuffer, resetBuffer, reset, getBufferSize, isCommitted, 

getOutputStream, getWriter, encodeURL and encodeUrl.cxxvii 

The following methods of the HttpServletResponse must perform no operations: 
setContentType, setContentLength, setLocale, addCookie, sendError, 
sendRedirect, setDateHeader, addDateHeader, setHeader, addHeader, 20 
setIntHeader, addIntHeader and setStatus.cxxviii The containsHeader method 
of the HttpServletResponse must return false. 

The getLocale method of the HttpServletResponse must be based on the getLocale 
method of the PortletRequest.cxxix 

PLT.16.3.4 Error Handling 25 

If the servlet or JSP that is the target of a request dispatcher throws a runtime exception 
or a checked exception of type IOException, it must be propagated to the calling 
portlet.cxxx All other exceptions, including a ServletException, must be wrapped with a 
PortletException. The root cause of the exception must be set to the original 
exception before being propagated.cxxxi 30 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 73

PLT.17  

User Information 

Commonly, portlets provide content personalized to the user making the request. To do 
this effectively they may require access to user attributes such as the name, email, phone 
or address of the user. Portlet containers provide a mechanism to expose available user 5 
information to portlets. 

PLT.17.1 Defining User Attributes 

The deployment descriptor of a portlet application must define the user attribute names 
the portlets use. The following example shows a section of a deployment descriptor 
defining a few user attributes: 10 

<portlet-app> 
  … 
  <user-attribute> 
    <description>User Given Name</description> 
    <name>user.name.given</name> 15 
  </user-attribute> 
  <user-attribute> 
    <description>User Last Name</description> 
    <name>user.name.family</name> 
  </user-attribute> 20 
  <user-attribute> 
    <description>User eMail</description> 
    <name>user.home-info.online.email</name> 
  </user-attribute> 
  <user-attribute> 25 
    <description>Company Organization</description> 
    <name>user.business-info.postal.organization</name> 
  </user-attribute> 
  … 
<portlet-app> 30 

A deployer must map the portlet application’s logical user attributes to the corresponding 
user attributes offered by the runtime environment. At runtime, the portlet container uses 
this mapping to expose user attributes to the portlets of the portlet application. User 
attributes of the runtime environment not mapped as part of the deployment process must 
not be exposed to portlets.cxxxii 35 

Refer to PLT.## User Information Attribute Names Appendix for a list of recommended 
names. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 74

PLT.17.2 Accessing User Attributes 

Portlets can obtain an unmodifiable Map object containing the user attributes, of user 
associated with the current request, from the request attributes. The Map object can be 
retrieved using the USER_INFO constant defined in the PortletRequest interface. If the 
request is done in the context of an un-authenticated user, calls to the getAttribute 5 
method of the request using the USER_INFO constant must return null.cxxxiii. If the user is 
authenticated and there are no user attributes available, the Map must be an empty Map. 

The Map object must contain a String name value pair for each available user attribute. 
The Map object should only contain user attributes that have been mapped during 
deployment..cxxxiv 10 

An example of a portlet retrieving user attributes would be: 

... 
Map userInfo = (Map) request.getAttribute(request.USER_INFO); 
String givenName = (userInfo!=null) 
      ? (String) userInfo.get(“user.name.given”) : “”; 15 
String lastName  = (userInfo!=null)  
      ? (String) userInfo.get(“user.name.family”) : “”; 
... 

PLT.17.3 Important Note on User Information 

The Portlet Specification expert group is aware of the fact that user information is outside 20 
of the scope of this specification. As there is not standard Java standard to access user 
information, and until such Java standard is defined, the Portlet specification will provide 
this mechanism that is considered to be the least intrusive from the portlet API 
perspective. At a latter time, when the Java standard for user information is defined, the 
current mechanism will be deprecated in favor of it. 25 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 75

PLT.18  

Caching 

Caching content helps improve the Portal response time for clients. It also helps to reduce 
the load on servers.  

The Portlet Specification defines an expiration based caching mechanism. This caching 5 
mechanism is per portlet per client. Cached content must not be shared across different 
client displaying the same portlet. 

Portlet containers are not required to implement expiration caching. Portlet containers 
implementing this caching mechanism may disable it, partially or completely, at any time 
to free memory resources. 10 

PLT.18.1 Expiration Cache 

Portlets that want their content to be cached using expiration cache must define the 
duration (in seconds) of the expiration cache in the deployment descriptor. 

The following is an example of a portlet definition where the portlet defines that its 
content should be cache for 5 minutes (300 seconds). 15 

  ... 
  <portlet> 
    ... 
      <expiration-cache>300</expiration-cache> 
    ... 20 
  </portlet> 
  ... 

A portlet that has defined an expiration cache in its portlet definition may 
programmatically alter the expiration time by setting the expiration-cache property in 
the RenderResponse object. If the expiration value is set to 0, caching is disabled for the 25 
portlet. If the expiration-cache  property is set to –1, the cache does not expire. If 
during a render invocation the expiration-cache property is not set, the expiration 
time defined in the deployment descriptor must be used. For a portlet that has not defined 
expiration cache in the deployment descriptor, if the expiration-cache property is set it 
must be ignored by the portlet-container. 30 

If the content of a portlet is cached, the cache has not expired and the portlet is not the 
target of the client request, then the request handling methods of the portlet should not be 



Portlet Specification CR draft, version 1.0 (4/29/2003) 76

invoked as part of the client request. Instead, the portlet-container should use the data 
from the cache. 

If the content of a portlet is cached and a client request is targeted to the portlet, the 
portlet container must discard the cache and invoke the request handling methods of the 
portlet. 5 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 77

PLT.19  

Portlet Applications 

A portlet application is a web application, as defined in Servlet Specification 2.3, SRV.9 
Chapter, containing portlets and a portlet deployment descriptor in addition to servlets, 
JSPs, HTML pages, classes and other resources normally found in a web application. A 5 
bundled portlet application can run in multiple portlet containers implementations. 

PLT.19.1 Relationship with Web Applications 

All the portlet application components and resources other than portlets are managed by 
the servlet container the portlet container is built upon. 

PLT.19.2 Relationship to PortletContext 10 

The portlet container must enforce a one to one correspondence between a portlet 
application and a PortletContext.cxxxv If the application is a distributed application, the 
portlet container must create an instance per VM.cxxxvi A PortletContext object 
provides a portlet with its view of the application.  

PLT.19.3 Elements of a Portlet Application 15 

A portlet application may consist of portlets plus other elements that may be included in 
web applications, such as servlets, JSPTM pages, classes, static documents.  

Besides the web application specific meta information, the portlet application must 
include descriptive meta information about the portlets it contains. 

PLT.19.4 Directory Structure 20 

A portlet application follows the same directory hierarchy structure as web applications. 

In addition it must contain a /WEB-INF/portlet.xml deployment descriptor file.  

Portlet classes, utility classes and other resources accessed through the portlet application 
classloader must reside within the /WEB-INF/classes directory or within a JAR file in 
the /WEB-INF/lib/ directory. 25 



Portlet Specification CR draft, version 1.0 (4/29/2003) 78

PLT.19.5 Portlet Application Classloader 

The portlet container must use the same classloader the servlet container uses for the web 
application resources for loading the portlets and related resources within the portlet 
application.cxxxvii 

The portlet container must ensure that requirements defined in the Servlet Specification 5 
2.3 SRV.9.7.1 and SRV.9.7.2 Sections are fulfilled.cxxxviii 

PLT.19.6 Portlet Application Archive File 

Portlet applications are packaged as web application archives (WAR) as defined in the 
Servlet Specification 2.3 SRV.9.6 Chapter. 

PLT.19.7 Portlet Application Deployment Descriptor 10 

In addition to a web application deployment descriptor, a portlet application contains a 
portlet application deployment descriptor. The portlet deployment descriptor contains 
configuration information for the portlets contained in the application. 

Refer to ### Packaging and Deployment Descriptor Chapter for more details on the 
portlet application deployment descriptor. 15 

PLT.19.8 Replacing a Portlet Application 

A portlet container should be able to replace a portlet application with a new version 
without restarting the container. In addition, the portlet container should provide a robust 
method for preserving session data within that portlet application. 

PLT.19.9 Error Handling 20 

It is left to the portal/portlet-container implementation how to react when a portlet throws 
an exception while processing a request. For example, the portal/portlet-container could 
render an error page instead of the portal page, render an error message in the portlet 
window of the portlet that threw the exception or remove the portlet from the portal page 
and log an error message for the administrator. 25 

PLT.19.10 Portlet Application Environment 

The portlet specification leverages the provisions made by the Servlet Specification 2.3 
SRV.9.11 Section. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 79

PLT.20  

Security 

Portlet applications are created by Application Developers who license the application to 
a Deployer for installation into a runtime environment. Application Developers need to 
communicate to Deployers how the security is to be set up for the deployed application.  5 

PLT.20.1 Introduction 

A portlet application contains resources that can be accessed by many users. These 
resources often traverse unprotected, open networks such as the Internet. In such an 
environment, a substantial number of portlet applications will have security requirements. 

The portlet container is responsible for informing portlets of the roles users are in when 10 
accesing them. The portlet container does not deal with user authentication. It should 
leverage the authentication mechanisms provided by the underlying servlet container 
defined in the Servlet Specification 2.3, SRV.12.1 Section. 

PLT.20.2 Roles 

The portlet specification shares the same definition as roles of the Servlet Specification 15 
2.3, SRV.12.4 Section. 

PLT.20.3 Programmatic Security 

Programmatic security consists of the following methods of the Request interface: 

• getRemoteUser 
• isUserInRole 20 
• getUserPrincipal 

The getRemoteUser method returns the user name the client used for authentication. The 
isUserInRole method determines if a remote user is in a specified security role. The 
getUserPrincipal method determines the principal name of the current user and returns 
a java.security.Principal object. These APIs allow portlets to make business logic 25 
decisions based on the information obtained. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 80

The values that the portlet API getRemoteUser and getUserPrincipal methods return 
the same values returned by the equivalent methods of the servlet response object.cxxxix 
Refer to the Servlet Specification 2.3, SRV.12.3 Section for more details on these 
methods. 

The isUserInRole method expects a string parameter with the role-name. A  5 
security-role-ref element must be declared by the portlet in deployment descriptor 
with a role-name sub-element containing the role-name to be passed to the method. The 
security-role-ref element should contain a role-link sub-element whose value is 
the name of the application security role that the user may be mapped into. This mapping 
is specified in the web.xml deployment descriptor file. The container uses the mapping 10 
of security-role-ref to security-role when determining the return value of the 
call.cxl 

For example, to map the security role reference "FOO" to the security role with  
role-name "manager" the syntax would be: 

<portlet-app> 15 
    ... 
    <portlet> 
        ... 
        <security-role-ref> 
            <role-name>FOO</role-name> 20 
            <role-link>manager</manager> 
        </security-role-ref> 
    </portlet> 
    ... 
    ... 25 
</portlet-app> 

In this case, if the portlet called by a user belonging to the "manager" security role made 
the API call isUserInRole("FOO"), then the result would be true. 

