Portlet Specification

Version 1.0 (20030709)

Send comments about this document to: jsr-168-comments@jcp.org

10

July 9, 2003

Alejandro Abdelnur (alejandro.abdelnur@sun.com)
15 Stefan Hepper (sthepper@de.ibm.com)

10

15

20

25

30

35

Portlet Specification (''Specification'')

Version: 1.0
Status: Pre-FCS

Specification Lead: Sun Microsystems, Inc. and IBM Corporation (collectively "Specification Lead')

Release: July 14, 2003

Copyright 2003 Sun Microsystems, Inc. and IBM Corporation

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one
or more U.S. patents, foreign patents, or pending applications. Except as provided under the following
license, no part of the Specification may be reproduced in any form by any means without the prior written
authorization of Specification Lead and its licensors., if any. Any use of the Specification and the
information described therein will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, Specification Lead hereby grants you a fully-paid, non-
exclusive, non-transferable, limited license (without the right to sublicense) under Specification Lead's
intellectual property rights to review the Specification only for the purposes of evaluation. This license
includes the right to discuss the Specification (including the right to provide limited excerpts of text to the
extent relevant to the point[s] under discussion) with other licensees (under this or a substantially similar
version of this Agreement) of the Specification. Other than this limited license, you acquire no right, title or
interest in or to the Specification or any other Specification Lead intellectual property, and the
Specification may only be used in accordance with the license terms set forth herein. This license will
expire on the earlier of: (i) two (2) years from the date of Release listed above: (ii) the date on which the
final version of the Specification is publicly released; or (iii) the date on which the Java Specification

Request (JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate

immediately without notice from Specification Lead if you fail to comply with any provision of this
license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors,
the Specification Lead or the Specification Lead's licensors is granted hereunder. Sun, Sun Microsystems,
the Sun logo. Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN

Portlet Specification PR draft, version 1.0 (7/9/2003) 3

10

15

20

25

30

35

40

DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY
SPECIFICATION LEAD. SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS., TRADE SECRETS OR OTHER RIGHTS.
This document does not represent any commitment to release or implement any portion of the Specification

in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION. IF ANY.
SPECIFICATION LEAD MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such

changes in the Specification will be governed by the then-current license for the applicable version of the
Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW. IN NO EVENT WILL SPECIFICATION LEAD OR
ITS LICENSORS BE LIABLE FOR ANY DAMAGES., INCLUDING WITHOUT LIMITATION, LOST
REVENUE, PROFITS OR DATA, OR FOR SPECIAL., INDIRECT, CONSEQUENTIAL, INCIDENTAL
OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY. ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING
OR ANY USE OF THE SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Specification Lead (and its licensors) harmless from any claims based on your use of the
Specification for any purposes other than the limited right of evaluation as described above, and from any
claims that later versions or releases of any Specification furnished to you are incompatible with the
Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government's rights in the Specification and
accompanying documentation shall be only as set forth in this license: this is in accordance with 48 C.F.R.
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide Specification Lead with
any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate,
disclose, and use without limitation the Feedback for any purpose related to the Specification and future
versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.

Portlet Specification PR draft, version 1.0 (7/9/2003) 4

10

15

The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations
in other countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges
that it has the responsibility to obtain such licenses to export, re-export or import as may be required after
delivery to Licensee.

Neither party may assign or otherwise transfer any of its rights or obligations under this Agreement,
without the prior written consent of the other party, except that Specification Lead may assign this

Agreement to an affiliated company.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of this Agreement. No
modification to this Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

(LFI#133343/Form ID#011801)

Portlet Specification PR draft, version 1.0 (7/9/2003) 5

10

15

20

25

30

35

Contents

Portlet SPeCIfiCAtiONeiiiiiiiiiie et e 1
PLT.T PIEACE . ..eeeiiiiteeee et et et e 11
PLT.1.1 Additional SOUICEScccuuvieriiiiiriiieeniiie ettt et 11
PLT.1.2 Who Should Read This Specification.............ccccueeeviiiiieeniiiieeeiiiee e 11
PLT.1.3 APT REfEICNCEceeuviieiiieiiiieeie et 12
PLT.1.4 Other Java™ Platform Specificationscccceeeeviiiiiieniiiieeeiiiee e 12
PLT.1.5 Other Important Referencescoceieriiiiniiiiniiiinieenicceec e 12
PLT.1.6 TerminOlO@Ycuuvviieeiiiiieeeiiiee ettt ettt ettt e et e e et ee e s enraeeeeaes 13
PLT.1.7 Providing Feedbackccciiiiiiiiiiiiiiiieeee e 13
PLT.1.8 Acknowledgementscccuuiieiiiiiiieiiiiieeeeiieeeeeieee et e e ee e e eaeee e 13
PLT.2 OVEIVIEW...ceitiiiiitiie ittt ettt ettt ettt ettt e rat e et e st e e st e s e e 15
PLT.2.1 What is @ POrtal?........ccooiiiiiiiiiiiiie et 15
PLT.2.2 What 1S @ POTtIEt?.......coiiiiiiiiiiiii et 15
PLT.2.3 What is a Portlet Container?ccceevueeinieeeniieeniieeniiee e 15
PLT.2.4 AN EXAMPLC...cciiiiiiiiiiiiiiiieeiiiee ettt et et e ibaee e 16
PLT.2.5 Relationship with Java 2 Platform, Enterprise Edition.............ccocceevnieennen. 16
PLT.3 Relationship with the Servlet Specification.............ccoocueiiriiiiniiiiniieiiiecieee 17
PLT.3.1 Bridging from Portlets to ServIets/JSPScccoooiiiniiiiniiiiiicce e, 18
PLT.3.2 Relationship Between the Servlet Container and the Portlet Container......... 19
PLT .4 CONCEPLS .eveveiieeiiiiiiiiitieeee ettt e e e ettt e e e e e e s sttt eeeeeeeseaanbbbeeeeeeeeeennnnns 21
PLT.4.1 Elements of a Portal Pageccccouviieiiiiiiiiiiiieeeiee e 21
PLT.4.2 Portal Page Creationc..covuiiiriiiiniieeniieeeiie ettt 22
PLT.4.3 Portal Page Request SEqUENCeceeviviiiieiiiiiieeiiiiie et 22
PLT.5 The Portlet INterfacecooiiiiiiiiiiiiiieniiceiiee e 23
PLT.5.1 Number of Portlet INStances.oocueteriieiniieiniieeniieeniiee e 23
PLT.5.2 Portlet Life CYCLe ..oooeiiiiiiiiiiiie et e 23
PLT.5.2.1 Loading and Instantiation..............cceorueiiiiieinieieniieeniicenieec e 24
PLT.5.2.2 INTtAlZAtIONeiiiiiiiiiieiiiee et 24
PLT.5.2.3 Portlet WindOWccc.uiiiiiiiiiiieiiie e 25
PLT.5.2.4 Request HaNAIING.........cooiiiiiiiiiiiiiiiieecccee e 26
PLT.5.2.5 ENd Of SEIVICE...ccuutiiiiiiiiiiiieiiie et 30
PLT.0 POrtlet COnTiZ.......vviiiiiiiiiie ettt e et e e e e e e 31
PLT.6.1 Initialization Parameterscoocuieieeiiiiieeniiiiee et 31
PLT.6.2 Portlet Resource Bundlecooouiiiiiiiiniiiiniiiiiicccieeeee e 31
PLT.7 POTtIEt URLS ...ooiuiiiiiiiiiiiiee ettt 33
PLT.7.1 POTtICtURLcoiiiiiiiiiiiiie et e 33
PLT.7.1.1 Including a Portlet Mode or a Window Stateccocceeeviieiniieennneenne 34

Portlet Specification PR draft, version 1.0 (7/9/2003) 7

10

15

20

25

30

35

40

45

PLT.7.1.2 Portlet URL SECUIILYccevruviiieeiiiieeeeiiieeeeiieeeeeeiieee e e e e 34

PLT.8 POIIEt IMOAES ...ttt e 37
PLT.8.1 VIEWPoOrtlet MOde.....cccceiiiiiiiiiiiiiiiiiiiiieccc et 37
PLT.8.2 EDIT Portlet MOde.....ccceeiiiiiiiiiiiiiiiiiiiiecicceeeee e 37
PLT.8.3 HELP Portlet MOde.......c.cooiiiiiiiiiiiiiiiiicccccee e 38
PLT.8.4 Custom Portlet MOdEsceoviiiiriiiiniiiiniieeeiicecee e 38
PLT.8.5 GenericPortlet Render Handlingcccoeeviiiiiiiiiiiiiiiiiieeeiee e 39
PLT.8.6 Defining Portlet Modes SUPPOTt..........ccovcuiiiiiiiiiiieeiiiiie et 39

PLT.O WiINAOW STAteSeeeiiiiiiiiiiieiiieeiiieeeiee ettt sttt s e e 41
PLT.9.1 NORMAL WiINdOW Statec.eeeruiiiriiiiniieeniieeniiee sttt sieeesieeesieee e 41
PLT.9.2 MAXIMIZED WINdoW Stateccooiurriiiiieeiiiiiiiiiiiieeeeeeeeeiinreee e e e 41
PLT.9.3 MINIMIZED WIndow Statecccoivriiiiiieeiiiiiiiiiiieeeeeeeeeiiireeeeee e e 41
PLT.9.4 Custom WindOw States..........corrurieriiiiniieiniieeniieeriee ettt 41

PLT.10 POrtlet CONtEXLccvuuiiiiiiiiiiiieiiieeiieee ettt sttt 43
PLT.10.1 Scope of the Portlet CONtEeXtcccueviriiriniiiiiiiieiiieericeeee e 43
PLT.10.2 Portlet Context functionalitycceevvuiiieeiriiiiieeiniiiie e e 43
PLT.10.3 Relationship with the Servlet Contextcoooveiriiiiniiieniiiiniieeiieeeene 43

PLT.10.3.1 Correspondence between ServletContext and PortletContext methods. 44

PLT.11 POrtlet REQUESTS.....cceiiiiiieiiiiiieeeiiiiee ettt et e et e e e es 45

PLT.11.1 PortletRequest INterface...........cceovviiiiiiiiniiiiniiiececceee e 45
PLT.11.1.1 Request Parameters.........c.eeeeiviiiiiiniiiieiiiiiec e 45
PLT.11.1.2 Extra Request Parameters............cccoviiiiiiiiiiieiinniiiccciiieec e 46
PLT.11.1.3 Request AttriDULESccovueiiriiieeiiie ettt 46
PLT.11.1.4 Request PrOPETties.......ccccueiiriiiieniiieeiiieeiiie et 47
PLT.11.1.5 Request Context Pathc.ccccooiiiiiiiiiiiiiicecec e 47
PLT.11.1.6 Security AttrIDULESccccouviieeeiiiieeeeiiiieeeeiiee e et e e e eeeireee e e 47
PLT.11.1.7 Response Content TYPESceeeeeeeerrriiiiiiiiieeeeiiiiiiiieeeeeeeeesniiiieeeeeaens 48
PLT.11.1.8 InternationaliZationcc.ceeeriueeeiiiieeiniie et 48
PLT.11.1.9 POrtlet MOdEeeeiiiiiiiiiieiiieeie e 49
PLT.11.1.10 WIndow State........cc.eemriiiiiiiiiiiieeiiie ettt 49

PLT.11.2 ActionRequest INterface.............coovviiiiiiiiniiiiniiiiniccec e 49
PLT.11.2.1 Retrieving Uploaded Data............cccooieiiiiiiiiiiiiniiieniicencceeee e 49

PLT.11.3 RenderRequest INterface...........coccvviieiiiiiiiiiiiiiieceiiie e 50

PLT.11.4 Lifetime of the Request ObJeCtSccccuuiieeriiiiieeiiiieeeeiieee et 50

PLT.12 POrtlet RESPONSES ...cceoueviiieeiiiiieeeiiiiie ettt e ettt e e et e e e et e e e eebaeeeeeneneas 51

PLT.12.1 PortletResponse INterfaceccoocueeeviiiiniiiiniiiiniiceniceec e 51
PLT.12.1.1 ReSPONSe PrOPEItIEScccuviiriiiiiiiiiiiiee ittt 51
PLT.12.1.2 Encoding of URLScccoiiiiiiiiiiiieeiiie e 51

PLT.12.2 ActionResponse INterfaceccooveiiiiiiiniiiiniiiinieeececc e 52
PLT.12.2.1 REITECIONS ...ceuutieiniiieiiiie ettt e 52
PLT.12.2.2 Portlet Modes and Window State Changescccceecuveeieeniiieneennne. 52
PLT.12.2.3 Render Parametersc.coovueeeriieiniieiiiieeriieeciee e 52

PLT.12.3 RenderResponse Interface...........cccueiveeiiiiiiiiniiiiiiiiiie e 53
PLT.12.3.1 CONtENt TYPE .uvvveiiiiieeeeeiiiiiiieeee ettt e e ettt e e e e e e e siiiaeeeeae s 53
PLT.12.3.2 Output Stream and Writer ObjJects........c.cceveviiiiniiiiiniiiiniieeiiee e 53
PLT.12.3.3 BUETING....c.iviiiieeiiiie ettt e 54

Portlet Specification PR draft, version 1.0 (7/9/2003) 8

10

15

20

25

30

35

40

45

PLT.12.3.4 Namespace eNCOAINE.........ueteerruiieeeeiiiiieeeiiieeeeniiieeeesieeeeeeenreeeeeenees 55

PLT.12.3.5 POTtlet Titleccveeiieeiieeiiesiieeiee e 55
PLT.12.4 Lifetime of ReSponse ODJECtSeieeiriiiireiriiiieeeiiiee et 55
PLT.13 POrtal COntEXt......eevuuiiiiiieiiiieeiiieeeii ettt sttt st e s 57
PLT.14 Portlet Preferences.c.ueiiiiiiiiiiiiiiiieiieeeeeeee et 59
PLT.14.1 PortletPreferences INterfacecccoovveiiniiiiniiiiniiiiccc e, 59
PLT.14.2 Preference Attributes SCOPEScoouvviieeiiiiiieeeiiiiieeeiieee et e e e e e 60
PLT.14.3 Preference Attributes definitioncceeoueeeriiiiniieiniiieiiiiceiccciee e 61
PLT.14.3.1 Localizing Preference Attributescccceeeviieiniiiiniiiiiiiecniieeieeee, 61
PLT.14.4 Validating Preference values............ccoocueiiniiiiniiiiniieiiicecc e, 62
PLT .15 SESSIONS. ..ceuutiteiitieeitite ettt ettt ettt ettt ettt e sttt e et e et e e st e e st e e sabeeesbeee s 63
PLT.15.1 Creating @ SESSI0M ...cc.uvviiiiiiiiieeeeiiiieeeeiieee et ee ettt e e eatee e e eebaeeeeeenaeeees 63
PLT.15.2 SESSI0N SCOPE ...uvtiieiiiiiieeiiiiiie ettt e ettt e ettt e e et e e e ettt e e e eiabeeeeenrneaeeans 64
PLT.15.3 Binding Attributes into @ SESSIOMNc.eeeruieeriiieniieeniieeniie e 64
PLT.15.4 Relationship with the Web Application HttpSessionccceecvvveeeennnen.. 65
PLT.15.4.1 HttpSession Method Mappingcccueeeeeruiieeeniiiieeeniiieeeeriieee e 65
PLT.15.5 Reserved HttpSession Attribute Names.........ccoceeeviieeniiieniieeiiieenieeeee. 65
PLT.15.6 SeSS10N TIMEOULS.....cccutiiriiiiiriiieeriie ettt ettt et et e e 66
PLT.15.7 Last AcceSSed TIMESccccuriiriiieriiiiniiieeiiieeeite ettt et 66
PLT.15.8 Important SesSion SEMANTICScueeerireeiriieeniieeniieeniieeniiee e sieeeeieees 66
PLT.16 Dispatching Requests to Servlets and JSPScccooeiiiiiiiniiiiniiieiicceee 67
PLT.16.1 Obtaining a PortletRequestDispatcher...........ccccoeeeiiiiiiiniiiiiiiiiieeeiieeee 67
PLT.16.1.1 Query Strings in Request Dispatcher Paths..............c.ccccciiiiiinnnne. 67
PLT.16.2 Using a Request DispatChercc.oiiiiiiiiiiiiiiiieeeiiee e 68
PLT.16.3 The Include Method............ccoriiiiniiiiiiiiiiieeiceeecee e 68
PLT.16.3.1 Included Request Parameters............ccueeeeeriiiieeniiiieeeniiiee e 68
PLT.16.3.2 Included Request AtribULEScoecvviieeriiiieeeeiiiiee e 69
PLT.16.3.3 Request and Response objects for Included Servlets/JSPs 69
PLT.16.3.4 Error Handlingccooouiiiiiiiiiiiieiiiieeeeiee et 70
PLT.17 User INfOrmationcccueeeiiiiiiiiieiiieeeiieeeitee ettt 71
PLT.17.1 Defining User AttribULESccoouueiiiiiiiiiie e 71
PLT.17.2 Accessing USer AttrIDULES.cceruiiieeiiiiiieeeiiieeeeeiieee et e e e e e e 72
PLT.17.3 Important Note on User Informationccoceeeviieeniiiiiniiiiniieinieecneene 72
PLT.18 CaChINGviiiiiiiiiiieeeitee ettt e e ettt e e e et e e e e ennaeeeeeenneee 73
PLT.18.1 Expiration Cacheccoviuiiiiiiiiiiiiiiiiieiicecee et 73
PLT.19 Portlet APPliCatioNSeeiiiiiiiiieeiiieeeiieeet et 75
PLT.19.1 Relationship with Web Applications............ccccueeeeiiiiieeniiiieeeniiiee e 75
PLT.19.2 Relationship to PortletContextcoocueeiriiiiniiiiniieenieesiee e 75
PLT.19.3 Elements of a Portlet Application.............ccevvuiiieeniiiieeeniiiie e 75
PLT.19.4 DIirectOry SIIUCIUIEvviieiiiiieeeiiiiieeeeiiiee e ettt ee e et e e e staeeeeeebaaeeeeenaeeeas 75
PLT.19.5 Portlet Application Classloader.............ccovvuieeriiiiniiiiniiiiiieeiecciee e 76
PLT.19.6 Portlet Application Archive Fileccccooviiiniiiiniiiiiiiicicccee 76
PLT.19.7 Portlet Application Deployment Descriptor............cceeeeviviieeeniiiieeenriieeenns 76
PLT.19.8 Replacing a Portlet Applicationccooouveeriiiiniiieiniiiiniieeiee e 76
PLT.19.9 Error Handling..........c.eviiiiiiiiiiiiiiieeeee et 76
PLT.19.10 Portlet Application Environment...........c.ceeeruieeniiieiniiieiniieenieeeniee e 76

Portlet Specification PR draft, version 1.0 (7/9/2003) 9

5

10

15

20

25

30

35

40

PLT.20 SECUIILY ...uvtiiteiiiiiee ettt ettt e e ettt e e ettt e e e et e e e esatbeeeeeensaeeeeeannsaeeeennnees 77

PLT.20.1 INtrodUCLIONeieiiieiiiie ettt e 77
PLT.20.2 ROIES ...eeeeitiieiiiite ettt ettt ettt st e e 77
PLT.20.3 ProgrammatiC SECUIILYc..eeeeiiiiiiieiiiiiieeeiiiieeeeiite e et eeeeeireeeeeineee e 77
PLT.20.4 Specifying Security CONSIAINTSccvvveeruieeriieeniieeniie et esiiee e 78
PLT.20.5 Propagation of Security Identity in EYJB™ Calls...........cccccevvvveirreirrenrnenen, 79
PLT.21 Packaging and Deployment Descriptorccueeeeeviiieeeiiiiiieeeniiiie e 81
PLT.21.1 Portlet and Web Application Deployment Descriptor...........c.ccccvvveeeennnen.n. 81
PLT.21.2 PACKAZING ...eeeeiiiiiieeiiiiie ettt ettt e e et e e et e e e nraeeeeans 81
PLT.21.2.1 Example Directory StruCtUIeccooueeerureeriieiniieeniie e 82
PLT.21.2.2 Version Informationc.cueeriieiiiiieiiiie et 82
PLT.21.3 Portlet Deployment Descriptor Elementsoccceieiiniiiiieiniiieeeenneen. 82
PLT.21.4 Rules for processing the Portlet Deployment Descriptorccccceeeeeee.. 83
PLT.21.5 Deployment DeSCIiPLOr.....cccuvuiieeiiiiieeeeiiieeeeeiiiee ettt e eeiiee e e iieeeeeeeaaee s 83
PLT.21.6 Pictures of the structure of a Deployment Descriptorc.ccccvvveeeenneen... 94
PLT.21.7 Uniqueness of Deployment Descriptor Values............cceeevvereinciiveeennnnennn. 96
PLT.21.8 LOCAHZAtIONeieiiiieiiie ettt e 96
PLT.21.8.1 Localization of Deployment Descriptor Valuescccccceevuvieeennnne. 96
PLT.21.8.2 Locales Supported by the Portlet............coccvieieiiiiieiiiiiiieiiieeeee, 96
PLT.21.9 Deployment Descriptor EXamplecoooieiriiiiniiiniiiiniieeieceiccceene 97
PLT.21.10 Resource BUundlescccovuiiiriiiiniiiiiiieeiieceeeeeete e 98
PLT.21.11 Resource Bundle EXamplecccoeeiiiiiiiiiniiiiiiiiieeeeiiee e 99
PLT.22 Portlet Tag LiDIarycooccuiiiiiiiiiiieeeiiiee ettt 101
PLT.22.1 defineODbjJects Tag........ceeeeiiiiieeiiiiieeiiiieeeeiiee ettt e e e e e 101
PLT.22.2 aCtiONURL TaE ...eiiiiiiiiiieeiiiiiie ettt 102
PLT.22.3 1enderURL Tag......cccouiiiieiiiiiie ettt e 103
PLT.22.4 €NCOAE TAZ ...coiviiieeiiiiee ettt ettt ettt e e et e e e enanaee s 104
PLT.22.5 param Tagc.eeeeiiiiiiiiiiiiiieeeeiee e 105
PLT.23 Technology Compatibility Kit Requirements..............ccovcueeeniiieeniiieeniieennneenne 107
PLT.23.1 TCK Test COMPONENLS ...ccooueeviiiiiieeeeeiiiiiiiiieeeeeeeeesiiiireeeeeeeeenniieeaeeeeaeens 107
PLT.23.2 TCK REQUITCMENLSeereeeiiiiieeiiiiieeeiiiieeeeiiieeeeeiireeeeeiteeeeennnraeesennaeeans 108
PLT.23.2.1 Declarative configuration of the portal page for a TCK test............... 108
PLT.23.2.2 Programmatic configuration of the portal page for a test.................... 110
PLT.23.2.3 Test Portlets Content.........coocuueeiiiiiiiiieiiee et 111
PLT.23.2.4 Test Cases that Require User Identity...........ccccooouvereeiiiiiieiniiiereeee, 111
PLT.A Custom Portlet MOdesccueeiiiiiiniiiiiiiieiieeeiec e 113
PLT.B Markup Fragments..........ccccoiiuiiiiiiiiiiiieiiiie ettt 117
PLT.C CSS Style DefINItiONSeeeeiiiieiriiiiiiiieeiitee sttt ettt s 119
PLT.D User Information Attribute NamMeSs..........c.ceeeeriiiiieeriiiiee e eeiiiee e 123
PLT.E TCK ASSETLIONSeeeiutieiiiiieeiiieeiitteeiteeeittesiteesiteeesiteeesibeeesiteeesbeeesbeeesnneenns 127

Portlet Specification PR draft, version 1.0 (7/9/2003) 10

10

15

20

25

30

PLT.1

Preface

This document is the Portlet Specification, v1.0. The standard for the Java portlet API is
described here.

