Pig Latin Basics

Table of contents

O] 01Y7 (0] SO PPR 2
2 RESEIVEA KEYWOITS......cc.eeieeeieeie et eie st e e e ee st te e te e sreesseeaesaaesaeeneesreenseenseeneensens 2
3 CASE SENSITIVITY ..cueiueiieieie ettt b bbbt bt st et e e e et nne e 3
4 Data TYPES AN IMIOTE.......oouiiieieieete sttt sttt e et n e b e snesneese e e 4
5 Arithmetic Operators and MOTE.........cociiieieeiieie et 26
6 REIGONAl OPEIALONS.......eeeiie ittt et e e e b e ss e et e e nbeeenneennes 45

O LB L v (< 1< £ 86

1 Conventions

Pig Latin Basics

Conventions for the syntax and code examples in the Pig Latin Reference Manual are

described here.

Convention Description

O Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

[Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Curly brackets enclose two or
more items, one of whichis
required.

Curly brackets also used to
indicate the bag data type. In
this case <> isused to indicate
required items.

{}

Horizontal ellipsis pointsindicate
that you can repeat a portion of the
code.

UPPERCASE In general, uppercase type

indicates elements the system

lowercase supplies.

In general, lowercase type
indicates elements that you supply.

(These conventions are not strictly
adherered to in all examples.)

See Case Sensitivity
2 Reserved Keywords

Pig reserved keywords are listed here.

-A

Example

Multiple items:
(1, abc, (2,4,6))

Optional items:
[INNER | OUTER]

Two items, one required:
{ block | nested_block }

Pig Latin syntax statement:
cat path [path ...]

Pig Latin statement:
a=LOAD 'data AS (fL:int);
e LOAD, AS- Pig keywords

a, f1 - aliases you supply
'data - data source you supply

assert, and, any, all, arrange, as, asc, AVG

Page 2

Pig Latin Basics

-B bag, BinStorage, by, bytearray, BIGINTEGER,
BIGDECIMAL

-C cache, CASE, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

-D datetime, %declare, %default, define, dense, desc,
describe, DIFF, distinct, double, du, dump

-E e E, eval, exec, explain

-F f, F, filter, flatten, float, foreach, full

-G generate, group

-H help

-1 if, illustrate, import, inner, input, int, into, is

-J join

-K kill

-L [, L, left, limit, load, long, Is

- M map, matches, MAX, MIN, mkdir, mv

-N not, null

-0 onschema, or, order, outer, output

-P paralel, pig, Pigbump, PigStorage, pwd

-Q quit

-R register, returns, right, rm, rmf, rollup, run

-S sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

-T TextLoader, TOKENIZE, through, tuple

-U union, using

-V, W, X,Y,Z void

3 Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords (see Reserved Keywords) are case insensitive.

Page 3

cont.html#Parameter-Sub

Pig Latin Basics

In the example below, note the following:

* Thenames (aliases) of relations A, B, and C are case sensitive.

* Thenames (aliases) of fieldsf1, f2, and f3 are case sensitive.

* Function names PigStorage and COUNT are case sensitive.

* KeywordsLOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are
case insensitive. They can aso be written asload, using, as, group, by, etc.

In the FOREACH statement, the field in relation B is referred to by positional notation
($0).

4 Data Types and More

4.1 |dentifiers

Identifiers include the names of relations (aliases), fields, variables, and so on. In Pig,
identifiers start with aletter and can be followed by any number of letters, digits, or
underscores.

Valid identifiers:

Invalid identifiers:

4.2 Relations, Bags, Tuples, Fields

Pig Latin statements work with relations. A relation can be defined as follows:

» A relationisabag (more specifically, an outer bag).
* A bagisacollection of tuples.

» Atupleisan ordered set of fields.

» Afieldisapiece of data

start.html#pl-statements

Pig Latin Basics

A Pig relation isabag of tuples. A Pig relation issimilar to atable in arelational database,
where the tuples in the bag correspond to the rows in atable. Unlike arelational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

4.2.1 Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of therelationisA.

A = LOAD 'student' USING PigStorage() AS (nane:chararray, age:int, gpa:float);
DUWP A;

(John, 18, 4. OF)

(Mary, 19, 3. 8F)

(Bill, 20, 3.9F)

(Joe, 18, 3. 8F)

You an assign an aias to another alias. The new alias can be used in the place of the original
aliasto refer the original relation.

LOAD ' student' USING Pi gStorage() AS (nane:chararray, age:int, gpa:float);
A
DUMVP B;

A
B

4.2.2 Referencing Fields

Fields arereferred to by positional notation or by name (aias).

» Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

* Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). Y ou can use any name that is not a Pig keyword (see
|dentifiers for valid name examples).

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field
Datatype chararray int float
Positional notation $0 $1 $2

(generated by system)

Page 5

Pig Latin Basics

Possible name (assigned name age gpa
by you using a schema)

Field value (for thefirst | John 18 4.0
tuple)

As shown in this example when you assign names to fields (using the AS schema clause) you
can still refer to the fields using positional notation. However, for debugging purposes and
ease of comprehension, it is better to use field names.

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

4.2.3 Referencing Fields that are Complex Data Types

As noted, the fields in atuple can be any data type, including the complex data types: bags,
tuples, and maps.

Use the schemas for complex data types to name fields that are complex data types.
» Usethe dereference operators to reference and work with fields that are complex data

types.

In this example the data file contains tuples. A schemafor complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.tlaand t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can till
refer to these fields using positional notation.

Pig Latin Basics

4.3 Data Types

4.3.1 Simple and Complex

Simple Types Description Example

int Signed 32-bit integer 10

long Signed 64-bit integer Dataz 10L or 10l
Display: 10L

float 32-hit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data 10.5or 10.5e2 or 10.5E2
Display: 10.5 or 1050.0

chararray Character array (string) in Unicode = hello world

UTF-8 format
bytearray Byte array (blob)
boolean boolean true/false (case insensitive)
datetime datetime 1970-01-01T00:00:00.000+00:00
biginteger Java Biglnteger 200000000000
bigdecimal Java BigDecimal 33.456783321323441233442
Complex Types
tuple An ordered set of fields. (19,2

Page 7

Pig Latin Basics

bag

An collection of tuples.

{(19,2), (18,1)}

map

A set of key value pairs.

