
Jetspeed-2 development documentation

Jetspeed- 2 Layouts and decorator handling

Revision Author Comment

0.1 Roger Ruttimann/David
Taylor/Scott Weaver

Initial draft

Table of Contents
1.Introduction...1

Glossary...2
2.Current implementation...2

File structure and location of layout information...............................2
Graphical overview..3
Loading the layout and decorators...3

3.Proposed changes...4
Guidelines..4
Changes to the file structure...4
Changes to the Aggregator..5

1.Introduction
The current implementation of Jetspeed includes the initial framework for handling
layouts and decorators. The first task would be done finalize the architecture and
document it.

The purpose of this document is to describe the current state, propose changes and
serve as the design document for the J2 Layouts. Over time chapter 3 (proposed
changes) should disappear.

Page 1 of 5

Jetspeed-2 development documentation

Glossary
Her a list of terms and definitions used in the layout and decorator handling
specifications:

Term Description

Layout Defines the fashion in which grouping of Fragments
will organized relative to the final, aggregated
content of a request to the portal. A Page is an
example of a grouping of Fragments.

Layout-decorator Frame around page

Fragment Content whose source is that of a dynamic nature
e.g. generated by a Porlet or a Page The content
of a Fragment should not be manipulated by a
Decoration.

Decoration Any static or semi-static markup surrounding a
dynamically generated Fragment. Decoration does
not have access to alter a Fragment's generated
mark up.

Page An aggregate of Fragments. A Page is considered
to be type of Fragment and generates immutable
markup as such.

Page decorator A type of decoration specifically designed
decorate a Page's generated markup. Page markup
consists of that Page's Layout and Fragments.

Portlet decorator A type of decoration specifically designed
decorate a Portlet's generated markup.

2.Current implementation

File structure and location of layout information
The layout information is stored in the following location:

\WEB-INF\templates\layout\html\

The decorator information is stored in the following location:

\WEB-INF\decorations\portlet\html

Page 2 of 5

Jetspeed-2 development documentation

Graphical overview
The following picture shows the graphical overview (what's on the screen) and what
elements (layouts/decorators) are involved. For simplicity we use Jetspeed as the
Layout.

The above graphic shows that the layout and the decorator are coming out of two
different subdirectories in WEB-INF.

Loading the layout and decorators
The loading of the pages are implemented in two components the SimpleLayoutValve
and the aggregator. The code in the valve is simple and can be accomplished by the
aggregator (see proposed changes in chapter 3).

1. For each request the page header and footer of an HTML page are added by the
VerySimpleLayoutValveImpl.

• The valve implementation isn't mimetype sensitive and just creates HTML
format.

Page 3 of 5

Browser view

SimpleLayout.jsp loaded by SimpleLayoutValve

SimpleFooter.jsp loaded by SimpleLayoutValve

templates\Layout\html\Columns\layout.vm

\decorations\layout\html\jetspeed\decorator-top.vm

\decorations\layout\html\jetspeed\decorator-bottom.vm

Portlet decorator from
\decoratons/portlet/html/portlet/html/metal/decorator.vm

Portlet decorator from
\decoratons/portlet/html/portlet/html/jetspeed/decorator.vm

Portlet decorator from
\decoratons/portlet/html/portlet/html/minty-blue/decorator.vm

Jetspeed-2 development documentation

2. The AggregatorValve reads the psml file (pages directory) which defines the
tempaltes and portlet decorators to load.

• Two template locators are created (templates & decorations) to find the
layout and decorators based on names.

3.Proposed changes
This chapter lists proposed changes to the current implementation.

Guidelines
Once the proposed changes are in the stream the section should be removed from this
chapter and added to chapter 2.

Changes to the file structure
Proposal: Update naming convention. Uses pages instead of Layout.

Task:

Change directory structure under WEB-INF/ to from Layout to page (e.g
decorations/page/). It's easier to understand the concepts of pages and Layout.
A page could switch it's layout from 3 col to 2 col and still retain the same
decoration. I like to think of a Page as using or containing a layout, and the
decoration decorates the Page itself not the layout, which in fact is itself a
portlet generating a fragment.

Proposal: Adding style sheets to decorations

Task: Currently, the style definitions for the portlet decorations is stored in the page
decoration (Layout). We need to changes so that each decoration can contribute a
self-contained CSS to be added dynamically by the page rendering process.

Location for style sheets:

Portlet decorator:

decorations/portlet/{MIME type}/{decorator name}/css

Page decorator:

decorations/page/{Mime type}/{decorator name}/css

Page 4 of 5

Jetspeed-2 development documentation

Changes to the Aggregator
Proposal: Add style sheet processing to aggregator engine

Task: The aggregator needs to be aware that the decorations will be contributing to
the list of style sheets to be added. We would make it so that the Styles.css is
processed dynamically. This would be easy as we could make the velocity servlet also
process .css along with .vm files. So the top level css would look like this:

#foreach($cssUrl in cssUrls)

 @import url("$cssUrl")

#end

Proposal: The aggregator code should use the mimetypes form the capability map in
order to load the correct layouts/decorators (html/wml/..).

Task:

Remove hard coded instances of mimetype (html) with preferred mimetype
from the capability map.

Proposal: Remove SimpleLayoutValve and add functionality to the aggregator

Task:

The SimpleLayoutValve code only includes the header and the bottom of an
HTML page which is an overkill. The code needs to be removed and added to
the aggregator.

Proposal: Move WEB-Inf\templates directory content under Web-
Inf\decorations\Layout

Task:

Simplify file structure and use just one template locator instead of two. Grovi
script should only create one template locator.

Page 5 of 5