PLT.1.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java portlets, but
if questions remain the following may be consulted:

* A reference implementation (RI) has been made available which provides a
behavioral benchmark for this specification. Where the specification leaves
implementation of a particular feature open to interpretation, implementators may
use the reference implementation as a model of how to carry out the intention of
the specification

* A Technology Compatibility Kit (TCK) has been provided for assessing whether
implementations meet the compatibility requirements of the Java portlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard

* If further clarification is required, the working group for the Java portlet API
under the Java Community Process should be consulted, and is the final arbiter of
such issues

Comments and feedback are welcomed, and will be used to improve future versions.

PLT.1.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:

* Portal server vendors that want to provide portlet engines that conform to this
standard

* Authoring tool developers that want to support web applications that conform to
this specification

* Experienced portlet authors who want to understand the underlying mechanisms
of portlet technology

We emphasize that this specification is not a user’s guide for portlet developers and is not
intended to be used as such.

Portlet Specification PR draft, version 1.0 (7/9/2003) 11

10

15

20

25

30

PLT.1.3 API Reference

An accompanying javadoc™ , includes the full specifications of classes, interfaces, and
method signatures.

PLT.1.4 Other Java™ Platform Specifications

The following Java API specifications are referenced throughout this specification:

e Java 2 Platform, Enterprise Edition, v1.3 (J2EE™)
e Java Servlet™, v2.3
* JavaServer Pages™, v1.2 (JSP™)

These specifications may be found at the Java 2 Platform,Enterprise Edition website:
http://java.sun.com/j2ee/.

PLT.1.5 Other Important References

The following Internet specifications provide information relevant to the development
and implementation of the portlet API and standard portlet engines:

¢ RFC 1630 Uniform Resource Identifiers (URI)

e RFC 1738 Uniform Resource Locators (URL)

¢ RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

* RFC 1808 Relative Uniform Resource Locators

* RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

¢ RFC 2045 MIME Part One: Format of Internet Message Bodies

¢ RFC 2046 MIME Part Two: Media Types

* RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
* RFC 2048 MIME Part Four: Registration Procedures

* RFC 2049 MIME Part Five: Conformance Criteria and Examples
* RFC 2109 HTTP State Management Mechanism

* RFC 2145 Use and Interpretation of HTTP Version Numbers

* RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

* RFC 2617 HTTP Authentication: Basic and Digest Authentication
* SO 639 Code for the representation of names of languages

* SO 3166 Code (Country) list

* OASIS Web Services for Remote Portlets (WSRP)

Portlet Specification PR draft, version 1.0 (7/9/2003) 12

10

15

20

25

Online versions of these RFC and ISO documents are at:

* http://www.rfc-editor.org/
* http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
* http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information affecting this specification and its implementations.

The WSRP specification can be found in the OASIS web site
(http://www.oasis-open.org/).

The Extensible Markup Language (XML) is used for the specification of the Deployment
Descriptors described in Chapter 13 of this specification. More information about XML
can be found at the following websites:

http://java.sun.com/xml
http://www.xml.org/

PLT.1.6 Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in [RFC2119].

PLT.1.7 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your comments
to jsr-168-comments@sun.com.

Please note that due to the volume of feedback that we receive, you will not normally

receive a reply from an engineer. However, each and every comment is read, evaluated,
and archived by the specification team.

PLT.1.8 Acknowledgements

The formulation of this community draft is the result of the teamwork of the JSR168
Expert Group.

Portlet Specification PR draft, version 1.0 (7/9/2003) 13

10

15

20

25

30

PLT.2

Overview

PLT.2.1 What is a Portal?

A portal is a web based application that —commonly- provides personalization, single
sign on, content aggregation from different sources and hosts the presentation layer of
Information Systems. Aggregation is the action of integrating content from different
sources within a web page. A portal may have sophisticated personalization features to
provide customized content to users. Portal pages may have different set of portlets
creating content for different users.

PLT.2.2 What is a Portlet?

A portlet is a Java technology based web component, managed by a portlet container, that
processes requests and generates dynamic content. Portlets are used by portals as
pluggable user interface components that provide a presentation layer to Information
Systems.

The content generated by a portlet is also called a fragment. A fragment is a piece of
markup (e.g. HTML, XHTML, WML) adhering to certain rules and can be aggregated
with other fragments to form a complete document. The content of a portlet is normally
aggregated with the content of other portlets to form the portal page. The lifecycle of a
portlet is managed by the portlet container.

Web clients interact with portlets via a request/response paradigm implemented by the
portal. Normally, users interact with content produced by portlets, for example by
following links or submitting forms, resulting in portlet actions being received by the
portal, which are forwarded by it to the portlets targeted by the user's interactions.

The content generated by a portlet may vary from one user to another depending on the
user configuration for the portlet.

PLT.2.3 What is a Portlet Container?

A portlet container runs portlets and provides them with the required runtime
environment. A portlet container contains portlets and manages their lifecycle. It also
provides persistent storage for portlet preferences. A portlet container receives requests
from the portal to execute requests on the portlets hosted by it.

Portlet Specification PR draft, version 1.0 (7/9/2003) 15

10

15

20

25

A portlet container is not responsible for aggregating the content produced by the
portlets. It is the responsibility of the portal to handle the aggregation.

A portal and a portlet container can be built together as a single component of an
application suite or as two separate components of a portal application.

PLT.2.4 An Example

The following is a typical sequence of events, initiated when users access their portal
page:

* A client (e.g., a web browser) after being authenticated makes an HTTP request to
the portal

* The request is received by the portal

* The portal determines if the request contains an action targeted to any of the
portlets associated with the portal page

* Ifthere is an action targeted to a portlet, the portal requests the portlet container to
invoke the portlet to process the action

* A portal invokes portlets, through the portlet container, to obtain content
fragments that can be included in the resulting portal page

* The portal aggregates the output of the portlets in the portal page and sends the
portal page back to the client

PLT.2.5 Relationship with Java 2 Platform, Enterprise
Edition

The Portlet API v1.0 is based on the Java 2 Platform, Enterprise Edition, v1.3. Portlet
containers and portlets meet the requirements, described in the J2EE specification, for
executing in a J2EE environment.

Due to the analogous functionality of servlets, concepts, names and behavior of the

portlet will be similar to the ones defined in the Serviet Specification 2.3 whenever
applicable.

Portlet Specification PR draft, version 1.0 (7/9/2003) 16

10

15

20

25

PLT.3
|

Relationship with the Servlet Specification

The Servlet Specification v2.3 defines servlets as follows:

“A servlet is a Java technology based web component, managed by a container, that
generates dynamic content. Like other Java-based components, servlets are platform
independent Java classes that are compiled to platform neutral bytecode that can be
loaded dynamically into and run by a Java enabled web server. Containers, sometimes
called servlet engines, are web server extensions that provide servlet functionality.
Servlets interact with web clients via a request/response paradigm implemented by the
servlet container.”

Portlets share many similarities with servlets:

Portlets are Java technology based web components

Portlets are managed by a specialized container

Portlets generate dynamic content

Portlets lifecycle is managed by a container

Portlets interact with web client via a request/response paradigm

Portlets differ in the following aspects from servlets:

Portlets only generate markup fragments, not complete documents. The Portal
aggregates portlet markup fragments into a complete portal page

Portlets are not directly bound to a URL

Web clients interact with portlets through a portal system

Portlets have a more refined request handling, action requests and render requests
Portlets have predefined portlet modes and window states that indicate the
function the portlet is performing and the amount of real state in the portal page
Portlets can exist many times in a portal page

Portlet Specification PR draft, version 1.0 (7/9/2003) 17

10

15

20

25

30

Portlets have access to the following extra functionality not provided by servlets:

* Portlets have means for accessing and storing persistent configuration and
customization data

* Portlets have access to user profile information

* Portlets have URL rewriting functions for creating hyperlinks within their
content, which allow portal server agnostic creation of links and actions in page
fragments

* Portlets can store transient data in the portlet session in two different scopes: the
application-wide scope and the portlet private scope

Portlets do not have access to the following functionality provided by servlets:

* Setting the character set encoding of the response
* Setting HTTP headers on the response
* The URL of the client request to the portal

Because of these differences, the Expert Group has decided that portlets needs to be a
new component. Therefore, a portlet is not a servlet. This allows defining a clear
interface and behavior for portlets.

In order to reuse as much as possible of the existing servlet infrastructure, the Portlet
Specification leverages functionality provided by the Servlet Specification wherever
possible. This includes deployment, classloading, web applications, web application
lifecycle management, session management and request dispatching. Many concepts and
parts of the portlet API have been modeled after the servlet API.

Portlets, servlets and JSPs are bundled in an extended web application called portlet

application. Portlets, servlets and JSPs within the same portlet application share
classloader, application context and session.

PLT.3.1 Bridging from Portlets to Servlets/JSPs

Portlets can leverage servlets, JSPs and JSP tag-libraries for generating content.

A portlet can call servlets and JSPs just like a servlet can invoke other servlets and JSPs
using a request dispatcher (see ### Dispatching Requests to Servlets and JSPs Chapter).
To enable a seamless integration between portlets and servlets the portlet specification
leverages many of the servlet objects.

Portlet Specification PR draft, version 1.0 (7/9/2003) 18

10

15

When a servlet or JSP is called from within a portlet, the servlet request given to the
servlet or JSP is based on the portlet request and the servlet response given to the servlet
or JSP is based on the portlet response. For example:

* Attributes set in the portlet request are available in the included servlet request
(see ### Dispatching Requests to Servlets and JSPs Chapter),

* The portlet and the included servlet or JSP share the same output stream (see ###
Dispatching Requests to Servlets and JSPs Chapter).

* Attributes set in the portlet session are accessible from the servlet session and vice
versa (see ### Portlet Session Chapter).

PLT.3.2 Relationship Between the Servlet Container and the
Portlet Container

The portlet container is an extension of the servlet container. As such, a portlet container
can be built on top of an existing servlet container or it may implement all the
functionality of a servlet container. Regardless of how a portlet container is implemented,
its runtime environment is assumed to support Servlet Specification 2.3.

Portlet Specification PR draft, version 1.0 (7/9/2003) 19

10

PLT.4
|

Concepts

PLT.4.1 Elements of a Portal Page

A portlet generates markup fragments. A portal normally adds a title, control buttons and
other decorations to the markup fragment generated by the portlet, this new fragment is
called a portlet window. Then the portal aggregates portlet windows into a complete
document, the portal page.

Figure 4-1 Elements of a Portal Page

| _——Decorations and controls

(8] <Title> M m] [E] 1]

|_—Portlet fragment

<

<Portlet content> | __—Portlet window

|8 <Title> M] [E] [|| |[[8] <Title> M [[E] { | -« Portal page
<Portlet content> <Portlet content>
|8 <Title> M m] [E] H |

<Portlet content>

Portlet Specification PR draft, version 1.0 (7/9/2003) 21

10

15

20

PLT.4.2 Portal Page Creation

Portlets run within a portlet container. The portlet container receives the content
generated by the portlets. Typically, the portlet container hands the portlet content to a
portal. The portal server creates the portal page with the content generated by the portlets
and sends it to the client device (i.e. a browser) where it is displayed to the user.

FIGURE 4-2 Portal Page Creation

Client Device

Portal Page

<« | Portal

B C Server

Portlet Windows

PLT.4.3 Portal Page Request Sequence

Portlet
Container

« [roma]
LT
« [romc]
<« [rome

Users access a portal by using a client device such as an HTML browser or a
web-enabled phone. Upon receiving the request, the portal determines the list of portlets
that need to be executed to satisfy the request. The portal, through the portlet container,
invokes the portlets. The portal creates the portal page with the fragments generated by
the portlets and the page is returned to the client where it is presented to the user.

Portlet Specification PR draft, version 1.0 (7/9/2003)

22

10

15

20

PLT.S
|

The Portlet Interface

The portlet interface is the main abstraction of the portlet API. All portlets implement
this interface either directly or, more commonly, by extending a class that implements the
interface.

The portlet API includes a GenericPortlet class that implements the Portlet interface
and provides default functionality. Developers should extend, directly or indirectly, the
GenericPortlet class to implement their portlets.

PLT.5.1 Number of Portlet Instances

The portlet definition sections in the deployment descriptor of a portlet application
control how the portlet container creates portlet instances.

For a portlet, not hosted in a distributed environment (the default), the portlet container
must' use only one portlet object per portlet definition.

In the case where a portlet is deployed as part of a portlet application marked as
distributable, in the web.xml deployment descriptor, a portlet container may instantiate
only one portlet object per portlet definition -in the deployment descriptor- per virtual
machine (VM). "

PLT.5.2 Portlet Life Cycle

A portlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, how it handles requests from clients, and how it is taken out
of service. This life cycle of a portlet is expressed through the init, processaction,
render and destroy methods of the portlet interface.

Portlet Specification PR draft, version 1.0 (7/9/2003) 23

10

15

20

25

30

PLT.5.2.1 Loading and Instantiation

The portlet container is responsible for loading and instantiating portlets. The loading and
instantiation can occur when the portlet container starts the portlet application, or delayed
until the portlet container determines the portlet is needed to service a request.

The portlet container must load the portlet class using the same ClassLoader the servlet
container uses for the web application part of the portlet application.” After loading the
portlet classes, the portlet container instantiates them for use.

PLT.5.2.2 Initialization

After the portlet object is instantiated, the portlet container must initialize the portlet
before invoking it to handle requests.”" Initialization is provided so that portlets can
initialize costly resources (such as backend connections), and perform other one-time
activities. The portlet container must initialize the portlet object by calling the init method
of the Portlet interface with a unique (per portlet definition) object implementing the
PortletConfig interface. This configuration object provides access to the initialization
parameters and the ResourceBundle defined in the portlet definition in the deployment
descriptor. Refer to ### Portlet Config Chapter for information about the PortletConfig
interface. The configuration object also gives the portlet access to a context object that
describes the portlet’s runtime environment. Refer to ### Portlet Context Chapter for
information about the PortletContext interface.

PLT.5.2.2.1 Error Conditions on Initialization

During initialization, the portlet object may throw an UnavailableException Or a
PortletException. In this case, the portlet container must not place the portlet object
into active service and it must release the portlet object.” The destroy method must not
be called because the initialization is considered unsuccessful.”

The portlet container may reattempt to instantiate and initialize the portlets at any time
after a failure. The exception to this rule is when an UnavailableException indicates a
minimum time of unavailability. When this happens the portlet container must wait for
the specified time to pass before creating and initializing a new portlet object.”™

A RuntimeException thrown during initialization must be handled as a
PortletException.Vlll

Portlet Specification PR draft, version 1.0 (7/9/2003) 24

10

15

20

25

PLT.5.2.2.2 Tools Considerations

The triggering of static initialization methods when a tool loads and introspects a portlet
application is to be distinguished from the calling of the init method. Developers should
not assume that a portlet is in an active portlet container runtime until the init method of
the Portlet interface is called. For example, a portlet should not try to establish
connections to databases or Enterprise JavaBeans™ containers when static (class)
initialization happens.

PLT.5.2.3 Portlet Window

The portlet definition may include a set of preference attributes with their default values.
They are used to create a preferences objects (see ### Portlet Preferences Chapter).

At runtime, when serving requests, a portlet object is associated with a preferences
object. Normally, a portlet customizes its behavior and the content it produces based on
the attributes of the associated preference object. The portlet may read, modify and add
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative means to create new preferences objects based on existing ones.
Portal/portlet-container created preferences objects may have their attributes further
customized.

When a portlet is placed in a portal page, a preferences object is also associated with it.
The occurrence of a portlet and preferences-object in a portal page is called a portlet
window. The portal/portlet-container implementation manages this association.

A portal page may contain more than one portlet window that references the same portlet
and preferences-object.

Administration, management and configuration of preferences objects and creation of
portlet windows is left to the portal/portlet-container implementation. It is also left to the
implementation to provide advanced features, such as hierarchical management of
preferences objects or cascading changes on preference attributes.

Portlet Specification PR draft, version 1.0 (7/9/2003) 25

10

15

20

25

30

PLT.5.2.4 Request Handling

After a portlet object is properly initialized, the portlet container may invoke the portlet
to handle client requests.

The portlet interface defines two methods for handling requests, the processaction
method and the render method.

When a portal/portlet-container invokes the processaction method of a portlet, the
portlet request is referred to as an action request. When a portal/portlet-container invokes
the render method of a portlet, the portlet request is referred to as a render request.

Commonly, client requests are triggered by URLs created by portlets. These URLs are
called portlet URLs. A portlet URL is targeted to a particular portlet. Portlet URLs may
be of two types, action URLs or render URLs. Refer to ### Portlet URLs Chapter for
details on portlet URLs.

Normally, a client request triggered by an action URL translates into one action request
and many render requests, one per portlet in the portal page. A client request triggered by
a render URL translates into many render requests, one per portlet in the portal page.

If the client request is triggered by an action URL, the portal/portlet-container must first
trigger the action request by invoking the processaAction method of the targeted
portlet.”™ The portal/portlet-container must wait until the action request finishes. Then, the
portal/portlet-container must trigger the render request by invoking the render method
for all the portlets in the portal page with the possible exception of portlets for which
their content is being cached.” The render requests may be executed sequentially or in
parallel without any guaranteed order.

If the client request is triggered by a render URL, the portal/portlet-container must invoke
the render method for all the portlets in the portal page with the possible exception of
portlets for which their content is being cached.™ The portal/portlet-container must not
invoke the processaction of any of the portlets in the portal page for that client request.

If a portlet has caching enabled, the portal/portlet-container may choose not to invoke the
render method. The portal/portlet-container may instead use the portlet’s cached content.

Refer to ### Caching Chapter for details on caching.

A portlet object placed into service by a portlet container may end up not handling any
request during its lifetime.

Portlet Specification PR draft, version 1.0 (7/9/2003) 26

10

15

Figure 5-1 Request Handling Sequence

Cli Portal/ Portlet Portlet Portlet
tent Portlet Container A B C
: Client Request :
oot Tt 1
1 1
1 1
1 1
1 1
! processAction() The action request
: P > - must finish before the
1 = render requests start.
1 1
1 1
: — render() - \
1 e
<

: — Fragment
1 — The render requests
! = render() o are triggered in no
: e . > specific order.

1%
1 — Fragment They may be fired
1 — one after the other or
1 — .
1 — render() in parallel.
1 1 »
! <
: = Fragment)
1 1
1 1
1 1
oo
| Portal Page |
1 1
1 1
1 1
1 1

= === NOT DEFINED BY THE PORTLET SPECIFICATION

PLT.5.2.4.1 Action Request

Typically, in response to an action request, a portlet updates state based on the
information sent in the action request parameters.

The processAction method of the Portlet interface receives two parameters,
ActionRequest and ActionResponse.

The actionRequest object provides access to information such as the parameters of the
action request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data.