[openttapache]

Note the following general observations about data types:

Use schemasto assign typesto fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that datais used. For example, in relation B, f1 is converted to integer because 5is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

If aschemais defined as part of aload statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

If Pig cannot resolve incompatible types through implicit casts, an error will occur.
For example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

All data types have corresponding schemas.

4.3.2 Tuple

A tupleisan ordered set of fields.

Pig Latin Basics

4.3.2.1 Syntax

(field [, field ...])

4.3.2.2 Terms
() A tupleisenclosed in parentheses ().
field A piece of data. A field can be any datatype
(including tuple and bag).
4.3.2.3 Usage

Y ou can think of atuple as arow with one or more fields, where each field can be any
data type and any field may or may not have data. If afield has no data, then the following
happens:

* Inaload statement, the loader will inject null into the tuple. The actual value that is
substituted for null isloader specific; for example, PigStorage substitutes an empty field
for null.

* Inanon-load statement, if arequested field is missing from atuple, Pig will inject null.

Also see tuple schemas.

4.3.2.4 Example
In this example the tuple contains three fields.

(John, 18, 4. OF)

4.3.3 Bag

A bag isacollection of tuples.

4.3.3.1 Syntax: Inner bag

{ tuple[, tuple...]}

4.3.3.2 Terms
{1} Aninner bag isenclosed in curly brackets{ }.
tuple A tuple.

4.3.3.3 Usage

Note the following about bags:

Page 9

Pig Latin Basics

* A bag can have duplicate tuples.

* A bag can have tuples with differing numbers of fields. However, if Pig triesto accessa
field that does not exist, anull value is substituted.

A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuplesinclude chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.
Also see bag schemas.

4.3.3.4 Example: Outer Bag

In this example A isarelation or bag of tuples. Y ou can think of this bag as an outer bag.

4.3.3.5 Example: Inner Bag

Now, suppose we group relation A by the first field to form relation X.

In thisexample X isarelation or bag of tuples. The tuplesin relation X have two fields. The
first field istype int. The second field is type bag; you can think of this bag as an inner bag.

4.3.4 Map

A map isaset of key/value pairs.
4.3.4.1 Syntax (<> denotes optional)

[key#value <, key#value ...>]

Page 10

Pig Latin Basics

4.3.4.2 Terms
[Maps are enclosed in straight brackets|].
Key value pairs are separated by the pound sign #.
key Must be chararray datatype. Must be a unique value.
value Any datatype (the defaults to bytearray).

4.3.4.3 Usage

Key values within arelation must be unique.
Also see map schemas.

4.3.4.4 Example
In this example the map includes two key value pairs.

[nane#John, phone#5551212]

4.4 Nulls and Pig Latin

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or non-
existent. Nulls can occur naturally in data or can be the result of an operation.

4.4.1 Nulls, Operators, and Functions

Pig Latin operators and functions interact with nulls as shown in this table.

Operator Interaction

Comparison operators: If either subexpression isnull, the result is null.
==, I=

> <

>z, <=

Comparison operator: If either the string being matched against or the string
matches defining the match is null, the result isnull.
Arithmetic operators: If either subexpression isnull, the resulting

F oo x expression isnull.

% modulo

?: bincond

CASE : case

Page 11

Null operator:
isnull

Null operator:
isnot null

Dereference operators:
tuple (.) or map (#)

Operators:
COGROUP, GROUP, JOIN

Function:
COUNT_STAR

Cast operator

Functions:
AVG, MIN, MAX, SUM, COUNT

Function:
CONCAT

Function:
SIZE

Pig Latin Basics

If the tested value is null, returns true; otherwise,
returns false (see Null Operators).

If the tested value is not null, returns true; otherwise,
returns false (see Null Operators).

If the de-referenced tuple or map is null, returns null.
These operators handle nulls differently (see
examples below).

This function counts all values, including nulls.

Casting a null from one type to another type resultsin
anull.

These functions ignore nulls.

If either subexpression is null, the resulting
expression isnull.

If the tested object is null, returns null.

For Boolean subexpressions, note the results when nulls are used with these operators:

FILTER operator — If afilter expression resultsin null value, the filter does not pass them
through (if X isnull, !X isaso null, and the filter will reject both).

Bincond operator — If a Boolean subexpression resultsin null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

4.4.2 Nulls and Constants

Nulls can be used as constant expressions in place of expressions of any type.

In this example aand null are projected.

A
B

LOAD 'data' AS (a, b,
FOREACH A GENERATE a,

In this example of an outer join, if the join key is missing from atableit is replaced by null.

A = LOAD ' student'

int, gpa: float);

Page 12

Pig Latin Basics

Like any other expression, null constants can be implicitly or explicitly cast.
In this example both aand null will be implicitly cast to double.

In thisexample both aand null will be cast to int, aimplicitly, and null explicitly.

4.4.3 Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:

Division by zero

Returns from user defined functions (UDFs)

Dereferencing afield that does not exist.

Dereferencing a key that does not exist in amap. For example, given amap, info,
containing [name#john, phone#5551212] if auser triesto use info#addressanull is
returned.

Accessing afield that does not exist in atuple.

4.4.3.1 Example: Accessing afield that does not exist in a tuple

In this example nulls are injected if fields do not have data.

Pig Latin Basics

4.4.4 Nulls and Load Functions

As noted, nulls can occur naturaly in the data. If nulls are part of the data, it isthe
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should aways
communicate null valuesto Pig by producing Javanulls.

The Pig Latin load functions (for example, PigStorage and TextL oader) produce null values
wherever datais missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

4.4.5 Nulls and GROUP/COGROUP Operators

When using the GROUP operator with asingle relation, records with anull group key are
grouped together.

When using the GROUP (COGROUP) operator with multiple relations, records with anull
group key from different relations are considered different and are grouped separately. In the
example below note that there are two tuples in the output corresponding to the null group
key: onethat contains tuples from relation A (but not relation B) and one that contains tuples
from relation B (but not relation A).

Pig Latin Basics

4.4.6 Nulls and JOIN Operator

The JOIN operator - when performing inner joins - adheres to the SQL standard and
disregards (filters out) null values. (See aso Drop Nulls Before a Join.)

4.5 Constants

Pig provides constant representations for all datatypes except bytearrays.

Constant Example Notes
Simple Data Types
int 19
long 19L
float 19.2F or 1.92e2f
double 19.2 or 1.92e2
chararray 'hello world'
bytearray Not applicable.
boolean true/false Caseinsengitive.
Complex Data Types
tuple (19,2, 1) A constant in this form creates a
tuple.
bag {(192),(1,2} ﬁ‘ constant in thisform creates a
ag.