If the security-role-ref element does not define a role-link element, the container 
must default to checking the role-name element argument against the list of security-30 
role elements defined in the web.xml deployment descriptor of the portlet application.cxli 
The isUserInRole method references the list to determine whether the caller is mapped 
to a security role. The developer must be aware that the use of this default mechanism 
may limit the flexibility in changing role-names in the application without having to 
recompile the portlet making the call. 35 

PLT.20.4 Specifying Security Constraints 

Security constraints are a declarative way of annotating the intended protection of 
portlets. A constraint consists of the following elements: 

• portlet collection 
• user data constraint 40 



Portlet Specification CR draft, version 1.0 (4/29/2003) 81

A portlets collection is a set of portlet names that describe a set of resources to be 
protected. All requests targeted to portlets listed in the portlets collection are subject to 
the constraint.  

A user data constraint describes requirements for the transport layer for the portlets 
collection. The requirement may be for content integrity (preventing data tampering in 5 
the communication process) or for confidentiality (preventing reading while in transit). 
The container must at least use SSL to respond to requests to resources marked integral 
or confidential. 

For example, to define that a portlet requires a confindential transport the syntax would 
be: 10 

<portlet-app> 
    ... 
    <portlet> 
        <portlet-name>accountSummary</portlet-name> 
        ... 15 
    </portlet> 
    ... 
    <security-constraint>  
         <display-name>Secure Portlets</display-name> 
         <portlet-collection>  20 
            <portlet-name>accountSummary</portlet-name>  
        </portlet-collection>  
        <user-data-constraint/>  
           <transport-guarantee>CONFIDENTIAL</transport-guarantee> 
        </user-data-constraint>  25 
    </security-constraint>  
    ... 
</portlet-app> 

PLT.20.5 Propagation of Security Identity in EJBTM Calls 

A security identity, or principal, must always be provided for use in a call to an enterprise 30 
bean.  

The default mode in calls to EJBs from portlet applications should be for the security 
identity of a user, in the portlet container, to be propagated to the EJBTM container. 

Portlet containers, running as part of a J2EE platform, are required to allow users that are 
not known to the portlet container to make calls to the the EJBTM container. In these 35 
scenarios, the portlet application may specify a run-as element in the web.xml 
deployment descriptor. When it is specified, the container must propagate the security 
identity of the caller to the EJB layer in terms of the security role name defined in the 
run-as element.cxlii The security role name must be one of the security role names 
defined for the web.xml deployment descriptor.cxliii Alternatively, portlet application code 40 
may be sole processor of the signon into the EJBTM container. 





Portlet Specification CR draft, version 1.0 (4/29/2003) 83

PLT.21  

Packaging and Deployment Descriptor 

The deployment descriptor conveys the elements and configuration information of a 
portlet application between Application Developers, Application Assemblers, and 
Deployers. Portlet applications are self-contained applications that are intended to work 5 
without further resources. Portlet applications are managed by the portlet container. 

In the case of portlet applications, there are two deployment descriptors: one to specify 
the web application resources (web.xml) and one to specify the portlet resources 
(portlet.xml). The web application deployment descriptor is explained in detail in the 
Servlet Specification 2.3, SRV.13Deployment Descriptor Chapter. 10 

PLT.21.1 Portlet and Web Application Deployment Descriptor 

For the Portlet Specification version 1.0 there is a clear distinction between web 
resources, like servlets, JSPs, static markup pages, etc., and portlets. This is due to the 
fact that, in the Servlet Specification 2.3, the web application deployment descriptor is not 
extensible. All web resources that are not portlets must be specified in the web.xml 15 
deployment descriptor. All portlets and portlet related settings must be specified in an 
additional file called portlet.xml. The format of this additional file is described in 
detail below. 

The following portlet web application properties need to be set in the web.xml 
deployment descriptor: 20 

• portlet application description using the <description> tag 
• portlet application name using the <display-name> tag 
• portlet application security role mapping using the <security-role> tag 

 

PLT.21.2 Packaging 25 

All resources, portlets and the deployment descriptors are package together in one web 
application archive (WAR file). This format is described in Servlet Specification 2.3, 
SRV.9 Web Application Chapter. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 84

In addition to the resources described in the Servlet Specification 2.3, SRV.9 Web 
Application Chapter a portlet application WEB-INF directory consists of: 

 

• The /WEB-INF/portlet.xml deployment descriptor. 
• Portlet classes in the /WEB-INF/classes directory. 5 
• Portlet Java ARchive files /WEB-INF/lib/*.jar 

PLT.21.2.1 Example Directory Structure 

The following is a listing of all the files in a sample portlet application: 

/images/myButton.gif 
/META-INF/MANIFEST.MF 10 
/WEB-INF/web.xml 
/WEB-INF/portlet.xml 
/WEB-INF/lib/myHelpers.jar 
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class 
/WEB-INF/classes/com/mycorp/portlets/MyPortlet.class 15 
/WEB-INF/jsp/myHelp.jsp 

Portlet applications that need additional resources that cannot be packaged in the WAR 
file, like EJBs, may be packaged together with these resources in an EAR file. 

PLT.21.2.2 Version Information 

If portlet application providers want to provide version information about the portlet 20 
application is recommended to provide a META-INF/MANIFEST.MF entry in the WAR file. 
The ‘Implementation-*’ attributes should be used to define the version information. 

Example: 

Implementation-Title: myPortletApplication 
Implementation-Version: 1.1.2 25 
Implementation-Vendor: SunMicrosystems. Inc. 

PLT.21.3 Portlet Deployment Descriptor Elements 

The following types of configuration and deployment information are required to be 
supported in the portlet deployment descriptor for all portlet containers:  

• Portlet Application Definition 30 
• Portlet Definition 

Security information, which may also appear in the deployment descriptor is not required 
to be supported unless the portlet container is part of an implementation of the J2EE 
specification. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 85

PLT.21.4 Rules for processing the Portlet Deployment 
Descriptor 

In this section is a listing of some general rules that portlet containers and developers 
must note concerning the processing of the deployment descriptor for a portlet 
application: 5 

• Portlet containers should ignore all leading whitespace characters before the first 
non-whitespace character, and all trailing whitespace characters after the last non-
whitespace character for PCDATA within text nodes of a deployment descriptor. 

• Portlet containers and tools that manipulate portlet applications have a wide range 
of options for checking the validity of a WAR. This includes checking the validity 10 
of the web application and portlet deployment descriptor documents held within. 
It is recommended, but not required, that portlet containers and tools validate both 
deployment descriptors against the corresponding DTD and XML Schema 
definitions for structural correctness. Additionally, it is recommended that they 
provide a level of semantic checking. For example, it should be checked that a 15 
role referenced in a security constraint has the same name as one of the security 
roles defined in the deployment descriptor. In cases of non-conformant portlet 
applications, tools and containers should inform the developer with descriptive 
error messages. High end application server vendors are encouraged to supply this 
kind of validity checking in the form of a tool separate from the container. 20 

In elements whose value is an "enumerated type", the value is case sensitive.  

PLT.21.5 Deployment Descriptor 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema targetNamespace="http://java.sun.com/xml/ns/portlet" 
xmlns="http://www.w3.org/2001/XMLSchema" 25 
xmlns:portlet="http://java.sun.com/xml/ns/portlet" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 
attributeFormDefault="unqualified" version="1.0" xml:lang="EN"> 
 <xs:annotation> 
  <xs:documentation> 30 
  This is the XML Schema for the Portlet 1.0 deployment descriptor. 
  </xs:documentation> 
 </xs:annotation> 
 <xs:annotation> 
  <xs:documentation> 35 
  The following conventions apply to all J2EE 
  deployment descriptor elements unless indicated otherwise. 
  - In elements that specify a pathname to a file within the 
    same JAR file, relative filenames (i.e., those not 
    starting with "/") are considered relative to the root of 40 
    the JAR file's namespace.  Absolute filenames (i.e., those 
    starting with "/") also specify names in the root of the 
    JAR file's namespace.  In general, relative names are 
    preferred.  The exception is .war files where absolute 
    names are preferred for consistency with the Servlet API. 45 
  </xs:documentation> 
 </xs:annotation> 
 <!-- *********************************************************** --> 
 <xs:import namespace="http://www.w3.org/XML/1998/namespace" 
schemaLocation="http://www.w3.org/2001/xml.xsd"/> 50 



Portlet Specification CR draft, version 1.0 (4/29/2003) 86

 <xs:element name="portlet-app" type="portlet:portlet-appType"> 
  <xs:annotation> 
   <xs:documentation> 
   The portlet-app element is the root of the deployment descriptor 
   for a portlet application 5 
   </xs:documentation> 
  </xs:annotation> 
  <xs:unique name="portlet-name-uniqueness"> 
   <xs:annotation> 
    <xs:documentation> 10 
    The portlet element contains the name of a portlet. 
    This name must be unique within the portlet application. 
     </xs:documentation> 
   </xs:annotation> 
   <xs:selector xpath="portlet:portlet"/> 15 
   <xs:field xpath="portlet:portlet-name"/> 
  </xs:unique> 
  <xs:unique name="custom-portlet-mode-uniqueness"> 
   <xs:annotation> 
    <xs:documentation> 20 
    The custom-portlet-mode element contains the portlet-mode. 
    This portlet mode must be unique within the portlet application. 
    </xs:documentation> 
   </xs:annotation> 
   <xs:selector xpath="portlet:custom-portlet-mode"/> 25 
   <xs:field xpath="portlet:portlet-mode"/> 
  </xs:unique> 
  <xs:unique name="custom-window-state-uniqueness"> 
   <xs:annotation> 
    <xs:documentation> 30 
    The custom-window-state element contains the window-state. 
    This window state must be unique within the portlet application. 
    </xs:documentation> 
   </xs:annotation> 
   <xs:selector xpath="portlet:custom-window-state"/> 35 
   <xs:field xpath="portlet:window-state"/> 
  </xs:unique> 
  <xs:unique name="user-attribute-name-uniqueness"> 
   <xs:annotation> 
    <xs:documentation> 40 
    The user-attribute element contains the name the attribute. 
    This name must be unique within the portlet application. 
    </xs:documentation> 
   </xs:annotation> 
   <xs:selector xpath="portlet:user-attribute"/> 45 
   <xs:field xpath="portlet:name"/> 
  </xs:unique> 
 </xs:element> 
 <xs:complexType name="portlet-appType"> 
  <xs:sequence> 50 
   <xs:element name="portlet" type="portlet:portletType" 
maxOccurs="unbounded"> 
    <xs:unique name="init-param-name-uniqueness"> 
     <xs:annotation> 
      <xs:documentation> 55 
      The init-param element contains the name the attribute. 
      This name must be unique within the portlet. 
      </xs:documentation> 
     </xs:annotation> 
     <xs:selector xpath="portlet:init-param"/> 60 
     <xs:field xpath="portlet:name"/> 
    </xs:unique> 
    <xs:unique name="supports-mime-type-uniqueness"> 
     <xs:annotation> 
      <xs:documentation> 65 
      The supports element contains the supported mime-type. 
      This mime type must be unique within the portlet. 
      </xs:documentation> 
     </xs:annotation> 
     <xs:selector xpath="portlet:supports"/> 70 
     <xs:field xpath="mime-type"/> 
    </xs:unique> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 87