While processing an action request, the portlet may instruct the portal/portlet-container to
redirect the user to a specific URL. If the portlet issues a redirection, when the
processAction method concludes, the portal/portlet-container must send the redirection
back to the user agent™ and it must finalize the processing of the client request.

A portlet may change its portlet mode and its window state during an action request. This
is done using the ActionResponse object. The change of portlet mode must be effective

Portlet Specification PR draft, version 1.0 (7/9/2003) 27

10

15

20

25

30

for the following render request the portlet receives. There are some exceptional
circumstances, such as changes access control privileges, that could prevent the portlet
mode change from happening. The change of window state should be effective for the
following render request the portlet receives. The portlet should not assume that the
subsequent request will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet
modes and window states.

The portlet may also set, in the ActionResponse object, render parameters during the
processing of an action request. Refer to ### Request Parameters Section for details on
render parameters.

PLT.5.2.4.2 Render Request
Commonly, during a render request, portlets generate content based on their current state.

The render method of the Portlet interface receives two parameters, RenderRequest
and RenderResponse.

The RenderRequest object provides access to information such as the parameters of the
render request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data.

The portlet can produce content using the RenderResponse writer or it may delegate the
generation of content to a servlet or a JSP. Refer to ### Dispatching Requests to Servlets
and JSPs Chapter for details on this.

PLT.5.2.4.2.1 GenericPortlet

The GenericPortlet abstract class provides default functionality and convenience
methods for handling render requests.

The render method in the GenericPortlet class sets the title specified in the portlet
definition in the deployment descriptor and invokes the dobispatch method.

The dopispatch method in the GenericPortlet class implements functionality to aid in
the processing of requests based on the portlet mode the portlet is currently in (see ###
Portlet Modes Chapter). These methods are:
* doview for handling VIEW requests™"
* dordit for handling EDIT requests™"
* doHelp for handling HELP requests™

If the window state of the portlet (see ### Window States Chapter) is MINIMIZED, the

render method of the GenericPortlet does not invoke any of the portlet mode
rendering methods.™

Portlet Specification PR draft, version 1.0 (7/9/2003) 28

10

15

20

25

30

35

Typically, portlets will extend the GenericPortlet class directly or indirectly and they
will override the doview, doEdit, doHelp and getTitle methods instead of the render
and doDispatch methods.

PLT.5.2.4.3 Multithreading Issues During Request Handling

The portlet container handles concurrent requests to the same portlet by concurrent
execution of the request handling methods on different threads. Portlet developers must
design their portlets to handle concurrent execution from multiple threads from within the
processAction and render methods at any particular time.

PLT.5.2.4.4 Exceptions During Request Handling

A portlet may throw either a PortletException, a PortletSecurityException Or an
UnavailableException during the processing of a request.

A PortletException signals that an error has occurred during the processing of the
request and that the portlet container should take appropriate measures to clean up the
request. If a portlet throws an exception in the processaction method, all operations on
the ActionResponse must be ignored and the render method must not be invoked within
the current client request.™" The portal/portlet-container should continue processing the
other portlets visible in the portlet page.

A PortletSecurityException indicates that the request has been aborted because the user
does not have sufficient rights. Upon receiving a PortletSecurityException, the portlet-
container should handle this exception in an appropriate manner.

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently.

If a permanent unavailability is indicated by the unavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object.™" A portlet that throws a permanent
UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted.

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose to not route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and

temporary unavailability and treat all unavailableExceptions as permanent, thereby
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the request handling must be handled as a
PortletException.Xlx

Portlet Specification PR draft, version 1.0 (7/9/2003) 29

10

15

20

25

30

When a portlet throws an exception, or when a portlet becomes unavailable, the
portal/portlet-container may include a proper error message in the portal page returned to
the user.

PLT.5.2.4.5 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread safe.
This means that they must only be used within the scope of the thread invoking the
processAction and render methods.

To remain portable, portlet applications should not give references of the request and
response objects to objects executing in other threads as the resulting behavior may be
non-deterministic.

PLT.5.2.5 End of Service

The portlet container is not required to keep a portlet loaded for any particular period of
time. A portlet object may be kept active in a portlet container for a period of
milliseconds, for the lifetime of the portlet container (which could be a number of days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service, it
calls the destroy method of the Portlet interface to allow the portlet to release any
resources it is using and save any persistent state. For example, the portlet container may
do this when it wants to conserve memory resources, or when it is being shut down.

Before the portlet container calls the destroy method, it should allow any threads that
are currently processing requests within the portlet object to complete execution.To avoid
waiting forever, the portlet container can optionally wait for a predefined time before
destroying the portlet object.

Once the destroy method is called on a portlet object, the portlet container must not
route any requests to that portlet object.™ If the portlet container needs to enable the
portlet again, it must do so with a new portlet object, which is a new instance of the
portlet’s class.™

If the portlet object throws a RuntimeException within the execution of the destroy
method the portlet container must consider the portlet object successfully destroyed.™

After the destroy method completes, the portlet container must release the portlet object

so that it is eligible for garbage collection.™" Portlet implementations should not use
finalizers.

Portlet Specification PR draft, version 1.0 (7/9/2003) 30

10

15

20

25

PLT.6
|

Portlet Config

The Portletconfig object provides the portlet object with information to be used during
initialization. It also provides access to the portlet context and the resource bundle that
provides title-bar resources.

PLT.6.1 Initialization Parameters

The getInitParameterNames and getInitParameter methods of the Portletconfig
interface return the initialization parameter names and values found in the portlet
definition in the deployment descriptor.

PLT.6.2 Portlet Resource Bundle

Portlets may specify, in their deployment descriptor definition, some basic information
that can be used for the portlet title-bar and for the portal’s categorization of the portlet.
The specification defines a few resource elements for these purposes, title, short-title and
keywords (see the ### Resource Bundles Section).

These resource elements can be directly included in the portlet definition in the
deployment descriptor, or they can be placed in a resource bundle.

An example of a deployment descriptor defining portlet information inline could be:

<portlet>

<portlet-info>
<title>Stock Quote Portlet</title>
<short-title>Stock</short-title>
<keywords>finance,stock market</keywords>
</portlet-info>

</portlet>

Portlet Specification PR draft, version 1.0 (7/9/2003) 31

10

15

20

If the resources are defined in a resource bundle, the portlet must provide the name of the
resource bundle. An example of a deployment descriptor defining portlet information in
resource bundles could be:

<portlet>
<resource-bundle>com. foo.myApp.QuotePortlet</resource-bundle>
</portlet>

The portlet-container must look up these values first in the ResourceBundle if a
ResourceBundle is defined. If the ResourceBundle does not contain the resources or if the
ResourceBundle is not defined, the portlet container must look for the resources inline. If
the resources are not defined in the ResourceBundle or inline, the portlet container must
return an empty String.™"

Regardless of what mechanism is used for providing this information, the portlet access
this information using the getResourceBundle method of the Portletconfig interface.
If the information is defined inline in the deployment descriptor, the portlet container
must create a ResourceBundle and populate it, with the inline values, using the keys
defined in the ### Resource Bundles Section.™

The render method of the GenericPortlet uses the ResourceBundle object of the
PortletConfig to retrieve the title of the portlet from the portlet definition.

Portlet Specification PR draft, version 1.0 (7/9/2003) 32

10

15

20

25

30

PLT.7
|

Portlet URLS

As part of its content, a portlet may need to create URLs that reference the portlet itself.
For example, when a user acts on a URL that references a portlet (i.e., by clicking a link
or submitting a form) the result is a new client request to the portal targeted to the portlet.
Those URLs are called portlet URLSs.

PLT.7.1 PortletURL

The portlet API defines the PortletURL interface. Portlets must create portlet URLs
using PortletURL objects. A portlet creates PortletURL objects invoking the
createActionURL and the createRenderURL methods of the RenderResponse interface.
The createActionURL method creates action URLs. The createRenderURL method
creates render URLSs.

Because some portal/portlet-containers implementations may encode internal state as part
of the URL query string, portlet developers should not code forms using the HTTP GET
method.

A render URL is an optimization for a special type of action URLs. The portal/portlet-
container must not invoke the processAction method of the targeted portlet.™" The
portal/portlet-container must ensure that all the parameters set when constructing the
render URL become render parameters of the subsequent render requests for the
portlet. ™"

Render URLs should not be used for tasks that are not idempotent from the portlet
perspective. Error conditions, cache expirations and changes of external data may affect
the content generated by a portlet as result of a request triggered by a render URL.
Render URLs should not be used within forms as the portal/portlet-container may ignore
form parameters.

Portlets can add application specific parameters to the PortletURL objects using the
addparameter method. All the parameters a portlet adds to a Port1etURL object must be
made available to the portlet as request parameters.™"™" It is the responsibility of portlet
developers to "x-www-form-urlencoded" encoding parameter names and values when
necessary. If a portal/portlet-container encodes additional information as parameters, it
must encode them properly to avoid collisions with the parameters set and used by the
portlet. ™

Portlet Specification PR draft, version 1.0 (7/9/2003) 33

10

15

20

25

30

35

Using the tostring method, a portlet can obtain the string representation of the
PortletURL for its inclusion in the portlet content.

An example of creating a portlet URI would be:

PortletURL url = response.createRenderURL();
url.addParameter(“customer”,”foo.com”);
url.addParameter(“show”,”summary”) ;

writer.print(“Summary");

Portlet developers should be aware that the string representation of a PortletURL may not
be a well formed URL but a special token at the time the portlet is generating its content.
Portal servers often use a technique called URL rewriting that post-processes the content
resolving tokens into real URLs.

PLT.7.1.1 Including a Portlet Mode or a Window State

A portlet URL can include a specific portlet mode (see ### Portlet Modes Chapter) or
window state (see ### Window States Chapter). The PortletURL interface has the
setWindowState and setPortletMode methods for setting the portlet mode and window
state in the portlet URL. For example:

PortletURL url = response.createActionURL();
url.addParameter (“paymentMethod”,”creditCardInProfile”);
url.setWindowState (WindowState.MAXIMIZED);

writer.print(“<FORM METHOD=\"POST\” ACTION=\""+ url.toString()+"\">");

A portlet cannot create a portlet URL using a portlet mode that is not defined as
supported by the portlet or that the user it is not allowed to use. The setPortletMode
methods must throw a PortletModeException in that situation.™. The change of portlet
mode must be effective for the request triggered by the portlet URL.*™ There are some
exceptional circumstances, such as changes access control privileges, that could prevent
the portlet mode change from happening.

A portlet cannot create a portlet URL using a window state that is not supported by the
portlet container. The setwindowState method must throw a windowStateException if
that is the case.™" The change of window state should be effective for the request
triggered by the portlet URL. The portlet should not assume that the request triggered by
the portlet URL will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet
modes and window states.Portlet URL security

The setsecure method of the PortletURL interface allows a portlet to indicate if the
portlet URL has to be a secure URL or not (i.e. HTTPS or HTTP). If the setsecure

Portlet Specification PR draft, version 1.0 (7/9/2003) 34

method is not used, the portlet URL must be of the same security level of the current
request.”™ "

Portlet Specification PR draft, version 1.0 (7/9/2003) 35

10

15

20

25

PLT.8
|

Portlet Modes

A portlet mode indicates the function a portlet is performing. Normally, portlets perform
different tasks and create different content depending on the function they are currently
performing. A portlet mode advises the portlet what task it should perform and what
content it should generate. When invoking a portlet, the portlet container provides the
current portlet mode to the portlet. Portlets can programmatically change their portlet
mode when processing an action request.

The Portlet Specification defines three portlet modes, view, EpIT, and HELP. The
PortletMode class defines constants for these portlet modes.

The availability of the portlet modes, for a portlet, may be restricted to specific user roles

by the portal. For example, anonymous users could be allowed to use the viEw and HELP
portlet modes but only authenticated users could use the EpIT portlet mode.

PLT.8.1 VIEW Portlet Mode

The expected functionality for a portlet in viEw portlet mode is to generate markup
reflecting the current state of the portlet. For example, the view portlet mode of a portlet
may include one or more screens that the user can navigate and interact with, or it may
consist of static content that does not require any user interaction.

Portlet developers should implement the view portlet mode functionality by overriding
the doview method of the GenericPortlet class.

Portlets must support the view portlet mode.

PLT.8.2 EDIT Portlet Mode

Within the Ep1T portlet mode, a portlet should provide content and logic that lets a user
customize the behavior of the portlet. The EpIT portlet mode may include one or more
screens among which users can navigate to enter their customization data.

Typically, portlets in EpIT portlet mode will set or update portlet preferences. Refer to
#iHt Portlet Preferences Chapter for details on portlet preferences.

Portlet Specification PR draft, version 1.0 (7/9/2003) 37

10

15

20

25

30

35

Portlet developers should implement the EDIT portlet mode functionality by overriding
the doEdit method of the GenericPortlet class.

Portlets are not required to support the EDIT portlet mode.

PLT.8.3 HELP Portlet Mode

When in HELP portlet mode, a portlet should provide help information about the portlet.
This help information could be a simple help screen explaining the entire portlet in
coherent text or it could be context-sensitive help.

Portlet developers should implement the HELP portlet mode functionality by overriding
the doHelp method of the GenericPortlet class.

Portlets are not required to support the HELP portlet mode.

PLT.8.4 Custom Portlet Modes

Portal vendors may define custom portlet modes for vendor specific functionality.

Portlets can only use portlet modes that are defined by the portal. Portlets must define the
custom portlet modes they intend to use in the deployment descriptor using the custom-
portlet-mode element. At deployment time, the custom portlet modes defined in the
deployment descriptors should be mapped to custom portlet modes supported by the
portal implementation.

If a custom portlet mode defined in the deployment descriptor is not mapped to a custom
portlet mode provided by the portal, portlets must not be invoked in that portlet mode.

For example, the deployment descriptor for a portlet application containing portlets that
support clipboard and config custom portlet modes would have the following definition:

<portlet-app>

<custom-portlet-mode>
<description>Creates content for Cut and Paste</description>
<name>clipboard</name>

</custom-portlet-mode>

<custom-portlet-mode>
<description>Provides administration functions</description>
<name>config</name>
</custom-portlet-mode>
</portlet-app>

The ### Extended Portlet Modes appendix defines a list of portlet mode names and their
suggested utilization. Portals implementing these predefined custom portlet modes could

Portlet Specification PR draft, version 1.0 (7/9/2003) 38

10

15

20

25

30

35

do an automatic mapping when custom portlet modes with those names are defined in the
deployment descriptor.

PLT.8.5 GenericPortlet Render Handling

The GenericPortlet class implementation of the render method dispatches requests
to the doview, doEdit or doHelp method depending on the portlet mode indicated in the
request using the dobispatch method.™™ " If the portlet provides support for custom
portlet modes, the portlet should override the dopispatch method of the
GenericPortlet.

PLT.8.6 Defining Portlet Modes Support

Portlets must describe within their definition, in the deployment descriptor, the portlet
modes they can handle for each markup type they support. As all portlets must support
the view portlet mode, viEw does not have to be indicated.™" The portlet must not be
invoked in a portlet mode that has not been declared as supported for a given markup
type_XXXVI

The following example shows a snippet of the portlet modes a portlet defines as
supporting in its deployment descriptor definition:

<supports>
<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

<supports>
<mime-type>text/vnd.wap.wnl</mime-type>
<portlet-mode>help</portlet-mode>

</supports>

For HTML markup, this portlet supports the EbIT and HELP portlet modes in addition to
the required viEw portlet mode. For WML markup, it supports the viEw and HELP portlet
modes.

The portlet container must ignore all references to custom portlet modes that are not

supported by the portal implementation, or that have no mapping to portlet modes
supported by the portal. ™"

Portlet Specification PR draft, version 1.0 (7/9/2003) 39

10

15

20

25

PLT.9
|

Window States

A window state is an indicator of the amount of portal page space that will be assigned to
the content generated by a portlet. When invoking a portlet, the portlet-container provides
the current window state to the portlet. The portlet may use the window state to decide
how much information it should render. Portlets can programmatically change their
window state when processing an action request.

The Portlet Specification defines three window states, NORMAL, MAXIMIZED and
MINIMIZED. The windowsState class defines constants for these window states.

PLT.9.1 NORMAL Window State

The norMAL window state indicates that a portlet may be sharing the page with other
portlets. It may also indicate that the target device has limited display capabilities.
Therefore, a portlet should restrict the size of its rendered output in this window state.

PLT.9.2 MAXIMIZED Window State

The max1MIZED window state is an indication that a portlet may be the only portlet being
rendered in the portal page, or that the portlet has more space compared to other portlets
in the portal page. A portlet may generate richer content when its window state is
MAXIMIZED.

PLT.9.3 MINIMIZED Window State

When a portlet is in MINIMIZED window state, the portlet should only render minimal
output or no output at all.

PLT.9.4 Custom Window States

Portal vendors may define custom window states.
Portlets can only use window states that are defined by the portal. Portlets must define the

custom window states they intend to use in the deployment descriptor using the custom-
window-state element. At deployment time, the custom window states defined in the

Portlet Specification PR draft, version 1.0 (7/9/2003) 41

10

15

deployment descriptors should be mapped to custom window states supported by the
portal implementation.

If a custom window state defined in the deployment descriptor is not mapped to a custom
window state provided by the portal, portlets must not be invoked in that window
State.XXXVlll

For example, the deployment descriptor for a portlet application containing portlets that
use a custom half page window state would have the following definition:

<portlet-app>
<custom-window-state>
<description>Occupies 50% of the portal page</description>
<name>half page</name>
</custom-window-state>

</portlet-app>

Portlet Specification PR draft, version 1.0 (7/9/2003) 42

10

15

20

25

PLT.10
|

Portlet Context

The portletcontext interface defines a portlet’s view of the portlet application within
which the portlet is running. Using the PortletContext object, a portlet can log events,
obtain portlet application resources, and set and store attributes that other portlets and
servlets in the portlet application can access.

PLT.10.1 Scope of the Portlet Context

There is one instance of the Portletcontext interface associated with each portlet
application deployed into a portlet container.™™ In cases where the container is
distributed over many virtual machines, a portlet application will have an instance of the
PortletContext interface for each VM.*

PLT.10.2 Portlet Context functionality

Through the PortletContext interface, it is possible to access context initialization
parameters, retrieve and store context attributes, obtain static resources from the portlet
application and obtain a request dispatcher to include servlets and JSPs.

PLT.10.3 Relationship with the Servlet Context

A portlet application is an extended web application. As a web application, a portlet
application also has a servlet context. The portlet context leverages most of its
functionality from the servlet context of the portlet application.

The context-wide initialization parameters are the same as initialization parameters of the
servlet context and the context attributes are shared with the servlet context. Therefore,
they must be defined in the web application deployment descriptor (the web.xml file).
The initialization parameters accessible through the PortletContext must be same that
are accessible through the servietcontext of the portlet application.™

Context attributes set using the PortletContext must be stored in the servletContext
of the portlet application. A direct consequence of this is that data stored in the
ServletContext by servlets or JSPs is accessible to portlets through the
PortletContext and vice versa. ™"

Portlet Specification PR draft, version 1.0 (7/9/2003) 43

10

15

The pPortletcContext must offer access to the same set of resources the
ServletContext exposes.Xllll

The PortletContext must handle the same temporary working directory the
ServletContext handles. It must be accessible as a context attribute using the same
constant defined in the Serviet Specification 2.3 SVR 3 Servlet Context Chapter,
javax.servlet.context.tempdir.Xllv The portlet context must follow the same
behavior and functionality that the servlet context has for virtual hosting and reloading

xlv,

considerations. (see Serviet Specification 2.3 SVR 3 Servlet Context Chapter)™ :

PLT.10.3.1 Correspondence between ServletContext and
PortletContext methods

The following methods of the Portletcontext should be based on the methods of the

ServletContext of similar name: getAttribute, getAttributeNames,
getInitParameter, getInitParameterNames, getMimeType, getRealPath,
getResource, getResourcePaths, getResourceAsStream, log,

removeAttribute and setAttribute.

Portlet Specification PR draft, version 1.0 (7/9/2003) 44

10

15

20

25

PLT.11

Portlet Requests

The request objects encapsulate all information about the client request, parameters,
request content data, portlet mode, window state, etc. A request object is passed to
processAction and render methods of the portlet.

PLT.11.1 PortletRequest Interface

The portletRequest interface defines the common functionality for the ActionRequest
and RenderRequest interfaces.

PLT.11.1.1 Request Parameters

If a portlet receives a request from a client request targeted to the portlet itself, the
parameters must be the string parameters encoded in the URL (added when creating the
PortletURL) and the string parameters sent by the client to the portlet as part of the client
request.™" The parameters the request object returns must be "x-www-form-urlencoded"
decoded.

The portlet-container must not propagate parameters received in an action request to
subsequent render requests of the portlet."" If a portlet wants to do that, it can use render
URLSs or it must use the setRenderParameter Or setRenderParameters methods of
the ActionResponse object within the processAction call.

If a portlet receives a render request that is the result of a client request targeted to
another portlet in the portal page, the parameters must be the same parameters of the
previous render request.™

If a portlet receives a render request following an action request as part of the same client
request, the parameters received with render request must be the render parameters set
during the action request.*"™

Commonly, portals provide controls to change the portlet mode and the window state of
portlets. The URLs these controls use are generated by the portal. Client requests
triggered by those URLs must be treated as render URLs and the existing render
parameters must be preserved.'

Portlet Specification PR draft, version 1.0 (7/9/2003) 45

10

15

20

25

30

35

A portlet must not see any parameter targeted to other portlets.”