Page 15

perf.html#nulls

Pig Latin Basics

map ['name’ # 'John’, 'ext' # 5555] A constant in this form creates a
map.

Please note the following:

* On UTF-8 systems you can specify string constants consisting of printable ASCI|
characters such as 'abc'; you can specify control characters such as'\t'; and, you can
specify acharacter in Unicode by starting it with \u', for instance, \uOO01' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTF-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far aswe
know this has not been tested.

* To specify along constant, | or L must be appended to the number (for example,

12345678L). If thel or L is not specified, but the number istoo large to fit into an int, the

problem will be detected at parse time and the processing is terminated.

* Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, Set1l) istreated as double unless it ends with f or F in which caseit is assigned
type float (for example, 1.5f).

» Thereisno native constant type for datetime field. Y ou can use a ToDate udf with
chararray constant as argument to generate a datetime value.

The data type definitions for tuples, bags, and maps apply to constants:

» A tuple can contain fields of any datatype
* A bagisacollection of tuples
* A map key must be a chararray; a map value can be any datatype

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

LOAD 'data’ USI NG MyStorage() AS (T: tupl e(nane: chararray, age: int));
FILTER A BY T == ('john', 25);
FOREACH B GENERATE T. nane, [25#5.6], {(1, 5, 18)};

o w>
o u

4.6 Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well asthe eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

* Any Pig datatype (simple data types, complex data types)
* Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)
* Any Pig built in function.

Page 16

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Pig Latin Basics

* Any user defined function (UDF) written in Java.

InPig Latin,
* Anarithmetic expression could look like this:

A string expression could look like this, where aand b are both chararrays:

A boolean expression could look like this:

4.6.1 Field Expressions

Field expressions represent afield or a dereference operator applied to afield.

4.6.2 Star Expressions

Star expressions (*) can be used to represent all the fields of atuple. It is equivalent to
writing out the fields explicitly. In the following example the definition of B and C are
exactly the same, and MyUDF will be invoked with exactly the same arguments in both

A common error when using the star expression is shown below. In this example, the
programmer really wants to count the number of elementsin the bag in the second field:
COUNT($1).

There are some restrictions on use of the star expression when the input schema is unknown
(null):

* For GROUP/COGROUP, you can't include a star expression in a GROUP BY column.

Page 17

Pig Latin Basics

» For ORDER BY, if you have project-star as ORDER BY column, you can’t have any
other ORDER BY column in that statement.

4.6.3 Project-Range Expressions

Project-range (..) expressions can be used to project arange of columns from input. For
example:
e .. 3x: projects columns $0 through $x, inclusive

* $x..: projects columns through end, inclusive
e $x.. %y : projects columns through $y, inclusive

If the input relation has a schema, you can refer to columns by alias rather than by column
position. Y ou can also combine aliases and column positions in an expression; for example,
"coll.. $5" isvalid.

Project-range can be used in all cases where the star expression (*) is allowed.

Project-range can be used in the following statements: FOREACH, JOIN, GROUP,
COGROUP, and ORDER BY (aso when ORDER BY is used within a nested FOREACH

block).
A few examples are shown here:

There are some restrictions on the use of project-to-end form of project-range (eg "x .. ")
when the input schemais unknown (null):

* For GROUP/COGROUP, the project-to-end form of project-range is not allowed.
» For ORDER BY, the project-to-end form of project-range is supported only as the last
sort column.

Page 18

Pig Latin Basics

/* This statenent is supported */
SORT = order IN by $2 .. $3, $6 ..;

/* This statenment is NOT supported */
SORT = order IN by $2 .. $3, $6 ..;

4.6.4 Boolean Expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

4.6.5 Tuple Expressions

Tuple expressions form subexpressions into tuples. The tuple expression has the form
(expression [, expression ...]), where expression is ageneral expression. The simplest tuple
expression is the star expression, which represents all fields.

4.6.6 General Expressions

General expressions can be made up of UDFs and amost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the simpliest general expressions.

4.7 Schemas

Schemas enable you to assign names to fields and declare types for fields. Schemas are
optional but we encourage you to use them whenever possible; type declarations result in
better parse-time error checking and more efficient code execution.

Schemas for simple types and complex types can be used anywhere a schema definition is
appropriate.
Schemas are defined with the LOAD, STREAM, and FOREACH operators using the AS

clause. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see LOAD and User Defined Functions for more information).

Known Schema Handling
Note the following:

* You can define a schemathat includes both the field name and field type.

* You can define a schema that includes the field name only; in this case, the field type
defaults to bytearray.

* You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

Page 19

udf.html

Pig Latin Basics

If you assign aname to afield, you can refer to that field using the name or by positional
notation. If you don't assign aname to afield (the field is un-named) you can only refer to
the field using positional notation.

If you assign atypeto afield, you can subsequently change the type using the cast operators.
If you don't assign atypeto afield, the field defaults to bytearray; you can change the default
type using the cast operators.

Unknown Schema Handling
Note the following:

* When you JOIN/COGROUP/CROSS multiple relations, if any relation has an unknown
schema (or no defined schema, also referred to as a null schema), the schemafor the
resulting relation is null.

* If you FLATTEN abag with empty inner schema, the schemafor the resulting relation is
null.

* If you UNION two relations with incompatible schema, the schema for resulting relation
isnull.

» If theschemaisnull, Pig treats all fields as bytearray (in the backend, Pig will determine
the real type for the fields dynamically)

See the examples below. If afield's datatypeis not specified, Pig will use bytearray to
denote an unknown type. If the number of fields is not known, Pig will derive an unknown
schema.

/* The field data types are not specified ... */
a =load '1.txt' as (a0, b0);
a: {a0: bytearray, bO: bytearray}

/* The nunber of fields is not known ... */
a =1load "1.txt';
a: Schema for a unknown

How Pig Handles Schema

As shown above, with afew exceptions Pig can infer the schema of arelationship up front.
Y ou can examine the schema of particular relation using DESCRIBE. Pig enforces this
computed schema during the actual execution by casting the input data to the expected data
type. If the processis successful the results are returned to the user; otherwise, awarning is
generated for each record that failed to convert. Note that Pig does not know the actual types
of the fieldsin the input data prior to the execution; rather, Pig determines the data types and
performs the right conversions on the fly.

