/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * @(#)UnixCrypt.java 0.9 96/11/25 * * Copyright (c) 1996 Aki Yoshida. All rights reserved. * * Permission to use, copy, modify and distribute this software * for non-commercial or commercial purposes and without fee is * hereby granted provided that this copyright notice appears in * all copies. */ /** * Unix crypt(3C) utility * * @version 0.9, 11/25/96 * @author Aki Yoshida */ /** * modified April 2001 * by Iris Van den Broeke, Daniel Deville */ package org.apache.jetspeed.security.util; /* * @(#)UnixCrypt.java 0.9 96/11/25 * * Copyright (c) 1996 Aki Yoshida. All rights reserved. * * Permission to use, copy, modify and distribute this software * for non-commercial or commercial purposes and without fee is * hereby granted provided that this copyright notice appears in * all copies. */ /* * Unix crypt(3C) utility * * @version 0.9, 11/25/96 * @author Aki Yoshida */ /* * modified April 2001 * by Iris Van den Broeke, Daniel Deville */ /* * Copied from Apache Directory Studio, svn r827980: * /directory/studio/trunk/ldapbrowser-core/src/main/java/org/apache/directory/studio/ldapbrowser/core/utils/UnixCrypt.java */ /* ------------------------------------------------------------ */ /* Unix Crypt. * Implements the one way cryptography used by Unix systems for * simple password protection. * @version $Id$ * @author Greg Wilkins (gregw) */ public class UnixCrypt { /* (mostly) Standard DES Tables from Tom Truscott */ private static final byte[] IP = { /* initial permutation */ 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; /* The final permutation is the inverse of IP - no table is necessary */ private static final byte[] ExpandTr = { /* expansion operation */ 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; private static final byte[] PC1 = { /* permuted choice table 1 */ 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; private static final byte[] Rotates = { /* PC1 rotation schedule */ 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 }; private static final byte[] PC2 = { /* permuted choice table 2 */ 9, 18, 14, 17, 11, 24, 1, 5, 22, 25, 3, 28, 15, 6, 21, 10, 35, 38, 23, 19, 12, 4, 26, 8, 43, 54, 16, 7, 27, 20, 13, 2, 0, 0, 41, 52, 31, 37, 47, 55, 0, 0, 30, 40, 51, 45, 33, 48, 0, 0, 44, 49, 39, 56, 34, 53, 0, 0, 46, 42, 50, 36, 29, 32 }; private static final byte[][] S = { /* 48->32 bit substitution tables */ /* S[1] */ { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }, /* S[2] */ { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }, /* S[3] */ { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }, /* S[4] */ { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }, /* S[5] */ { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }, /* S[6] */ { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }, /* S[7] */ { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }, /* S[8] */ { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } }; private static final byte[] P32Tr = { /* 32-bit permutation function */ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; private static final byte[] CIFP = { /* compressed/interleaved permutation */ 1, 2, 3, 4, 17, 18, 19, 20, 5, 6, 7, 8, 21, 22, 23, 24, 9, 10, 11, 12, 25, 26, 27, 28, 13, 14, 15, 16, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52, 37, 38, 39, 40, 53, 54, 55, 56, 41, 42, 43, 44, 57, 58, 59, 60, 45, 46, 47, 48, 61, 62, 63, 64 }; private static final byte[] ITOA64 = { /* 0..63 => ascii-64 */ ( byte ) '.', ( byte ) '/', ( byte ) '0', ( byte ) '1', ( byte ) '2', ( byte ) '3', ( byte ) '4', ( byte ) '5', ( byte ) '6', ( byte ) '7', ( byte ) '8', ( byte ) '9', ( byte ) 'A', ( byte ) 'B', ( byte ) 'C', ( byte ) 'D', ( byte ) 'E', ( byte ) 'F', ( byte ) 'G', ( byte ) 'H', ( byte ) 'I', ( byte ) 'J', ( byte ) 'K', ( byte ) 'L', ( byte ) 'M', ( byte ) 'N', ( byte ) 'O', ( byte ) 'P', ( byte ) 'Q', ( byte ) 'R', ( byte ) 'S', ( byte ) 'T', ( byte ) 'U', ( byte ) 'V', ( byte ) 'W', ( byte ) 'X', ( byte ) 'Y', ( byte ) 'Z', ( byte ) 'a', ( byte ) 'b', ( byte ) 'c', ( byte ) 'd', ( byte ) 'e', ( byte ) 'f', ( byte ) 'g', ( byte ) 'h', ( byte ) 'i', ( byte ) 'j', ( byte ) 'k', ( byte ) 'l', ( byte ) 'm', ( byte ) 'n', ( byte ) 'o', ( byte ) 'p', ( byte ) 'q', ( byte ) 'r', ( byte ) 's', ( byte ) 't', ( byte ) 'u', ( byte ) 'v', ( byte ) 'w', ( byte ) 'x', ( byte ) 'y', ( byte ) 'z' }; /* ===== Tables that are initialized at run time ==================== */ private static byte[] A64TOI = new byte[128]; /* ascii-64 => 0..63 */ /* Initial key schedule permutation */ private static long[][] PC1ROT = new long[16][16]; /* Subsequent key schedule rotation permutations */ private static long[][][] PC2ROT = new long[2][16][16]; /* Initial permutation/expansion table */ private static long[][] IE3264 = new long[8][16]; /* Table that combines the S, P, and E operations. */ private static long[][] SPE = new long[8][64]; /* compressed/interleaved => final permutation table */ private static long[][] CF6464 = new long[16][16]; /* ==================================== */ static { byte[] perm = new byte[64]; byte[] temp = new byte[64]; // inverse table. for ( int i = 0; i < 64; i++ ) A64TOI[ITOA64[i]] = ( byte ) i; // PC1ROT - bit reverse, then PC1, then Rotate, then PC2 for ( int i = 0; i < 64; i++ ) perm[i] = ( byte ) 0;; for ( int i = 0; i < 64; i++ ) { int k; if ( ( k = ( int ) PC2[i] ) == 0 ) continue; k += Rotates[0] - 1; if ( ( k % 28 ) < Rotates[0] ) k -= 28; k = ( int ) PC1[k]; if ( k > 0 ) { k--; k = ( k | 0x07 ) - ( k & 0x07 ); k++; } perm[i] = ( byte ) k; } init_perm( PC1ROT, perm, 8 ); // PC2ROT - PC2 inverse, then Rotate, then PC2 for ( int j = 0; j < 2; j++ ) { int k; for ( int i = 0; i < 64; i++ ) perm[i] = temp[i] = 0; for ( int i = 0; i < 64; i++ ) { if ( ( k = ( int ) PC2[i] ) == 0 ) continue; temp[k - 1] = ( byte ) ( i + 1 ); } for ( int i = 0; i < 64; i++ ) { if ( ( k = ( int ) PC2[i] ) == 0 ) continue; k += j; if ( ( k % 28 ) <= j ) k -= 28; perm[i] = temp[k]; } init_perm( PC2ROT[j], perm, 8 ); } // Bit reverse, intial permupation, expantion for ( int i = 0; i < 8; i++ ) { for ( int j = 0; j < 8; j++ ) { int k = ( j < 2 ) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1]; if ( k > 32 ) k -= 32; else if ( k > 0 ) k--; if ( k > 0 ) { k--; k = ( k | 0x07 ) - ( k & 0x07 ); k++; } perm[i * 8 + j] = ( byte ) k; } } init_perm( IE3264, perm, 8 ); // Compression, final permutation, bit reverse for ( int i = 0; i < 64; i++ ) { int k = IP[CIFP[i] - 1]; if ( k > 0 ) { k--; k = ( k | 0x07 ) - ( k & 0x07 ); k++; } perm[k - 1] = ( byte ) ( i + 1 ); } init_perm( CF6464, perm, 8 ); // SPE table for ( int i = 0; i < 48; i++ ) perm[i] = P32Tr[ExpandTr[i] - 1]; for ( int t = 0; t < 8; t++ ) { for ( int j = 0; j < 64; j++ ) { int k = ( ( ( j >> 0 ) & 0x01 ) << 5 ) | ( ( ( j >> 1 ) & 0x01 ) << 3 ) | ( ( ( j >> 2 ) & 0x01 ) << 2 ) | ( ( ( j >> 3 ) & 0x01 ) << 1 ) | ( ( ( j >> 4 ) & 0x01 ) << 0 ) | ( ( ( j >> 5 ) & 0x01 ) << 4 ); k = S[t][k]; k = ( ( ( k >> 3 ) & 0x01 ) << 0 ) | ( ( ( k >> 2 ) & 0x01 ) << 1 ) | ( ( ( k >> 1 ) & 0x01 ) << 2 ) | ( ( ( k >> 0 ) & 0x01 ) << 3 ); for ( int i = 0; i < 32; i++ ) temp[i] = 0; for ( int i = 0; i < 4; i++ ) temp[4 * t + i] = ( byte ) ( ( k >> i ) & 0x01 ); long kk = 0; for ( int i = 24; --i >= 0; ) kk = ( ( kk << 1 ) | ( ( long ) temp[perm[i] - 1] ) << 32 | ( ( long ) temp[perm[i + 24] - 1] ) ); SPE[t][j] = to_six_bit( kk ); } } } /** * You can't call the constructer. */ private UnixCrypt() { } /** * Returns the transposed and split code of a 24-bit code * into a 4-byte code, each having 6 bits. */ private static int to_six_bit( int num ) { return ( ( ( num << 26 ) & 0xfc000000 ) | ( ( num << 12 ) & 0xfc0000 ) | ( ( num >> 2 ) & 0xfc00 ) | ( ( num >> 16 ) & 0xfc ) ); } /** * Returns the transposed and split code of two 24-bit code * into two 4-byte code, each having 6 bits. */ private static long to_six_bit( long num ) { return ( ( ( num << 26 ) & 0xfc000000fc000000L ) | ( ( num << 12 ) & 0xfc000000fc0000L ) | ( ( num >> 2 ) & 0xfc000000fc00L ) | ( ( num >> 16 ) & 0xfc000000fcL ) ); } /** * Returns the permutation of the given 64-bit code with * the specified permutataion table. */ private static long perm6464( long c, long[][] p ) { long out = 0L; for ( int i = 8; --i >= 0; ) { int t = ( int ) ( 0x00ff & c ); c >>= 8; long tp = p[i << 1][t & 0x0f]; out |= tp; tp = p[( i << 1 ) + 1][t >> 4]; out |= tp; } return out; } /** * Returns the permutation of the given 32-bit code with * the specified permutataion table. */ private static long perm3264( int c, long[][] p ) { long out = 0L; for ( int i = 4; --i >= 0; ) { int t = ( 0x00ff & c ); c >>= 8; long tp = p[i << 1][t & 0x0f]; out |= tp; tp = p[( i << 1 ) + 1][t >> 4]; out |= tp; } return out; } /** * Returns the key schedule for the given key. */ private static long[] des_setkey( long keyword ) { long K = perm6464( keyword, PC1ROT ); long[] KS = new long[16]; KS[0] = K & ~0x0303030300000000L; for ( int i = 1; i < 16; i++ ) { KS[i] = K; K = perm6464( K, PC2ROT[Rotates[i] - 1] ); KS[i] = K & ~0x0303030300000000L; } return KS; } /** * Returns the DES encrypted code of the given word with the specified * environment. */ private static long des_cipher( long in, int salt, int num_iter, long[] KS ) { salt = to_six_bit( salt ); long L = in; long R = L; L &= 0x5555555555555555L; R = ( R & 0xaaaaaaaa00000000L ) | ( ( R >> 1 ) & 0x0000000055555555L ); L = ( ( ( ( L << 1 ) | ( L << 32 ) ) & 0xffffffff00000000L ) | ( ( R | ( R >> 32 ) ) & 