    <xs:unique name="preference-name-uniqueness"> 
     <xs:annotation> 
      <xs:documentation> 
      The preference element contains the name the preference. 
      This name must be unique within the portlet. 5 
      </xs:documentation> 
     </xs:annotation> 
     <xs:selector xpath="portlet:preference"/> 
     <xs:field xpath="portlet:name"/> 
    </xs:unique> 10 
    <xs:unique name="security-role-ref-name-uniqueness"> 
     <xs:annotation> 
      <xs:documentation> 
      The security-role-ref element contains the role-name. 
      This role name must be unique within the portlet. 15 
      </xs:documentation> 
     </xs:annotation> 
     <xs:selector xpath="portlet:security-role-ref"/> 
     <xs:field xpath="portlet:role-name"/> 
    </xs:unique> 20 
   </xs:element> 
   <xs:element name="custom-portlet-mode" type="portlet:custom-portlet-
modeType" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="custom-window-state" type="portlet:custom-window-
stateType" minOccurs="0" maxOccurs="unbounded"/> 25 
   <xs:element name="user-attribute" type="portlet:user-attributeType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="security-constraint" type="portlet:security-
constraintType" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 30 
  <xs:attribute name="version" type="string" use="required"/> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="custom-portlet-modeType"> 
  <xs:annotation> 35 
   <xs:documentation> 
   A custom portlet mode that one or more portlets in  
   this portlet application supports. 
   Used in: portlet-app 
   </xs:documentation> 40 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="description" type="portlet:descriptionType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="portlet-mode" type="portlet:portlet-modeType"/> 45 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="custom-window-stateType"> 
  <xs:annotation> 50 
   <xs:documentation> 
   A custom window state that one or more portlets in this  
   portlet application supports. 
   Used in: portlet-app 
   </xs:documentation> 55 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="description" type="portlet:descriptionType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="window-state" type="portlet:window-stateType"/> 60 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="expiration-cacheType"> 
  <xs:annotation> 65 
   <xs:documentation> 
   Expriation-cache defines expiration-based caching for this 
   portlet. The parameter indicates 
   the time in seconds after which the portlet output expires.  
   -1 indicates that the output never expires. 70 
   Used in: portlet 
   </xs:documentation> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 88

  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="int"/> 
  </xs:simpleContent> 
 </xs:complexType> 5 
 <xs:complexType name="init-paramType"> 
  <xs:annotation> 
   <xs:documentation> 
   The init-param element contains a name/value pair as an  
   initialization param of the portlet 10 
   Used in:portlet 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="description" type="portlet:descriptionType" 15 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="name" type="portlet:nameType"/> 
   <xs:element name="value" type="portlet:valueType"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 20 
 </xs:complexType> 
 <xs:complexType name="keywordsType"> 
  <xs:annotation> 
   <xs:documentation> 
   Locale specific keywords associated with this portlet. 25 
   The kewords are separated by commas. 
   Used in: portlet-info 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 30 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="mime-typeType"> 
  <xs:annotation> 35 
   <xs:documentation> 
   MIME type name, e.g. "text/html". 
   The MIME type may also contain the wildcard 
   character '*', like "text/*" or "*/*". 
   Used in: supports 40 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 
  </xs:simpleContent> 45 
 </xs:complexType> 
 <xs:simpleType name="modifiableType"> 
  <xs:annotation> 
   <xs:documentation> 
   modifiable indicates that a setting can not 50 
   be changed in any of the standard portlet modes  
   (VIEW, EDIT or HELP). 
   Valid values are:  
   - 0 for non-modifiable 
   - 1 for modifiable 55 
   Used in: preferences 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="portlet:string"> 
   <xs:enumeration value="0"/> 60 
   <xs:enumeration value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:complexType name="nameType"> 
  <xs:annotation> 65 
   <xs:documentation> 
   The name element contains the name of a parameter.  
   Used in: init-param, ... 
   </xs:documentation> 
  </xs:annotation> 70 
  <xs:simpleContent> 
   <xs:extension base="string"/> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 89

  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="portletType"> 
  <xs:annotation> 
   <xs:documentation> 5 
   The portlet element contains the declarative data of a portlet.  
   Used in: portlet-app 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 10 
   <xs:element name="description" type="portlet:descriptionType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="init-param" type="portlet:init-paramType" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="portlet-name" type="portlet:portlet-nameType"/> 15 
   <xs:element name="display-name" type="portlet:display-nameType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="portlet-class" type="portlet:portlet-classType"/> 
   <xs:element name="expiration-cache" type="portlet:expiration-cacheType" 
minOccurs="0"/> 20 
   <xs:element name="supports" type="portlet:supportsType" 
maxOccurs="unbounded"/> 
   <xs:element name="supported-locale" type="portlet:supported-localeType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="resource-bundle" type="portlet:resource-bundleType" 25 
minOccurs="0"/> 
   <xs:element name="portlet-info" type="portlet:portlet-infoType" 
minOccurs="0"/> 
   <xs:element name="portlet-preferences" type="portlet:portlet-
preferencesType" minOccurs="0"/> 30 
   <xs:element name="security-role-ref" type="portlet:security-role-refType" 
minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 35 
 <xs:simpleType name="portlet-classType"> 
  <xs:annotation> 
   <xs:documentation> 
    The portlet-class element contains the fully 
    qualified class name of the portlet. 40 
   Used in: portlet 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="portlet:fully-qualified-classType"/> 
 </xs:simpleType> 45 
 <xs:complexType name="portlet-collectionType"> 
  <xs:annotation> 
   <xs:documentation> 
   The portlet-collectionType is used to identify a subset 
   of portlets within a portlet application to which a  50 
   security constraint applies. 
   Used in: security-constraint 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 55 
   <xs:element name="portlet-name" type="portlet:portlet-nameType" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="portlet-infoType"> 60 
   <xs:sequence> 
    <xs:element name="title" type="portlet:titleType"/> 
    <xs:element name="short-title" type="portlet:short-titleType" 
minOccurs="0"/> 
    <xs:element name="keywords" type="portlet:keywordsType" minOccurs="0"/> 65 
   </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="portlet-modeType"> 
  <xs:annotation> 70 
   <xs:documentation> 
   Portlet modes. The specification pre-defines the following values  



Portlet Specification CR draft, version 1.0 (4/29/2003) 90

   as valid portlet mode constants:  
   EDIT, HELP, VIEW. 
   Portlet mode names are not case sensitive. 
   Used in: custom-portlet-mode, supports 
   </xs:documentation> 5 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 10 
 <xs:complexType name="portlet-nameType"> 
  <xs:annotation> 
   <xs:documentation> 
   The portlet-name element contains the canonical name of the  
   portlet. Each portlet name is unique within the portlet  15 
   application. 
   Used in: portlet, portlet-mapping 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 20 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="portlet-preferencesType"> 
  <xs:annotation> 25 
   <xs:documentation> 
   Portlet persistent preference store. 
   Used in: portlet 
   </xs:documentation> 
  </xs:annotation> 30 
  <xs:sequence> 
   <xs:element name="preference" type="portlet:preferenceType" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="preferences-validator" type="portlet:preferences-
validatorType" minOccurs="0"/> 35 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="preferenceType"> 
  <xs:annotation> 40 
   <xs:documentation> 
   Persistent preference values that may be used for customization  
   and personalization by the portlet. 
   Used in: user-preferences, portlet-preferences 
   </xs:documentation> 45 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="name" type="portlet:nameType"/> 
   <xs:element name="value" type="portlet:valueType" minOccurs="0" 
maxOccurs="unbounded"/> 50 
   <xs:element name="modifiable" type="portlet:modifiableType" 
minOccurs="0"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 55 
 <xs:simpleType name="preferences-validatorType"> 
  <xs:annotation> 
   <xs:documentation> 
   The class specified under preferences-validator implements 
   the PreferencesValidator interface to validate the  60 
   preferences settings. 
   Used in: user-preferences, portlet-preferences 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="portlet:fully-qualified-classType"/> 65 
 </xs:simpleType> 
 <xs:complexType name="resource-bundleType"> 
  <xs:annotation> 
   <xs:documentation> 
   Filename of the resource bundle containing the language specific  70 
   portlet informations in different languages. 
   Used in: portlet-info 



Portlet Specification CR draft, version 1.0 (4/29/2003) 91

   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 
  </xs:simpleContent> 5 
 </xs:complexType> 
 <xs:complexType name="role-linkType"> 
  <xs:annotation> 
   <xs:documentation> 
   The role-link element is a reference to a defined security role.  10 
   The role-link element must contain the name of one of the  
   security roles defined in the security-role elements. 
   Used in: security-role-ref 
   </xs:documentation> 
  </xs:annotation> 15 
  <xs:simpleContent> 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="security-constraintType"> 20 
  <xs:annotation> 
   <xs:documentation> 
   The security-constraintType is used to associate 
   intended security constraints with one or more portlets. 
   Used in: portlet-app 25 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="display-name" type="portlet:display-nameType" 
minOccurs="0" maxOccurs="unbounded"/> 30 
   <xs:element name="portlet-collection" type="portlet:portlet-
collectionType" maxOccurs="unbounded"/> 
   <xs:element name="user-data-constraint" type="portlet:user-data-
constraintType" minOccurs="0"/> 
  </xs:sequence> 35 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="security-role-refType"> 
  <xs:annotation> 
   <xs:documentation> 40 
   The security-role-ref element contains the declaration of a  
   security role reference in the code of the web application. The  
   declaration consists of an optional description, the security  
   role name used in the code, and an optional link to a security  
   role. If the security role is not specified, the Deployer must  45 
   choose an appropriate security role. 
   The value of the role name element must be the String used  
   as the parameter to the  
   EJBContext.isCallerInRole(String roleName) method 
   or the HttpServletRequest.isUserInRole(String role) method. 50 
   Used in: portlet 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="description" type="portlet:descriptionType" 55 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="role-name" type="portlet:role-nameType"/> 
   <xs:element name="role-link" type="portlet:role-linkType" minOccurs="0"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 60 
 </xs:complexType> 
 <xs:complexType name="short-titleType"> 
  <xs:annotation> 
   <xs:documentation> 
   Locale specific short version of the static title. 65 
   Used in: portlet-info 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 70 
  </xs:simpleContent> 
 </xs:complexType> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 92