Having a deterministic schemais very powerful; however, sometimes it comes at the cost of
performance. Consider the following example:

Page 20

test.html#describe

Pig Latin Basics

oad '"input' as (x, y, z);

A=
B = foreach A generate x+y;

If you do DESCRIBE on B, you will see a single column of type double. Thisis because Pig
makes the safest choice and uses the largest numeric type when the schemais not know. In
practice, the input data could contain integer values; however, Pig will cast the data to double
and make sure that a double result is returned.

If the schema of arelation can’t be inferred, Pig will just use the runtime data asis and
propagate it through the pipeline.

4.7.1 Schemas with LOAD and STREAM

With LOAD and STREAM operators, the schema following the AS keyword must be
enclosed in parentheses.

In this example the LOAD statement includes a schema definition for simple data types.
A = LOAD 'data’ AS (fl:int, f2:int);

4.7.2 Schemas with FOREACH

With FOREACH operators, the schemafollowing the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schemafor smple data
types.
X = FOREACH C GENERATE FLATTEN(B) AS (fl:int, f2:int, f3:int), group;

In this example the FOREACH statement includes a schema for simple expression.

X = FOREACH A GENERATE f1+f2 AS x1:int;

In this example the FOREACH statement includes a schemas for multiple fields.
X = FOREACH A GENERATE f1 as user, f2 as age, f3 as gpa;

4.7.3 Schemas for Simple Data Types

Simple data types include int, long, float, double, chararray, bytearray, boolean, datetime,
biginteger and bigdecimal.

Page 21

test.html#describe

Pig Latin Basics

4.7.3.1 Syntax
(alias:type]) [, (dias:type]) ...])
4.7.3.2 Terms
dias The name assigned to the field.
type (Optional) The simple data type assigned to the field.
The alias and type are separated by a colon (:).
If the type is omitted, the field defaults to type
bytearray.
(,) Multiple fields are enclosed in parentheses and
separated by commas.

4.7.3.3 Examples

In this example the schema defines multiple types.

In thisexample field "gpa" will default to bytearray because no type is declared.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 22

Pig Latin Basics

4.7.4 Schemas for Complex Data Types

Complex data types include tuples, bags, and maps.

4.7.5 Tuple Schemas
A tupleisan ordered set of fields.

4.7.5.1 Syntax

diad:tuple] (diad:type]) [, (Aiag:typq]) ...])

4.7.5.2 Terms
dias The name assigned to the tuple.
‘tuple (Optional) The data type, tuple (case insensitive).
@) The designation for atuple, a set of parentheses.
aliad:type] The constituents of the tuple, where the schema

definition rules for the corresponding type applies to
the constituents of the tuple:

e dias—the name assigned to the field
» type (optional) —the simple or complex datatype
assigned to the field

4.7.5.3 Examples

In this example the schema defines one tuple. The load statements are equivalent.

Page 23

Pig Latin Basics

In this example the schema defines two tuples.

4.7.6 Bag Schemas

A bag isacollection of tuples.

4.7.6.1 Syntax
diag[:bag] {tuple}

4.7.6.2 Terms
dias The name assigned to the bag.
:bag (Optional) The data type, bag (case insensitive).
{} The designation for a bag, a set of curly brackets.
tuple A tuple (see Tuple Schema).

4.7.6.3 Examples

In this example the schema defines abag. The two load statements are equivalent.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 24

Pig Latin Basics

4.7.7 Map Schemas

A map isaset of key value pairs.

4.7.7.1 Syntax (<> demotes optional)

alias<:map> [<type> |

4.7.7.2 Terms

dias The name assigned to the map.

‘map (Optional) The data type, map (case insensitive).

[1 The designation for amap, a set of straight brackets
[l

type (Optional) The datatype (all types alowed, bytearray
is the default).
The type applies to the map value only; the map key
isawaystype chararray (see Map).
If atypeisdeclared then ALL valuesin the map must
be of thistype.

4.7.7.3 Examples

In this example the schema defines an untyped map (the map values default to bytearray).
The load statements are equivalent.

This example shows the use of atyped maps.

Page 25

Pig Latin Basics

4.7.8 Schemas for Multiple Types
Y ou can define schemas for data that includes multiple types.

4.7.8.1 Example

In this example the schema defines a tuple, bag, and map.

4.7.8.2 Previous Relation Shortcut

There is a shortcut form to reference the relation on the previous line of apig script or grunt
Session:

5 Arithmetic Operators and More

5.1 Arithmetic Operators

5.1.1 Description

Operator Symbol Notes
addition +
subtraction -

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 26

Pig Latin Basics

multiplication *

division /

modulo % Returns the remainder of adivided
by b (a%ob).

Works with integral numbers (int,
long).

bincond ?: (condition ? value_if_true:

value if_false)

The bincond should be enclosed in
parenthesis.

The schemas for the two
conditional outputs of the bincond
should match.

Use expressions only (relational
operators are not alowed).

case CASE WHEN THEN ELSE END = CASE expression [WHEN value
THEN value]+ [ELSE value]?
END

CASE [WHEN condition THEN
value]+ [ELSE value]? END

Case operator is equivalent to
nested bincond operators.

The schemas for al the outputs
of the when/else branches should
match.

Use expressions only (relational
operators are not alowed).

5.1.1.1 Examples

Suppose we have relation A.

In this example the modul o operator is used with fields f1 and f2.

Page 27

Pig Latin Basics

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1": if the condition istrue, return 1; if the condition is false, return the count of the number of
tuplesin B.

In this example the case operator is used with field f2. The expression is "f2 % 2"; if the
expression is equal to 0, return 'even'’; if the expression is equal to 1, return ‘odd'.

This can be also written as follows:

5.1.1.2 Types Table: addition (+) and subtraction (-) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 28

bag
tuple

map

int

long

float

double

chararray

bytearray

5.1.1.3 Types Table: multiplication (*) and division (/) operators

error

error

not yet

error

error

error

* pytearray cast asthis datatype

bag
tuple

map

int

long

float

double

chararray

bytearray

bag

error

tuple
error

error

map
error
error

error

error
error
error

int

int

not yet
not yet
error

int

error
error
error

long

long

long
not yet
not yet
error

long

long

error
error
error

float

float

float

float
not yet
not yet
error

float

float

float

error
error
error

double

double

double

double

double
not yet
not yet
error

double

double

double

double

Pig Latin Basics

error
error
error

error

error

error

error

error

chararray
error
error
error

error

error

error

error

error

error
error
error

cast as
int

cast as
long

cast as
float

cast as
double

error

cast as
double

bytearray
error
error
error

cast as
int

cast as
long

cast as
float

cast as
double

error

cast as
double

Page 29

5.1.1.4 Types Table: modulo (%) operator

int
long

bytearray

5.2 Boolean Operators

5.2.1 Description

Operator
AND
OR

IN

NOT

int

int

Symbol

and

or

not

long
long

long

Notes

Pig Latin Basics

bytearray
cast asint
cast aslong

error

IN operator is equivalent to nested
OR operators.

