
12003-02-26

OOoCon 2003

Struggling with a C++-based component
architecture

by
Stephan Bergmann
sb@openoffice.org

22003-02-26

Agenda
About the speaker
The UNO framework
What is a component
C++ vs. C for components
The trouble with inline
Hidden inlines
Case study: weak symbols
Case study: exception classes
Case study: vtable relocation
Dependencies
Conclusion/questions

32003-02-26

About the speaker
Stephan Bergmann
Software Engineer, Sun/StarOffice
Base technology development (formerly UCB, now UNO;
text encodings, URLs; C++, Java, standards)

42003-02-26

The UNO framework
UNO is a component framework
Broadly, three sorts of components are involved:
UNO components: stable interface defined in UNO IDL; implemented in
any language
Base/helper libraries (e.g., sal, cppuhelper): stable interface, written in
C/C++
OpenOffice.org components (e.g., sw, sfx2): fast-changing interfaces,
written in C++

UNO
comp.

UNO
comp.

OOo
comp.

OOo
comp.

UNOUNO

base
lib

base
lib

52003-02-26

What is a component

Abstract view: cohesive set of functionality
More practical view: a set of C/C++ header files
Practical view: the implementation behind the set of C/
C++ header files
Either a shared library
Or nothing, in case of a set of purely inline C++ header files

62003-02-26

C++ vs. C for components
C++ has advantages over C, for both the interface and
the implementation of a component:
“Resource Acquisition is Initialization”

Exceptions (containing information) instead of error returns and global
errno

Language takes burden of many clerical tasks from programmer
(implicit constructors, destructors, ...)
In interfaces, this higher level of abstraction and ignorance of low-level
details can lead to problems

{
 osl::MutexGuard aGuard(aMutex);

}

vs.
osl_acquireMutex(aMutex);
...
osl_releaseMutex(aMutex);

try {
 something();
} catch (BadProblem & e) {
 display(e.what());
}

vs.
if (!something())
 display(strerror(errno))

72003-02-26

The trouble with inline
Inline across component boundaries increases coupling:
One component suddenly depends on implementation details of
another component (exposed through inline code)
Fixing the implementation of a component requires re-compiling other
components for fix to take effect
Global consistency in danger (e.g., calculating hash values)

Code and symbol table bloat
Never use inline in a component interface (and beware of
hidden inlines)
Even purely inline C++ header files can cause trouble (e.
g., rtl::OUString)

82003-02-26

Hidden inlines
Hidden inlines include:
Compiler generated class members: default and copy ctors, dtors,
assignment operators (for ctors and dtors, both complete object and
base object variants)
RTTI (exception handling): typeinfo structs, typeinfo name literals
vtables: vtables themselves, deleting dtors, thunks, RTTI
Compiler optimizations: allocating ctors, deleting dtors

struct A { virtual ~A() {} };
struct B {
 virtual ~B() {}
 virtual B * clone() { return new B; }
};
struct C: public A, public B {
 virtual C * clone() { return new C; }
}
B * f() { return (new C)->clone(); }

g++ 3.0.1:
26 weak symbols

92003-02-26

Case study: weak symbols
Vague Linkage:
C++ compiler sometimes does not know where to emit code/data (e.g.,
inline functions, vtables). Solution: emit code/data everywhere it is
needed, as weak symbols.

Semantics of weak symbols at runtime:
When the dynamic linker searches for a weak symbol, and does not find
a definition, it uses null instead
On GNU/Linux, the dynamic linker favors strong over weak definitions
At runtime, this slows down relocation of weak, defined symbols used
for vague linkage
Test: change weak, defined symbols into global ones:

> time ./soffice.bin
 1.310u > 1.000u (~75%)

> (LD_DEBUG=symbols,bindings ./soffice.bin 2>&1) | wc -l
 1529943 > 1152978 (~75%)

102003-02-26

Case study: exception classes
How to write an exception class?

symbols (def+undef) needed when catching/throwing: wntmsci9 unxsols4 unxlngi4 g++ 3.2

Class OpenEx {}; 1+0/4+0 1+0/1+0 2+0/2+0 3+0/3+0

Class MediumEx {
public:
 MediumEx();
 MediumEx(MediumEx const &);
 ~MediumEx();
 MediumEx & operator =(MediumEx const &);
};

1+0/4+3 1+0/1+2 2+0/2+3 3+0/2+3

Class ClosedEx {
public:
 ClosedEx();
 ClosedEx(ClosedEx const &);
 virtual ~ClosedEx();
 ClosedEx & operator =(ClosedEx const &);
};

1+0/4+3 0+1/0+3 2+0/2+3 1+1/0+4

112003-02-26

Case study: vtable relocation
Shared library code calls function f directly (lazy
relocation, cheap at startup):

Shared library code calls function f through vtable (eager
relocation, expensive at startup):

call f@PLT

.PLT0: pushl 4(%ebx)
jmp *8(%ebx)
...

f@PLT: jmp *f@GOT(%ebx)
pushl offset
jmp .PLT0

.GOT: long reserved
long lib identifier
long dynamic linker
...

f@GOT: long f@PLT + 1

movl (%eax), %eax
addl f@vtable, %eax
movl (%eax), %eax
call *%eax

vtable: long reserved
...

f@vtable: long f < resolved at startup

122003-02-26

Dependencies
C code:
Only depends on (stable) C library (“libc”)

C++ code:
Also depends on (stable) C library (“libc”)
Depends on (emerging) C++ library (containing functions for exception
handling, RTTI handling, memory management, object/array con-/
destruction, pure virtual function calls, ...)
Depends on STL:
STL use often produces inline code (i.e., no runtime dependency), but
some code is non-inline
Use of STL types in interfaces introduces dependency on STL's
internals
Dependencies on C++ library and STL have implications for mixing
components

132003-02-26

Conclusion
Using C++ instead of C in a component architecture has
advantages at the language level, but it also introduces
practical problems:
Naïve use of C++ degrades performance (e.g., startup performance
through symbol table bloat)
Some C++ language constructs have bad implications for components
(e.g., inline increases coupling)
Using C++ for shared libraries has not matured yet (e.g., eager
resolution of vtable function symbols)
C++ code has broader dependencies on runtime environment than C
code

The struggle goes on...

142003-02-26

Links & questions
OpenOffice.org http://www.openoffice.org
Subprojects http://udk.openoffice.org,
http://porting.openoffice.org/

Questions?

