Jetspeed Cornerstone Concepts

Jun Yang (junyang(@cisco.com)

Emad Benjamin (ebenjami(@cisco.com)

Disclaimer

This document does not serve as an introduction to the design of frameworks. It assumes
the reader’s familiarity with other frameworks or their concepts in general.

Purpose

Mass Customization

Mass customizability is the ability to meet new business requirements with minimal
impact on existing code base. Cornerstone is designed to support Mass Customization.

Concepts

Interface

Jetspeed Cornerstone (henceforth simply Cornerstone) enforces Design by Interface. All
APIs are interfaces. Relationships between interfaces are of interface types.

Implementation

Interfaces are implemented by classes. However, there is no direct reference to class
names in Cornerstone code. For example, there is no new MyClass () or even
MyClass.CONSTANT in the code. All references to implementations (classes) are indirect
(through the Registry).

Comparison with Other Work

Cornerstone is built using its own concepts. All of its own core classes (such as
ImplementationManager, Registry and ServiceManager, etc.) can be replaced with
other implementations.

Implementation Variants

An interface can have one default or many variant implementations, each of which is
called an implementation variant. All implementation variants are registered in the

registry.

Configuration

Configuration is deployment-time (as opposed to run-time) data that can alter or control
behavior of code. Configuration is also called customization. Cornerstone supports
customization in four dimensions:

1. Component. All components (classes and instances) are customizable.

2. Relationship. All relationships between components are customizable.

3. Control flow. Control flows of components (e.g. services) are customizable.

4. Preservation of customization. All customizations can be preserved cross
upgrades.

Registry

Registry is the store of all configuration data. Customization is always done to the
registry. Registry has planes, each with a different priority. Values in higher priority
planes overwrite those in the lower priority planes. For example, the out-of-box
configuration would be in plane 100. Your customizations reside in plane 150. Someone
else’s customizations on top of yours reside in plane 200. Plane 200 overwrites 150 and
100 and so forth. It is very easy to insert a new plane or take away an existing plane
anywhere in the chain.

Indirection
Registry also maps logical entities (e.g. the name of an implementation variant) to
physical (e.g. the class name of an implementation variant).

Virtual Class

All implementation variants are registered in the registry. For example, the registry has:

Implementation
com.mycompany.IA
al // one variant

class=com.mycompany.MyA
configvValuel=100

a2 // another variant
class=com.mycompany.MyA
configValuel=200

Every implementation variant is like a virtual class. For example, for interface 1a we
have a class Mya that implements it. We can have two variants of 12 a1 and a2. Both
al and a2’s class is Mya and yet they define different configurations. So an instance
created from a1 differs from an instance created from a2 only in configuration.
Implementation variants a1 and a2 are like virtual classes. Singletons can be based on
virtual classes.

Comparison to Other Work

A registry with overwriting planes that supports preservation of customization over time
is unique to Cornerstone.

Bean

Business objects are implemented as regular JavaBeans that have no dependency on
Cornerstone.

Bean Factory

Bean factories are responsible for creating storing and deleting beans. Factories are
implemented by extending either BaseFactory Or InversionOfControlFactory. The
concrete type of the other side in a relationship is resolved by factory of the bean at run
time through configuration and is not hard-wired in the bean itself. So the business
object beans can be reused with a completely different framework.

Most of the time developers don’t need to create their own factory classes. They will just
create new configurations of Cornerstone’s InversionOfControlFactory.

Comparison to Other Work

In Cornerstone, you can create an arbitrary number of factories for a bean. There is no
special requirement on the constructor of the bean.

Inversion of Control

See Bean Factory above.

Context

A context is a list of name value pairs. Its most common use in Cornerstone is as a set of
parameters passed into the invoke method of a service.

Service

A service is a component that supports the Iservice interface whose main method is
public Object invoke (IContext context). BaseService is the abstract super class
of all service implementations. A subclass actually doesn’t implement invoke () directly
but public Object invokeDirect (..) Whose argument list can be arbitrary. At run-
time, BaseService extracts the necessary arguments from context and populates the
argument list of invokeDirect () through reflection. This way Cornerstone supports a
generic interface of invoke () for all services while allowing a specific type-safe
signature for each individual service at the same time.

Services are cached with a switch in the configuration. Developers don’t need to do
anything to get caching. Of course, cache parameters can be customized when necessary.

Comparison to Other Work

In Cornerstone, all services have the same generic interface 1service and yet each
implementation has its own specific invokeDirect () that is type safe. The very fact of
all services conforming to the same interface makes it possible to put any services in
control flows via service controllers (See Service Controller).

Service Configuration vs. Parameters

Service configuration and parameters are unified and handled the same way in
Cornerstone (all declared on the argument list of invokeDirect ()). Configuration is
merely default values of parameters and parameters run-time overwrites of configuration.

Service Controller

A service controller is an implementation of TServiceController which extends
ISservice. So from a client’s point of view, a service controller has the same interface as
a service. Service controllers provide support for control flows (or orchestration) of
services (and other service controllers). Cornerstone out-of-box has
SequenceController (that calls its member services sequentially) and
SwitchController (which is like a switch statement). Other implementations can be
added. Control flows can be changed easily by changing the configuration of service
controllers without affecting any of the services involved.

Comparison to Other Work

Pipelines and Valves

A pipeline is similar to a SequenceController and valves its member services. But in
Cornerstone, it is just one of the possible service controllers. You can implement your
own and mingle it with other services and service controllers with ease.

Interceptors

Interceptor is a powerful concept. However, when it is used to implement control flows
that are more than simplistic, it can become hard for a developer to understand the
actual flow. Calling control flows out into their separate construct makes it easy to
control and understand them.

Service Metric

Every service instance has a metric object associated with it which is the basis for
creating the corresponding Managed Bean (MBean) in JMX. It can be logged in the
database. Even parameters of invocations can be logged. It is very easy to trace run-time
parameters that fly through a control flow to pinpoint problems. Developers don’t need
to understand a thing of JMX to use it.

Interceptor

Cornerstone supports a very simple but effective way of interceptors.
BaseService.invoke () 1S implemented as a sequence of invokeStart (),
invokeMiddle () and invokeEnd (). Control flows or changes of control flows are
implemented using service controllers because control flows implemented using
interceptors can quickly get out of hand.

Action, Action Controller and Action Metric

Cornerstone has its own MVC framework. Functionality of Action, Action Controller
and Action Metric is exactly like that of Service, Service Controller and Service Metric,
respectively. In fact, the Action source code is automatically generated from Service
source code by Ant. The difference is only in their names and usage: Actions are used for
presentation logic and Services for business logic.

Comparison to Other Work

Action related classes are mirror images of those of Service. When a developer has
learned one, s/he has learned the other. An Action Controller orchestrates Actions (and
other Action Controllers) which don’t know which control flows they are participating
in.

Sample Code

Refer to the document Jetspeed Cornerstone Sample Code.

Change History

Revision Date Changes
0.1 11/26/2003 Created.