The parameters are stored as a set of name-value pairs. Multiple parameter values can
exist for any given parameter name. The following methods of the PortletRequest
interface are available to access parameters:

* getParameter

* getParameterNames
* getParameterValues
* getParameterMap

The getParametervalues method returns an array of string objects containing all the
parameter values associated with a parameter name. The value returned from the
getParameter method must be the first value in the array of string objects returned by
getParametervalues . If there is a single parameter value associated with a parameter
name the method returns must return an array of size one containing the parameter
value."™, The getParameterMap method must return an unmodifiable Map object. If the
request does not have any parameter, the getParameterMap must return an empty Map
object.

PLT.11.1.2 Extra Request Parameters

The portal/portlet-container implementation may add extra parameters to portlet URLs to
help the portal/portlet-container route and process client requests.

Extra parameters used by the portal/portlet-container must be invisible to the portlets
receiving the request. ™ It is the responsibility of the portal/portlet-container to properly
encode these extra parameters to avoid name collisions with parameters the portlets
define.

Parameter names beginning with the “javax.portlet.” prefix are reserved for
definition by this specification for use by portal/portlet-container implementations.

PLT.11.1.3 Request Attributes

Request attributes are objects associated with a portlet during a single request. Request
attributes may be set by the portlet or the portlet container to express information that
otherwise could not be expressed via the API. . Request attributes can be used to share
information with a servlet or JSP being included via the PortletRequestDispatcher.

Attributes are set, obtained and removed using the following methods of the
PortletRequest interface:

getAttribute
getAttributeNames
setAttribute
removeAttribute

Portlet Specification PR draft, version 1.0 (7/9/2003) 46

10

15

20

25

30

35

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the “javax.portlet.” prefix are reserved for definition
by this specification. It is suggested that all attributes placed into the attribute set be
named in accordance with the reverse domain name convention suggested by the Java
Programming Language Specification 1 for package naming.

PLT.11.1.4 Request Properties

A portlet can access portal/portlet-container specific properties and, if available, the
headers of the HTTP client request through the following methods of the methods of the
PortletRequest interface:

* getProperty
* getProperties
* getPropertyNames

There can be multiple properties with the same name. If there are multiple properties with
the same name, the getProperty method returns the first property value. The
getProperties method allows access to all the property values associated with a
particular property name, returning an Enumeration of String objects.

Depending on the underlying web-server/servlet-container and the portal/portlet-
container implementation, client request HTTP headers may not be always available.
Portlets should not rely on the presence of headers to function properly. The
PortletRequest interface provides specific methods to access information normally
available as HTTP headers: content-length, content-type, accept-language. Portlets
should use the specific methods for retrieving those values as the portal/portlet-container
implementation may use other means to determine that information.

PLT.11.1.5 Request Context Path

The context path of a request is exposed via the request object. The context path is the
path prefix associated with the portlet context that this portlet is a part of. If this context
is the “default” context rooted at the base of the web server URL namespace, this path
will be an empty string." Otherwise, if the context is not rooted at the root of the server’s
namespace, the path starts with a °/° character but does not end with a /° character."

PLT.11.1.6 Security Attributes

The PortletRequest interface offers a set of methods that provide security information
about the user and the connection between the user and the portal. These methods are:

getAuthType
getRemoteUser
getUserPrincipal
isUserInRole

Portlet Specification PR draft, version 1.0 (7/9/2003) 47

10

15

20

25

30

* isSecure

The getauthType indicates the authentication scheme being used between the user and
the portal. It may return one of the defined constants (BASIC_AUTH, DIGEST_AUTH,
CERT_AUTH and FORM_AUTH) or another string value that represents a vendor provided
authentication type. If the user is not authenticated the getauthType method must return

Ivii

null.
The getRemoteUser method returns the login name of the user making this request.

The getUserPrincipal method returns a java.security.Principal object containing
the name of the authenticated user.

The isuserinRole method indicates if an authenticated user is included in the specified
logical role.

The issecure method indicates if the request has been transmitted over a secure protocol
such as HTTPS.

PLT.11.1.7 Response Content Types

Portlet developers may code portlets to support multiple content types. A portlet can
obtain, using the getResponseContentType method of the request object, a string
representing the default content type the portlet container assumes for the output.

If the portlet container supports additional content types for the portlet’s output, it must
declare the additional content types through the getResponsecontentTypes method of
the request object. The returned Enumeration of strings should contain the content types
the portlet container supports in order of preference. The first element of the enumeration
must be the same content type returned by the getResponseContentType method.™

If a portlet defines support for all content types using a wildcard and the portlet container
supports all content types, the getResponseContentType may return the wildcard or the
portlet container preferred content type.

PLT.11.1.8 Internationalization

The portal/portlet-container decides what locale will be used for creating the response for
a user. The portal/portlet-container may use information that the client sends with the
request. For example the Accept-Language header along with other mechanisms
described in the HTTP/1.1 specification. The getLocale method is provided in the
PortletRequest interface to inform the portlet about the locale of user the portal/portlet-
container has chosen.

Portlet Specification PR draft, version 1.0 (7/9/2003) 48

10

15

20

25

30

PLT.11.1.9 Portlet Mode

The getPortletMode method of the PortletRequest interface allows a portlet to find
out its current portlet mode. A portlet may be restricted to work with a subset of the
portlet modes supported by the portal/portlet-container. A portlet can use the
isPortletModeAllowed method of the PortletRequest interface to find out if the
portlet is allowed to use a portlet mode. A portlet mode is not allowed if the portlet mode
is not in the portlet definition or, the portlet or the user has been constrained further by
the portal.

PLT.11.1.10 Window State

The getwindowstate method of the PortletRequest interface allows a portlet to find
out its current window state.

A portlet may be restricted to work with a subset of the window states supported by the
portal/portlet-container. A portlet can use the iswindowStateAllowed method of the
PortletRequest interface to find out if the portlet is allowed to use a window state.

PLT.11.2 ActionRequest Interface

The ActionRequest interface extends the PortletRequest interface and it is used in the
processAction method of the Portlet interface. In addition to the functionality
provided by the PortletRequest interface, the ActionRequest interface gives access to
the input stream of the request.

PLT.11.2.1 Retrieving Uploaded Data

The input stream is useful when the client request contains HTTP POST data of type
other than application/x-www-form-urlencoded. For example, when a file is
uploaded to the portlet as part of a user interaction.

As a convenience to the portlet developer, the ActionRequest interface also provides a
getReader method that retrieves the HTTP POST data as character data according to
the character encoding defined in the user request.

Only one of the two methods, getPortletInputStream or getReader, can be used
during an action request. If the input stream is obtained, a call to the getReader must
throw an IllegalStateException. Similarly, if the reader is obtained, a call to the
getPortletInputStream must throw an IllegalStateException.llx

Portlet Specification PR draft, version 1.0 (7/9/2003) 49

10

15

20

To help manage the input stream, the ActionRequest interface also provides the
following methods:

getContentType
getCharacterEncoding
setCharacterEncoding
getContentLength

The setCharacterEncoding method only sets the character set for the Reader that the
getReader method returns.

If the user request HTTP POST data is of type application/x-www-form-urlencoded,
this data has been already processed by the portal/portlet-container and is available as
request parameters. The getPortletInputStream and getReader methods must throw
an IllegalStateException if Called.lx

PLT.11.3 RenderRequest Interface

The RenderRequest interface extends the PortletRequest interface and is used in the
render method of the Portlet interface. Currently, the RenderRequest interface does
not define any additional method.

PLT.11.4 Lifetime of the Request Objects

Each request object is valid only within the scope of a particular processaAction or
render method call. Containers commonly recycle request objects in order to avoid the
performance overhead of request object creation. The developer must be aware that
maintaining references to request objects outside the scope described above may lead to
non-deterministic behavior.

Portlet Specification PR draft, version 1.0 (7/9/2003) 50

10

15

20

25

30

PLT.12

Portlet Responses

The response objects encapsulate all information to be returned from the portlet to the
portlet container during a request: a redirection, a portlet mode change, title, content, etc.
The portal/portlet-container will use this information to construct the response -usually a
portal page- to be returned to the client. A response object is passed to the
processAction and the render methods of the portlet.

PLT.12.1 PortletResponse Interface

The PortletResponse interface defines the common functionality for the
ActionResponseandRenderResponsehﬁeﬂhce&

PLT.12.1.1 Response Properties

Properties can be used by portlets to send vendor specific information to the
portal/portlet-container.

A portlet can set properties using the following methods of the PortletResponse
interface:

* setProperty
¢ addProperty

The setProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addProperty method
adds a property value to the set with a given name. If there are no property values already
associated with the name, a new set is created.

PLT.12.1.2 Encoding of URLsSs

Portlets may generate content with URLs referring to other resources within the portal,
such as servlets, JSPs, images and other static files. Some portal/portlet-container
implementation may require those URLs to contain implementation specific data encoded
in it. Because of that, portlets should use the encodeurL method to create such URLs.
The encodeUrRL method may include the session ID and other portal/portlet-container
specific information into the URL. If encoding is not needed, it returns the URL
unchanged.

Portlet Specification PR draft, version 1.0 (7/9/2003) 51

10

15

20

25

30

PLT.12.2 ActionResponse Interface

The ActionResponse interface extends the PortletResponse interface and it is used in
the processaAction method of the portlet interface. This interface allows a portlet to
redirect the user to another URL, set render parameters, change the window state of the
portlet and change the portlet mode of the portlet.

PLT.12.2.1 Redirections

The sendredirect method instructs the portal/portlet-container to set the appropriate
headers and content body to redirect the user to a different URL. A fully qualified URL
or a full path URL must be specified. If a relative path URL is given, an
IllegalArgumentException must be thl‘OWl’l.lXI

If the sendRedirect method is called after the setPortletMode, setWindowState,

setRenderParameter Or setRenderParameters methods of the ActionResponse

interface, an T1legalStateException must be thrown and the redirection must not be
Ixii

executed.

PLT.12.2.2 Portlet Modes and Window State Changes

The setPortletMode method allows a portlet to change its current portlet mode. The
new portlet mode would be effective in the following render request. If a portlet attempts
to set a portlet mode that is not allowed to switch to, a PortletModeException must be
thrown.™

The setwindowstate method allows a portlet to change its current window state. The
new window state would be effective in the following render request. If a portlet attempts
to set a window state that it is not allowed to switch to, a windowStateException must
be thrown.™"

Portlets cannot assume that subsequent renders will be called in the set portlet mode or
window state as the portal/portlet-container could override these changes.

If the setPortletMode or setWindowState methods are called after the sendrRedirect
method has been called and IllegalstateException must be thrown.™ If the
exception is caught by the portlet, the redirection must be executed.™ If the exception is
propagated back to the portlet-container, the redirection must not be executed.™""

PLT.12.2.3 Render Parameters

Using the setRenderParameter and setRenderParameters methods of the
ActionResponse interface portlets may set render parameters during an action request.
These parameters will be used in all subsequent render requests until a new client request

Portlet Specification PR draft, version 1.0 (7/9/2003) 52

10

15

20

25

30

targets the portlet. If no render parameters are set during the processaction invocation,
the render request must not contain any request parameters.™"

Portlet developers do not need to “x-www-form-urlencoded” encode render parameters
names and values set in the ActionResponse.

PLT.12.3 RenderResponse Interface

The RenderResponse interface extends the PortletResponse interface and it is used in
the render method of the Portlet interface. This interface allows a portlet to set its title
and generate content.

PLT.12.3.1 Content Type

A portlet must set the content type of the response using the setContentType method of
the RenderResponse interface. The setContentType method must throw an
IllegalArgumentException if the content type set does not match (including wildcard
matching) any of the content types returned by the getResponseContentType method of
the PortleRequest object™™. The portlet container should ignore any character encoding
specified as part of the content type.™

If the getWriter or getPortletOutputStream methods are called before the
setContentType method, they must throw an IllegalStateException.lXXI

The setcontentType method must be called before the getwriter or
getPortletOutputStream methods. If called after, it should be ignored.

If the portlet has set a content type, the getContentType method must return it.
Otherwise, the getContentType method must return nu11,

PLT.12.3.2 Output Stream and Writer Objects

A portlet may generate its content by writing to the outputsStream or to the writer of
the RenderResponse object. A portlet must use only one of these objects. The portlet
container must throw an I1legalStateException if a portlet attempts to use both.™"

The termination of the render method of the portlet indicates that the portlet has satisfied
the request and that the output object is to be closed.

The raw outputstreanm is available because of some servlet container implementations

requirements and for portlets that do not generate markup fragments. If a portlet utilizes
the outputstream, the portlet is responsible of using the proper character encoding.

Portlet Specification PR draft, version 1.0 (7/9/2003) 53

10

15

20

25

30

35

PLT.12.3.3 Buffering

A portlet container is allowed, but not required, to buffer output going to the client for
efficiency purposes. Typically servers that do buffering make it the default, but allow
portlets to specify buffering parameters.

The following methods in the RenderResponse interface allow a portlet to access and set
buffering information:

getBufferSize
setBufferSize
isCommitted
reset
resetBuffer
flushBuffer

These methods are provided on the RenderResponse interface to allow buffering
operations to be performed whether the portlet is using an outputStream or a Wwriter.

The getBuffersize method returns the size of the underlying buffer being used. If no
buffering is being used, this method must return the int value of 0 (zero).™"

The portlet can request a preferred buffer size by using the setBuffersize method. The
buffer assigned is not required to be the size requested by the portlet, but must be at least
as large as the size requested.™ This allows the container to reuse a set of fixed size
buffers, providing a larger buffer than requested if appropriate. The method must be
called before any content is written using a outputStream or Writer. If any content has
been written, this method must throw an T1legalStateException. ™"

The iscommitted method returns a boolean value indicating whether any response bytes
have been returned to the client. The flushBuffer method forces content in the buffer to
be written to the client.

The reset method clears data in the buffer when the response is not committed.
Properties set by the portlet prior to the reset call must be cleared as well."™" The
resetBuffer method clears content in the buffer if the response is not committed
without clearing the properties.

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown."™"" The response and its associated buffer
must be unchanged.™™

When using a buffer, the container must immediately flush the contents of a filled buffer

to the client.™ If this is the first data is sent to the client, the response must be
considered as committed.

Portlet Specification PR draft, version 1.0 (7/9/2003) 54

10

15

20

PLT.12.3.4 Namespace encoding

Within their content, portlets may include elements that must be unique within the whole
portal page. JavaScript functions and variables are an example of this.

The encodeNamespace method must provides the portlet with a mechanism that ensures
the uniqueness of the returned string in the whole portal page. For example, the
encodeNamespace method could append a unique ID to the received string.

If the string passed to the encodeNamespace method is a valid identifier as defined in the
3.8 Identifier Section of the Java Language Specification Second Edition, the returned
string must also be a valid identifier.™

PLT.12.3.5 Portlet Title

A portlet may indicate to the portal/portlet-container its preferred title. It is up to the
portal/portlet-container to use the preferred title set by the portlet.

The setTitle method must be called before the output of the portlet has been commited,
if called after it should be ignored.™"

PLT.12.4 Lifetime of Response Objects

Each response object is valid only within the scope of a particular processaction or
render method call. Containers commonly recycle request objects in order to avoid the
performance overhead of response object creation. The developer must be aware that
maintaining references to response objects outside the scope described above may lead to
non-deterministic behavior.

Portlet Specification PR draft, version 1.0 (7/9/2003) 55

10

15

PLT.13
|

Portal Context

The portalcontext interface provides information about the portal that is invoking the
portlet.

The getPortalinfo method returns information such as the portal vendor and portal
version. The returned string should start with the vendor and version information,
'vendorname.majorversion.minorversion. '.

The getProperty and getPropertyNames methods return portal properties.

The getsupportedPortletModes method returns the portlet modes supported by the
portal.

The getSupportedwindowStates method returns the window states supported by the
portal.

A portlet obtains a Portalcontext object from the request object using
getPortalContext method.

Portlet Specification PR draft, version 1.0 (7/9/2003) 57

10

15

20

25

PLT.14
|

Portlet Preferences

Portlets are commonly configured to provide a customized view or behavior for different
users. This configuration is represented as a persistent set of name-value pairs and it is
referred to as portlet preferences. The portlet container is responsible for the details of
retrieving and storing these preferences.

Portlet preferences are intended to store basic configuration data for portlets. It is not the
purpose of the portlet preferences to replace general purpose databases.

PLT.14.1 PortletPreferences Interface

Portlets have access to their preferences attributes through the portletPreferences
interface. Portlets have access to the associated PortletPreferences object when it is
processing requests. A portlet may only modify preferences attributes during a
processAction invocation.

Preference attributes are string array objects.

To access and manipulate preference attributes, the PortletPreferences interface
provides the following methods:

getNames
getValue
setValue
getValues
setValues
isModifiable
reset

store

The getvalue and setvalue methods are convenience methods for dealing with single
values. If a preference attribute has multiple values, the getvalue method returns the
first value. The setvalue method sets a single value into a preferences attribute.

Portlet Specification PR draft, version 1.0 (7/9/2003) 59

10

15

20

25

30

35

The following code sample demonstrates how a stock quote portlet would retrieve from
its preferences object, the preferred stock symbols, the URL of the backend quoting
services and the quote refresh frequency.

PortletPreferences prefs = req.getPreferences();
String[] symbols =
prefs.getValues(”"preferredStockSymbols”,
new String[]{”ACME”,”F00"});
String url = prefs.getValue(”quotesFeedURL”,null);
int refreshInterval =
Integer.parseInt(prefs.getValue(”refresh”,”10”));

The reset method must reset a preference attribute to its default value. If there is no
default value, the preference attribute must be deleted.™™ " It is left to the vendor to
specify how and from where the default value is obtained.

If a preference attribute is not modifiable, the setvalue, setvalues and reset methods

must throw an UnmodifiableException when the portlet is in any of the standard
Ixxxiv

modes.

The store method must persist all the changes made to the PortletPreferences object
in the persistent store.™ If the call returns successfully, it is safe to assume the changes
are permanent. The store method must be conducted as an atomic transaction regardless
of how many preference attributes have been modified."™ The portlet container
implementation is responsible for handling concurrent writes to avoid inconsistency in
portlet preference attributes. All changes made to PortletPreferences object not
followed by a call to the store method must be discarded when the portlet finishes the
d. "™ If the store method is invoked within the scope of a

Ixxxviii

processAction metho
render method invocation, it must throw an UnsupportedOperationException

The portletPreferences object must reflect the current values of the persistent store

when the portlet container invokes the processaction and render methods of the
Ixxxix

portlet.

PLT.14.2 Preference Attributes Scopes

Portlet Specification assumes preference attributes are user specific, it does not make any
provision at API level or at semantic level for sharing preference attributes among users.
If a portal/portlet-container implementation provides an extension mechanism for sharing
preference attributes, it should be well documented how the sharing of preference
attributes works. Sharing preference attributes may have significant impact on the
behavior of a portlet. In many circumstances it could be inappropriate sharing attributes
that are meant to be private or confidential to the user.

Portlet Specification PR draft, version 1.0 (7/9/2003) 60

10

15

20

25

30

35

PLT.14.3 Preference Attributes definition

The portlet definition may define the preference attributes a portlet uses.

A preference attribute definition may include initial default values. A preference attribute
definition may also indicate if the attribute is non-modifiable.

An example of a fragment of preferences attributes definition in the deployment
descriptor would be:

<portlet>

<!— Portlet Preferences -->
<portlet-preferences>
<preference>
<name>PreferredStockSymbols</name>
<value>F00</value>
<value>XYz</value>
<modifiable>0</modifiable>
</preference>
<preference>
<name>quotesFeedURL</name>
<value>http://www.foomarket.com/quotes</value>
</preference>
</portlet-preferences>
</portlet>

If a preference attribute definition does not contain the modifiable element set to 0, the
preference attribute is modifiable when the portlet is processing a request in any of the
standard portlet modes (VIEW, EDIT or HELP).” Portlets may change the value of
modifiable preference attributes using the setvalue, setvalues and reset methods of
the PortletPreferences interface. Deployers may use the modifiable element set to
0 to fix certain preference values at deployment time. Portal/portlet-containers may allow
changing non-modifiable preference attributes while performing administration tasks.

Portlets are not restricted to use preference attributes defined in the deployment
descriptor. They can programmatically add preference attributes using names not defined
in the deployment descriptor. These preferences attributes must be treated as modifiable

attributes.

Portal administration and configuration tools may use and change, default preference
attributes when creating a new portlet preferences objects.

PLT.14.3.1 Localizing Preference Attributes

The Portlet Specification does not define a specific mechanism for localizing preference
attributes. It leverages the J2SE ResourceBundle classes.

Portlet Specification PR draft, version 1.0 (7/9/2003) 61

10

15

20

25

30

35

To enable localization support of preference attributes for administration and
configuration tools, developers should adhere to the following naming convention for
entries in the portlet’s ResourceBundle (see the ### Resource Bundles Section).

Entries for preference attribute descriptions should be constructed as
‘javax.portlet.preference.description.<attribute-name>', where
<attribute-name> is the preference attribute name.

Entries for preference attribute names should be constructed as
‘javax.portlet.preference.name.<attribute-name>', where <attribute-name>
is the preference attribute name. These values should be used as localized preference
display names.

Entries for preference attribute values that require localization should be constructed as
'javax.portlet.preference.value.<attribute-name>.<attribute-value>',
where <attribute-name> is the preference attribute name and <attribute-value> is
the localized preference attribute value.