 <xs:complexType name="supportsType"> 
  <xs:annotation> 
   <xs:documentation> 
   Supports indicates the portlet modes and window states that the  
   portlet supports for a specific content type. All portlets must  5 
   support the view mode and normal window state.  
   Used in: portlet 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 10 
   <xs:element name="mime-type" type="portlet:mime-typeType"/> 
   <xs:element name="portlet-mode" type="portlet:portlet-modeType" 
minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 15 
 </xs:complexType> 
 <xs:complexType name="supported-localeType"> 
  <xs:annotation> 
   <xs:documentation> 
   Indicated the locales the portlet supports. 20 
   Used in: portlet 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 25 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="titleType"> 
  <xs:annotation> 
   <xs:documentation> 30 
   Locale specific static title for this portlet. 
   Used in: portlet-info 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 35 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:simpleType name="transport-guaranteeType"> 
  <xs:annotation> 40 
   <xs:documentation> 
   The transport-guaranteeType specifies that  
   the communication between client and portlet should  
   be NONE, INTEGRAL, or CONFIDENTIAL.  
   NONE means that the portlet does not 45 
   require any transport guarantees. A value of  
   INTEGRAL means that the portlet requires that the  
   data sent between the client and portlet be sent in  
   such a way that it can't be changed in transit.  
   CONFIDENTIAL means that the portlet requires  50 
   that the data be transmitted in a fashion that 
   prevents other entities from observing the contents  
   of the transmission.  
   In most cases, the presence of the INTEGRAL or 
   CONFIDENTIAL flag will indicate that the use  55 
   of SSL is required. 
    Used in: user-data-constraint 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="portlet:string"> 60 
   <xs:enumeration value="NONE"/> 
   <xs:enumeration value="INTEGRAL"/> 
   <xs:enumeration value="CONFIDENTIAL"/> 
  </xs:restriction> 
 </xs:simpleType> 65 
 <xs:complexType name="user-attributeType"> 
  <xs:annotation> 
   <xs:documentation> 
   User attribute defines a user specific attribute that the 
   portlet application needs. The portlet within this application  70 
   can access this attribute via the request parameter USER_INFO 
   map. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 93

   Used in: portlet-app 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="description" type="portlet:descriptionType" 5 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="name" type="portlet:nameType"/> 
  </xs:sequence> 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 10 
 <xs:complexType name="user-data-constraintType"> 
  <xs:annotation> 
   <xs:documentation> 
   The user-data-constraintType is used to indicate how 
   data communicated between the client and portlet should be 15 
   protected. 
   Used in: security-constraint 
   </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 20 
   <xs:element name="description" type="portlet:descriptionType" 
minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="transport-guarantee" type="portlet:transport-
guaranteeType"/> 
  </xs:sequence> 25 
  <xs:attribute name="id" type="string" use="optional"/> 
 </xs:complexType> 
 <xs:complexType name="valueType"> 
  <xs:annotation> 
   <xs:documentation> 30 
   The value element contains the value of a parameter. 
   Used in: init-param 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 35 
   <xs:extension base="string"/> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:complexType name="window-stateType"> 
  <xs:annotation> 40 
   <xs:documentation> 
   Portlet window state. The specification pre-defines the  
   following values as valid window state constants:  
   MINIMIZED, NORMAL, MAXIMIZED.  
   Window state names are not case sensitive. 45 
   Used in: custom-window-state 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"/> 50 
  </xs:simpleContent> 
 </xs:complexType> 
 <!--- everything below is copied from j2ee_1_4.xsd --> 
 <xs:complexType name="descriptionType"> 
  <xs:annotation> 55 
   <xs:documentation> 
   The description element is used to provide text describing the  
   parent element. The description element should include any  
   information that the portlet application war file producer wants 
   to provide to the consumer of the portlet application war file  60 
   (i.e., to the Deployer). Typically, the tools used by the  
   portlet application war file consumer will display the  
   description when processing the parent element that contains the  
   description. 
   Used in: init-param, portlet, portlet-app, security-role 65 
   </xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="string"> 
    <xs:attribute ref="xml:lang"/> 70 
   </xs:extension> 
  </xs:simpleContent> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 94

 </xs:complexType> 
 <xs:complexType name="display-nameType"> 
  <xs:annotation> 
   <xs:documentation> 
   The display-name type contains a short name that is intended 5 
   to be displayed by tools. It is used by display-name 
   elements.  The display name need not be unique. 
   Example: 
    ... 
     <display-name xml:lang="en">Employee Self Service</display-name> 10 
 
   The value of the xml:lang attribute is "en" (English) by  
   default. 
   </xs:documentation> 
  </xs:annotation> 15 
  <xs:simpleContent> 
   <xs:extension base="portlet:string"> 
    <xs:attribute ref="xml:lang"/> 
   </xs:extension> 
  </xs:simpleContent> 20 
 </xs:complexType> 
 <xs:simpleType name="fully-qualified-classType"> 
  <xs:annotation> 
   <xs:documentation> 
   The elements that use this type designate the name of a 25 
   Java class or interface. 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="portlet:string"/> 
 </xs:simpleType> 30 
 <xs:simpleType name="role-nameType"> 
  <xs:annotation> 
   <xs:documentation> 
   The role-nameType designates the name of a security role. 
 35 
   The name must conform to the lexical rules for an NMTOKEN. 
   </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="NMTOKEN"/> 
 </xs:simpleType> 40 
 <xs:simpleType name="string"> 
  <xs:annotation> 
   <xs:documentation> 
   This is a special string datatype that is defined by J2EE  
   as a base type for defining collapsed strings. When  45 
   schemas require trailing/leading space elimination as  
   well as collapsing the existing whitespace, this base  
   type may be used. 
   </xs:documentation> 
  </xs:annotation> 50 
  <xs:restriction base="string"> 
   <xs:whiteSpace value="collapse"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 55 
 



Portlet Specification CR draft, version 1.0 (4/29/2003) 95

PLT.21.6 Pictures of the structure of a Deployment Descriptor 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 96

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 97

 

PLT.21.7 Uniqueness of Deployment Descriptor Values 

The following deployment descriptor values must be unique in the scope of the portlet 
application definition: 

• portlet <portlet-name> 5 
• custom-portlet-mode <portlet-mode> 
• custom-window-state <window-state> 
• user-attribute <name> 

The following deployment descriptor values must be unique in the scope of the portlet 
definition: 10 

• init-param <name>  
• supports <mime-type> 
• preference <name> 
• security-role-ref <role-name> 

PLT.21.8 Localization 15 

The portlet deployment descriptor allows for localization on two levels: 

• Localize values needed at deployment time 
• Advertise supported locales at run-time 

Both are described in the following sections. 

PLT.21.8.1 Localization of Deployment Descriptor Values 20 

Localization of deployment descriptor values allows the deployment tool to provide 
localized deployment messages to the deployer. The following deployment descriptor 
elements may exist multiple times with different locale information in the xml:lang 
attribute: 

• all <description> elements 25 
• portlet <display-name> 

PLT.21.8.2 Supported Locales by the Portlet 

The portlet should always declare the locales it is going to support at run-time using the 
<supported-locale> element in the deployment descriptor.  



Portlet Specification CR draft, version 1.0 (4/29/2003) 98

PLT.21.9 Deployment Descriptor Example 
<?xml version="1.0" encoding="UTF-8"?> 
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet" version="1.0"  
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
   xsi:noNamespaceSchemaLocation="http://java.sun.com/xml/portlet.xsd"> 5 
 <portlet> 
  <description xml:lang="EN">Portlet displaying the time in different 
time zones</description> 
  <description xml:lang="DE">Dieses Portlet zeigt die Zeit in 
verschiedenen Zeitzonen an. </description> 10 
  <portlet-name>TimeZoneClock</portlet-name> 
  <display-name xml:lang="EN">Time Zone Clock Portlet</display-name> 
  <display-name xml:lang="EN">ZeitzonenPortlet</display-name> 
  <portlet-class>com.myco.samplets.util.zoneclock.ZoneClock</portlet-
class> 15 
  <expiration-cache>-1</expiration-cache> 
  <supports> 
   <mime-type>text/html</mime-type> 
   <portlet-mode>config</portlet-mode> 
   <portlet-mode>edit</portlet-mode> 20 
   <portlet-mode>help</portlet-mode> 
  </supports> 
  <supports> 
   <mime-type>text/wml</mime-type> 
   <portlet-mode>edit</portlet-mode> 25 
   <portlet-mode>help</portlet-mode> 
  </supports> 
  <supported-locale>EN</supported-locale> 
  <portlet-info> 
   <title>Time Zone Clock</title> 30 
   <short-title>TimeZone</short-title> 
   <keywords>Time, Zone, World, Clock</keywords> 
  </portlet-info> 
  <portlet-preferences> 
   <preference> 35 
    <description xml:lang="EN">Server URL for getting the current 
time</description> 
    <description xml:lang="DE">Server URL f• aktuelle 
Zeit</description> 
    <name>time-server</name> 40 
    <value>http://timeserver.myco.com</value> 
    <modifiable>0</modifiable> 
   </preference> 
   <preference> 
    <description xml:lang="EN">Port number of time 45 
server</description> 
    <description xml:lang="DE">Portnummer des 
Zeitservers</description> 
    <name>port</name> 
    <value>404</value> 50 
    <modifiable>0</modifiable> 
   </preference> 
   <preference> 
    <description xml:lang="EN">time format for displaying the current 
time</description> 55 
    <description xml:lang="DE">Zeitformat f angezeigte Zeit 
</description> 
    <name>time-format</name> 
    <value>HH</value> 
    <value>mm</value> 60 
    <value>ss</value> 
   </preference> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 99

  </portlet-preferences> 
  <security-role-ref> 
   <role-name>trustedUser</role-name> 
   <role-link>auth-user</role-link> 
  </security-role-ref> 5 
 </portlet> 
 <custom-portlet-mode> 
  <description xml:lang="EN">Pre-defined custom portlet mode 
CONFIG</description> 
  <portlet-mode>CONFIG</portlet-mode> 10 
 </custom-portlet-mode> 
 <custom-window-state> 
  <description xml:lang="EN">Occupies 50% of the portal 
page</description> 
  <window-state>half-page</window-state> 15 
 </custom-window-state> 
 <user-attribute> 
  <description xml:lang="EN">Pre-defined attribute for the telephone 
number of the user at work.</description> 
  <name>workInfo/telephone</name> 20 
 </user-attribute> 
 <security-constraint> 
  <portlet-collection> 
   <portlet-name>TimeZoneClock</portlet-name> 
  </portlet-collection> 25 
  <user-data-constraint> 
   <transport-guarantee>CONFIDENTIAL</transport-guarantee> 
  </user-data-constraint> 
 </security-constraint> 
</portlet-app> 30 
 

PLT.21.10 Resource Bundles 

To provide language specific portlet information, like title and keywords, resource 
bundles can be used. The fully qualified class file name of the resource bundle can be set 
in the portlet definition in the deployment descriptor using the resource-bundle tag. 35 

The Portlet Specification 1.0 defines the following constants for this resource bundle: 

javax.portlet.title The title that should be displayed in the titlebar of this 
portlet. Only one title per locale is allowed. 

javax.portlet.short-title A short version of the title that may be used for devices 
with limited display capabilities.Only one short title per 
locale is allowed. 

javax.portlet.keywords Keywords describing the functionality of the portlet. 
Portals that allow users to search for portlets based on 
keywords may use these keywords. Multiple keywords per 
locale are allowed, but must be separated by commas ‘,’. 



Portlet Specification CR draft, version 1.0 (4/29/2003) 100

PLT.21.11 Resource Bundle Example 

This section shows the resource bundles for the world population clock portlet from 
deployment descriptor example. The first resource bundle is for English and the second 
for German locales. 