The result of aboolean expression (an expression that includes boolean and comparison
operators) is always of type boolean (true or false).

5.2.1.1 Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1)) OR (f1 IN (9, 10, 11));

5.3 Cast Operators

5.3.1 Description

Pig Latin supports casts as shown in thistable.

from/ | bag
to

bag
tuple error
map error

int error

tuple

error

error

error

map

error

error

error

int

error
error

error

long

error
error
error

yes

float

error
error
error

yes

double

error
error
error

yes

chararray bytearray boolean

error error
error error
error error

yes error

error

error

error

error

Page 30

long error
float error
double error
chararray error
bytearray yes

boolean = error

5.3.1.1 Syntax

error
error
error
error
yes

error

error
error
error
error
yes

error

yes
yes
yes
yes
yes

error

yes
yes
yes
yes

error

yes

yes
yes
yes

error

yes

yes

yes
yes

error

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map[]) } field

5.3.1.2 Terms

(data_type)

field

5.3.1.3 Usage

Cast operators enable you to cast or convert data from one type to another, aslong as

The data type you want to cast to, enclosed in

yes
yes

yes

yes

yes

Pig Latin Basics

error

error

error

error

error

error
error
error
yes

yes

parentheses. Y ou can cast to any data type except

bytearray (see the table above).

The field whose type you want to change.

Thefield can be represented by positional notation
or by name (alias). For example, if f1isthefirst field
and type int, you can cast to type long using (Ilong)$0

or (long)f1.

conversion is supported (see the table above). For example, suppose you have an integer

field, myint, which you want to convert to a string. Y ou can cast thisfield from int to
chararray using (chararray)myint.

Please note the following:

» A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

* Where possible, Pig performs implicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE $0 + 1, $1 + 1.0

Page 31

Pig Latin Basics

When two bytearrays are used in arithmetic expressions or a bytearray expression is used
with built in aggregate functions (such as SUM) they are implicitly cast to double. If the
underlying dataisreally int or long, you'll get better performance by declaring the type
or explicitly casting the data.

» Downcasts may cause loss of data. For example casting from long to int may drop bits.

5.3.2 Examples

In thisexample anint is cast to type chararray (seerelation X).

In this example abytearray (fld in relation A) is cast to type tuple.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 32

Pig Latin Basics

In this example abytearray (fld in relation A) is cast to type bag.

In this example abytearray (fld in relation A) is cast to type map.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 33

Pig Latin Basics

5.3.3 Casting Relations to Scalars

Pig allows you to cast the elements of a single-tuple relation into a scalar value. The tuple
can be asingle-field or multi-field tulple. If the relation contains more than one tuple,
however, aruntime error is generated: "Scalar has more than one row in the output".

The cast relation can be used in any place where an expression of the type would make
sense, including FOREACH, FILTER, and SPLIT. Note that if an explicit cast is not used an
implict cast will be inserted according to Pig rules. Also, when the schema can't be inferred
bytearray is used.

The primary use case for casting relations to scalarsis the ability to use the values of global
aggregatesin follow up computations.

In this example the percentage of clicks belonging to a particular user are computed. For the
FOREACH statement, an explicit cast is used. If the SUM is not given aname, aposition can
be used as well (userid, clicks/(double)C.$0).

In this example a multi-field tuple is used. For the FILTER statement, Pig performs an
implicit cast. For the FOREACH statement, an explicit cast is used.

Page 34

5.4 Comparison Operators

5.4.1 Description

Pig Latin Basics

Operator Symbol Notes

equal ==

not equal 1=

lessthan <

greater than >

less than or equal to <=

greater than or equal to >=

pattern matching matches Takes an expression on the left

and a string constant on the right.

expression matches string-
constant

Use the Javaformat for regular
expressions.

Use the comparison operators with numeric and string data.

5.4.2 Examples

Numeric Example

String Example

Matches Example

5.4.3 Types Table: equal (==) operator

bag

tuple

map

int

long

float

double

chararr

bytearr

boolea

datetin

biginte

error

error

error

error

error

error

error

error

error

error

error

error

imal

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/regex/Pattern.html

Pig Latin Basics

tuple boolea error error | error | error | €ror | €rror | error | error | error | error | error
(see
Note
1)
map boolea error error | error error error | error | error | error | error | error
(see
Note
2)
int boolea boolea boolea boolea error cast error error | error error
as
boolea
long boolea boolea boolea error cast error eror | error | eror
as
boolea
float boolea boolea error cast | error error | error | error
as
boolea
double boolea error cast | error error | error | error
as
boolea
chararr boolea cast error error | error | error
as
boolea
bytearr boolea error error error | error
boolea boolea error error error
datetin boolea error error
biginte boolea error
bigdec boolean

Note 1. boolean (Tuple A is equal to tuple B if they have the same size s, and for all 0 <=1i <
sA[i] == BIi])

Note 2: boolean (Map A isequal to map B if A and B have the same number of entries, and
for every key k1 in A with avalue of v1, thereisakey k2 in B with avalue of v2, such that
kl==k2andvl==v2)

Page 36

5.4.4 Types Table: not equal (I=) operator

bag tuple

error | error

bag
tuple error
map

int

long

float

double

chararr

bytearr
boolea
datetin
biginte

bigdeci

map
error
error

error

long float ' double
error | error | error
error | error | error
error | error | error

boolea boolea boolea booleal

boolea boolea boolea

boolea boolea

boolea

chararr
error
error
error

error

error

error

error

boolea

bytearr
error
error
error

booleal
(bytear
cast

as

int)

boolea
(bytear
cast

as

long)

booleal
(bytear
cast

as
float)

boolea
(bytear
cast

as
double

booleal
(bytear
cast

as
chararr

boolea

Pig Latin Basics

boolea datetin biginte bigdecimal
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
error | error | error | error
boolea error error | error
boolea error = error
boolea error

boolean

Page 37

Pig Latin Basics

5.4.5 Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*
chararray boolean boolean
bytearray boolean boolean

5.5 Type Construction Operators
5.5.1 Description

Operator Symbol Notes

tuple constructor O) Use to construct a tuple from the
specified elements. Equivalent to
TOTUPLE.

bag constructor {} Use to construct a bag from the
specified elements. Equivalent to
TOBAG.

map constructor [Use to construct a map from the
specified elements. Equivalent to
TOMAP.