PLT.14.4 Validating Preference values

A class implementing the Preferencesvalidator interface can be associated with the
preferences definition in the deployment descriptor, as shown in the following example:

<!— Portlet Preferences -->
<portlet-preferences>

<validator>com.foo.portlets.XYZValidator</validator>
</portlet-preferences>

A PreferencesValidator implementation must be coded in a thread safe manner as the
portlet container may invoke concurrently from several requests. If a portlet definition
includes a validator, the portlet container must create a single validator instance per
portlet definition .*" If the application is a distributed application, the portlet container
must create an instance per VM.*"

When a validator is associated with the preferences of a portlet definition, the store
method of the PortletPreferences implementation must invoke the validate method
of the validator before writing the changes to the persistent store.*" If the validation
fails, the Preferencesvalidator implementation must throw a validatorException.
If a validatorException is thrown, the portlet container must cancel the store
operation and it must propagate the exception to the portlet.™" If the validation is
successful, the store operation must be completed."'

When creating a validatorException, portlet developers may include the set of

preference attributes that caused the validator to fail. It is left to the developers to indicate
the first preference attribute that failed or the name of all the invalid preference attributes.

Portlet Specification PR draft, version 1.0 (7/9/2003) 62

10

15

20

25

PLT.15
|

Sessions

To build effective portlet applications, it is imperative that requests from a particular
client be associated with each other. There are many session tracking approaches such as
HTTP Cookies, SSL Sessions or URL rewriting. To free the programmer from having to
deal with session tracking directly, this specification defines a PortletSession interface
that allows a portal/portlet-container to use any of the approaches to track a user’s session
without involving the developers in the nuances of any one approach.

PLT.15.1 Creating a Session

A session is considered “new” when it is only a prospective session and has not been
established. Because the portlet specification is designed around a request-response based
protocol (HTTP would be an example of this type of protocol) a session is considered to
be new until a client “joins” it. A client joins a session when session tracking information
has been returned to the server indicating that a session has been established. Until the
client joins a session, it cannot be assumed that the next request from the client will be
recognized as part of a session.

The session is considered to be “new” if either of the following is true:

* The client does not yet know about the session
¢ The client chooses not to join a session

These conditions define the situation where the portlet container has no mechanism by
which to associate a request with a previous request. A portlet developer must design the
application to handle a situation where a client has not, cannot, or will not join a session.

For portlets within the same portlet application, a portlet container must ensure that every
portlet request generated as result of a group of requests originated from the portal to
complete a single client request receive or acquire the same session.*"" In addition, if
within these portlet requests more than one portlet creates a session, the session object
must be the same for all the portlets in the same portlet application.™"™

Portlet Specification PR draft, version 1.0 (7/9/2003) 63

10

15

20

25

30

PLT.15.2 Session Scope

PortletSession objects must be scoped at the portlet application context level.*™

Each portlet application has its own distinct PortletSession object per user session.
The portlet container must not share the PortletsSession object or the attributes stored
in it among different portlet applications or among different user sessions.”

PLT.15.3 Binding Attributes into a Session

A portlet can bind an object attribute into a PortletSession by name.

The Portletsession interface defines two scopes for storing objects,
APPLICATION SCOPE and PORTLET SCOPE.

Any object stored in the session using the APPLICATION_SCOPE is available to any other
portlet that belongs to the same portlet application and that handles a request identified as
being a part of the same session.”

Objects stored in the session using the PORTLET SCOPE must be available to the portlet
during requests for the same portlet window that the objects where stored from.™ The
object must be stored in the AppLICATION SCOPE with the following fabricated attribute
name ‘javax.portlet.p.<ID>?<ATTRIBUTE NAME>'.<ID> is a unique identification for
the portlet window (assigned by the portal/portlet-container) that must not contain a *?’
character.” <ATTRIBUTE NAME> is the attribute name used to set the object in the
PORTLET SCOPE of the portlet session.

Attributes stored in the PORTLET SCOPE are not protected from other web components
of the portlet application. They are just conveniently namespaced.

The setattribute method of the Portletsession interface binds an object to the
session into the specified scope. For example:

PortletSession session = request.getSession(true);
URL url = new URL(“http://www.foo.com”);

session.setAttribute(“home.url” ,url,PortletSession.APPLICATION_ SCOPE);
session.setAttribute(“bkg.color”,”RED”,PortletSession.PORTLET SCOPE);

The getAttribute method from the PortletSession interface is used to retrieve
attributes stored in the session.

To remove objects from the session, the removeAttribute method is provided by the
PortletSession interface.

Objects that need to know when they are placed into a session, or removed from a session
must implement the HttpSessionBindingListener of the servlet API (see Serviet

Portlet Specification PR draft, version 1.0 (7/9/2003) 64

10

15

20

25

30

35

Specification 2.3, SRV.7.4 Section). The PortletSessionUtil class provides utility
methods to help determine the scope of the object in the Portletsession. If the object
was stored in the PORTLET_SCOPE, the PortletSessionUtil allows retrieving the
attribute name without any portlet-container fabricated prefix. Portlet developers should
always use the PortletSessionutil class to deal with attributes in the PORTLET SCOPE
when accessing them through the servlet API.

PLT.15.4 Relationship with the Web Application HttpSession

A Portlet Application is also a Web Application. The Portlet Application may contain
servlets and JSPs in addition to portlets. Portlets, servlets and JSPs may share information
through their session.

The PortletSession must store all attributes in the HttpSession of the portlet
application. A direct consequence of this is that data stored in the HttpSession by
servlets or JSPs is accessible to portlets through the Portletsession in the portlet
application scope.”’ Conversely, data stored by portlets in the PortletSession in the
portlet application scope is accessible to servlets and JSPs through the Httpsession. ©

If the HttpSession object is invalidated, the PortletSession object must also be invalidated
by the portlet container.®" If the PortletSession object is invalidated by a portlet, the
portlet container must invalidate the associated HttpSession object.""

PLT.15.4.1 HttpSession Method Mapping

The following methods of the PortletSession interface must be based on the methods
of the HttpSession interface of identical names: getCreationTime, getId,

getLastAccessedTime, getMaxInactiveInterval, invalidate, isNew and
setMaxInactivelInterval.

The getAttribute, setAttribute, removeAttribute and getAttributeNames
methods of the PortletsSession interface must be based on the HttpSession interface
methods of identical names adhering to the following rules:

* The attribute names must be the same if APPLICATION_SCOPE scope is
1lsecl.CVlll

* The attribute name has to conform with the specified prefixing if
PORTLET_SCOPE is used.™

* The variant of these methods that does not receive a scope must be treated as
PORTLET SCOPE.*

PLT.15.5 Reserved HttpSession Attribute Names

Session attribute names starting with “javax.portlet.” are reserved for usage by the
Portlet Specification and for Portlet Container vendors. A Portlet Container vendor may

Portlet Specification PR draft, version 1.0 (7/9/2003) 65

10

use this reserved namespace to store implementation specific components. Application
Developers must not use attribute names starting with this prefix.

PLT.15.6 Session Timeouts

The portlet session follows the timeout behavior of the servlet session as defined in the
Servlet Specification 2.3, SRV.7.5 Section.

PLT.15.7 Last Accessed Times

The portlet session follows the last accessed times behavior of the servlet session as
defined in the Servlet Specification 2.3, SRV.7.6 Section.

PLT.15.8 Important Session Semantics

The portlet session follows the same semantic considerations as the servlet session as
defined in the Servlet Specification 2.3, SRV.7.7.3 Section.

These considerations include Threading Issues, Distributed Environments and Client
Semantics.™

Portlet Specification PR draft, version 1.0 (7/9/2003) 66

10

15

20

25

PLT.16
|

Dispatching Requests to Servlets and JSPs

Portlets can delegate the creation of content to servlets and JSPs. The
PortletRequestDispatcher interface provides a mechanism to accomplish this.

PLT.16.1 Obtaining a PortletRequestDispatcher

A portlet may use a PortletRequestDispatcher object only when executing the
render method of the Portlet interface. PortletRequestDispatcher objects may be
obtained using one of the following methods of the Portletcontext object:

* getRequestDispatcher
* getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a path within
the scope of the PortletContext of a portlet application. This path must begin with a */’
and it is relative to the PortletContext root. "

The getNamedDispatcher method takes a String argument indicating the name of a
servlet known to the Portletcontext of the portlet application.

If no resource can be resolved based on the given path or name the methods must return
CX111

null.

PLT.16.1.1 Query Strings in Request Dispatcher Paths

The getRequestDispatcher method of the PortletContext that creates
PortletRequestDispatcher objects using path information allows the optional attachment
of query string information to the path. For example, a Developer may obtain a
PortletRequestDispatcher by using the following code:

String path = "/raisons.jsp?orderno=5";
PortletRequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(renderRequest, renderResponse);

Parameters specified in the query string used to create the PortletRequestDispatcher take
precedence over other portlet render parameters of the same name passed to the included

Portlet Specification PR draft, version 1.0 (7/9/2003) 67

10

15

20

25

30

servlet or JSP. The parameters associated with a PortletRequestDispatcher are scoped to
apply only for the duration of the include call.”™"

PLT.16.2 Using a Request Dispatcher

To include a servlet or a JSP, a portlet calls the include method of the
PortletRequestDispatcher interface. The parameters to these methods must be the
request and response arguments that were passed in via the render method of the
portlet interface.™

The portlet container must ensure that the servlet or JSP called through a
PortletRequestDispatcher is called in the same thread as the PortletRequestDispatcher
include invocation.™"'

PLT.16.3 The Include Method

The include method of the PortletRequestDispatcher interface may be called at any
time and multiple times within the render method of the Portlet interface. The servlet
or JSP being included can make a limited use of the received HttpServletRequest and
HttpServletResponse Objects.

Servlets and JSPs included from portlets should not use the servlet RequestbDispatcher
forward method as its behavior may be non-deterministic.

PLT.16.3.1 Included Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet or JSP
being used from within an include call has access to the path used to obtain the
PortletRequestDispatcher. The following request attributes must be set™"":

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query string

These attributes are accessible from the included servlet via the getAttribute method
on the request object.

If the included servlet was obtained by using the getNamedDispatcher method these
attributes are not set.

Portlet Specification PR draft, version 1.0 (7/9/2003) 68

10

15

20

25

30

35

PLT.16.3.2 Included Request Attributes

In addition to the request attributes specified in Serviet Specification 2.3, SRV.8.3.1
Section, the included servlet or JSP must have the following request attributes set:

Request Attribute Type

javax.portlet.config javax.portlet.PortletConfig
javax.portlet.request javax.portlet.RenderRequest
javax.portlet.response javax.portlet.RenderResponse

These attributes must be the same portlet API objects accessible to the portlet doing the
include call.*" They are accessible from the included servlet or JSP via the
getAttribute method on the HttpServletRequest object.

PLT.16.3.3 Request and Response objects for Included
Servlets/JSPs

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects.

The following methods OfﬂK:HttpServletRequestInustreuun.null:getProtocol,
CX1X

getRemoteAddr, getRemoteHost, getRealPath, and getRequestURL.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.®*

The following methods of the HttpservletRequest must be equivalent to the methods

of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, isSecure, getAuthType, getContextPath,
getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdvalid.®

The following methods of the HttpsServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in Section PLT.16.1.1
Query Strings in Request Dispatcher Paths: getParameter, getParameterNames,

getParameterValues andgetParameterMap.cXXll

The following methods of the HttpServletRequest must do no operations and return
null: getCharacterEncoding, setCharacterEncoding, getContentType,
getInputStream and getReader.®™! The getContentLength method of the
HttpServletRequest must return 0."

Portlet Specification PR draft, version 1.0 (7/9/2003) 69

10

15

20

25

30

The getLocales method of HttpServletRequest must return an Enumeration of one
element containing the same Locale returned by the getLocale method of the

PortletRequest.CXXV

The following methods of the HttpservletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getCookies, getDateHeaders and

CXXVvi

getIntHeaders.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification 2.3: getRequestDispatcher, getMethod,
isUserInRole, getSession, isRequestedSessionIdFromCookie,

cxxvii

isRequestedSessionIdFromURL and isRequestedSessionIdFromUrl.

The following methods of the HttpsServletResponse must return null:
encodeRedirectURL and encodeRedirectUrl,cxviit

The following methods of the HttpServletResponse must be equivalent to the methods
of the RenderResponse of similar name: getCharacterEncoding, setBufferSize,
flushBuffer, resetBuffer, reset, getBufferSize, isCommitted,

CXXiX

getOutputStream, getWriter, encodeURL and encodeUrl.

The following methods of the HttpServletResponse must perform no operations:
setContentType, setContentLength, setLocale, addCookie, sendError,
sendRedirect, setDateHeader, addDateHeader, setHeader, addHeader,

setIntHeader, addIntHeader and setStatus.™* The containsHeader method of
the HttpServletResponse must return false.

The getLocale method of the HttpservletResponse must be based on the getLocale
method of the PortletRequest.™

PLT.16.3.4 Error Handling

If the servlet or JSP that is the target of a request dispatcher throws a runtime exception
or a checked exception of type 10Exception, it must be propagated to the calling
portlet.“™ All other exceptions, including a servletException, must be wrapped with
a PortletException. The root cause of the exception must be set to the original
exception before being propagated. ™"

Portlet Specification PR draft, version 1.0 (7/9/2003) 70

10

15

20

25

30

35

PLT.17
|

User Information

Commonly, portlets provide content personalized to the user making the request. To do
this effectively they may require access to user attributes such as the name, email, phone
or address of the user. Portlet containers provide a mechanism to expose available user
information to portlets.

PLT.17.1 Defining User Attributes

The deployment descriptor of a portlet application must define the user attribute names
the portlets use. The following example shows a section of a deployment descriptor
defining a few user attributes:

<portlet-app>

<user-attribute>
<description>User Given Name</description>
<name>user.name.given</name>
</user-attribute>
<user-attribute>
<description>User Last Name</description>
<name>user.name.family</name>
</user-attribute>
<user-attribute>
<description>User eMail</description>
<name>user.home-info.online.email</name>
</user-attribute>
<user-attribute>
<description>Company Organization</description>
<name>user.business-info.postal.organization</name>
</user-attribute>

<portlet-app>

A deployer must map the portlet application’s logical user attributes to the corresponding
user attributes offered by the runtime environment. At runtime, the portlet container uses
this mapping to expose user attributes to the portlets of the portlet application. User
attributes of the runtime environment not mapped as part of the deployment process must
not be exposed to portlets.” ™"

Refer to PLT.## User Information Attribute Names Appendix for a list of recommended
names.

Portlet Specification PR draft, version 1.0 (7/9/2003) 71

10

15

20

25

PLT.17.2 Accessing User Attributes

Portlets can obtain an unmodifiable Map object containing the user attributes, of user
associated with the current request, from the request attributes. The Map object can be
retrieved using the USER_INFO constant defined in the PortletRequest interface. If the
request is done in the context of an un-authenticated user, calls to the getAttribute
method of the request using the USER_INFO constant must return null.”". If the user is
authenticated and there are no user attributes available, the Map must be an empty Map.

The Map object must contain a String name value pair for each available user attribute.
The Map object should only contain user attributes that have been mapped during

deployment..”"!

An example of a portlet retrieving user attributes would be:

Map userInfo = (Map) request.getAttribute(PortletRequest.USER_INFO);

String givenName = (userInfo!=null)
? (String) userInfo.get(“user.name.given”) : “”;
String lastName = (userInfo!=null)

? (String) userInfo.get(“user.name.family”) : “”;

PLT.17.3 Important Note on User Information

The Portlet Specification expert group is aware of the fact that user information is outside
of the scope of this specification. As there is no standard Java standard to access user
information, and until such Java standard is defined, the Portlet specification will provide
this mechanism that is considered to be the least intrusive from the portlet API
perspective. At a latter time, when a Java standard for user information is defined, the
current mechanism will be deprecated in favor of it.

Portlet Specification PR draft, version 1.0 (7/9/2003) 72

10

15

20

25

30

PLT.18
|

Caching

Caching content helps improve the Portal response time for users. It also helps to reduce
the load on servers.

The Portlet Specification defines an expiration based caching mechanism. This caching
mechanism is per portlet per user client. Cached content must not be shared across
different user clients displaying the same portlet.

Portlet containers are not required to implement expiration caching. Portlet containers
implementing this caching mechanism may disable it, partially or completely, at any time
to free memory resources.

PLT.18.1 Expiration Cache

Portlets that want their content to be cached using expiration cache must define the
duration (in seconds) of the expiration cache in the deployment descriptor.

The following is an example of a portlet definition where the portlet defines that its
content should be cached for 5 minutes (300 seconds).

<portlet>
<expiration-cache>300</expiration-cache>

</portlet>

A portlet that has defined an expiration cache in its portlet definition may
programmatically alter the expiration time by setting the expiration-cache property in
the RenderResponse object. If the expiration value is set to 0, caching is disabled for the
portlet. If the expiration-cache property is set to —1, the cache does not expire. If
during a render invocation the expiration-cache property is not set, the expiration
time defined in the deployment descriptor must be used. For a portlet that has not defined
expiration cache in the deployment descriptor, if the expiration-cache property is set it
must be ignored by the portlet-container.

Portlet Specification PR draft, version 1.0 (7/9/2003) 73

If the content of a portlet is cached, the cache has not expired and the portlet is not the
target of the client request, then the request handling methods of the portlet should not be
invoked as part of the client request. Instead, the portlet-container should use the data
from the cache.

If the content of a portlet is cached and a client request is targeted to the portlet, the

portlet container must discard the cache and invoke the request handling methods of the
portlet.

Portlet Specification PR draft, version 1.0 (7/9/2003) 74

10

15

20

25

PLT.19
|

Portlet Applications

A portlet application is a web application, as defined in Serviet Specification 2.3, SRV.9
Chapter, containing portlets and a portlet deployment descriptor in addition to servlets,
JSPs, HTML pages, classes and other resources normally found in a web application. A
bundled portlet application can run in multiple portlet containers implementations.

PLT.19.1 Relationship with Web Applications

All the portlet application components and resources other than portlets are managed by
the servlet container the portlet container is built upon.

PLT.19.2 Relationship to PortletContext

The portlet container must enforce a one to one correspondence between a portlet
application and a PortletContext.” " If the application is a distributed application, the
portlet container must create an instance per VM.*"" A portletContext object
provides a portlet with its view of the application.

PLT.19.3 Elements of a Portlet Application

A portlet application may consist of portlets plus other elements that may be included in
web applications, such as servlets, JISP™ pages, classes, static documents.

Besides the web application specific meta information, the portlet application must
include descriptive meta information about the portlets it contains.

PLT.19.4 Directory Structure

A portlet application follows the same directory hierarchy structure as web applications.
In addition it must contain a /WEB-INF/portlet.xml deployment descriptor file.
Portlet classes, utility classes and other resources accessed through the portlet application

classloader must reside within the /WEB-INF/classes directory or within a JAR file in
the /WEB-INF/1ib/ directory.

Portlet Specification PR draft, version 1.0 (7/9/2003) 75

10

15

20

25

PLT.19.5 Portlet Application Classloader

The portlet container must use the same classloader the servlet container uses for the web
application resources for loading the portlets and related resources within the portlet
application. ™™

The portlet container must ensure that requirements defined in the Serviet Specification
2.3 SRV.9.7.1 and SRV.9.7.2 Sections are fulfilled.™

PLT.19.6 Portlet Application Archive File

Portlet applications are packaged as web application archives (WAR) as defined in the
Servlet Specification 2.3 SRV.9.6 Chapter.

PLT.19.7 Portlet Application Deployment Descriptor

In addition to a web application deployment descriptor, a portlet application contains a
portlet application deployment descriptor. The portlet deployment descriptor contains
configuration information for the portlets contained in the application.

Refer to ### Packaging and Deployment Descriptor Chapter for more details on the
portlet application deployment descriptor.

PLT.19.8 Replacing a Portlet Application

A portlet container should be able to replace a portlet application with a new version
without restarting the container. In addition, the portlet container should provide a robust
method for preserving session data within that portlet application, when the replacement
of the portlet application happens.

PLT.19.9 Error Handling

It is left to the portal/portlet-container implementation how to react when a portlet throws
an exception while processing a request. For example, the portal/portlet-container could
render an error page instead of the portal page, render an error message in the portlet
window of the portlet that threw the exception or remove the portlet from the portal page
and log an error message for the administrator.

PLT.19.10 Portlet Application Environment

The portlet specification leverages the provisions made by the Serviet Specification 2.3
SRV.9.11 Section.

Portlet Specification PR draft, version 1.0 (7/9/2003) 76

PLT.20
|

Security

Portlet applications are created by Application Developers who license the application to
a Deployer for installation into a runtime environment. Application Developers need to
communicate to Deployers how the security is to be set up for the deployed application.

PLT.20.1 Introduction

A portlet application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of portlet applications will have security requirements.

The portlet container is responsible for informing portlets of the roles users are in when
accessing them. The portlet container does not deal with user authentication. It should
leverage the authentication mechanisms provided by the underlying servlet container
defined in the Servlet Specification 2.3, SRV.12.1 Section.

PLT.20.2 Roles

The portlet specification shares the same definition as roles of the Serviet Specification
2.3, SRV.12.4 Section.