# English Resource Bundle 5 
# 
# filename: clock_en.properties 
# Portlet Info resource bundle example 
javax.portlet.title=World Population Clock 
javax.portlet.short-title=WorldPopClock 10 
javax.portlet.keywords=World,Population,Clock 
 
# German Resource Bundle 
# 
# filename: clock_de.properties 15 
# Portlet Info resource bundle example 
javax.portlet.title=WeltbevölkerungsuhrWelt Bevoelkerung Uhr 
javax.portlet.short-title=WeltuhrWeltbevUhr 
javax.portlet.keywords=Welt,Bevölkerung,UhrWelt,Bevoelkerung,Uhr 

 20 



Portlet Specification CR draft, version 1.0 (4/29/2003) 101

PLT.22  

Portlet Tag Library 

The portlet tag library enables JSPs that are included from portlets to have direct access 
to portlet specific elements such as the RenderRequest and RenderResponse. It also 
provides JSPs with access to portlet functionality such as creation of portlet URLs. 5 

JSP pages using the tag library must declare this in a taglib like this (using the suggested 
prefix value): 

<%@ taglib uri=”http://java.sun.com/portlet” prefix=”portlet” %> 

PLT.22.1 defineObjects Tag 

The defineObjects tag must define the following variables in the JSP page: 10 

• RenderRequest renderRequest 
• RenderResponse renderResponse 
• PortletConfig portletConfig 

These variables must reference the same portlet API objects stored in the request object 
of the JSP as defined in the PLT.### Included Request Attributes section. 15 

A JSP using the defineObjects tag may use these variables from scriptlets throughout 
the page. 

The defineObjects tag must not define any attribute and it must not support contain any 
body content. 

An example of a JSP using the defineObjects tag could be: 20 

 <portlet:defineObjects/> 
 
 <%=renderResponse.setTitle("my portlet title")%> 

After using the defineObjects tag, the JSP invokes the setTitle() method of the 
renderResponse to set the title of the portlet. 25 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 102

PLT.22.2 actionURL Tag 

The portlet actionURL tag creates a URL that must point to the current portlet and must 
trigger an action request with the supplied parameters. 

Parameters may be added to the URL by including the param tag between the actionURL 
start and end tags.   5 

The following non-required attributes are defined for this tag: 

• state (Type: String, non-required) – indicates the window state that the portlet 
should have when this link is executed. The following window states are 
predefined: minimized, normal, and maximized. If no window state is specified, 
or the window state is unknown/unsupported, the URL points to the current 10 
window state of the portlet. The window state attribute is not case sensitive. 

• mode (Type: String, non-required) – indicates the portlet mode that the portlet 
should have when this link is executed. The following portlet modes are 
predefined: edit, help, and view. If no portlet mode is specified, or the portlet 
mode is unknown/unsupported, the URL points to the current portlet mode of the 15 
portlet. The portlet mode attribute is not case sensitive. 

• var (Type: String, non-required) – name of the exported scoped variable for the 
action URL. By default, the result of the URL processing is written to the current 
JspWriter. If the result is exported as a JSP scoped variable, defined via the var 
attributes., nothing is written to the current JspWriter. 20 
Note: After the URL is created it is not possible to extend the URL or add any 
further parameter using the variable and String concatenation.  

An example of a JSP using the actionURL tag could be: 

<portlet:actionURL state=”maximized” mode=”edit”> 
   <portlet:param name=”action” value=”editStocks”/> 25 
</portlet:actionURL> 

The example creates a URL that brings the portlet into EDIT mode and MAXIMIZED 
window state to edit the stocks quote list. 

PLT.22.3 renderURL Tag 

The portlet rtenderURL tag must create a URL that pointing to the current portlet and 30 
must trigger a render request with the supplied parameters. 

Parameters may be added by including the param tag between the renderURL start and 
end tags. 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 103

The following non-required attributes are defined for this tag: 

• state (Type: String, non-required) – indicates the window state that the portlet 
should have when this link is executed. The following window states are 
predefined: minimized, normal, and maximized. If no window state is specified, 
or the specified window state is unkown/unsupported, the URL points to the 5 
current window state of the portlet. 

• mode (Type: String, non-required) – indicates the portlet mode that the portlet 
should have when this link is executed. The following portlet modes are 
predefined: edit, help, and view. If no portlet mode is specified, or the portlet 
mode is unknown/unsupported, the URL points to the current portlet mode of the 10 
portlet. 

• var (Type: String, non-required) – name of the exported scoped variable for the 
render URL. By default, the result of the URL processing is written to the current 
JspWriter. If the result is exported as a JSP scoped variable, defined via the var 
attributes., nothing is written to the current JspWriter. 15 
Note: After the URL is created it is not possible to extend the URL or add any 
further parameter using the variable and String concatenation. 

An example of a JSP using the renderURL tag could be: 

<portlet:renderURL mode=”view” state=”normal”> 
   <portlet:param name=”showQuote” value=”myCompany”/> 20 
   <portlet:param name=”showQuote” value=”someOtherCompany”/> 
</portlet:renderURL> 

The example creates a URL to provide a link that shows the stock quote of myCompany 
and someOtherCompany and changes the portlet mode to VIEW and the window state to 
NORMAL. 25 

PLT.22.4 encode Tag 

This tag must encodes the given string value to the namespace of the current portlet.  

This tag should be used for named elements in the portlet output (for example, form 
fields or Javascript variables). The encoding ensures that the given name is uniquely 
associated with this portlet and avoids name conflicts with other elements on the portal 30 
page or with other portlets on the page. 

The encode tag must not support contain any body content. 

The following required attribute is defined for this tag: 

• name (Type: String, required) – the name of the String that should be encoded 
into the namespace of the portlet. 35 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 104

An example of a JSP using the encode tag could be: 

<input border="0" 
       type="text" 
       name="<portlet:encode name=’email’ />”> 

The example creates a text field with the name ‘email’, which is encoded to ensure 5 
uniqueness on the portal page. 

PLT.22.5 param Tag 

This tag defines a parameter that may be added to a actionURL or renderURL. 

The param tag must not support contain any body content. 

The following required attributes are defined for this tag: 10 

• name (Type: String, required) – the name of the parameter to add to the URL. If 
name is null or empty, no action is performed. 

• value (Type: String, required) – the value of the parameter to add to the URL. If 
value is null, it is processed as an empty value. 

An example of a JSP using the param tag could be: 15 

<portlet:param name=”myParam” value=”someValue”/> 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 105

PLT.23  

Technology Compatibility Kit Requirements 

This chapter defines a set of requirements a portlet container implementation must meet 
in order to run the portlet Technology Compatibility Kit (TCK).  

These requirements are only needed for the purpose of determining whether a portlet 5 
container implementation complies with the Portlet Specification or not.  

PLT.23.1 TCK Test Components 

Based on the Portlet Specification (this document) and the portlet API, a set of testable 
assertions have been extracted and identified. The portlet TCK treats each testable 
assertion as a unique test case. 10 

All test cases are run from a Java Test Harness. The Java Test Harness collects the results 
of all the tests and makes a report on the overall test. 

Each portlet TCK test case has two components: 

• Test portlet applications: These are portlet applications containing portlets, 
servlets or JSPs coded to verify an assertion. These test portlet applications are 15 
deployed in the portlet container being tested for compliance. 

• Test client: It is a standalone java program that sends HTTP requests to portlet 
container where test portlet applications of the test case have been deployed for 
compliance testing. 

The portlet TCK assumes that the test portlet applications are deployed in the portlet 20 
container before the test run is executed. 

The test client looks for expected and unexpected sub strings in the HTTP response to 
decide whether a test has failed or passed. The test client reports the result of the test 
client to the Java Test Harness. 

25 



Portlet Specification CR draft, version 1.0 (4/29/2003) 106

PLT.23.2 TCK Requirements 

In TCK, every test is written as a set of one or more portlets. A test client is written for 
each test, the test client must interact with a portal page containing the portlets that are 
part of the test. To accomplish this, TCK needs to obtain the initial URL for the portal 
page of each test case. All the portlets in the portal page obtained with the initial URL 5 
must be in VIEW portlet mode and in NORMAL window state. Subsequent requests to 
the test are done using URLs generated by PortletURI that are part of the returned portal 
pages. These subsequent requests must be treated as directed to same portal page 
composed of the same portlets. 

Portal/portlet-containers must disable all caching mechanisms when running the TCK test 10 
cases. 

Since aggregation of portlets in a portal page and the URLs used to interact with the 
portlets are vendor specific, TCK provides two alternative mechanisms in the framework 
to get the URLs to portal pages for the test cases: declarative configuration or 
programmatic configuration. A vendor must support at least one of these mechanisms to 15 
run the conformance tests. 

PLT.23.2.1 Declarative configuration of the portal page for a TCK 
test 

TCK publishes an XML file containing the portlets for each test case. Vendors must refer 
to this file for establishing a portal page for every test. Vendors must provide an XML 20 
file with a full URL for the portal page for each test. A call to this URL must generate a 
portal page with the content of all the portlets defined for the corresponding test case. If 
redirected to another URL, the new URL must use the same host name and port number 
as specified in the file. Refer to TCK User guide for details on declarative configuration. 

A snippet of the TCK provided XML file for declarative configuration would look like: 25 

<test_case> 
 <test_name>PortletRequest_GetAttributeTest</test_name> 
 <test_portlet> 
  <app_name>PortletRequestWebApp</app_name> 
  <portlet_name>GetAttributeTestPortlet</portlet_name> 30 
 </test_portlet> 
 <test_portlet> 
  <app_name>PortletRequestWebApp</app_name> 
  <portlet_name>GetAttributeTest_1_Portlet</portlet_name> 
 <test_portlet> 35 
</test_case> 

The corresponding snippet for the vendor’s provided XML file might look like: 

<test_case_url> 
 <test_name>PortletRequest_GetAttributeTest</test_name> 
 <test_url>http://foo:8080/portal?pageName=TestCase1</test_url> 40 
</test_case_url> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 107

PLT.23.2.1.1 Schema for XML file provided with Portlet TCK 

<?xml version="1.0" encoding="UTF-8"?> 
<!—portletTCKTestCases.xsd--> 
<xs:schema targetNamespace="http://java.sun.com/xml/ns/portletTCK" 
xmlns:pct="http://java.sun.com/xml/ns/portletTCK" 5 
xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" attributeFormDefault="unqualified"> 
 <xs:element name="pct_test_cases"> 
  <xs:annotation> 
   <xs:documentation>Test Cases defined in Portlet Compatibility 10 
Kit</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="pct:test_case" minOccurs="1" 15 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="test_case"> 20 
  <xs:annotation> 
   <xs:documentation>Test Case</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 25 
    <xs:element ref="pct:test_name"/> 
    <xs:element ref="pct:test_portlet" minOccurs="1" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 30 
 </xs:element> 
 <xs:element name="test_portlet"> 
  <xs:annotation> 
   <xs:documentation>A test Portlet</xs:documentation> 
  </xs:annotation> 35 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="pct:portlet_name"/> 
    <xs:element ref="pct:app_name"/> 
   </xs:sequence> 40 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="test_name" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Unique name for a test case</xs:documentation> 45 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="app_name" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Name of the portlet application a portlet belongs 50 
to.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="portlet_name" type="xs:string"> 
  <xs:annotation> 55 
   <xs:documentation>Name of the portlet</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
</xs:schema> 
 60 