0x00000000ffffffffL ) ); L = perm3264( ( int ) ( L >> 32 ), IE3264 ); R = perm3264( ( int ) ( L & 0xffffffff ), IE3264 ); while ( --num_iter >= 0 ) { for ( int loop_count = 0; loop_count < 8; loop_count++ ) { long kp; long B; long k; kp = KS[( loop_count << 1 )]; k = ( ( R >> 32 ) ^ R ) & salt & 0xffffffffL; k |= ( k << 32 ); B = ( k ^ R ^ kp ); L ^= ( SPE[0][( int ) ( ( B >> 58 ) & 0x3f )] ^ SPE[1][( int ) ( ( B >> 50 ) & 0x3f )] ^ SPE[2][( int ) ( ( B >> 42 ) & 0x3f )] ^ SPE[3][( int ) ( ( B >> 34 ) & 0x3f )] ^ SPE[4][( int ) ( ( B >> 26 ) & 0x3f )] ^ SPE[5][( int ) ( ( B >> 18 ) & 0x3f )] ^ SPE[6][( int ) ( ( B >> 10 ) & 0x3f )] ^ SPE[7][( int ) ( ( B >> 2 ) & 0x3f )] ); kp = KS[( loop_count << 1 ) + 1]; k = ( ( L >> 32 ) ^ L ) & salt & 0xffffffffL; k |= ( k << 32 ); B = ( k ^ L ^ kp ); R ^= ( SPE[0][( int ) ( ( B >> 58 ) & 0x3f )] ^ SPE[1][( int ) ( ( B >> 50 ) & 0x3f )] ^ SPE[2][( int ) ( ( B >> 42 ) & 0x3f )] ^ SPE[3][( int ) ( ( B >> 34 ) & 0x3f )] ^ SPE[4][( int ) ( ( B >> 26 ) & 0x3f )] ^ SPE[5][( int ) ( ( B >> 18 ) & 0x3f )] ^ SPE[6][( int ) ( ( B >> 10 ) & 0x3f )] ^ SPE[7][( int ) ( ( B >> 2 ) & 0x3f )] ); } // swap L and R L ^= R; R ^= L; L ^= R; } L = ( ( ( ( L >> 35 ) & 0x0f0f0f0fL ) | ( ( ( L & 0xffffffff ) << 1 ) & 0xf0f0f0f0L ) ) << 32 | ( ( ( R >> 35 ) & 0x0f0f0f0fL ) | ( ( ( R & 0xffffffff ) << 1 ) & 0xf0f0f0f0L ) ) ); L = perm6464( L, CF6464 ); return L; } /** * Initializes the given permutation table with the mapping table. */ private static void init_perm( long[][] perm, byte[] p, int chars_out ) { for ( int k = 0; k < chars_out * 8; k++ ) { int l = p[k] - 1; if ( l < 0 ) continue; int i = l >> 2; l = 1 << ( l & 0x03 ); for ( int j = 0; j < 16; j++ ) { int s = ( ( k & 0x07 ) + ( ( 7 - ( k >> 3 ) ) << 3 ) ); if ( ( j & l ) != 0x00 ) perm[i][j] |= ( 1L << s ); } } } /** * Encrypts String into crypt (Unix) code. * @param key the key to be encrypted * @param setting the salt to be used * @return the encrypted String */ public static String crypt( String key, String setting ) { long constdatablock = 0L; /* encryption constant */ byte[] cryptresult = new byte[13]; /* encrypted result */ long keyword = 0L; /* invalid parameters! */ if ( key == null || setting == null ) return "*"; // will NOT match under ANY circumstances! int keylen = key.length(); for ( int i = 0; i < 8; i++ ) { keyword = ( keyword << 8 ) | ( ( i < keylen ) ? 2 * key.charAt( i ) : 0 ); } long[] KS = des_setkey( keyword ); int salt = 0; for ( int i = 2; --i >= 0; ) { char c = ( i < setting.length() ) ? setting.charAt( i ) : '.'; cryptresult[i] = ( byte ) c; salt = ( salt << 6 ) | ( 0x00ff & A64TOI[c] ); } long rsltblock = des_cipher( constdatablock, salt, 25, KS ); cryptresult[12] = ITOA64[( ( ( int ) rsltblock ) << 2 ) & 0x3f]; rsltblock >>= 4; for ( int i = 12; --i >= 2; ) { cryptresult[i] = ITOA64[( ( int ) rsltblock ) & 0x3f]; rsltblock >>= 6; } return new String( cryptresult, 0x00, 0, 13 ); } public static void main( String[] arg ) { if ( arg.length != 2 ) { System.err.println( "Usage - java org.apache.jetspeed.security.util.UnixCrypt " ); System.exit( 1 ); } System.err.println( "Crypt=" + crypt( arg[0], arg[1] ) ); } }