Note the following:

* These operators can be used anywhere where the expression of the corresponding typeis
acceptable including FOREACH GENERATE, FILTER, etc.

* A singleelement enclosed in parens () like (5) is not considered to be atuple but rather
an arithmetic operator.

» For bags, every element is put in the bag; if the element is not atuple Pig will create a
tuple for it:
* Giventhis{$1, $2} Pig createsthis{($1), ($2)} abag with two tuples

... neither $1 and $2 are tuples so Pig creates a tuple around each item

e Giventhis{($1), $2} Pig createsthis{($1), ($2)} abag with two tuples
... since ($1) istreated as $1 (one cannot create a single element tuple using this
syntax), {($1), $2} becomes{$1, $2} and Pig creates a tuple around each item

» Giventhis{($1, $2)} Pig createsthis{($1, $2)} abagwith asingletuple
... Pig creates atuple ($1, $2) and then puts this tuple into the bag

Page 38

func.html#totuple
func.html#tobag
func.html#tomap

Pig Latin Basics

5.5.2 Examples

Tuple Construction

Bag Construction

Map Construction

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 39

5.6 Dereference Operators
5.6.1 Description

Operator

tuple dereference

bag dereference

map dereference

5.6.2 Examples

Tuple Example
Suppose we have relation A.

Symbol
tuple.id or tuple.(id,...)

bag.id or bag.(id,...)

map#key'

Pig Latin Basics

Notes

Tuple dereferencing can be done
by name (tuple.field_name) or
position (mytuple.$0). If a set of
fields are dereferenced (tuple.
(namel, name2) or tuple.($0,
$1)), the expression represents a
tuple composed of the specified
fields. Note that if the dot operator
isapplied to abytearray, the
bytearray will be assumed to be a
tuple.

Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If aset of fieldsare
dereferenced (bag.(namel, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

Map dereferencing must be

done by key (field_namettkey or
$0#key). If the pound operator
isapplied to abytearray, the
bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

Page 40

Pig Latin Basics

In this example dereferencing is used to retrieve two fields from tuple f2.

Bag Example

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

In this example dereferencing is used with relation X to project the first field (f1) of each
tuplein the bag (a).

Tuple/Bag Example

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 41

Pig Latin Basics

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

In this example dereferencing is used to project afield (f1) from atuple (group) and afield
(f1) from abag (a).

Map Example
Suppose we have relation A.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 42

Pig Latin Basics

(4, [pi g#grunt])

In this example dereferencing is used to look up the value of key ‘open'.

X = FOREACH A GENERATE f 2#' open' ;

DUMP X;
(apache)
0

0

0

5.7 Disambiguate Operator

Use the disambiguate operator (::) to identify field names after JOIN, COGROUP, CROSS,
or FLATTEN operators.

In this example, to disambiguate y, use A::y or B::y. In cases where there is no ambiguity,
such as z, the :: is not necessary but is still supported.

= load 'datal' as (x, Yy);

|l oad 'data2' as (x, Yy, z);

join A by x, B by x;

foreach C generate y; -- which y?

5.8 Flatten Operator

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bagsin away that a UDF cannot. Flatten un-nests tuples
aswell asbags. Theideaisthe same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of atuple in place of the tuple. For example, consider
arelation that has atuple of the form (a, (b, c)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b, c).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have arelation that is made up of tuples of the form ({ (b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove alevel
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has atuple of the form (a, { (b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, ¢) and (&, d, €).

Also note that the flatten of empty bag will result in that row being discarded; no output is
generated. (See also Drop Nulls Before a Join.)

Page 43

perf.html#nulls

Pig Latin Basics

For examples using the FLATTEN operator, see FOREACH.

5.9 Null Operators

5.9.1 Description

Operator Symbol Notes
isnull isnull
isnot null isnot null

For a detailed discussion of nulls see Nulls and Pig Latin.

5.9.2 Examples

In this example, values that are not null are obtained.

5.9.3 Types Table
The null operators can be applied to all datatypes (see Nulls and Pig L atin).

5.10 Sign Operators

5.10.1 Description

Operator Symbol Notes

positive + Has no effect.

negative (negation) - Changes the sign of a positive or
negative number.

5.10.2 Examples
In this example, the negation operator is applied to the "x" values.

Page 44

B = FOREACH A GENERATE - X,

5.10.3 Types Table: negative (-) operator

bag

tuple

map

int

long

float
double
chararray
bytearray
datetime
biginteger
bigdecimal

6 Relational Operators

6.1 ASSERT

Assert acondition on the data.

6.1.1 Syntax

ASSERT aliasBY expression [, messagel;

6.1.2 Terms
dias

BY
expression

message

yi

Pig Latin Basics

error
error

error

int

long

float

double

error

double (as double)
error

biginteger
bigdecimal

The name of the relation.
Required keyword.
A boolean expression.

Error message when assertion fails.

Page 45

Pig Latin Basics

6.1.3 Usage

Use assert to ensure a condition is true on your data. Processing fails if any of the records
voilate the condition.

6.1.4 Examples

Suppose we have relation A.

Now, you can assert that a0 column in your datais >0, fail if otherwise

6.2 COGROUP
See the GROUP operator.

6.3 CROSS

Computes the cross product of two or more relations.

6.3.1 Syntax

dias= CROSS dlias, dias[, dias ...] [PARTITION BY partitioner] [PARALLEL n];

6.3.2 Terms
dias The name of arelation.
PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.

The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

* For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

» For usage, see Example: PARTITION BY

Page 46

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html

Pig Latin Basics

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.3.3 Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more
relations.

CROSS is an expensive operation and should be used sparingly.

6.3.4 Example

Suppose we have relations A and B.

In this example the cross product of relation A and B is computed.

6.4 CUBE

Performs cube/rollup operations.

6.4.1 Cube operation

Cube operation computes aggregates for al posshile combinations of specified group by
dimensions. The number of group by combinations generated by cube for n dimensions will
be 2 n.