Portlet Specification CR draft, version 1.0 (4/29/2003) 108

PLT.23.2.1.2 Schema for XML file that provided by vendors 

<?xml version="1.0" encoding="UTF-8"?> 
<!—portletTCKTestURLs.xsd - Schema that must be followed by the vendors to write 
the file that has mapping from a portlet TCK --> 
<!-- test case to a url. --> 5 
<xs:schema targetNamespace="http://java.sun.com/xml/ns/portletTCK" 
xmlns:pct="http://java.sun.com/xml/ns/portletTCK" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <xs:element name="test_case_urls"> 10 
  <xs:annotation> 
   <xs:documentation>Mapping of Test Cases defined in Portlet Compatibility 
Kit to vendor specific URLs</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 15 
   <xs:sequence> 
    <xs:element ref="pct:test_case_url" minOccurs="1" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 20 
 <xs:element name="test_case_url"> 
  <xs:annotation> 
   <xs:documentation>Test Case to URL map entry </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 25 
   <xs:sequence> 
    <xs:element ref="pct:test_name"/> 
    <xs:element ref="pct:test_url"/> 
   </xs:sequence> 
  </xs:complexType> 30 
 </xs:element> 
 <xs:element name="test_name" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Unique name for a test case from the 
portletTCKTestCases.xml published by TCK</xs:documentation> 35 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="test_url" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Complete URL that would result in a page containing 40 
contents of portlets defined for this test case.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
</xs:schema> 

PLT.23.2.2 Programmatic configuration of the portal page for a 45 
test 

For programmatic configuration, a vendor must provide a full URL as a configuration 
parameter to the TCK. The TCK will call this URL with a set of parameters indicating 
the set of portlets that must appear in a portal page for the given test. Upon receiving this 
request, the vendor provided URL could dynamically create a portal page with the 50 
required portlets. Calls to this vendor provided URL are always HTTP GET requests. The 
parameter names on the URL are multiple occurrences of "portletName". Values of this 
paramater must be a string consisting of the test case application name and portlet name 
delimited by a “/”. The response of this call must be a portal page with the required 
portlets or a redirection to another URL where the portal page will be served. If 55 
redirected, the new URL must use the same host and port number as original URL. 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 109

A vendor provided URL would look like: 

VendorPortalURL=http://foo:8080/portal/tckservlet 

For a test case involving one portlet, TCK would call this URL with the following 
parameters: 

http://foo:8080/portal/tckservlet?portletName=PortletRequestWebApp5 
/GetAttributeTestPortlet 

PLT.23.2.3 Test Portlets Content 

The test cases portlets encode information for the test client within their content. As 
different vendor implementations may generate different output surrounding the content 
produced by the portlets, the portlets delimit the information for the test clients using a 10 
special element tag, portlet-tck.  

PLT.23.2.4 Test Cases that Require User Identity 

Some of the Portlet TCK require an authenticated user.The TCK configuration file 
indicates the name and password of the authenticated user and the authentication 
mechanism TCK will use. 15 

Portlet TCK provides two mechanisms to send the user credentials: HTTP Basic 
authentication and a Java interface provided by the TCK. If TCK framework is 
configured to use HTTP Basic authentication, an Authorization HTTP header -using 
the configured user and password values- is constructed and sent with each test case 
request. If TCK framework is configured to use the Java interface mechanism, the value 20 
obtained from the specified interface implementation will be sent as a Cookie HTTP 
header with request of the test case.  

Additionally, a portal vendor may indicate that certain test cases, not required by TCK, to 
be executed in the context of an authenticated user. This is useful for vendor 
implementations that require an authenticated user for certain functionality to work. A 25 
vendor can specify the names of these test cases in a configuration file. TCK will consult 
this file to decide if user authentication is needed for each test case. Refer to TCK User 
Guide to get details on the specific configuration properties. 

. 

30 





Portlet Specification CR draft, version 1.0 (4/29/2003) 111

PLT.A  

Custom Portlet Modes 

Portals may provide support for custom portlet modes. Similarly, portlets may use custom 
portlet modes. This appendix describes a list of custom portlet modes and their intended 
functionality. Portals and portlets should use these custom portlet mode names if they 5 
provide support for the described functionality. 

Portlets should use the getSupportedPortletModes method of the PortalContext 
interface to retrieve the portlet modes the portal supports. 

PLT.A.1 About Portlet Mode  

The about portlet mode should be used by the portlet to display information on the 10 
portlets purpose, origin, version etc. 

Portlet developers should implement the about portlet mode functionality by overriding 
the doDispatch method of the GenericPortlet class and checking for 
PortletMode("about").  

In the deployment descriptor the support for the about portlet mode must be declared 15 
using 

<portlet-app> 
 ... 
 <portlet> 
  ... 20 
  <supports>  
   ... 
   <portlet-mode>about</portlet-mode> 
  </supports> 
  ... 25 
 </portlet> 
 ... 
 <custom-portlet-mode> 
  <name>about</name> 
 </custom-portlet-mode> 30 
 ... 
 </portlet-app> 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 112

PLT.A.2 Config Portlet Mode  

The config portlet mode should be used by the portlet to display one or more 
configuration views that let administrators configure portlet preferences that are marked 
non-modifiable in the deployment descriptor. This requires that the user must have 
administrator rights. Therefore, only the portal can create links for changing the portlet 5 
mode into config. 

Portlet developers should implement the config portlet mode functionality by overriding 
the doDispatch method of the GenericPortlet class and checking for 
PortletMode("config").  

The CONFIG mode of portlets operates typically on shared state that is common to many 10 
portlets of the same portlet definition. When a portlet modifies this shared state via the 
PortletPreferences, for all affected portlet entities, in the doView method the 
PortletPreferences must give access to the modified state. 

In the deployment descriptor the support for the config portlet mode must be declared 
using 15 

<portlet-app> 
 ... 
 <portlet> 
  ... 
  <supports>  20 
   ... 
   <portlet-mode>config</portlet-mode> 
  </supports> 
  ... 
 </portlet> 25 
 ... 
 <custom-portlet-mode> 
  <name>config</name> 
 </custom-portlet-mode> 
 ... 30 
 </portlet-app> 

PLT.A.3 Edit_defaults Portlet Mode  

The edit_defaults portlet mode signifies that the portlet should render a screen to set 
the default values for the modifiable preferences that are typically changed in the EDIT 
screen. Calling this mode requires that the user must have administrator rights. Therefore, 35 
only the portal can create links for changing the portlet mode into edit_defaults. 

Portlet developers should implement the edit_defaults portlet mode functionality by 
overriding the doDispatch method of the GenericPortlet class and checking for 
PortletMode("edit_defaults "). 



Portlet Specification CR draft, version 1.0 (4/29/2003) 113

In the deployment descriptor the support for the edit_defaults portlet mode must be 
declared using 

<portlet-app> 
 ... 
 <portlet> 5 
  ... 
  <supports>  
   ... 
   <portlet-mode> edit_defaults </portlet-mode> 
  </supports> 10 
  ... 
 </portlet> 
 ... 
 <custom-portlet-mode> 
  <name> edit_defaults </name> 15 
 </custom-portlet-mode> 
 ... 
 </portlet-app> 

PLT.A.4 Preview Portlet Mode  

The preview portlet mode should be used by the portlet to render output without the need 20 
of having back-end connections or user specific data available. It may be used at page 
design time and in portlet development tools. 

Portlet developers should implement the preview portlet mode functionality by 
overriding the doDispatch method of the GenericPortlet class and checking for 
PortletMode("preview "). 25 

In the deployment descriptor the support for the preview portlet mode must be declared 
using 

<portlet-app> 
 ... 
 <portlet> 30 
  ... 
  <supports>  
   ... 
   <portlet-mode> preview </portlet-mode> 
  </supports> 35 
  ... 
 </portlet> 
 ... 
 <custom-portlet-mode> 
  <name> preview </name> 40 
 </custom-portlet-mode> 
 ... 
 </portlet-app> 



Portlet Specification CR draft, version 1.0 (4/29/2003) 114

PLT.A.5 Print Portlet Mode  

The printportlet mode signifies that the portlet should render a view that can be printed. 

Portlet developers should implement the printportlet mode functionality by overriding 
the doDispatch method of the GenericPortlet class and checking for 
PortletMode("print"). 5 

In the deployment descriptor the support for the printportlet mode must be declared 
using 

<portlet-app> 
 ... 
 <portlet> 10 
  ... 
  <supports>  
   ... 
   <portlet-mode>print</portlet-mode> 
  </supports> 15 
  ... 
 </portlet> 
 ... 
 <custom-portlet-mode> 
  <name>print</name> 20 
 </custom-portlet-mode> 
 ... 
 </portlet-app> 

 

25 



Portlet Specification CR draft, version 1.0 (4/29/2003) 115

PLT.B  

Markup Fragments 

Portlets generate markup fragments that are aggregated in a portal page document. 
Because of this, there are some rules and limitations in the markup elements generated by 
portlets. Portlets should conform to these rules and limitations when generating content. 5 

The disallowed tags indicated below are those tags that impact content generated by other 
portlets or may even break the entire portal page. Inclusion of such a tag invalidates the 
whole markup fragment. 

Portlets generating HTML fragments must not use the following tags: base, body, 
frame, frameset, head, html and title.  10 

Portlets generating XHTML and XHTML-Basic fragments must not use the following 
tags: base, body, head, html and title.  

HTML, XHTML and XHTML-Basic specifications disallow the use of certain elements 
outside of the <head> element in the document.  However, some browser 
implementations support some of these tags in other sections of the document. For 15 
example: current versions of Internet Explorer and Netscape Navigator both support the 
style tag anywhere within the document. Portlet developers should decide carefully the 
use of following markup elements that fit this description: link, meta and style. 

 

20 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) 117

PLT.C  

CSS Style Definitions 

To achieve a common look and feel throughout the portal page, all portlets in the portal 
page should use a common CSS style sheet when generating content.  

This appendix defines styles for a variety of logical units in the markup. It follows the 5 
style being considered by the OASIS Web Services for Remote Portlets Technical 
Committee.  

PLT.C.1 Links (Anchor) 

A custom CSS class is not defined for the <a> tag. The entity should use the default 
classes when embedding anchor tags. 10 

PLT.C.2 Fonts 

The font style definitions affect the font attributes only (font face, size, color, style, etc). 

Style Description Example 

portlet-font Font attributes for the “normal” fragment font. Used 
for the display of non-accentuated information. 

Normal 
Text 

portlet-font-dim Font attributes similar to the .portlet.font but the 
color is lighter. Dim Text 

 

If an portlet developer wants a certain font type to be larger or smaller, they should 
indicate this using a relative size. For example: 15 

<div class="portlet-font" style="font-size:larger">Important 
information</div> 
 
<div class="portlet-font-dim" style="font-size:80%">Small and 
dim</div> 20 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 118

PLT.C.3 Messages 

Message style definitions affect the rendering of a paragraph (alignment, borders, 
background color, etc) as well as text attributes. 