PLT.20.3 Programmatic Security

Programmatic security consists of the following methods of the Request interface:

* getRemoteUser
* isUserInRole
* getUserPrincipal

The getRemoteUser method returns the user name the client used for authentication. The
isUserInRole method determines if a remote user is in a specified security role. The
getUserPrincipal method determines the principal name of the current user and returns
a java.security.Principal object. These APIs allow portlets to make business logic
decisions based on the information obtained.

The values that the portlet API getRemoteUser and getUserPrincipal methods return
the same values returned by the equivalent methods of the servlet response object.”™"
Refer to the Servlet Specification 2.3, SRV.12.3 Section for more details on these
methods.

Portlet Specification PR draft, version 1.0 (7/9/2003) 77

The isuserInRole method expects a string parameter with the role-name. A
security-role-ref element must be declared by the portlet in deployment descriptor
with a role-name sub-element containing the role-name to be passed to the method. The
security-role-ref element should contain a role-1ink sub-element whose value is
the name of the application security role that the user may be mapped into. This mapping
is specified in the web.xml deployment descriptor file. The container uses the mapping

of security-role-ref to security-role when determining the return value of the
lii
call.”

For example, to map the security role reference "FOO" to the security role with
role-name "manager" the syntax would be:

<portlet-app>
<portlet>
<security-role-ref>
<role-name>F00</role-name>
<role-link>manager</manager>

</security-role-ref>
</portlet>

</portlet-app>

In this case, if the portlet called by a user belonging to the "manager" security role made
the API call isuserInRole("F00"), then the result would be true.

If the security-role-ref element does not define a role-1ink clement, the container
must default to checking the role-name element argument against the list of security-
role eclements defined in the web.xml deployment descriptor of the portlet
application.™ The isuserInRole method references the list to determine whether the
caller is mapped to a security role. The developer must be aware that the use of this
default mechanism may limit the flexibility in changing role-names in the application
without having to recompile the portlet making the call.

PLT.20.4 Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection of
portlets. A constraint consists of the following elements:

* portlet collection
e user data constraint

A portlets collection is a set of portlet names that describe a set of resources to be

protected. All requests targeted to portlets listed in the portlets collection are subject to
the constraint.

Portlet Specification PR draft, version 1.0 (7/9/2003) 78

A user data constraint describes requirements for the transport layer for the portlets
collection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit).
The container must at least use SSL to respond to requests to resources marked integral
or confidential.

For example, to define that a portlet requires a confindential transport the syntax would
be:

<portlet-app>
<portlet>
<portlet-name>accountSummary</portlet-name>
</portlet>

<security-constraint>
<display-name>Secure Portlets</display-name>
<portlet-collection>
<portlet-name>accountSummary</portlet-name>
</portlet-collection>
<user-data-constraint/>
<transport-guarantee>CONFIDENTIAL</transport-
guarantee>
</user-data-constraint>
</security-constraint>

</po££iet—app>
PLT.20.5 Propagation of Security Identity in EJB™ Calls

A security identity, or principal, must always be provided for use in a call to an enterprise
bean.

The default mode in calls to EJBs from portlet applications should be for the security
identity of a user, in the portlet container, to be propagated to the EJB™ container.

Portlet containers, running as part of a J2EE platform, are required to allow users that are
not known to the portlet container to make calls to the the EJB™ container. In these
scenarios, the portlet application may specify a run-as element in the web.xml
deployment descriptor. When it is specified, the container must propagate the security
identity of the caller to the EJB layer in terms of the security role name defined in the
run-as element.™" The security role name must be one of the security role names
defined for the web.xm1 deployment descriptor.™" Alternatively, portlet application code
may be the sole processor of the signon into the EJB™ container.

Portlet Specification PR draft, version 1.0 (7/9/2003) 79

10

15

20

25

PLT.21

Packaging and Deployment Descriptor

The deployment descriptor conveys the elements and configuration information of a
portlet application between Application Developers, Application Assemblers, and
Deployers. Portlet applications are self-contained applications that are intended to work
without further resources. Portlet applications are managed by the portlet container.

In the case of portlet applications, there are two deployment descriptors: one to specify
the web application resources (web.xml) and one to specify the portlet resources
(portlet.xml). The web application deployment descriptor is explained in detail in the
Servlet Specification 2.3, SRV.13Deployment Descriptor Chapter.

PLT.21.1 Portlet and Web Application Deployment Descriptor

For the Portlet Specification version 1.0 there is a clear distinction between web
resources, like servlets, JSPs, static markup pages, etc., and portlets. This is due to the
fact that, in the Serviet Specification 2.3, the web application deployment descriptor is not
extensible. All web resources that are not portlets must be specified in the web.xml
deployment descriptor. All portlets and portlet related settings must be specified in an
additional file called portlet.xml. The format of this additional file is described in
detail below.

The following portlet web application properties need to be set in the web.xml
deployment descriptor:

* portlet application description using the <description> tag

* portlet application name using the <display-name> tag
* portlet application security role mapping using the <security-role> tag

PLT.21.2 Packaging

All resources, portlets and the deployment descriptors are packaged together in one web
application archive (WAR file). This format is described in Serviet Specification 2.3,
SRV.9 Web Application Chapter.

In addition to the resources described in the Serviet Specification 2.3, SRV.9 Web
Application Chapter a portlet application weB-INF directory consists of:

Portlet Specification PR draft, version 1.0 (7/9/2003) 81

5

10

15

20

25

30

* The /WEB-INF/portlet.xml deployment descriptor.
* Portlet classes in the /WEB-INF/classes directory.
* Portlet Java ARchive files /WEB-INF/1ib/*.jar

PLT.21.2.1 Example Directory Structure

The following is a listing of all the files in a sample portlet application:

/images/myButton.gif

/META-INF/MANIFEST.MF

/WEB-INF/web.xml

/WEB-INF/portlet.xml

/WEB-INF/lib/myHelpers. jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/portlets/MyPortlet.class
/WEB-INF/jsp/myHelp. jsp

Portlet applications that need additional resources that cannot be packaged in the WAR
file, like EJBs, may be packaged together with these resources in an EAR file.

PLT.21.2.2 Version Information

If portlet application providers want to provide version information about the portlet
application it is recommended to provide a META-INF/MANIFEST.MF entry in the WAR
file. The ‘Implementation-*- attributes should be used to define the version
information.

Example:

Implementation-Title: myPortletApplication
Implementation-Version: 1.1.2
Implementation-Vendor: SunMicrosystems. Inc.

PLT.21.3 Portlet Deployment Descriptor Elements

The following types of configuration and deployment information are required to be
supported in the portlet deployment descriptor for all portlet containers:

* Portlet Application Definition
* Portlet Definition

Security information, which may also appear in the deployment descriptor is not required

to be supported unless the portlet container is part of an implementation of the J2EE
specification.

Portlet Specification PR draft, version 1.0 (7/9/2003) 82

10

15

20

25

30

35

40

45

PLT.21.4 Rules for processing the Portlet Deployment
Descriptor

In this section is a listing of some general rules that portlet containers and developers
must note concerning the processing of the deployment descriptor for a portlet

application:

Portlet containers should ignore all leading whitespace characters before the first
non-whitespace character, and all trailing whitespace characters after the last non-
whitespace character for PCDATA within text nodes of a deployment descriptor.

Portlet containers and tools that manipulate portlet applications have a wide range
of options for checking the validity of a WAR. This includes checking the validity
of the web application and portlet deployment descriptor documents held within.
It is recommended, but not required, that portlet containers and tools validate both
deployment descriptors against the corresponding DTD and XML Schema
definitions for structural correctness. Additionally, it is recommended that they
provide a level of semantic checking. For example, it should be checked that a
role referenced in a security constraint has the same name as one of the security
roles defined in the deployment descriptor. In cases of non-conformant portlet
applications, tools and containers should inform the developer with descriptive
error messages. High end application server vendors are encouraged to supply this

kind of validity checking in the form of a tool separate from the container.

In elements whose value is an "enumerated type", the value is case sensitive.

PLT.21.5 Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?2>

<xs:schema targetNamespace="http://java.sun.com/xml/ns/portlet"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified" version="1.0" xml:lang="EN">
<xs:annotation>
<xs:documentation>
This is the XML Schema for the Portlet 1.0 deployment descriptor.
</xs:documentation>
</xs:annotation>
<xs:annotation>
<xs:documentation>
The following conventions apply to all J2EE
deployment descriptor elements unless indicated otherwise.
- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not

starting with "/") are considered relative to the root of
the JAR file's namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the

JAR file's namespace. In general, relative names are

preferred. The exception is .war files where absolute

names are preferred for consistency with the Servlet API.
</xs:documentation>

</Xs:annotation>
<!__ khkkhkkkkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhhhkhkhhkhkhkhhkhkhkhhkhkhkhkhkhhhkhkhhhkhkhhkhkhxdx >

Portlet Specification PR draft, version 1.0 (7/9/2003)

&3

10

15

20

25

30

35

40

45

50

55

60

65

<xs:import namespace="http://www.w3.o0rg/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2001/xml.xsd" />
<xs:element name="portlet-app" type="portlet:portlet-appType">
<xs:annotation>
<xs:documentation>
The portlet-app element is the root of the deployment descriptor

for a portlet application. This element has a required attribute version

to specify to which version of the schema the deployment descriptor

conforms.
</xs:documentation>
</xs:annotation>
<xs:unique name="portlet-name-uniqueness">
<xs:annotation>
<xs:documentation>
The portlet element contains the name of a portlet.
This name must be unique within the portlet application.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:portlet"/>
<xs:field xpath="portlet:portlet-name"/>
</xs:unique>
<xs:unique name="custom-portlet-mode-uniqueness">
<xs:annotation>
<xs:documentation>
The custom-portlet-mode element contains the portlet-mode.
This portlet mode must be unique within the portlet application.

</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:custom-portlet-mode"/>
<xs:field xpath="portlet:portlet-mode"/>
</xs:unique>
<xs:unique name="custom-window-state-uniqueness">
<xs:annotation>
<xs:documentation>
The custom-window-state element contains the window-state.
This window state must be unique within the portlet application.

</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:custom-window-state"/>
<xs:field xpath="portlet:window-state"/>
</xs:unique>
<xs:unique name="user-attribute-name-uniqueness">
<xs:annotation>
<xs:documentation>
The user-attribute element contains the name the attribute.
This name must be unique within the portlet application.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:user-attribute"/>
<xs:field xpath="portlet:name"/>
</xs:unique>
</xs:element>
<xs:complexType name="portlet-appType">
<xs:sequence>
<xs:element name="portlet" type="portlet:portletType"
maxOccurs="unbounded">
<xs:unique name="init-param-name-uniqueness">
<xs:annotation>
<xs:documentation>
The init-param element contains the name the attribute.
This name must be unique within the portlet.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:init-param"/>
<xs:field xpath="portlet:name"/>

Portlet Specification PR draft, version 1.0 (7/9/2003)

84

10

15

20

25

30

35

40

45

50

55

60

65

</xs:unique>
<xs:unique name="supports-mime-type-uniqueness">
<xs:annotation>
<xs:documentation>
The supports element contains the supported mime-type.
This mime type must be unique within the portlet.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:supports"/>
<xs:field xpath="mime-type"/>
</xs:unique>
<xs:unique name="preference-name-uniqueness">
<xs:annotation>
<xs:documentation>
The preference element contains the name the preference.
This name must be unique within the portlet.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:preference"/>
<xs:field xpath="portlet:name"/>
</xs:unique>
<xs:unique name="security-role-ref-name-uniqueness">
<xs:annotation>
<xs:documentation>
The security-role-ref element contains the role-name.
This role name must be unique within the portlet.
</xs:documentation>
</xs:annotation>
<xs:selector xpath="portlet:security-role-ref"/>
<xs:field xpath="portlet:role-name"/>
</xs:unique>
</xs:element>
<xs:element name="custom-portlet-mode" type="portlet:custom-portlet-
modeType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="custom-window-state" type="portlet:custom-window-
stateType" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="user-attribute" type="portlet:user-attributeType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="security-constraint" type="portlet:security-
constraintType" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="version" type="string" use="required"/>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="custom-portlet-modeType">
<xs:annotation>
<xs:documentation>
A custom portlet mode that one or more portlets in
this portlet application supports.
Used in: portlet-app
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="portlet-mode" type="portlet:portlet-modeType"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="custom-window-stateType">
<xs:annotation>
<xs:documentation>
A custom window state that one or more portlets in this
portlet application supports.
Used in: portlet-app

Portlet Specification PR draft, version 1.0 (7/9/2003)

85

10

15

20

25

30

35

40

45

50

55

60

65

</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="window-state" type="portlet:window-stateType"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="expiration-cacheType">
<xs:annotation>
<xs:documentation>
Expriation-cache defines expiration-based caching for this
portlet. The parameter indicates
the time in seconds after which the portlet output expires.
-1 indicates that the output never expires.
Used in: portlet
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="int"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="init-paramType">
<xs:annotation>
<xs:documentation>
The init-param element contains a name/value pair as an
initialization param of the portlet
Used in:portlet
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="name" type="portlet:nameType"/>
<xs:element name="value" type="portlet:valueType"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="keywordsType">
<xs:annotation>
<xs:documentation>
Locale specific keywords associated with this portlet.
The kewords are separated by commas.
Used in: portlet-info
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="mime-typeType">
<xs:annotation>
<xs:documentation>
MIME type name, e.g. "text/html".
The MIME type may also contain the wildcard
character '*', like "text/*" or "*/*".
Used in: supports
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="modifiableType">

Portlet Specification PR draft, version 1.0 (7/9/2003)

86

10

15

20

25

30

35

40

45

50

55

60

65

<xs:annotation>
<xs:documentation>
modifiable indicates that a setting can not
be changed in any of the standard portlet modes
("view","edit" or "help").
Valid values are:
- 0 for non-modifiable
- 1 for modifiable
Used in: preferences
</xs:documentation>
</xs:annotation>
<xs:restriction base="portlet:string">
<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="nameType">
<xs:annotation>
<xs:documentation>
The name element contains the name of a parameter.
Used in: init-param, ...
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="portletType">
<xs:annotation>
<xs:documentation>
The portlet element contains the declarative data of a portlet.
Used in: portlet-app
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="portlet-name" type="portlet:portlet-nameType"/>
<xs:element name="display-name" type="portlet:display-nameType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="portlet-class" type="portlet:portlet-classType"/>

<xs:element name="init-param" type="portlet:init-paramType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="expiration-cache" type="portlet:expiration-cacheType"

minOccurs="0"/>

<xs:element name="supports" type="portlet:supportsType"
maxOccurs="unbounded" />

<xs:element name="supported-locale" type="portlet:supported-localeType"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="resource-bundle" type="portlet:resource-bundleType"
minOccurs="0"/>

<xs:element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/>

<xs:element name="portlet-preferences" type="portlet:portlet-
preferencesType" minOccurs="0"/>

<xs:element name="security-role-ref" type="portlet:security-role-refType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:simpleType name="portlet-classType">
<xs:annotation>
<xs:documentation>
The portlet-class element contains the fully
qualified class name of the portlet.

Portlet Specification PR draft, version 1.0 (7/9/2003)

87

10

15

20

25

30

35

40

45

50

55

60

65

Used in: portlet
</xs:documentation>
</xs:annotation>
<xs:restriction base="portlet:fully-qualified-classType"/>
</xs:simpleType>
<xs:complexType name="portlet-collectionType">
<xs:annotation>
<xs:documentation>
The portlet-collectionType is used to identify a subset
of portlets within a portlet application to which a
security constraint applies.
Used in: security-constraint
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="portlet-infoType">
<xs:sequence>
<xs:element name="title" type="portlet:titleType"/>
<xs:element name="short-title" type="portlet:short-titleType"
minOccurs="0"/>
<xs:element name="keywords" type="portlet:keywordsType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="portlet-modeType">
<xs:annotation>
<xs:documentation>
Portlet modes. The specification pre-defines the following values
as valid portlet mode constants:
"edit", "help", "view".
Portlet mode names are not case sensitive.
Used in: custom-portlet-mode, supports
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="portlet-nameType">
<xs:annotation>
<xs:documentation>
The portlet-name element contains the canonical name of the
portlet. Each portlet name is unique within the portlet
application.
Used in: portlet, portlet-mapping
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="portlet-preferencesType">
<xs:annotation>
<xs:documentation>
Portlet persistent preference store.
Used in: portlet
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="preference" type="portlet:preferenceType" minOccurs="0"

maxOccurs="unbounded" />

Portlet Specification PR draft, version 1.0 (7/9/2003)

88

10

15

20

25

30

35

40

45

50

55

60

65

<xs:element name="preferences-validator" type="portlet:preferences-
validatorType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="preferenceType">
<xs:annotation>
<xs:documentation>
Persistent preference values that may be used for customization
and personalization by the portlet.
Used in: user-preferences, portlet-preferences
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="name" type="portlet:nameType"/>
<xs:element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="modifiable" type="portlet:modifiableType"
minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:simpleType name="preferences-validatorType">
<xs:annotation>
<xs:documentation>
The class specified under preferences-validator implements
the PreferencesValidator interface to validate the
preferences settings.
Used in: user-preferences, portlet-preferences
</xs:documentation>
</xs:annotation>
<xs:restriction base="portlet:fully-qualified-classType"/>
</xs:simpleType>
<xs:complexType name="resource-bundleType">
<xs:annotation>
<xs:documentation>
Filename of the resource bundle containing the language specific
portlet informations in different languages.
Used in: portlet-info
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="role-linkType">
<xs:annotation>
<xs:documentation>
The role-link element is a reference to a defined security role.
The role-link element must contain the name of one of the
security roles defined in the security-role elements.
Used in: security-role-ref
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="security-constraintType">
<xs:annotation>
<xs:documentation>
The security-constraintType is used to associate
intended security constraints with one or more portlets.
Used in: portlet-app
</xs:documentation>

Portlet Specification PR draft, version 1.0 (7/9/2003)

&9

10

15

20

25

30

35

40

45

50

55

60

65

</xs:annotation>
<xXs:sequence>
<xs:element name="display-name" type="portlet:display-nameType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="portlet-collection" type="portlet:portlet-
collectionType" maxOccurs="unbounded"/>
<xs:element name="user-data-constraint" type="portlet:user-data-
constraintType" />
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="security-role-refType">
<xs:annotation>
<xs:documentation>
The security-role-ref element contains the declaration of a
security role reference in the code of the web application. The
declaration consists of an optional description, the security
role name used in the code, and an optional link to a security
role. If the security role is not specified, the Deployer must
choose an appropriate security role.
The value of the role name element must be the String used
as the parameter to the
EJBContext.isCallerInRole(String roleName) method
or the HttpServletRequest.isUserInRole(String role) method.
Used in: portlet
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="role-name" type="portlet:role-nameType"/>
<xs:element name="role-link" type="portlet:role-linkType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="short-titleType">
<xs:annotation>
<xs:documentation>
Locale specific short version of the static title.
Used in: portlet-info
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="supportsType">
<xs:annotation>
<xs:documentation>
Supports indicates the portlet modes a
portlet supports for a specific content type. All portlets must
support the view mode.
Used in: portlet
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="mime-type" type="portlet:mime-typeType"/>
<xs:element name="portlet-mode" type="portlet:portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="supported-localeType">
<xs:annotation>
<xs:documentation>

Portlet Specification PR draft, version 1.0 (7/9/2003)

90

10

15

20

25

30

35

40

45

50

55

60

65

Indicated the locales the portlet supports.
Used in: portlet
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="titleType">
<xs:annotation>
<xs:documentation>
Locale specific static title for this portlet.
Used in: portlet-info
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="transport-guaranteeType">
<xs:annotation>
<xs:documentation>
The transport-guaranteeType specifies that
the communication between client and portlet should
be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the portlet does not
require any transport guarantees. A value of
INTEGRAL means that the portlet requires that the
data sent between the client and portlet be sent in
such a way that it can't be changed in transit.
CONFIDENTIAL means that the portlet requires
that the data be transmitted in a fashion that
prevents other entities from observing the contents
of the transmission.
In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use
of SSL is required.
Used in: user-data-constraint
</xs:documentation>
</xs:annotation>
<xs:restriction base="portlet:string">
<xs:enumeration value="NONE"/>
<xs:enumeration value="INTEGRAL"/>
<xs:enumeration value="CONFIDENTIAL"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="user-attributeType">
<xs:annotation>
<xs:documentation>
User attribute defines a user specific attribute that the
portlet application needs. The portlet within this application
can access this attribute via the request parameter USER INFO
map.
Used in: portlet-app
</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="name" type="portlet:nameType"/>
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="user-data-constraintType">
<xs:annotation>

Portlet Specification PR draft, version 1.0 (7/9/2003)

91

10

15

20

25

30

35

40

45

50

55

60

65

<xs:documentation>
The user-data-constraintType is used to indicate how
data communicated between the client and portlet should be
protected.
Used in: security-constraint
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="description" type="portlet:descriptionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="transport-guarantee" type="portlet:transport-
guaranteeType" />
</xs:sequence>
<xs:attribute name="id" type="string" use="optional"/>
</xs:complexType>
<xs:complexType name="valueType">
<xs:annotation>
<xs:documentation>
The value element contains the value of a parameter.
Used in: init-param
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="window-stateType">
<xs:annotation>
<xs:documentation>
Portlet window state. Window state names are not case sensitive.
Used in: custom-window-state
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string"/>
</xs:simpleContent>
</xs:complexType>
<!--- everything below is copied from j2ee 1 4.xsd -->
<xs:complexType name="descriptionType">
<xs:annotation>
<xs:documentation>
The description element is used to provide text describing the
parent element. The description element should include any
information that the portlet application war file producer wants
to provide to the consumer of the portlet application war file
(i.e., to the Deployer). Typically, the tools used by the
portlet application war file consumer will display the
description when processing the parent element that contains the
description. It has an optional attribute xml:lang to indicate
which language is used in the description. The default value
of this attribute is English (“en”).
Used in: init-param, portlet, portlet-app, security-role
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="display-nameType">
<xs:annotation>
<xs:documentation>
The display-name type contains a short name that is intended
to be displayed by tools. It is used by display-name

Portlet Specification PR draft, version 1.0 (7/9/2003)

92

10

15

20

25

30

35

40

45

50

elements. The display name need not be unique.
Example:

<display-name xml:lang="en">Employee Self Service</display-name>

The value of the xml:lang attribute is "en" (English) by
default.
</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="portlet:string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="fully-qualified-classType">
<xs:annotation>
<xs:documentation>
The elements that use this type designate the name of a
Java class or interface.
</xs:documentation>
</xs:annotation>
<xs:restriction base="portlet:string"/>
</xs:simpleType>
<xs:simpleType name="role-nameType">
<xs:annotation>
<xs:documentation>
The role-nameType designates the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.
</xs:documentation>
</xs:annotation>
<xs:restriction base="NMTOKEN"/>
</xs:simpleType>
<xs:simpleType name="string">
<xs:annotation>
<xs:documentation>
This is a special string datatype that is defined by J2EE
as a base type for defining collapsed strings. When
schemas require trailing/leading space elimination as
well as collapsing the existing whitespace, this base
type may be used.
</xs:documentation>
</xs:annotation>
<xs:restriction base="string">
<xs:whiteSpace value="collapse"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Portlet Specification PR draft, version 1.0 (7/9/2003)

93

PLT.21.6 Pictures of the structure of a Deployment Descriptor

portlet-app [== 1
i
i
i

User

E[I ansport-guarantee

Portlet Specification PR draft, version 1.0 (7/9/2003) 94

i Epurtlet-name

[portiecerp (=)

Portlet Specification PR draft, version 1.0 (7/9/2003)

95

10

15

20

25

PLT.21.7 Uniqueness of Deployment Descriptor Values

The following deployment descriptor values must be unique in the scope of the portlet
application definition:

* portlet <portlet-name>

* custom-portlet-mode <portlet-mode>
* custom-window-state <window-state>
* user-attribute <name>

The following deployment descriptor values must be unique in the scope of the portlet
definition:

* init-param <name>
* supports <mime-type>

* preference <name>
* security-role-ref <role-name>

PLT.21.8 Localization

The portlet deployment descriptor allows for localization on two levels:

* Localize values needed at deployment time
* Advertise supported locales at run-time

Both are described in the following sections.