Page 47

perf.html#parallel

Pig Latin Basics

6.4.2 Rollup operation

Rollup operations computes multiple levels of aggregates based on hierarchical ordering of
specified group by dimensions. Rollup is useful when thereis hierarchical ordering on the
dimensions. The number of group by combinations generated by rollup for n dimensions will
bent+1.

6.4.3 Syntax

alias= CUBE diasBY { CUBE expression | ROLLUP expression }, [CUBE expression | ROLLUP
expression] [PARALLEL nJ;

6.4.4 Terms
dias The name of the relation.
CUBE Keyword
BY Keyword
expression Projections (dimensions) of the relation. Supports
field, star and project-range expressions.
ROLLUP Keyword
PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.
For more information, see Use the Parallel Features.
6.4.5 Example

6.4.6 Basic usage of CUBE operation

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube operation will output

Page 48

perf.html#parallel

Pig Latin Basics

6.4.7 Output schema

Note the second column, ‘cube’ field which isabag of all tuples that belong to ‘ group’.
Also note that the measure attribute ‘ sales’ along with other unused dimensionsin load
statement are pushed down so that it can be referenced later while computing aggregates on
the measure, like in this case SUM (cube.sales).

6.4.8 Basic usage of ROLLUP operation

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
rollup operation will output

6.4.9 Output schema

6.4.10 Basic usage of CUBE and ROLLUP operation combined

If CUBE and ROLLUP operations are used together, the output groups will be the cross
product of al groups generated by cube and rollup operation. If there are m dimensionsin
cube operations and n dimensions in rollup operation then overall number of combinations
will be (2"m) * (n+1).

Pig Latin Basics

For a sample input tuple (car, 2012, midwest, ohio, columbus, 4000), the above query with
cube and rollup operation will output

6.4.11 Output schema

6.4.12 Handling null values in dimensions

Since null values are used to represent subtotalsin cube and rollup operation, in order

to differentiate the legitimate null values that already exists as dimension values, CUBE
operator converts any null valuesin dimensions to "unknown" value before performing cube
or rollup operation. For example, for CUBE(product,location) with a sample tuple (car,) the
output will be

6.5 DEFINE
See:

DEFINE (UDFs, streaming)

Page 50

basic.html#define-udfs

Pig Latin Basics

 DEFINE (macros)

6.6 DISTINCT

Removes duplicate tuplesin arelation.
6.6.1 Syntax

aias= DISTINCT alias[PARTITION BY partitioner] [PARALLEL n;

6.6.2 Terms

dias The name of the relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

* For usage, see Example: PARTITION BY.

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

6.6.3 Usage

Use the DISTINCT operator to remove duplicate tuplesin arelation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). Y ou cannot use DISTINCT on a subset of fields; to do this, use FOREACH and
anested block to first select the fields and then apply DISTINCT (see Example: Nested
Block).

6.6.4 Example

Suppose we have relation A.

Page 51

cont.html#define-macros
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#parallel

Pig Latin Basics

In this example al duplicate tuples are removed.

6.7 FILTER

Selects tuples from arelation based on some condition.

6.7.1 Syntax

alias=FILTER alias BY expression;

6.7.2 Terms
dias The name of the relation.
BY Required keyword.
expression A boolean expression.
6.7.3 Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH...GENERATE operation).

FILTER iscommonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

6.7.4 Examples

Suppose we have relation A.

Page 52

Pig Latin Basics

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

In this example the condition states that if the first field equals 8 or if the sum of fieldsf2 and
f3 isnot greater than first field, then include the tuple relation X.

6.8 FOREACH

Generates data transformations based on columns of data.

6.8.1 Syntax

alias = FOREACH { block | nested block };

6.8.2 Terms

dias The name of relation (outer bag).

block FOREACH...GENERATE block used with arelation
(outer bag). Use this syntax:
alias = FOREACH aias GENERATE expression [AS
schema) [expression [AS schema...];
See Schemas

nested_block Nested FOREACH...GENERATE block used with a
inner bag. Use this syntax:
alias = FOREACH nested alias{

alias={nested_op | nested_exp}; [{alias=

{nested_op | nested_exp}; ...]

Page 53

Pig Latin Basics

GENERATE expression [AS schema] [expression
[ASschemd]....]

1
Where:

The nested block is enclosed in opening and closing
brackets{ ... }.

The GENERATE keyword must be the last statement
within the nested block.

See Schemas
Macros are NOT dllowed inside a nested block.

expression An expression.
nested alias The name of the inner bag.
nested op Allowed operations are CROSS, DISTINCT,

FILTER, FOREACH, LIMIT, and ORDER BY..

Note: FOREACH statements can be nested to two
levels only. FOREACH statements that are nested to
three or more levels will result in agrammar error.

Y ou can also perform projections within the nested
block.

For examples, see Example: Nested Block.

nested_exp Any arbitrary, supported expression.
AS Keyword
schema A schemausing the AS keyword (see Schemas).

e |fthe FLATTEN operator is used, enclose the
schemain parentheses.

e |fthe FLATTEN operator is not used, don't
enclose the schema in parentheses.

6.8.3 Usage

Use the FOREACH...GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

FOREACH...GENERATE works with relations (outer bags) as well as inner bags:
* If Alisareation (outer bag), a FOREACH statement could look like this.

X = FOREACH A GENERATE f1;
» If Alisaninner bag, a FOREACH statement could look like this.

Page 54

Pig Latin Basics

6.8.4 Example: Projection

In this example the asterisk (*) is used to project al fields from relation A to relation X.
Relation A and X areidentical.

In this example two fields from relation A are projected to form relation X.

6.8.5 Example: Nested Projection

In thisexampleif one of the fields in the input relation is atuple, bag or map, we can perform
aprojection on that field (using a deference operator).

In this example multiple nested columns are retained.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 55

Pig Latin Basics

6.8.6 Example: Schema

In this example two fieldsin relation A are summed to form relation X. A schemais defined
for the projected field.

6.8.7 Example: Applying Functions

In this example the built in function SUM() is used to sum a set of numbersin abag.

6.8.8 Example: Flatten

In this example the FLATTEN operator is used to eliminate nesting.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 56

Pig Latin Basics

Another FLATTEN example.

Another FLATTEN example. Note that for the group '4' in C, there are two tuplesin each
bag. Thus, when both bags are flattened, the cross product of these tuplesis returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4,2,9), and (4, 3, 9).

