
Building Windows Version
of OpenOffice.org on Linux
Madness, or The Way?

Jan Holesovsky
<kendy@suse.cz>

© Novell, Inc. All rights reserved.2

Content

• Motivation

• Possible speedups of the compilation

• The cross-compilation

• Did it work?

© Novell, Inc. All rights reserved.3

Motivation

• On Linux, we can build OOo in ~30 minutes!
– Yes, from scratch

– Used to be ~25, but regressed recently thanks to changes in
helpcontent2 :-(

– On Win32 it is much more

• Windows builds are necessary
– Lots of users...

• Developers don't need all the stuff
– The packagers might differ in some needs though

© Novell, Inc. All rights reserved.4

The 30 Minutes Linux Build

• Big, fat machine
– 8 cores

> Allows heavy parallelism

– 8G memory
> The build nearly does not have to touch disk ;-)

• Building less stuff
– --with-system-*

• Tools for faster compilation
– icecream

> instsetoo_native$ build –all -P8 -- -P10

– Alternatively ccache

How To Apply Those To Win32?

© Novell, Inc. All rights reserved.6

Big, Fat Machine

• More memory
– Memory is cheap these days

– But check that your Win32 edition can use it ;-)
> http://msdn.microsoft.com/en-us/library/aa366778.aspx

• Cygwin eats some of the performance
– Emulated POSIX

http://msdn.microsoft.com/en-us/library/aa366778.aspx

© Novell, Inc. All rights reserved.7

Building Less Stuff

• Divide et Impera!
– Split build

> It's not necessary to build everything over and over again if you want to
hack on eg. Writer

> openSUSE 11.1 uses that

– Own release cycle for the 3rd party stuff
> Updated sporadically, but has to be built over and over again

> “solver” used to help a bit, but:

» Huge download size

» Incompatible among compilers

– Own release cycle for helper tools
> dmake, transex3, makedepend, registry-related, ...

> Would help cross-compilation as well

© Novell, Inc. All rights reserved.8

The Tools: Precompiled Headers

• Feature of the compilers
– MSVC has it

> In OOo: --enable-pch given to ./configure

> Gcc has it as well

– Header files are compiled to an interim format

– For optimal use, all the headers have to be collected in one
big header file; in OOo it is “precompiled_<module>.hxx”

– http://wiki.services.openoffice.org/wiki/Precompiled_header_-_PCH

– Build of Writer: 43 minutes

http://wiki.services.openoffice.org/wiki/Precompiled_header_-_PCH

© Novell, Inc. All rights reserved.9

The Tools: ccache

• Caches output of the previous compilations
– Makes the 1st build a bit slower, next one is faster

– The c/c++ file is preprocessed, the content of the file + the
command line is hashed, and

> If the hash already exists in the cache, take the resulting .o, stdout and
stderr and use it as if it was compiled

> If it does not, pass it to the compiler, write .o, stdout and stderr to the
cache, and write the output as if the compiler itself did it

– Originally for gcc, ported for MSVC in Cygwin
> http://artax.karlin.mff.cuni.cz/~kendy/ccache/

http://artax.karlin.mff.cuni.cz/~kendy/ccache/

© Novell, Inc. All rights reserved.10

The Tools: Icecream

• Sends tasks for compilation to another machines
– Similarly to ccache, the source is preprocessed, and

compiled, or sent for compilation somewhere else
> Has a scheduler that decides where to send the jobs

> Sends also the compiler to the remote hosts so that it is ensured that it is
100% same as on the original machine

– Would be an ideal tool for the cross-compilation
> The task could be started on the Win32 machine, but distributed to Linux

machines running MSVC in Wine!

> No changes needed for the OOo build system, just set CC and CXX to
icecream

– Unfortunately, the attempt to port it for MSVC failed so far :-(

– http://en.opensuse.org/Icecream

http://en.opensuse.org/Icecream

More Fancy Stuff

© Novell, Inc. All rights reserved.12

Real Cross-compilation (1)

• When I gave up on the Icecream port, why not try to
tweak the OOo build system? ;-)

– Copied MSVC, platform SDK, etc. to the Wine installation

– Took 'solver' from Win32 and copied it to a tree compiled on
Linux

– Edited winenv.set.sh
> CC="wine \"c:\\Program Files\\Microsoft Visual Studio

9.0\\VC\\bin\\cl.exe\""

> Similarly other stuff

» Location of the includes, solver, COMPATH, SHELL, SOLARVER, ...

> But SOLARENV must point to the Linux solenv!

» To use the 'native' tools

© Novell, Inc. All rights reserved.13

Real Cross-compilation (2)

– Edited several makefile.mk's
> Depending on if the tool is used in Wine or not, it has to use colons, or

semicolons to delimit the includes

» COLON_HACK := :
(SRS)/shells.srs: $(subst,z$(COLON_HACK), $(SOLARINCDIR)) \
 $/svx$/globlmn.hrc

– Edited solenv/inc/unitools.mk and solenv/inc/wntmsci11.mk
> To use the Win32 tools in Wine, or native (Linux) tools for those Ooo-

specific

– Successfully built Writer!, but with limitations
> Cannot build with debug

» http://appdb.winehq.org/objectManager.php?sClass=version&iId=9569

> Cannot sign the dlls

http://appdb.winehq.org/objectManager.php?sClass=version&iId=9569

© Novell, Inc. All rights reserved.14

The Crucial Question: Does It Help?

• Unfortunately no :-(
– Native MSVC build time of sw: 78 minutes

– Build time of sw with MSVC in Wine: 300 minutes
> 3.8 times more :-(

> Even with wineserver still running

– [for comparison, PCH-enabled: 43 minutes!]

© Novell, Inc. All rights reserved.15

Another Possibility: MinGW

• A gcc for Windows

• MinGW port of OOo is still in progress
– Unfortunately still does build out-of-the-box

– Provided several patches, and got sw to compile
> Took 126 minutes, 1.6 times more than MSVC

> No idea about run-time, parts still do not compile to get a full install

• The plus side is that it's much easier to use it for
cross-compilation

– It's gcc, after all ;-)

– http://www.dumbbell.fr/howto/win32-cross-compilation.en.html

http://www.dumbbell.fr/howto/win32-cross-compilation.en.html

Conclusion

© Novell, Inc. All rights reserved.17

Conclusion

• Without profiling & optimizing Wine, it does not make
sense to use MSVC on Linux

– Porting icecream to handle MSVC is viable

– PCH is a clear winner, should be enabled by default!

• Split build would help tremendously
– Helper tools as separate packages with an own release cycle

– 3rd party libraries/tools as a separate package with an own
release cycle

> Viable thanks to the current shorter OOo release cycle

> Would be even possible to provide binary versions

– Separate l10n-related build tasks

• Big potential of MinGW

© Novell, Inc. All rights reserved.18

Questions

?

	Title-Burst
	Content
	Motivation
	The 30 Minutes Linux Build
	How to apply to win32
	Big, Fat machine
	Building less stuff
	Precompiled headers
	ccache
	Icecream
	More Fancy Stuff
	Real Cros-compilation (1)
	Real Cross-compilation (2)
	Does it help?
	MinGW
	Conclusion - break
	Conclusion
	Snímek 18
	Logo