PLT.21.8.1 Localization of Deployment Descriptor Values

Localization of deployment descriptor values allows the deployment tool to provide
localized deployment messages to the deployer. The following deployment descriptor
elements may exist multiple times with different locale information in the xml:1lang
attribute:

* all <description> elements
* portlet <display-name>

The default value for the xml:lang attribute is English (“en”).

PLT.21.8.2 Locales Supported by the Portlet

The portlet should always declare the locales it is going to support at run-time using the
<supported-locale> element in the deployment descriptor.

Portlet Specification PR draft, version 1.0 (7/9/2003) 96

10

15

20

25

30

35

40

45

50

55

60

PLT.21.9 Deployment Descriptor Example

<?xml version="1.0" encoding="UTF-8"7?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet" version="1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://java.sun.com/xml/portlet.xsd">
<portlet>
<description xml:lang="EN">Portlet displaying the time in different time
zones</description>
<description xml:lang="DE">Dieses Portlet zeigt die Zeit in verschiedenen
Zeitzonen an. </description>
<portlet-name>TimeZoneClock</portlet-name>
<display-name xml:lang="en">Time Zone Clock Portlet</display-name>
<display-name xml:lang="de">ZeitzonenPortlet</display-name>
<portlet-class>com.myco.samplets.util.zoneclock.ZoneClock</portlet-class>
<expiration-cache>-1</expiration-cache>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>config</portlet-mode>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>
</supports>
<supports>
<mime-type>text/wml</mime-type>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>
</supports>
<supported-locale>EN</supported-locale>
<portlet-info>
<title>Time Zone Clock</title>
<short-title>TimeZone</short-title>
<keywords>Time, Zone, World, Clock</keywords>
</portlet-info>
<portlet-preferences>
<preference>
<name>time-server</name>
<value>http://timeserver.myco.com</value>
<modifiable>0</modifiable>
</preference>
<preference>
<name>port</name>
<value>404</value>
<modifiable>0</modifiable>
</preference>
<preference>
<name>time-format</name>
<value>HH</value>
<value>mm</value>
<value>ss</value>
</preference>
</portlet-preferences>
<security-role-ref>
<role-name>trustedUser</role-name>
<role-link>auth-user</role-link>
</security-role-ref>
</portlet>
<custom-portlet-mode>
<description xml:lang="EN">Pre-defined custom portlet mode
CONFIG</description>
<portlet-mode>CONFIG</portlet-mode>
</custom-portlet-mode>
<custom-window-state>
<description xml:lang="EN">Occupies 50% of the portal page</description>

Portlet Specification PR draft, version 1.0 (7/9/2003)

10

15

20

<window-state>half-page</window-state>

</custom-window-state>
<user-attribute>

<description xml:lang="EN">Pre-defined attribute for the telephone number of
the user at work.</description>
<name>workInfo/telephone</name>

</user-attribute>
<security-constraint>
<portlet-collection>

<portlet-name>TimeZoneClock</portlet-name>

</portlet-collection>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>
</portlet-app>

PLT.21.10 Resource Bundles

To provide language specific portlet information, like title and keywords, resource
bundles can be used. The fully qualified class name of the resource bundle can be set in
the portlet definition in the deployment descriptor using the resource-bundle tag.

The Portlet Specification 1.0 defines the following constants for this resource bundle:

javax.portlet.title

The title that should be displayed in the titlebar of this
portlet. Only one title per locale is allowed. Note that this
title may be overrided by the portal or programmatically
by the portlet.

javax.portlet.short-title

A short version of the title that may be used for devices
with limited display capabilities. Only one short title per
locale is allowed.

javax.portlet.keywords

Keywords describing the functionality of the portlet.
Portals that allow users to search for portlets based on
keywords may use these keywords. Multiple keywords per
locale are allowed, but must be separated by commas °,’.

Portlet Specification PR draft, version 1.0 (7/9/2003) 98

10

15

20

PLT.21.11 Resource Bundle Example

This section shows the resource bundles for the world population clock portlet from

deployment descriptor example. The first resource bundle is for English and the second
for German locales.

English Resource Bundle

#

filename: clock_en.properties

Portlet Info resource bundle example
javax.portlet.title=World Population Clock
javax.portlet.short-title=WorldPopClock
javax.portlet.keywords=World,Population,Clock

German Resource Bundle

#

filename: clock_de.properties

Portlet Info resource bundle example
javax.portlet.title=Weltbevdlkerungsuhr
javax.portlet.short-title=Weltuhr
javax.portlet.keywords=Welt,Bevdlkerung, Uhr

Portlet Specification PR draft, version 1.0 (7/9/2003) 99

10

15

20

25

PLT.22

Portlet Tag Library

The portlet tag library enables JSPs that are included from portlets to have direct access
to portlet specific elements such as the RenderRequest and RenderResponse. It also
provides JSPs with access to portlet functionality such as creation of portlet URLSs.

JSP pages using the tag library must declare this in a taglib like this (using the suggested
prefix value):

<%@ taglib uri="http://java.sun.com/portlet” prefix="portlet” %>

PLT.22.1 defineObjects Tag

cxlvi

The defineobjects tag must define the following variables in the JSP page:

* RenderRequest renderRequest
* RenderResponse renderResponse
* PortletConfig portletConfig

These variables must reference the same portlet API objects stored in the request object
of the JSP as defined in the PLT.### Included Request Attributes section.

A JSP using the defineObjects tag may use these variables from scriptlets throughout
the page.

The defineObjects tag must not define any attribute and it must not contain any bod
cxlvii & Y Y Y
content.

An example of a JSP using the defineObjects tag could be:

<portlet:defineObjects/>

<%=renderResponse.setTitle("my portlet title")%>

After using the defineObjects tag, the JSP invokes the setTitle() method of the
renderResponse to set the title of the portlet.

Portlet Specification PR draft, version 1.0 (7/9/2003) 101

10

15

20

25

30

35

40

PLT.22.2 actionURL Tag

The portlet actionURL tag creates a URL that must point to the current portlet and must
trigger an action request with the supplied parameters. ™"

Parameters may be added to the URL by including the param tag between the actionURL
start and end tags.

The following non-required attributes are defined for this tag:

* windowState (Type: String, non-required) — indicates the window state that the
portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.”"™ Reasons for a
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current request.”
The window state attribute is not case sensitive.

* portletMode (Type: String, non-required) — indicates the portlet mode that the
portlet must have when this link is executed, if no error condition ocurred.” The
following portlet modes are predefined: edit, help, and view. If the specified
portlet mode is illegal for the current request, a JspException must be thrown.
“liReasons for a portlet mode being illegal may include that the portal does not
support this mode, the portlet has not declared in its deployment descriptor that it
supports this mode for the current markup, or the current user is not allowed to
switch to this mode. If a portlet mode is not set for a URL, it must stay the same
as the mode of the current request. “"'The portlet mode attribute is not case
sensitive.

* var (Type: String, non-required) — name of the exported scoped variable for the
action URL. By default, the result of the URL processing is written to the current
Jspwriter. If the result is exported as a JSP scoped variable, defined via the var
attributes, nothing is written to the current Jspwriter.®
Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation.

e secure (Type: String, non-required) — indicates if the resulting URL should be a
secure connection (secure="true”) or an insecure one (secure="false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown.®" If the security is not set for a URL, it witl-must
stay the same as the security setting of the current request.

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

* [fan illegal window state is specified in the state attribute.
* Ifan illegal portlet mode is specified in the mode attribute.

Portlet Specification PR draft, version 1.0 (7/9/2003) 102

10

15

20

25

30

35

* If anillegal security setting is specified in the secure attribute.

An example of a JSP using the actionURL tag could be:

<portlet:actionURL state="maximized” portletMode="edit”>
<portlet:param name="action” value="editStocks”/>
</portlet:actionURL>

The example creates a URL that brings the portlet into EDIT mode and MAXIMIZED
window state to edit the stocks quote list.

PLT.22.3 renderURL Tag

The portlet renderURL tag must-creates a URL that peinting- must point to the current
portlet and must trigger a render request with the supplied parameters.”

Parameters may be added by including the param tag between the renderURL start and
end tags.

The following non-required attributes are defined for this tag:

* windowState (Type: String, non-required) — indicates the window state that the
portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.""" Reasons for a
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current
request.”" The window state attribute is not case sensitive.

* portletMode (Type: String, non-required) — indicates the portlet mode that the
portlet must have when this link is executed, if not error condition ocurred.®™ The
following portlet modes are predefined: edit, help, and view. If the specified
portlet mode is illegal for the current request, a JspException must be thrown.
Reasons for a portlet mode being illegal may include that the portal does not
support this mode, the portlet has not declared in its deployment descriptor that it
supports this mode for the current markup, or the current user is not allowed to
switch to this mode. If a portlet mode is not set for a URL, it must stay the same
as the mode of the current request.” The portlet mode attribute is not case
sensitive.

* var (Type: String, non-required) — name of the exported scoped variable for the
render URL. By default, the result of the URL processing is written to the current
JspWriter. If the result is exported as a JSP scoped variable, defined via the var
attributes, nothing is written to the current Jspwriter.®™
Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation.

Portlet Specification PR draft, version 1.0 (7/9/2003) 103

10

15

20

25

30

e secure (Type: String, non-required) — indicates if the resulting URL should be a
secure connection (secure="true”’) or an insecure one (secure="false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.”™"

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

* [fan illegal window state is specified in the state attribute.
* Ifan illegal portlet mode is specified in the mode attribute.
* Ifanillegal security setting is specified in the secure attribute.

An example of a JSP using the renderURL tag could be:

<portlet:renderURL mode="view” windowState="normal”>
<portlet:param name="showQuote” value="myCompany” />
<portlet:param name="showQuote” value="someOtherCompany”/>
</portlet:renderURL>

The example creates a URL to provide a link that shows the stock quote of myCompany

and someOtherCompany and changes the portlet mode to view and the window state to
NORMAL.

PLT.22.4 encode Tag

This tag must encodes the given string value to the namespace of the current portlet. <"
This tag should be used for named elements in the portlet output (such as Javascript
functions and variables). The encoding ensures that the given name is uniquely associated
with this portlet and avoids name conflicts with other elements on the portal page or with
other portlets on the page.

The encode tag must not contain any body content.

The following required attribute is defined for this tag:

* name (Type: String, required) — the name of the String that should be encoded
into the namespace of the portlet.

An example of a JSP using the encode tag could be:
<A HREF="javascript:<portlet:encode name='doFoo()’'/>"/>Foo
The example references a JavaScript function with the name ‘doFoo’, which is encoded

to ensure uniqueness on the portal page.

Portlet Specification PR draft, version 1.0 (7/9/2003) 104

10

PLT.22.5 param Tag

clxiv

This tag defines a parameter that may be added to a actionURL Or renderURL.

The param tag must not contain any body content.®™"
The following required attributes are defined for this tag:
* name (Type: String, required) — the name of the parameter to add to the URL. If
name is null or empty, no action is performed.
* value (Type: String, required) — the value of the parameter to add to the URL. If

value is null, it is processed as an empty value.

An example of a JSP using the param tag could be:

<portlet:param name="myParam” value="someValue”/>

Portlet Specification PR draft, version 1.0 (7/9/2003) 105

10

15

20

PLT.23
|

Technology Compatibility Kit Requirements

This chapter defines a set of requirements a portlet container implementation must meet
in order to run the portlet Technology Compatibility Kit (TCK).

These requirements are only needed for the purpose of determining whether a portlet
container implementation complies with the Portlet Specification or not.

PLT.23.1 TCK Test Components

Based on the Portlet Specification (this document) and the portlet API, a set of testable
assertions have been extracted and identified. The portlet TCK treats each testable
assertion as a unique test case.

All test cases are run from a Java Test Harness. The Java Test Harness collects the results
of all the tests and makes a report on the overall test.

Each portlet TCK test case has two components:

* Test portlet applications: These are portlet applications containing portlets,
servlets or JSPs coded to verify an assertion. These test portlet applications are
deployed in the portlet container being tested for compliance.

* Test client: It is a standalone java program that sends HTTP requests to portlet
container where test portlet applications of the test case have been deployed for
compliance testing.

The portlet TCK assumes that the test portlet applications are deployed in the portlet
container before the test run is executed.

The test client looks for expected and unexpected sub strings in the HTTP response to

decide whether a test has failed or passed. The test client reports the result of the test
client to the Java Test Harness.

Portlet Specification PR draft, version 1.0 (7/9/2003) 107

10

15

20

25

30

35

PLT.23.2 TCK Requirements

In TCK, every test is written as a set of one or more portlets. A test client is written for
each test, the test client must interact with a portal page containing the portlets that are
part of the test. To accomplish this, TCK needs to obtain the initial URL for the portal
page of each test case. All the portlets in the portal page obtained with the initial URL
must be in VIEW portlet mode and in NORMAL window state. Subsequent requests to
the test are done using URLs generated by PortletURI that are part of the returned portal
pages. These subsequent requests must be treated as directed to same portal page
composed of the same portlets.

Portal/portlet-containers must disable all caching mechanisms when running the TCK test
cases.

Since aggregation of portlets in a portal page and the URLs used to interact with the
portlets are vendor specific, TCK provides two alternative mechanisms in the framework
to get the URLs to portal pages for the test cases: declarative configuration or
programmatic configuration. A vendor must support at least one of these mechanisms to
run the conformance tests.

PLT.23.2.1 Declarative configuration of the portal page for a TCK test

TCK publishes an XML file containing the portlets for each test case. Vendors must refer
to this file for establishing a portal page for every test. Vendors must provide an XML
file with a full URL for the portal page for each test. A call to this URL must generate a
portal page with the content of all the portlets defined for the corresponding test case. If
redirected to another URL, the new URL must use the same host name and port number
as specified in the file. Refer to TCK User guide for details on declarative configuration.

A snippet of the TCK provided XML file for declarative configuration would look like:

<test_case>
<test_name>PortletRequest_ GetAttributeTest</test_name>
<test_portlet>
<app_name>PortletRequestWebApp</app name>
<portlet name>GetAttributeTestPortlet</portlet name>
</test_portlet>
<test_portlet>
<app_name>PortletRequestWebApp</app name>
<portlet_name>GetAttributeTest 1 Portlet</portlet_name>
<test_portlet>
</test _case>

Portlet Specification PR draft, version 1.0 (7/9/2003) 108

10

15

20

25

30

35

40

45

50

55

The corresponding snippet for the vendor’s provided XML file might look like:

<test_case_url>
<test_name>PortletRequest_GetAttributeTest</test_name>
<test_url>http://fo0:8080/portal?pageName=TestCasel</test url>
</test_case_url>

PLT.23.2.1.1 Schema for XML file provided with Portlet TCK

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestCases.xsd-->
<xs:schema targetNamespace="http://java.sun.com/xml/ns/portletTCK"
xmlns:pct="http://java.sun.com/xml/ns/portletTCK"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="pct_ test cases">
<xs:annotation>
<xs:documentation>Test Cases defined in Portlet Compatibility
Kit</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="pct:test_case" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test case">
<xs:annotation>
<xs:documentation>Test Case</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="pct:test_name"/>
<xs:element ref="pct:test_portlet" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test portlet">
<xs:annotation>
<xs:documentation>A test Portlet</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="pct:portlet name"/>
<xs:element ref="pct:app name"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test name" type="xs:string">
<xs:annotation>
<xs:documentation>Unique name for a test case</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="app name" type="xs:string">
<xs:annotation>
<xs:documentation>Name of the portlet application a portlet belongs
to.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="portlet name" type="xs:string">
<xs:annotation>

Portlet Specification PR draft, version 1.0 (7/9/2003)

10

15

20

25

30

35

40

45

50

55

<xs:documentation>Name of the portlet</xs:documentation>
</xs:annotation>
</xs:element>
</xs:schema>

PLT.23.2.1.2 Schema for XML file that provided by vendors

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestURLs.xsd - Schema that must be followed by the vendors to
write the file that has mapping from a portlet TCK -->
<!-- test case to a url. -->
<xs:schema targetNamespace="http://java.sun.com/xml/ns/portletTCK"
xmlns:pct="http://java.sun.com/xml/ns/portletTCK"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="test case_urls">
<xs:annotation>
<xs:documentation>Mapping of Test Cases defined in Portlet Compatibility
Kit to vendor specific URLs</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="pct:test_case_url" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test case url">
<xs:annotation>
<xs:documentation>Test Case to URL map entry </xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="pct:test_name"/>
<xs:element ref="pct:test url"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test name" type="xs:string">
<xs:annotation>
<xs:documentation>Unique name for a test case from the
portletTCKTestCases.xml published by TCK</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="test url" type="xs:string">
<xs:annotation>
<xs:documentation>Complete URL that would result in a page containing
contents of portlets defined for this test case.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:schema>

PLT.23.2.2 Programmatic configuration of the portal page for a test

For programmatic configuration, a vendor must provide a full URL as a configuration
parameter to the TCK. The TCK will call this URL with a set of parameters indicating
the set of portlets that must appear in a portal page for the given test. Upon receiving this
request, the vendor provided URL could dynamically create a portal page with the
required portlets. Calls to this vendor provided URL are always HTTP GET requests. The
parameter names on the URL are multiple occurrences of "portletName". Values of this

Portlet Specification PR draft, version 1.0 (7/9/2003) 110

10

15

20

25

30

paramater must be a string consisting of the test case application name and portlet name
delimited by a “/”. The response of this call must be a portal page with the required
portlets or a redirection to another URL where the portal page will be served. If
redirected, the new URL must use the same host and port number as original URL.

A vendor provided URL would look like:

VendorPortalURL=http://fo00:8080/portal/tckservlet

For a test case involving one portlet, TCK would call this URL with the following
parameters:

http://fo00:8080/portal/tckservliet?portletName=PortletRequestWebAp
p/GetAttributeTestPortlet

PLT.23.2.3 Test Portlets Content

The test cases portlets encode information for the test client within their content. As
different vendor implementations may generate different output surrounding the content
produced by the portlets, the portlets delimit the information for the test clients using a
special element tag, portlet-tck.

PLT.23.2.4 Test Cases that Require User Identity

Some of the Portlet TCK require an authenticated user. The TCK configuration file
indicates the name and password of the authenticated user and the authentication
mechanism TCK will use.

Portlet TCK provides two mechanisms to send the user credentials: HTTP Basic
authentication and a Java interface provided by the TCK. If TCK framework is
configured to use HTTP Basic authentication, an Authorization HTTP header -using
the configured user and password values- is constructed and sent with each test case
request. If TCK framework is configured to use the Java interface mechanism, the value
obtained from the specified interface implementation will be sent as a Cookie HTTP
header with request of the test case.