Another FLATTEN example. Here, relations A and B both have a column x. When forming
relation E, you need to use the :: operator to identify which column x to use - either relation
A column x (A::x) or relation B column x (B::x). This example usesrelation A column x
(A=x).

6.8.9 Example: Nested Block

In this example a CROSS is performed within the nested block.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 57

Pig Latin Basics

In this example FOREACH is nested to the second level.

This example shows a CROSS and FOREA CH nested to the second level.

Suppose we have relations A and B. Note that relation B contains an inner bag.

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE. Also, note
the use of projection (PA = FA.outlink;) to retrieve afield. DISTINCT can be applied to a
subset of fields (as opposed to arelation) only within a nested block.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 58

PA = FA outli nk;
DA = DI STI NCT PA;

CENERATE gr oup, COUNT(DA);

}

DUMP X;

(www. aaa. com 0)
(www. ccc. com 0)
(ww. ddd. com 1)
(www. www. com 1)

6.9 GROUP

Groups the data in one or more relations.

Pig Latin Basics

Note: The GROUP and COGROUP operators are identical. Both operators work with one
or more relations. For readability GROUP is used in statements involving one relation and
COGROUP is used in statements involving two or more relations. Y ou can COGROUP up to

but no more than 127 relations at atime.

6.9.1 Syntax

alias= GROUP alias{ ALL | BY expression} [, aliasALL | BY expression ...] [USING 'collected’ | 'merge’]

[PARTITION BY partitioner] [PARALLEL n;

6.9.2 Terms

dias

ALL

BY

expression

USING

The name of arelation.

Y ou can COGROUP up to but ho more than 127
relations at atime.

Keyword. Use ALL if you want all tuplestogoto a
single group; for example, when doing aggregates
across entire relations.

B =GROUPA ALL,;

Keyword. Use this clause to group the relation by
field, tuple or expression.

B = GROUP A BY f1;

A tuple expression. Thisisthe group key or key field.
If the result of the tuple expressionisasingle field,
the key will be the value of thefirst field rather than
atuple with one field. To group using multiple keys,
enclose the keysin parentheses:

B = GROUP A BY (keyLkey2);

Keyword

Page 59

Pig Latin Basics

‘collected' Use the ‘collected’ clause with the GROUP operation
(works with one relation only).

The following conditions apply:

e Theloader must implement the
{CollectablelL oader} interface.
« Datamust be sorted on the group key.

If your data and loaders satisfy these conditions,

use the ‘collected’ clause to perform an optimized
version of GROUP; the operation will execute on the
map side and avoid running the reduce phase.

'merge’ Use the ‘merge’ clause with the COGROUP
operation (works with two or more relations only).

The following conditions apply:

* No other operations can be done between the
LOAD and COGROUP statements.

e Datamust be sorted on the COGROUP key for
all tablesin ascending (ASC) order.

* Nullsare considered smaller than evertyhing. If
data contains null keys, they should occur before
anything else.

e Left-most loader must implement the
{CollectablelL oader} interface aswell as
{OrderedL oadFunc} interface.

e All other loaders must implement
Indexabl el oadFunc.

« Typeinformation must be provided in the
schemafor al the loaders.

If your data and loaders satisfy these conditions, the
‘merge’ clause to perform an optimized version of
COGROUP; the operation will execute on the map
side and avoid running the reduce phase.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

* For more details, see http://hadoop.apache.org/
docs/current/api/org/apache/hadoop/mapred/
Partitioner.html

e For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

Page 60

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/Partitioner.html
perf.html#Parallel

Pig Latin Basics

6.9.3 Usage

The GROUP operator groups together tuples that have the same group key (key field).
The key field will be atupleif the group key has more than onefield, otherwise it will be
the same type as that of the group key. The result of a GROUP operation is arelation that
includes one tuple per group. Thistuple contains two fields:

Thefirst field is named "group™ (do not confuse this with the GROUP operator) and is
the same type as the group key.

The second field takes the name of the original relation and is type bag.

The names of both fields are generated by the system as shown in the example below.

Note the following about the GROUP/COGROUP and JOIN operators:

The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates aflat set of output tuples

The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and GROUP/COGROUP Operataors).

6.9.4 Example

Suppose we have relation A.

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation
B hastwo fields. Thefirst field is named "group” and istype int, the same asfield "age" in
relation A. The second fieldisname"A" after relation A and is type bag.

Page 61

Pig Latin Basics

Continuing on, as shown in these FOREACH statements, we can refer to the fieldsin relation
B by names "group" and "A" or by positional notation.

6.9.5 Example
Suppose we have relation A.

In this example the tuples are grouped using an expression, f2*f3.

6.9.6 Example

Suppose we have two relations, A and B.

Copyright © 2007 The Apache Software Foundation. All rights reserved. Page 62

Pig Latin Basics

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schemafor relation X,
which has three fields, "group”, "A" and "B" (see the GROUP operator for information about
the field names).

Relation X looks like this. A tupleis created for each unique key field. The tuple includes the
key field and two bags. The first bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

6.9.7 Example

This example shows how to group using multiple keys.

6.9.8 Example: PARTITION BY
To use the Hadoop Partitioner add PARTITION BY clause to the appropriate operator:

Page 63

Pig Latin Basics

Hereisthe code for SimpleCustomPartitioner:

6.10 IMPORT

See IMPORT (macros)

6.11 JOIN (inner)

Performs an inner join of two or more relations based on common field values.

6.11.1 Syntax

alias=JOIN diasBY {expression|(‘expression [, expression ...]")'} (, diasBY {expression|(‘expression [,
expression ...])'} ...) [USING 'replicated' | 'skewed' | 'merge’ | ‘merge-sparse’] [PARTITION BY partitioner]
[PARALLEL nJ;

6.11.2 Terms

dias The name of arelation.

BY Keyword

expression A field expression.
Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

USING Keyword

'replicated’ Use to perform replicated joins (see Replicated
Joins).

‘skewed' Use to perform skewed joins (see Skewed Joins).

Page 64

cont.html#import-macros
perf.html#replicated-joins
perf.html#replicated-joins
perf.html#skewed-joins

Pig Latin Basics

'merge’ Use to perform merge joins (see Merge Joins).

'merge-sparse Use to perform merge-sparse joins (see Merge-Sparse
Joins).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.

The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

» For