Style Description Example 

portlet-msg-status Status of the current 
operation. Progress: 80% 

portlet-msg-info Help messages, general 
additional information, etc. Info about 

portlet-msg-error Error messages. Portlet not available 

portlet-msg-alert Warning messages. Timeout occurred, try again 
later 

portlet-msg-success Verification of the successful 
completion of a task. 

Operation completed 
successfully 

PLT.C.4 Sections 

Section style definitions affect the rendering of markup sections such as table, div and 5 
span (alignment, borders, background color, etc) as well as their text attributes. 

Style Description 
portlet-section-header Table or section header 
portlet-section-body Normal text in a table cell 
portlet-section-alternate Text in every other row in the cell 
portlet-section-selected Text in a selected cell range 
portlet-section-subheader Text of a subheading 
portlet-section-footer Table or section footnote 

portlet-section-text 
Text that belongs to the table but does not fall in one of 
the other categories (e.g. explanatory or help text that is 
associated with the section). 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 119

PLT.C.5 Forms 

Form styles define the look-and-feel of the elements in an HTML form. 

Style Description 

portlet-form-label Text used for the descriptive label of the whole form 
(not the labels for fields. 

portlet-form-input-field Text of the user-input in an input field. 
portlet-form-button Text on a button 

portlet-icon-label Text that appears beside a context dependent action 
icon. 

portlet-dlg-icon-label Text that appears beside a “standard” icon (e.g. Ok, or 
Cancel) 

portlet-form-field-label Text for a separator of fields (e.g. checkboxes, etc.) 
portlet-form-field Text for a field (not input field, e.g. checkboxes, etc) 

 

PLT.C.6 Menus 

Menu styles define the look-and-feel of the text and background of a menu structure. This 5 
structure may be embedded in the aggregated page or may appear as a context sensitive 
popup menu. 

Style Description 

portlet-menu General menu settings such as background 
color, margins, etc 

portlet-menu-item Normal, unselected menu item. 
portlet-menu-item-selected Selected menu item. 

portlet-menu-item-hover Normal, unselected menu item when the 
mouse hovers over it. 

portlet-menu-item-hover-selected Selected menu item when the mouse hovers 
over it. 

portlet-menu-cascade-item Normal, unselected menu item that has sub-
menus. 

portlet-menu-cascade-item-selected Selected sub-menu item that has sub-menus. 

portlet-menu-description Descriptive text for the menu (e.g. in a help 
context below the menu) 

portlet-menu-caption Menu caption 

 





Portlet Specification CR draft, version 1.0 (4/29/2003) 121

PLT.D  

User Information Attribute Names 

This appendix defines a set of attribute names for user information and their intended 
meaning. To allow portals an automated mapping of commonly used user information 
attributes portlet programmers should use these attribute names. These attribute names 5 
are derived from the Platform for Privacy Preferences 1.0 (P3P 1.0) Specification by the 
W3C (http://www.w3c.org/TR/P3P). The same attribute names are also being considered 
by the OASIS Web Services for Remote Portlets Technical Committee.  

 

Attribute Name 
user.bdate 
user.gender 
user.employer 
user.department 
user.jobtitle 
user.name.prefix 
user.name.given 
user.name.family 
user.name.middle 
user.name.suffix 
user.name.nickName 
user.home-info.postal.name 
user.home-info.postal.street 
user.home-info.postal.city 
user.home-info.postal.stateprov 
user.home-info.postal.postalcode 
user.home-info.postal.country 
user.home-info.postal.organization 
user.home-info.telecom.telephone.intcode 
user.home-info.telecom.telephone.loccode 
user.home-info.telecom.telephone.number 
user.home-info.telecom.telephone.ext 
user.home-info.telecom.telephone.comment 
user.home-info.telecom.fax.intcode 
user.home-info.telecom.fax.loccode 
user.home-info.telecom.fax.number 
user.home-info.telecom.fax.ext 
user.home-info.telecom.fax.comment 
user.home-info.telecom.mobile.intcode 
user.home-info.telecom.mobile.loccode 
user.home-info.telecom.mobile.number 
user.home-info.telecom.mobile.ext 
user.home-info.telecom.mobile.comment 
user.home-info.telecom.pager.intcode 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 122

user.home-info.telecom.pager.loccode 
user.home-info.telecom.pager.number 
user.home-info.telecom.pager.ext 
user.home-info.telecom.pager.comment 
user.home-info.online.email 
user.home-info.online.uri 
user.business-info.postal.name 
user.business-info.postal.street 
user.business-info.postal.city 
user.business-info.postal.stateprov 
user.business-info.postal.postalcode 
user.business-info.postal.country 
user.business-info.postal.organization 
user.business-info.telecom.telephone.intcode
user.business-info.telecom.telephone.loccode
user.business-info.telecom.telephone.number 
user.business-info.telecom.telephone.ext 
user.business-info.telecom.telephone.comment
user.business-info.telecom.fax.intcode 
user.business-info.telecom.fax.loccode 
user.business-info.telecom.fax.number 
user.business-info.telecom.fax.ext 
user.business-info.telecom.fax.comment 
user.business-info.telecom.mobile.intcode 
user.business-info.telecom.mobile.loccode 
user.business-info.telecom.mobile.number 
user.business-info.telecom.mobile.ext 
user.business-info.telecom.mobile.comment 
user.business-info.telecom.pager.intcode 
user.business-info.telecom.pager.loccode 
user.business-info.telecom.pager.number 
user.business-info.telecom.pager.ext 
user.business-info.telecom.pager.comment 
user.business-info.online.email 
user.business-info.online.uri 

NOTE: The user.bdate must consist of a string that represents the time in milliseconds 
since January 1, 1970, 00:00:00 GMT. 

PLT.D.1 Example 

Below is an example of how these attributes may be used in the deployment descriptor: 

<portlet-app> 5 
 ... 
 <user-attribute> 
    <name> user.name.prefix</name> 
 </user-attribute> 
 <user-attribute> 10 
    <name> user.name.given</name> 
 </user-attribute> 
 <user-attribute> 
    <name> user.name.family</name> 
 </user-attribute> 15 
 <user-attribute> 
    <name> user.home-info.postal.city</name> 
 </user-attribute> 
 ... 
<.portlet-app> 20 



Portlet Specification CR draft, version 1.0 (4/29/2003) 123

PLT.E  

TCK Assertions 

The following is the list of assertions that have been identified in the Portlet Specification 
for the purposes of the compliance test.  

Assertions marked as Testable=false are not verifiable. 5 

 

                                                 

 

i SPEC:1  Testable=false  Section=PLT.5.1 

ii SPEC:2  Testable=false  Section=PLT.5.1 

iii SPEC:3 Testable=false Section=PLT.5.2.1 

iv SPEC:4  Testable=true  Section=PLT.5.2.2  

v SPEC:5  Testable=true  Section=PLT.5.2.2.1 

vi SPEC:6  Testable=true  Section=PLT.5.2.2.1 

vii SPEC:7  Testable=true  Section=PLT.5.2.2.1 

viii SPEC:8  Testable=true  Section=PLT.5.2.2.1 

ix SPEC:9  Testable=true  Section=PLT 5.2.4 

x SPEC:10  Testable=true  Section=PLT 5.2.4 

xi SPEC:11  Testable=true  Section=PLT 5.2.4.1 

xii SPEC:12  Testable= true  Section=PLT.5.2.4.1 

xiii SPEC:13  Testable= true  Section=PLT.5.2.4.2.1 

xiv SPEC:14  Testable= true  Section=PLT.5.2.4.2.1 

 



Portlet Specification CR draft, version 1.0 (4/29/2003) 124

                                                                                                                                                 

xv SPEC:15  Testable= true  Section=PLT.5.2.4.2.1 

xvi SPEC:16  Testable=true  Section=PLT 5.2.4.2.1 

xvii SPEC:17  Testable= true  Section=PLT.5.2.4.4 

xviii SPEC:18  Testable=false  Section=PLT.5.2.4.4 

xix SPEC:19  Testable= true  Section=PLT.5.2.4.4. 

xx SPEC:20  Testable=false  Section=PLT/5.2.5 

xxi SPEC:21  Testable= false  Section=PLT.5.2.5 

xxii SPEC:22  Testable=false  Section=PLT.5.2.5 

xxiii SPEC:23  Testable= false  Section=PLT.5.2.5 

xxiv SPEC:24  Testable= true  Section=PLT.6.2 

xxv SPEC:25  Testable= true  Section=PLT.6.2 

xxvi SPEC:26  Testable= true    Section=PLT.6.2 

xxvii SPEC:27  Testable= true    Section=PLT.6.2 

xxviii SPEC:28 Testable= true    Section=PLT.6.2 

xxix SPEC:29 Testable= true    Section=PLT.6.2 

xxx SPEC:30 Testable= true  Section=PLT.7.1.1 

xxxi SPEC:31 Testable= true  Section=PLT.7.1.1 

xxxii SPEC:32  Testable= true    Section=PLT.6.2 

xxxiii SPEC:33  Testable=true  Section=PLT.8.5 

xxxiv SPEC:34 Testable=true  Section=PLT.8.6 

xxxv SPEC:35 Testable=true  Section=PLT.8.6 

xxxvi SPEC:36 Testable=false  Section=PLT.8.6 

xxxvii SPEC:37 Testable=true  Section=PLT.9.4 

xxxviii SPEC:38 Testable=false  Section=PLT.10.1 



Portlet Specification CR draft, version 1.0 (4/29/2003) 125

                                                                                                                                                 

xxxix SPEC:39 Testable=false  Section=PLT.10.1 

xl SPEC:40 Testable=true  Section=PLT.10.3 

xli SPEC:41 Testable=true  Section=PLT.10.3 

xlii SPEC:42 Testable=true  Section=PLT.10.3 

xliii SPEC:43 Testable=true  Section=PLT.10.3 

xliv SPEC:44 Testable=true  Section=PLT.10.3(servlet spec) 

xlv SPEC:45 Testable=true  Section=PLT.11.1.1 

xlvi SPEC:46  Testable= true    Section=PLT.11.1.1 

xlvii SPEC:47 Testable=true  Section=PLT.11.1.1 

xlviii SPEC:48 Testable=true  Section=PLT.11.1.1 

xlix SPEC:49   Testable= true    Section=PLT.11.1.1 

l SPEC:50 Testable=true  Section=PLT.11.1.1 

li SPEC:51  Testable=true Section=PLT.11.1.1 

lii SPEC:52 Testable=true  Section=PLT.11.1.1 

liii SPEC:53 Testable=false  Section=PLT.11.1.2 

liv SPEC:54 Testable=true  Section=PLT.11.1.5 

lv SPEC:55  Testable=true  Section=PLT.11.1.5 

lvi SPEC:56  Testable=true  Section=PLT.11.1.6 

lvii SPEC:57 Testable=true  Section=PLT.11.1.7 

lviii SPEC:58  Testable=true  Section=PLT.11.2.1 

lix SPEC:59 Testable=true  Section=PLT.11.2.1 

lx SPEC:60 Testable=true  Section=PLT.12.2.1 

lxi SPEC:61  Testable=true    Section=PLT.12.2.1 

lxii SPEC:62 Testable=true  Section=PLT.12.2.2 



Portlet Specification CR draft, version 1.0 (4/29/2003) 126

                                                                                                                                                 