Additionally, a portal vendor may indicate that certain test cases, not required by TCK, to
be executed in the context of an authenticated user. This is useful for vendor
implementations that require an authenticated user for certain functionality to work. A
vendor can specify the names of these test cases in a configuration file. TCK will consult
this file to decide if user authentication is needed for each test case. Refer to TCK User
Guide to get details on the specific configuration properties.

Portlet Specification PR draft, version 1.0 (7/9/2003) 111

10

15

20

25

30

PLT.A
|

Custom Portlet Modes

Portals may provide support for custom portlet modes. Similarly, portlets may use custom
portlet modes. This appendix describes a list of custom portlet modes and their intended
functionality. Portals and portlets should use these custom portlet mode names if they
provide support for the described functionality.

Portlets should use the getSupportedPortletModes method of the Portalcontext
interface to retrieve the portlet modes the portal supports.

PLT.A.1 About Portlet Mode

The about portlet mode should be used by the portlet to display information on the
portlets purpose, origin, version etc.

Portlet developers should implement the about portlet mode functionality by overriding
the dopispatch method of the GenericPortlet class and checking for
PortletMode("about").

In the deployment descriptor the support for the about portlet mode must be declared
using

<portlet-app>
<portlet>
<supports>

<portlet-mode>about</portlet-mode>
</supports>

</portlet>
<custom-portlet-mode>
<name>about</name>

</custom-portlet-mode>

</portlet-app>

Portlet Specification PR draft, version 1.0 (7/9/2003) 113

10

15

20

25

30

35

PLT.A.2 Config Portlet Mode

The config portlet mode should be used by the portlet to display one or more
configuration views that let administrators configure portlet preferences that are marked
non-modifiable in the deployment descriptor. This requires that the user must have
administrator rights. Therefore, only the portal can create links for changing the portlet
mode into config.

Portlet developers should implement the config portlet mode functionality by overriding
the dopispatch method of the GenericrPortlet class and checking for
PortletMode("config").

The conr1G mode of portlets operates typically on shared state that is common to many
portlets of the same portlet definition. When a portlet modifies this shared state via the
PortletPreferences, for all affected portlet entities, in the doview method the
PortletPreferences must give access to the modified state.

In the deployment descriptor the support for the config portlet mode must be declared
using

<portlet-app>
<portlet>
<supports>

<portlet-mode>config</portlet-mode>
</supports>

</portlet>
<custom-portlet-mode>
<name>config</name>

</custom-portlet-mode>

</portlet-app>

PLT.A.3 Edit_defaults Portlet Mode

The edit_defaults portlet mode signifies that the portlet should render a screen to set
the default values for the modifiable preferences that are typically changed in the EDIT
screen. Calling this mode requires that the user must have administrator rights. Therefore,
only the portal can create links for changing the portlet mode into edit_defaults.

Portlet developers should implement the edit defaults portlet mode functionality by

overriding the dobispatch method of the GenericPortlet class and checking for
PortletMode("edit defaults ").

Portlet Specification PR draft, version 1.0 (7/9/2003) 114

10

15

20

25

30

35

40

In the deployment descriptor the support for the edit_defaults portlet mode must be
declared using

<portlet-app>
<portlet>
<supports>

<portlet-mode> edit defaults </portlet-mode>
</supports>

</portlet>
<custom-portlet-mode>
<name> edit_defaults </name>

</custom-portlet-mode>

</portlet-app>

PLT.A.4 Preview Portlet Mode

The preview portlet mode should be used by the portlet to render output without the need
of having back-end connections or user specific data available. It may be used at page
design time and in portlet development tools.

Portlet developers should implement the preview portlet mode functionality by
overriding the dobispatch method of the GenericPortlet class and checking for
PortletMode("preview ").

In the deployment descriptor the support for the preview portlet mode must be declared
using

<portlet-app>
<portlet>
<supports>

<portlet-mode> preview </portlet-mode>
</supports>

</portlet>
<custom-portlet-mode>
<name> preview </name>

</custom-portlet-mode>

</portlet-app>

Portlet Specification PR draft, version 1.0 (7/9/2003) 115

10

15

20

PLT.A.5 Print Portlet Mode

The printportlet mode signifies that the portlet should render a view that can be printed.

Portlet developers should implement the printportlet mode functionality by overriding
the dopispatch method of the GenericpPortlet class and checking for
PortletMode("print").

In the deployment descriptor the support for the printportlet mode must be declared
using

<portlet-app>
<portlet>
<supports>

<portlet-mode>print</portlet-mode>
</supports>

</portlet>
<custom-portlet-mode>
<name>print</name>

</custom-portlet-mode>

</portlet-app>

Portlet Specification PR draft, version 1.0 (7/9/2003) 116

10

15

PLT.B
|

Markup Fragments

Portlets generate markup fragments that are aggregated in a portal page document.
Because of this, there are some rules and limitations in the markup elements generated by
portlets. Portlets should conform to these rules and limitations when generating content.

The disallowed tags indicated below are those tags that impact content generated by other
portlets or may even break the entire portal page. Inclusion of such a tag invalidates the
whole markup fragment.

Portlets generating HTML fragments must not use the following tags: base, body,
frame, frameset, head, html and title.

Portlets generating XHTML and XHTML-Basic fragments must not use the following
tags: base, body, head, html and title.

HTML, XHTML and XHTML-Basic specifications disallow the use of certain elements
outside of the <head> element in the document. However, some browser
implementations support some of these tags in other sections of the document. For
example: current versions of Internet Explorer and Netscape Navigator both support the
style tag anywhere within the document. Portlet developers should decide carefully the
use of following markup elements that fit this description: 1ink, meta and style.

Portlet Specification PR draft, version 1.0 (7/9/2003) 117

10

15

20

PLT.C
|

CSS Style Definitions

To achieve a common look and feel throughout the portal page, all portlets in the portal
page should use a common CSS style sheet when generating content.

This appendix defines styles for a variety of logical units in the markup. It follows the

style being considered by the OASIS Web Services for Remote Portlets Technical
Committee.

PLT.C.1 Links (Anchor)

A custom CSS class is not defined for the <a> tag. The entity should use the default
classes when embedding anchor tags.

PLT.C.2 Fonts

The font style definitions affect the font attributes only (font face, size, color, style, etc).

Style Description Example

Font attributes for the “normal” fragment font. Used | Normal

portlet-font for the display of non-accentuated information. Text

Font attributes similar to the .portlet.font but the
color is lighter.

portlet-font-dim

If an portlet developer wants a certain font type to be larger or smaller, they should
indicate this using a relative size. For example:

<div class="portlet-font" style="font-size:larger">Important
information</div>

<div class="portlet-font-dim" style="font-size:80%">Small and
dim</div>

Portlet Specification PR draft, version 1.0 (7/9/2003) 119

PLT.C.3 Messages

Message style definitions affect the rendering of a paragraph (alignment, borders,
background color, etc) as well as text attributes.

Style Description Example
portlet-msg-status Status of the current Progress: 80%
operation.

portlet-msg-info

Help messages, general
additional information, etc.

Info about

portlet-msg-error

Error messages.

Portlet not available

portlet-msg-alert

Warning messages.

Timeout occurred, try again
later

portlet-msg-success

Verification of the successful
completion of a task.

Operation
successfully

completed

PLT.C.4 Sections

Section style definitions affect the rendering of markup sections such as table, div and
span (alignment, borders, background color, etc) as well as their text attributes.

Style

Description

portlet-section-header

Table or section header

portlet-section-body

Normal text in a table cell

portlet-section-alternate

Text in every other row in the cell

portlet-section-selected

Text in a selected cell range

portlet-section-subheader

Text of a subheading

portlet-section-footer

Table or section footnote

portlet-section-text

Text that belongs to the table but does not fall in one of
the other categories (e.g. explanatory or help text that is
associated with the section).

Portlet Specification PR draft, version 1.0 (7/9/2003)

120

PLT.C.5 Forms

Form styles define the look-and-feel of the elements in an HTML form.

Style

Description

portlet-form-label

Text used for the descriptive label of the whole form
(not the labels for fields.

portlet-form-input-field

Text of the user-input in an input field.

portlet-form-button

Text on a button

portlet-icon-label

Text that appears beside a context dependent action
icon.

portlet-dlg-icon-label

Text that appears beside a “standard” icon (e.g. Ok, or
Cancel)

portlet-form-field-label

Text for a separator of fields (e.g. checkboxes, etc.)

portlet-form-field

Text for a field (not input field, e.g. checkboxes, etc)

PLT.C.6 Menus

Menu styles define the look-and-feel of the text and background of a menu structure. This
structure may be embedded in the aggregated page or may appear as a context sensitive

popup menu.

Style

Description

portlet-menu

General menu settings such as background
color, margins, etc

portlet-menu-item

Normal, unselected menu item.

portlet-menu-item-selected

Selected menu item.

portlet-menu-item-hover

Normal, unselected menu item when the
mouse hovers over it.

portlet-menu-item-hover-selected

Selected menu item when the mouse hovers

over it.
. Normal, unselected menu item that has sub-
portlet-menu-cascade-item
menus.
portlet-menu-cascade-item-selected Selected sub-menu item that has sub-menus.

portlet-menu-description

Descriptive text for the menu (e.g. in a help
context below the menu)

portlet-menu-caption

Menu caption

Portlet Specification PR draft, version 1.0 (7/9/2003) 121

PLT.D
|

User Information Attribute Names

This appendix defines a set of attribute names for user information and their intended
meaning. To allow portals an automated mapping of commonly used user information
attributes portlet programmers should use these attribute names. These attribute names
are derived from the Platform for Privacy Preferences 1.0 (P3P 1.0) Specification by the
W3C (http://www.w3c.org/TR/P3P). The same attribute names are also being considered

by the OASIS Web Services for Remote Portlets Technical Committee.

Attribute Name

user.bdate

user.gender

user.employer

user.department

user.jobtitle

user.name.prefix

user.name.given

user.name.family

user.name.middle

user.name.suffix

user.name.nickName

user.home-info.postal.name

user.home-info.postal.street

user.home-info.postal.city

user.home-info.postal.stateprov

user.home-info.postal.postalcode

user.home-info.postal.country

user.home-info.postal.organization

user.home-info.telecom.telephone.intcode

user.home-info.telecom.telephone.loccode

user.home-info.telecom.telephone.number

user.home-info.telecom.telephone.ext

user.home-info.telecom.telephone.comment

user.home-info.telecom.fax.intcode

user.home-info.telecom.fax.loccode

user.home-info.telecom. fax.number

user.home-info.telecom.fax.ext

user.home-info.telecom.fax.comment

user.home-info.telecom.mobile.intcode

user.home-info.telecom.mobile.loccode

user.home-info.telecom.mobile.number

Portlet Specification PR draft, version 1.0 (7/9/2003)

123

user.home-info.telecom.mobile.ext
user.home-info.telecom.mobile.comment
user.home-info.telecom.pager.intcode
user.home-info.telecom.pager.loccode
user.home-info.telecom.pager.number
user.home-info.telecom.pager.ext
user.home-info.telecom.pager.comment
user.home-info.online.email
user.home-info.online.uri
user.business-info.postal.name
user.business-info.postal.street
user.business-info.postal.city
user.business-info.postal.stateprov
user.business-info.postal.postalcode
user.business-info.postal.country
user.business-info.postal.organization
user.business-info.telecom.telephone.intcode
user.business-info.telecom.telephone.loccode
user.business-info.telecom.telephone.number
user.business-info.telecom.telephone.ext
user.business-info.telecom.telephone.comment
user.business-info.telecom.fax.intcode
user.business-info.telecom.fax.loccode
user.business-info.telecom.fax.number
user.business-info.telecom.fax.ext
user.business-info.telecom.fax.comment
user.business-info.telecom.mobile.intcode
user.business-info.telecom.mobile.loccode
user.business-info.telecom.mobile.number
user.business-info.telecom.mobile.ext
user.business-info.telecom.mobile.comment
user.business-info.telecom.pager.intcode
user.business-info.telecom.pager.loccode
user.business-info.telecom.pager.number
user.business-info.telecom.pager.ext
user.business-info.telecom.pager.comment
user.business-info.online.email
user.business-info.online.uri

NOTE: The user.bdate must consist of a string that represents the time in milliseconds
since January 1, 1970, 00:00:00 GMT.

Portlet Specification PR draft, version 1.0 (7/9/2003) 124

10

15

20

PLT.D.1 Example

Below is an example of how these attributes may be used in the deployment descriptor:

<portlet-app>

<user-attribute>

<name> user.name.prefix</name>
</user-attribute>
<user-attribute>

<name> user.name.given</name>
</user-attribute>
<user-attribute>

<name> user.name.family</name>
</user-attribute>
<user-attribute>

<name> user.home-info.postal.city</name>
</user-attribute>

<.portlet-app>

Portlet Specification PR draft, version 1.0 (7/9/2003)

125

Portlet Specification PR draft, version 1.0 (7/9/2003) 126

PLT.E

TCK Assertions

The following is the list of assertions that have been identified in the Portlet Specification

for the purposes of the compliance test.

Assertions marked as Testable=false are not verifiable.

'SPEC:1

1 SPEC:2

i SPEC:3
¥ SPEC:4

¥ SPEC:5

' SPEC:6
Vi SPEC:7
Vil SPEC:8
*SPEC:9

* SPEC:10
% SPEC:11
i SPEC:12
i SPEC:13
¥ SPEC:14

¥ SPEC:15

Testable=false

Testable=false

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable= true

Testable= true

Testable= true

Section=PLT.5.1

Section=PLT.5.1

Section=PLT.5.2.1

Section=PLT.5.2.2

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT 5.2.4

Section=PLT 5.2.4

Section=PLT 5.2.4.1

Section=PLT.5.2.4.1

Section=PLT.5.2.4.2.1

Section=PLT.5.2.4.2.1

Section=PLT.5.2.4.2.1

Portlet Specification PR draft, version 1.0 (7/9/2003) 127

™ SPEC:16
i SPEC:17
il SPEC:18
** SPEC:19
* SPEC:20
I SPEC:21
=i SPEC:22
=il GPEC:23
IV SPEC:24
™V SPEC:25
1 SPEC:26
i QPEC:27
il SPEC:28
»ix SPEC:29
¥ SPEC:30
4 SPEC:31
il PEC:32
@il SPEC:33
v SPEC:34
¥ SPEC:35
i SPEC:36
xovil GPEC:37
XXXViii SPEC:38

xxix QPE(C:39

Testable=true

Testable= true

Testable=false

Testable= true

Testable=false

Testable= false

Testable=false

Testable= false

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=false

Section=PLT 5.2.4.2.1

Section=PLT.5.2.4.4

Section=PLT.5.2.4.4

Section=PLT.5.2.4.4.

Section=PLT/5.2.5

Section=PLT.5.2.5

Section=PLT.5.2.5

Section=PLT.5.2.5

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.7.1.1

Section=PLT.7.1.1

Section=PLT.7.1.1

Section=PLT.6.2

Section=PLT.8.5

Section=PLT.8.6

Section=PLT.8.6

Section=PLT.8.6

Section=PLT.9.4

Section=PLT.10.1

Portlet Specification PR draft, version 1.0 (7/9/2003)

128

* SPEC:40
W SPEC:41
i SPEC:42
il SPEC:43
v SPEC:44
M SPEC:45
M SPEC:46
i QPEC:47
il SPEC:48
X SPEC:49
'SPEC:50
'SPEC:51
1 SPEC:52
i SPEC:53
¥ SPEC:54
¥ SPEC:55
M SPEC:56
MiSPEC:57
il SPEC:58
x SPEC:59
™ SPEC:60
M SPEC:61
i SPEC:62

Wit SPEC:63

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable=true

Testable=true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.10.1

Section=PLT.10.3

Section=PLT.10.3

Section=PLT.10.3

Section=PLT.10.3

Section=PLT.10.3(servlet spec)

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.1

Section=PLT.11.1.2

Section=PLT.11.1.5

Section=PLT.11.1.5

Section=PLT.11.1.6

Section=PLT.11.1.7

Section=PLT.11.2.1

Section=PLT.11.2.1

Section=PLT.12.2.1

Section=PLT.12.2.1

Section=PLT.12.2.2

Portlet Specification PR draft, version 1.0 (7/9/2003)

129

MY SPEC:64
™ SPEC:65
i SPEC:66
il QPEC:67
il SPEC:68
X SPEC:69
™ SPEC:70
i SPEC:71
bl QPEC:72
bxill SPREC:73
v SPEC:74
Y SPEC:75
i SPEC:76
il SPEC:77
Ixxviii SPEC:78
biX SPEC:79
o SPEC:80
bt QPEC:81
boxil SPEC:82
Ixxxiii SPEC:83
bV SPEC:84
oY SPEC:85
boovi GPEC:86

Ixxxvii SPEC:87

Testable=true

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable= true

Testable= true

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.12.2.2

Section=PLT.12.2.2

Section=PLT.12.2.2

Section=PLT.12.2.2

Section=PLT.12.2.3

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.2

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.3

Section=PLT.12.3.4

Section=PLT.12.3.5

Section=PLT.14.1

Section=PLT.14.1

Section=PLT.14.1

Section=PLT.14.1

Section=PLT.14.1

Portlet Specification PR draft, version 1.0 (7/9/2003)

130

Ixxxviii SPEC:88
boxix GPEC:89
** SPEC:90
* SPEC:91
*il SPEC:92
xiil SPEC:93
*V SPEC:94
¥ SPEC:95
i SPEC:96
il SPEC:97
il SPEC:98
*X SPEC:99
¢ SPEC:100
4 SPEC:101
% SPEC:102
‘i SPEC:103
v SPEC:104
“ SPEC:105
I SPEC:106
~i SPEC:107
il SPEC:108
% SPEC:109
“ SPEC:110

o SPEC:111

Testable= true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.14.1

Section=PLT.14.1

Section=PLT.14.3

Section=PLT.14.3

Section=PLT.14.4

Section=PLT.14.4

Section=PLT.14.4

Section=PLT.14.4

Section=PLT.14.4

Section=PLT.15.1

Section=PLT.15.1

Section=PLT.15.2

Section=PLT.15.2

Section=PLT.15.3

Section=PLT.15.3

Section=PLT.15.3

Section=PLT.15.4

Section=PLT.15.4

Section=PLT.15.4

Section=PLT.15.4

Section=PLT.15.4.1
Section=PLT.15.4.1
Section=PLT.15.4.1

Section=PLT.15.8(servlet spec)

Portlet Specification PR draft, version 1.0 (7/9/2003)

131

=il PEC:112
il SPEC:113
iV SPEC:114
Y SPEC:115
Vi SPEC:116
il SPEC:117
il SPEC:118
X SPEC:119
% SPEC:120
oxi SPEC:121
oxil SPEC:122
il SPEC:123
oxV SPEC:124
% SPEC:125
i SPEC:126
ol SPEC:127
el GPE(C:128
XX SPEC:129
XX SPEC:130
ol SPEC:131
ol SPEC:132
il GPEC:133
oV SPEC:134

YV SPEC:135

Testable=true
Testable=true
Testable= true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false(impl)
Testable=true
Testable=true
Testable=true
Testable=false(impl)

Testable=false(impl)

Section=PLT.16.1

Section=PLT.16.1

Section=PLT.16.1.1

Section=PLT.16.2

Section=PLT.16.2

Section=PLT.16.3.1

Section=PLT.16.3.2

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.3

Section=PLT.16.3.4

Section=PLT.16.3.4

Section=PLT.17.1

Section=PLT.17.2

Portlet Specification PR draft, version 1.0 (7/9/2003)

132

oV SPEC:145

e GPE(C:136

eviigpp(C:137

ecoviii GpR(C:138

o SPEC:139
=l SPEC:140
il SPEC:141
i SPEC:142
il SPEC:143

oliv SPEC:144

oM SPEC:146
i SpE(C:147
il SPEC:148
ol SPEC:149
¢ SPEC:150

i SPEC:151
i QPEC:152
il SPEC:153
v SPEC:154
¥ SPEC:155
¥ SPEC:156
i SPEC:157
<Ml SPEC:158

dix SPEC:159

Testable= false(impl)

Testable= false

Testable= false

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.17.2
Section=PLT.19.2
Section=PLT.19.2
Section= PLT.19.5
Section=PLT.19.5(servlet spec)
Section= PLT.20.2
Section= PLT.20.2
Section= PLT.20.2
Section= PLT.20.4
Section= PLT.20.4
Section= PLT.22.1
Section= PLT.22.1
Section= PLT.22.2
Section= PLT.22.2
Section= PLT.22.2
Section= PLT.22.2
Section= PLT.22.2
Section= PLT.22.2
Section= PLT.20.2
Section= PLT.20.2
Section= PLT.20.2
Section= PLT.20.2
Section= PLT.20.3

Section= PLT.20.3

Portlet Specification PR draft, version 1.0 (7/9/2003)

133

* SPEC:160
X SPEC:161
i SPEC:162
<Nl SPEC:163
NV SPEC:164

v SPEC:165

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=false

Section= PLT.20.3

Section= PLT.20.3

Section= PLT.20.3

Section= PLT.20.4

Section= PLT.20.5

Section= PLT.20.5

Portlet Specification PR draft, version 1.0 (7/9/2003)

134

Portlet Specification PR draft, version 1.0 (7/9/2003) 135