lxiii SPEC:63 Testable=true  Section=PLT.12.2.2 

lxiv SPEC:64 Testable= true    Section=PLT.12.2.2 

lxv SPEC:65 Testable= true    Section=PLT.12.2.2 

lxvi SPEC:66  Testable=true    Section=PLT.12.2.2 

lxvii SPEC:67 Testable=true  Section=PLT.12.2.3 

lxviii SPEC:68  Testable=true  Section=PLT.12.3.1 

lxix SPEC:69  Testable= true    Section=PLT.12.3.1 

lxx SPEC:70  Testable= true    Section=PLT.12.3.1 

lxxi SPEC:71  Testable= true    Section=PLT.12.3.2 

lxxii SPEC:72 Testable=true   Section=PLT.12.3.3 

lxxiii SPEC:73 Testable=true   Section=PLT.12.3.3 

lxxiv SPEC:74 Testable=true   Section=PLT.12.3.3 

lxxv SPEC:75 Testable=true   Section=PLT.12.3.3 

lxxvi SPEC:76 Testable=true   Section=PLT.12.3.3 

lxxvii SPEC:77 Testable=true   Section=PLT.12.3.3 

lxxviii SPEC:78 Testable=true   Section=PLT.12.3.3 

lxxix SPEC:79 Testable=true Section=PLT.12.3.4 

lxxx SPEC:80 Testable=false   Section=PLT.12.3.5 

lxxxi SPEC:81 Testable=true  Section=PLT.14.1 

lxxxii SPEC:82 Testable=true  Section=PLT.14.1 

lxxxiii SPEC:83 Testable=true  Section=PLT.14.1 

lxxxiv SPEC:84 Testable=true  Section=PLT.14.1 

lxxxv SPEC:85 Testable=true  Section=PLT.14.1 

lxxxvi SPEC:86  Testable= true    Section=PLT.14.1 



Portlet Specification CR draft, version 1.0 (4/29/2003) 127

                                                                                                                                                 

lxxxvii SPEC:87 Testable=true  Section=PLT.14.1 

lxxxviii SPEC:88 Testable=true  Section=PLT.14.3 

lxxxix SPEC:89 Testable=true  Section=PLT.14.3 

xc SPEC:90 Testable=false  Section=PLT.14.4 

xci SPEC:91 Testable=false Section=PLT.14.4 

xcii SPEC:92 Testable=true  Section=PLT.14.4 

xciii SPEC:93 Testable=true  Section=PLT.14.4 

xciv SPEC:94 Testable=true  Section=PLT.14.4 

xcv SPEC:95 Testable=true  Section=PLT.15.1 

xcvi SPEC:96 Testable=true  Section=PLT.15.1 

xcvii SPEC:97 Testable=true  Section=PLT.15.2 

xcviii SPEC:98 Testable=true  Section=PLT.15.2 

xcix SPEC:99 Testable=true  Section=PLT.15.3 

c SPEC:100 Testable=true  Section=PLT.15.3 

ci SPEC:101 Testable=true  Section=PLT.15.3 

cii SPEC:102 Testable=true  Section=PLT.15.4 

ciii SPEC:103 Testable=true  Section=PLT.15.4 

civ SPEC:104 Testable=true  Section=PLT.15.4 

cv SPEC:105 Testable=true  Section=PLT.15.4 

cvi SPEC:106 Testable=true  Section=PLT.15.4.1 

cvii SPEC:107 Testable=true  Section=PLT.15.4.1 

cviii SPEC:108 Testable=true  Section=PLT.15.4.1 

cix SPEC:109 Testable=true  Section=PLT.15.8(servlet spec) 

cx SPEC:110 Testable=true  Section=PLT.16.1 



Portlet Specification CR draft, version 1.0 (4/29/2003) 128

                                                                                                                                                 

cxi SPEC:111 Testable=true  Section=PLT.16.1 

cxii SPEC:112  Testable= true    Section=PLT.16.1.1 

cxiii SPEC:113  Testable=true  Section=PLT.16.2 

cxiv SPEC:114 Testable=true  Section=PLT.16.2 

cxv SPEC:115 Testable=true  Section=PLT.16.3.1 

cxvi SPEC:116  Testable=true  Section=PLT.16.3.2 

cxvii SPEC:117 Testable=true  Section=PLT.16.3.3 

cxviii SPEC:118 Testable=true Section=PLT.16.3.3 

cxix SPEC:119  Testable=true  Section= PLT.16.3.3 

cxx SPEC:120 Testable=true   Section=PLT.16.3.3 

cxxi SPEC:121 Testable=true   Section=PLT.16.3.3 

cxxii SPEC:122 Testable=true   Section=PLT.16.3.3 

cxxiii SPEC:123 Testable=false   Section=PLT.16.3.3 

cxxiv SPEC:124 Testable=true  Section= PLT.16.3.3 

cxxv SPEC:125 Testable=true  Section= PLT.16.3.3 

cxxvi SPEC:126 Testable=true  Section= PLT.16.3.3 

cxxvii SPEC:127 Testable=true  Section= PLT.16.3.3 

cxxviii SPEC:128 Testable=false(impl)  Section= PLT.16.3.3 

cxxix SPEC:129 Testable=true  Section= PLT.16.3.3 

cxxx SPEC:130  Testable=true  Section=PLT.16.3.4 

cxxxi SPEC:131  Testable=true  Section=PLT.16.3.4 

cxxxii SPEC:132 Testable=false(impl)  Section=PLT.17.1 

cxxxiii SPEC:133 Testable=false(impl) Section=PLT.17.2 

cxxxiv SPEC:134 Testable= false(impl) Section=PLT.17.2 



Portlet Specification CR draft, version 1.0 (4/29/2003) 129

                                                                                                                                                 

cxxxvSPEC:135 Testable= false Section= PLT.19.2  

cxxxvi SPEC:136 Testable= false   Section= PLT.19.2 

cxxxvii SPEC:137 Testable=false  Section= PLT.19.5 

cxxxviii SPEC:138 Testable=true  Section=PLT.19.5(servlet spec) 

cxxxix SPEC:139 Testable=true  Section= PLT.20.2 

cxl  SPEC:140  Testable=true  Section= PLT.20.2 

cxli SPEC:141 Testable=true  Section= PLT.20.2 

cxlii SPEC:142 Testable=true    Section= PLT.20.4 

cxliii SPEC:143 Testable=true    Section= PLT.20.4 


	Portlet Specification
	Preface
	Additional Sources
	Who Should Read This Specification
	API Reference
	Other Java™ Platform Specifications
	Other Important References
	Terminology
	Providing Feedback
	Acknowledgements

	Overview
	What is a Portal?
	What is a Portlet?
	What is a Portlet Container?
	An Example
	Relationship with Java 2 Platform, Enterprise Edition

	Relationship with the Servlet Specification
	Bridging from Portlets to Servlets/JSPs
	Relationship Between the Servlet Container and the Portlet Container

	Concepts
	Elements of a Portal Page
	Portal Page Creation
	Portal Page Request Sequence

	The Portlet Interface
	Number of Portlet Instances
	Portlet Life Cycle
	Loading and Instantiation
	Initialization
	Portlet Window
	Request Handling
	End of Service


	Portlet Config
	Initialization Parameters
	Portlet Resource Bundle

	Portlet URLs
	PortletURL
	Including a Portlet Mode or a Window State
	Portlet URL security


	Portlet Modes
	VIEW Portlet Mode
	EDIT Portlet Mode
	HELP Portlet Mode
	Custom Portlet Modes
	GenericPortlet Render Handling
	Defining Portlet Modes Support

	Window States
	NORMAL Window State
	MAXIMIZED Window State
	MINIMIZED Window State
	Custom Window States

	Portlet Context
	Scope of the Portlet Context
	Portlet Context functionality
	Relationship with the Servlet Context
	Correspondence between ServletContext and PortletContext methods


	Portlet Requests
	PortletRequest Interface
	Request Parameters
	Extra Request Parameters
	Request Attributes
	Request Properties
	Request Context Path
	Security Attributes
	Response Content Types
	Internationalization
	Portlet Mode
	Window State

	ActionRequest Interface
	Retrieving Uploaded Data

	RenderRequest Interface
	Lifetime of the Request Objects

	Portlet Responses
	PortletResponse Interface
	Response Properties
	URLs encoding

	ActionResponse Interface
	Redirections
	Portlet Modes and Window State Changes
	Render Parameters

	RenderResponse Interface
	Content Type
	Output Stream and Writer Objects
	Buffering
	Namespace encoding
	Portlet Title

	Lifetime of Response Objects

	Portal Context
	Portlet Preferences
	PortletPreferences Interface
	Preference Attributes Scopes
	Preference Attributes definition
	Localizing Preference Attributes

	Validating Preference values

	Sessions
	Creating a Session
	Session Scope
	Binding Attributes into a Session
	Relationship with the Web Application HttpSession
	HttpSession Method Mapping

	Reserved HttpSession Attribute Names
	Session Timeouts
	Last Accessed Times
	Important Session Semantics

	Dispatching Requests to Servlets and JSPs
	Obtaining a PortletRequestDispatcher
	Query Strings in Request Dispatcher Paths

	Using a Request Dispatcher
	The Include Method
	Included Request Parameters
	Included Request Attributes
	Request and Response objects for Included Servlets/JSPs
	Error Handling


	User Information
	Defining User Attributes
	Accessing User Attributes
	Important Note on User Information

	Caching
	Expiration Cache

	Portlet Applications
	Relationship with Web Applications
	Relationship to PortletContext
	Elements of a Portlet Application
	Directory Structure
	Portlet Application Classloader
	Portlet Application Archive File
	Portlet Application Deployment Descriptor
	Replacing a Portlet Application
	Error Handling
	Portlet Application Environment

	Security
	Introduction
	Roles
	Programmatic Security
	Specifying Security Constraints
	Propagation of Security Identity in EJBTM Calls

	Packaging and Deployment Descriptor
	Portlet and Web Application Deployment Descriptor
	Packaging
	Example Directory Structure
	Version Information

	Portlet Deployment Descriptor Elements
	Rules for processing the Portlet Deployment Descriptor
	Deployment Descriptor
	Pictures of the structure of a Deployment Descriptor
	Uniqueness of Deployment Descriptor Values
	Localization
	Localization of Deployment Descriptor Values
	Supported Locales by the Portlet

	Deployment Descriptor Example
	Resource Bundles
	Resource Bundle Example

	Portlet Tag Library
	defineObjects Tag
	actionURL Tag
	renderURL Tag
	encode Tag
	param Tag

	Technology Compatibility Kit Requirements
	TCK Test Components
	TCK Requirements
	Declarative configuration of the portal page for a TCK test
	Programmatic configuration of the portal page for a test
	Test Portlets Content
	Test Cases that Require User Identity


	Custom Portlet Modes
	Markup Fragments
	CSS Style Definitions
	User Information Attribute Names
	TCK Assertions


